

Plenoptic Based Super-Resolution For Omnidirectional Image Sequences

Luigi Bagnato, Yannick Boursier, Pascal Frossard, Pierre Vandergheynst

Signal Processing Laboratory (LTS2-LTS4), EPFL, Lausanne, Switzerland

1. Introduction

Problem Description

- From a set of omnidirectional low resolution images, reconstruct an high resolution image
- Images come from a moving camera
- Camera motion is unknown

Motivations

2. Framework Description

Modelization

Plenoptic function

- Images from omnidirectional imagers suffer from severe distortions -> classical algorithms perform poorly
- Omnidirectional cameras offer poor resolution • The problem has not been fully addressed [1]

Main Contributions

- *****Full flexible framework for Super-Resolution
- *Naturally handle omnidirectional geometry and irregular sampling through a Graph-Based representation of the underlying **Plenoptic Function**

3. Problem Formulation

Plenoptic Registration

Graph Representation

• We represent an image using a graph • The connection scheme is defined through geodesic distances on the sphere • We can define stable differential operators on graph [3]

4. Experimental Results

Experimental Setup Syntetic Images generated with Blender

• Original image resolution 512x512 • LR images: 64x64, 128x128, 256x256 - sequences of 17 frames

Light ray geometry between position \mathbf{x} and \mathbf{x}_j

Depth and Camera Motion Estimation

• Depth and camera motion need to be estimated • We perform the task as described in [2]

Variational Formulation

Data on full set of directions

 $f = \mathcal{L}(\mathbf{x}, \Omega)$

 $\Omega_l = \bigcup \{ \tilde{\omega}_k \}^j$

Data from available frames $b = \mathcal{L}(\mathbf{x}, \Omega_l)$

TV inpainting scheme on graphs

$$f^* = \underset{f}{\operatorname{argmin}} \|b - \Phi f\|^2 + \lambda \sum_{v} \|\nabla_v^w f\|$$

The functional can be solved using convex optimization techniques like the one described in [4]

Differential Operator on Graphs [3]

Local isotropic variation Gradient $(\nabla^w f)(u,v) = \sqrt{\frac{w(u,v)}{d(u)}}f(u) - \sqrt{\frac{w(u,v)}{d(v)}}f(v)$ $\left\|\nabla_{v}^{w}F\right\| = \sqrt{\sum_{v \in V} \left[\left(\nabla^{w}F\right)(u,v)\right]^{2}}$

5. References

[1] Arican and Frossard. I1 Regularized Super-resolution From Unregistered Omnidirectional Images. Icassp (2009) [2] Bagnato et al. OPTICAL FLOW AND DEPTH FROM MOTION FOR OMNIDIRECTIONAL IMAGES USING A TV-L1 ... ICIP (2009) [3] Zhou and Scholkopf. A regularization framework for learning from graph data. ICML Workshop on Statistical Relational Learning and Its ... (2004) [4] Peyre et al. Non-local Regularization of Inverse Problems. Computer Vision-Eccv 2008 (2008)