Plenoptic Based Super-Resolution For Omnidirectional Image Sequences

Signal Processing Laboratory (LTS2-LTS4), EPFL, Lausanne, Switzerland

1. Introduction

Problem Description

- From a set of omnidirectional low resolution images reconstruct an high resolution image
- Images come from a moving camera
- Camera motion is unknown

Motivations

- Images from omnidirectional imagers suffer from severe distortions -> classical algorithms perform poorly
- Omnidirectional cameras offer poor resolution

-The problem has not been fully addressed [1]

Main Contributions

\star Full flexible framework for Super-Resolution
\star Naturally handle omnidirectional geometry and irregular sampling through a Graph-Based representation of the underlying Plenoptic Function

3. Problem Formulation

Plenoptic Registration

$$
\begin{aligned}
& \mathbf{p}=D_{j} \omega_{k} \\
& \tilde{\omega}_{k}=\frac{\mathbf{p}-\mathbf{t}_{j}}{\left\|\mathbf{p}-\mathbf{t}_{j}\right\|} \\
& \mathcal{L}\left(\mathbf{x}, \tilde{\omega}_{k}\right)=\mathcal{L}\left(\mathbf{x}_{j}, \omega_{k}\right) \\
& \Omega_{l}=\bigcup_{j}\left\{\tilde{\omega}_{k}\right\}^{j}
\end{aligned}
$$

Light ray geometry between position \mathbf{x} and \mathbf{x}_{j}

Depth and Camera Motion Estimation

- Depth and camera motion need to be estimated
-We perform the task as described in [2]

Variational Formulation

Data on full set of directions Data from available frames
$f=\mathcal{L}(\mathbf{x}, \Omega)$

$$
b=\mathcal{L}\left(\mathbf{x}, \Omega_{l}\right)
$$

TV inpainting scheme on graphs
$f^{*}=\underset{f}{\operatorname{argmin}}\|b-\Phi f\|^{2}+\lambda \sum_{v}\left\|\nabla_{v}^{w} f\right\|$
The functional can be solved using convex optimization techniques like the one described in [4]

Differential Operator on Graphs [3] Local isotropic variation

Gradient
$\left\|\nabla_{v}^{w} F\right\|=\sqrt{\sum_{u \sim v}\left[\left(\nabla^{w} F\right)(u, v)\right]^{2}}$ $\left(\nabla^{w} f\right)(u, v)=\sqrt{\frac{w(u, v)}{d(u)}} f(u)-\sqrt{\frac{w(u, v)}{d(v)}} f(v)$

2. Framework Description

Modelization

Plenoptic function

$$
\mathcal{L}(\mathbf{x}, \omega)
$$

An image can be interpreted as a sample of the plenoptic function

$$
l=\mathcal{L}\left(\mathbf{x}_{i}, \Omega_{o}\right) \quad \Omega_{o}=\left\{\omega_{k}: k=1,2, \cdots, M_{l}\right\}
$$

Graph Representation

- We represent an image using a graph
- The connection scheme is defined through geodesic distances on the sphere
-We can define stable differential operators on graph [3]

4. Experimental Results

Experimental Setup

- Syntetic Images generated with Blender
- Original image resolution 512×512
- LR images: 64x64, 128x128, 256×256 - sequences of 17 frames

> PSNR Plot

5. References

[1] Arican and Frossard. 11 Regularized Super-resolution From Unregistered Omnidirectional Images. Icassp (2009)
[2] Bagnato et al. OPTICAL FLOW AND DEPTH FROM MOTION FOR OMNIDIRECTIONAL IMAGES USING A TV-L1 ICIP (2009)
[3] Zhou and Scholkopf. A regularization framework for learning from graph data. ICML Workshop on Statistical Relational Learning and Its ... (2004)
[4] Peyre et al. Non-local Regularization of Inverse Problems. Computer Vision-Eccv 2008 (2008)

