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A Detail
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Problem Description
•From a set of omnidirectional low resolution images, 
reconstruct an high resolution image

• Images come from a moving camera
•Camera motion is unknown

Motivations
• Images from omnidirectional imagers suffer from 
severe distortions -> classical algorithms perform 
poorly

•Omnidirectional cameras offer poor resolution
•The problem has not been fully addressed [1]

Main Contributions
★Full flexible framework for Super-Resolution
★Naturally handle omnidirectional geometry and irregular sampling 
through a Graph-Based representation of the underlying 
Plenoptic Function

we can then associate the direction ω = (θ, φ) ∈ S2 of the corre-
sponding light ray leaving the camera center.

To simplify the notation, but without loss of generality, we will
assume in the following that all images li have the same angular sam-
pling of the plenoptic function, such that to all of them correspond
the same set of directions Ωo = {ωk : k = 1, 2, · · · , Mo}.We can
write then: li = L(xi, Ωo) for i ∈ {1, 2, · · · , N}.

2.1. Light Rays Registration

We want to relate now, by simple geometrical considerations, a di-
rections ωk at the viewpoint xj with the corresponding direction ω̃k

at a generic point in space x, as depicted in Figure 1. We fix a
common system of coordinates. Let us assume now that from xj ,
looking in direction ωk, we observe a point p = Djωk in the scene,
where Dj is the distance of the point p from xj . Please note that,
with an abuse of notation, we use ωk to represent both the 3D unit
vector and the direction on S2. If p is visible from position x, since
the translation vector between the two viewpoints is simply given by
tj = xj − x, the following relationship holds:

ω̃k =
p− tj

‖p− tj‖
. (1)

If the light conditions change slowly over time we can use the bright-
ness consistency equation to relate different samples of the plenoptic
function:

L(x, ω̃k) = L(xj , ωk). (2)

It should be clear from Eq. (2) that, if we know p and tj , we can
obtain a new plenoptic sample L(x, Ωl) on the set of directions

Ωl =
[

j

{ω̃k}j ,

where we use {ω̃k}j to represent all the new directions ω̃k at posi-
tion x obtained from position xj and the set of directions Ωo using
Eq. (1).
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Fig. 1. Light ray geometry between position x and xj

2.2. Discrete Embedding of the Sphere in a Graph

Before we further proceed to the formulation of a variational inverse
problem, we briefly discuss how we embed the spherical discrete set
of data into a graph structure. The main advantage of the graph-
based representation is that we can directly define stable differential
operators on a discrete domain. Although the 2-sphere is a simple
manifold with constant curvature and a simple topology, a naive dis-
cretization can cause severe numerical instabilities (see for example
[11]). On top of that we have extreme flexibility on the choice of
the discrete grid points, so we are not limited to regular grids. A

weighted undirected graph Γ = (V, E, w) consists of a set of ver-
tices V , a set of vertices pairs E ⊆ V × V , and a weight func-
tion w : E &→ R satisfying w(u, v) > 0 and w(u, v) = w(v, u),
∀(u, v) ∈ E. Each direction ω can be interpreted as a point on a
spherical imaging surface, so we use vertices to represent directions
ω in space (i.e. points on the unitary sphere), while edges define
connections between directions. The topology of the spherical sur-
face is finally obtained through the definition of weights w(u, v) as
a decreasing function of the geodesic distance g(u, v) between the
vertices u and v: w(u, v) = e−g2/σ . Following Zhou et al [12], we
define the gradient and divergence over Γ as :

(∇wf)(u, v) =

s
w(u, v)
d(u)

f(u)−

s
w(u, v)
d(v)

f(v) (3)

and

(divwF )(u) =
X

u∼v

s
w(u, v)
d(v)

(F (v, u)− F (u, v)) , (4)

where u ∼ v stands for all vertices v connected to u and d : V &→ R
is the degree function defined as d(v) =

P
u∼v w(u, v). We also

define the local isotropic variation of F at vertex (pixel) v by:

‖∇w
v F‖ =

sX

u∼v

h“
∇wF

”
(u, v)

i2
. (5)

2.3. Variational Problem Formulation and Solution

We assume from now on that we know the camera motion parame-
ters, i.e., translation and rotation for each pair of images li and lj , as
well as a dense depth map estimate Di(ωk) for each spatial position
xi. We obtain such estimates in a pre-processing step using the same
structure from motion algorithm described in [7]. For each couple
of successive frames li and lj the camera ego-motion and the depth
map Di(ωk) are jointly estimated in variational framework. Using
the ego-motion parameters and the depth information, we perform
an image registration step where we obtain, for a generic position
x in space, the full set of directions Ωl as described in Section 2.1.
We want to stress that, thanks to the framework flexibility, x does
not have necessarily to coincide with one of the camera positions.
We set b = L(x, Ωl) ∈ Rm where m is the cardinality of Ωl. The
super-resolution problem then consists in estimating from b a sam-
ple of the plenoptic function at a given position x and for a given
set of directions Ωh = {ωh : h = 1, 2, ...Mh}, where typically
Mh + Mo. Let us call f the full set of plenoptic function values on
the set of direction Ω = Ωl ∪ Ωh, i.e. f = L(x, Ω) ∈ Rn when n
is the cardinality of Ω. We formulate then the following variational
inverse problem where we look for a regularized solution f∗ s.t.

f∗ = argmin
f

‖b− Φf‖2 + λ
X

v

‖∇w
v f‖, (6)

where Φ is a matrix defined as:

Φ = IΩl ∈ Rm×n (7)

i.e., it is obtained from the identity matrix I ∈ Rn×n by keeping
only the rows corresponding to directions in Ωl. In other words Φ
restricts f to the available data. Since the second energy term in
Eq. (6) defines the total variation norm of f on the graph, the mini-
mization problem defined in Eq. (6) can be seen as a TV inpainting
scheme on graphs. It is out of the scope of this paper to tackle con-
vex optimization algorithm on graphs, so we refer to the solution
proposed in [13, 11].
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Experimental Setup
•Syntetic Images generated with 
Blender

•Original image resolution 512x512
•LR images: 64x64, 128x128, 
256x256 - sequences of 17 frames

ω

x

Depth and Camera Motion Estimation
•Depth and camera motion need to be estimated
•We perform the task as described in [2]

Graph Representation
•We represent an image using a graph
•The connection scheme is defined through 
geodesic distances on the sphere

•We can define stable differential operators on 
graph [3]

Plenoptic function

An image can be interpreted as a sample of the plenoptic function
l = L(xi,Ωo) Ωo = {ωk : k = 1, 2, · · · ,Ml}

f∗ = argmin
f

‖b− Φf‖2 + λ
∑

v

‖∇w
v f‖
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The functional can be solved using convex optimization techniques 
like the one described in [4]

TV inpainting scheme on graphs

b = L(x,Ωl)
Data from available frames

f = L(x,Ω)
Data on full set of directions

Ωl =
⋃

j

{ω̃k}j

Differential Operator on Graphs [3]
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