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Abstract

Let T be a triangulated surface given by the list of vertex-triples of its triangles,
called rooms. A room-partitioning of T is a subset R of the rooms such that each
vertex of T is in exactly one room in R.

We prove that if T has a room-partitioning R, then there is another room-
partitioning of T which is different from R. The proof is a simple algorithm which
walks from room to room, which however we show to be exponential by constructing
a sequence of (planar) instances, where the algorithm walks from room to room an
exponential number of times relative to the number of rooms in the instance.

We unify the above theorem with Nash’s theorem stating that a 2-person game
has an equilibrium, by proving a combinatorially simple common generalization.
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1 Introduction

Many Existentially Polytime (EP) theorems [1] have existence proofs that
do not immediately imply a polynomial-time algorithm for finding what is
asserted to exist. Although a lot of EP theorems also have polynomial-time
algorithmic proofs, some of them have resisted effort to find polynomial-time
algorithms. In particular, some of such EP theorems can roughly take the
following form: “For any T , and R in T , there is another different R in T”, as
a consequence of some algorithmic techniques proving that “for any T , there
is an even number of such R in T”. A powerful technique to prove these
statements is showing that they are implied by vertex-degree parity in large
implicit “exchange graphs” [2].

One of the most famous problem for which polynomial-time algorithms
seem elusive, is finding a Nash equilibrium for 2-person games, despite its
existence proof. In fact, the problem has been shown by Chen and Deng [3]
to be complete for one important class of search problems, namely the class
PPAD, identified in a seminal paper of Papadimitriou [7].

Elaborating on the above concepts, in this paper we prove that for for any
triangulated surface, and any subset of its triangles partitioning its vertices,
there exists another different subset of triangles partitioning the vertices. The
proof is a simple “exchange algorithm” which however we show to have a
running time (on a sequence of planar instances) that is exponential in the
number of triangles. We then define an abstract generalization of such theorem
which in fact generalizes the existence of an equilibrium for 2-person games
and the Lemke-Howson algorithm [5] for finding such equilibria.

2 The room-partitioning problem

A rank-r simplicial pseudo manifold (V, M) is a finite set V of elements called
the vertices and a family M of subsets of V , called the rooms, each one of
size r and with the following property: every vertex subset of V of size r − 1
is contained in exactly 0 rooms or in exactly 2 rooms. The latter subsets are
called the walls of (V, M). A room-partitioning of (V, M) is a subset R of the
rooms such that each vertex of V is in exactly one room in R.

Theorem 2.1 Suppose that a manifold (V, M) has a room-partitioning R.
Then there is another room-partitioning R′ of (V, M), different from R.
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Proof. Choose any vertex, say w, to be special. A w-skew room-family of
(V, M) is a subset S of the rooms M such that: (i) no room in S contains
the vertex w, (ii) some vertex v is in exactly two rooms of S, (iii) every other
vertex besides v and w is in exactly one room of S. Consider the so-called
exchange graph X determined by (V, M) and w, as follows. The nodes of X
are all the room-partitionings of (V, M) plus all the w-skew room-families of
(V, M). Two nodes of X are joined by an edge of X when each is obtained
from the other by replacing one room by another. It is easy to see that the
connected components of X are simple paths and cycles. Still, the path ends
are the room-partitionings of (V, M). The result then follows observing that
X must have an even number of odd-degree nodes. 2

Given a room-partitioning R of (V, M), the exchange algorithm finds an-
other room-partitioning R′ of (V, M), by simply walking along the path in X
from the node of X corresponding to R to the other end of its path. Going
from one node to another by an edge of X is called a pivot. Of course, the
algorithm applied to R′ takes us in reverse direction on the same path to R.

We now prove that the exchange algorithm is not a polynomial-time al-
gorithm, by constructing a sequence of instances where the algorithm walks
from room to room an exponential number of times, relative to the number of
rooms. Each instance is a rank-3 manifold described by a triangulated surface,
where a room corresponds to a vertex-triple of its triangles.
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Fig. 1. The manifold (V0,M0) in (a). In (b), bold and dashed arrows indicate the
pivots made by the exchange algorithm to get from R0 to R′

0 and from R′
0 to R0,

with the chosen special vertex w. As an example, bold arrow labelled by 1 has tail
in room wef and head in room fie: it indicates that, in the first pivot (to get from
R0 to R′

0) room wfe is replaced by room fie.

Let (V0, M0) be the manifold depicted in Fig. 1(a), where the gray squares



indicate the triangles (rooms) corresponding to the initial room-partitioning
R0, and the black circles indicate the second room-partitioning R′

0, which you
get by applying the exchange algorithm to R0, with the chosen special vertex
w. In Fig. 1(b), bold arrows indicate in order the 9 pivots of the algorithm
to get from R0 to R′

0. Dashed arrows indicate in order the 9 pivots of the
algorithm to get from R′

0 to R0. Note that, each of these two algorithm
applications is, of course, the reverse of the other.

To get example (V1, M1) and R1 from (V0, M0) and R0, consider the tri-
angulation in Fig. 1 and do the following steps: (i) add a vertex h along the
edge bc in the picture, (ii) add the edges hg and ha, (iii) replace the triangle
hab with a shrunken copy of the big triangulated triangle dfe (see Fig. 2).
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Fig. 2. The manifold (V1,M1). Gray squares indicate the triangles corresponding
to the initial room-partitioning R1.

We get triangulated surface (Vk, Mk) with room-partitioning Rk from trian-
gulated surface (Vk−1, Mk−1) with room-partitioning Rk−1, applying the same
steps as in the preceding paragraph. Next theorem easily follows from the
picture of the pivots.

Theorem 2.2 For every positive integer k, (Vk, Mk) has 12 more rooms than
(Vk−1, Mk−1). The exchange algorithm does 8·2k more pivots for Rk in (Vk, Mk)
than for Rk−1 in (Vk−1, Mk−1).

Corollary 2.3 The exchange algorithm for the room-partitioning problem has
a running time that is exponential in the number of rooms.

We do not know an algorithm for finding a room-partitioning R′, given a
triangulated surface T and an initial room-partitioning R, which is polynomial-
time relative to the number of triangles in T .



In the next sections, we unify the room-partitioning theorem 2.1 with
Nash’s theorem stating that a 2-person game has an equilibrium, by giving a
combinatorially simple common generalization.

3 Nash equilibria for 2-person games

A bimatrix game (i.e., a 2-person game) is given by two bounded non-degenerate
systems, [A I]y = 1 and [I B]x = 1. (The identity submatrices I in the above
systems are not the same but are appropriate to non-negative matrix A and
to non-negative matrix B, respectively.)

Let R (resp. T ) be the index set for the rows of A and for the columns
of B (resp. for the rows of B and for the columns of A). R (resp. T ) is
called the set of pure strategies for Player 1 (resp. Player 2). When Player
1 plays a probability distribution, yR on R, and Player 2 plays a probability
distribution, xT on T , the expected pay-off for Player 1 is A pre-multiplied
by yR and post-multiplied by xT ; the expected pay-off for Player 2 is B pre-
multiplied by xT and post-multiplied by yR. The pair (xT , yR) is called an
equilibrium if neither player can improve his expected payoff by unilaterally
changing his probability distribution.

Let V be the column-index set of matrix [A I] and of matrix [I B], that is,
V is the disjoint union of R and T . R is a feasible basis of system [A I]y = 1
and T is a feasible basis of system [I B]x = 1. (A feasible basis is a maximal
independent subset of columns such that the solution obtained by setting
equal to zero the variables corresponding to columns not in the basis, is non-
negative.) In particular, (R, T ) is a complimentary pair of feasible bases, since
R = V − T and vice versa. It is a beautiful easy-to-prove key theorem that:

Theorem 3.1 The equilibria of the game are given by the complimentary
pairs of feasible bases of [A I]y = 1 and [I B]x = 1, other than (R, T ).

Hence the following Theorem 3.2 is the crucial part of an algorithmic proof
of Nash’s theorem that every bimatrix game has an equilibrium.

Theorem 3.2 There is another complimentary pair of feasible bases of [A I]y =
1 and [I B]x = 1, other than the given starting pair (R, T ).

We now prove an abstract version of Theorem 3.2, relying on the definition
of manifolds. Before, we need a theorem implicit in the simplex method for
linear programming:

Theorem 3.3 (The Simplex Theorem) Let Ay = b be a non-degenerate



and bounded system. For any feasible basis T and any column j not in T ,
there is a unique column i in T , such that T ′ = (T + j − i) is a feasible basis.

Another way of saying Theorem 3.3 is:

Theorem 3.4 If V is the column-set of A, and the members of M are the
sets R = V − T such that T is a feasible basis of A, then, where n is the
number of columns of A and m is the rank of A, (V, M) is a rank-(n − m)
manifold.

A simplicial manifold (V, M) is the combinatorial type of a geometric sim-
plicial polytope (the convex hull of a finite set of points such that every face
is a geometric simplex) if and only if (V, M) can be realized as in Theorem
3.3. In fact, a manifold with many rooms might be described implicitly by
a non-degenerate system of linear equations having a bounded non-negative
solution-set.

We are now ready to state the Abstract Equilibrium Theorem:

Theorem 3.5 (Abstract Equilibrium Theorem) Let (V, M1) and (V, M2)
be manifolds both with vertex-set V and, respectively, with room-sets M1 and
M2. Then there is an even number of complimentary partitions of V into a
room T1 of M1 and a room T2 of M2 (that is, such that T2 = V − T1).

Proof. Choose an element w in V . Let X be the graph whose nodes are
pairs (T1, T2) such that T1 is a room of M1 and T2 is a room of M2, and
such that either (T1, T2) is complimentary, or else non-complimentary such
that vertex w is in neither T1 or T2 and some one vertex j is in both T1 and
T2. Two nodes (T1, T2) and (T ′

1, T
′
2) of graph X are joined by an edge in X

when T1 = T ′
1 and T ′

2 = T2 − j + i for some vertex i in (T1 − j) ∪ {w}, or
when T2 = T ′

2 and T ′
1 = T1 − j + i for some vertex i in (T2 − j) ∪ {w}. Each

complimentary pair (T1, T2) is a node of X which is in exactly one edge of X.
Each non-complimentary node (T1, T2) of X is in exactly two edges of X. 2

Note that, using the Simplex Theorem 3.3, Theorem 3.5 clearly has The-
orem 3.2 as an instance.

The Lemke-Howson algorithm [5] to find an equilibrium for a 2-person
game is to make simplex pivots which walk along the path in graph X from
the node of X corresponding to the starting complimentary pair of bases to
the other end of the path. Savani and von Stengel [8] (see also [6]) have
shown that the Lemke-Howson algorithm is exponential relative to the size
of the matrices defining the game, not necessarily exponential relative to the
number of simplices defined by the matrices.



4 Unifying Theorem

We now give a common generalization of the Room-Partitioning Theorem 2.1
and the Abstract Equilibrium Theorem 3.5.

Let M = [(V, Mi) : i = 1, . . . , h] be an indexed collection of manifolds
(which we call a manifold-family) all on the same vertex-set V . The manifolds
of M are not necessarily of the same dimension. Of course, all of them may be
the same manifold. A room-family, R = [Ri : i = 1, . . . , h], for manifold-family
M , is where, for each i, Ri is a room of manifold (V, Mi) (i.e., a member of Mi).
A room-partitioning R for M means a room-family whose rooms partition V .

Theorem 4.1 Given a manifold-family M and a room-partitioning R for
M , there exists another different room-partitioning for M . In fact, for any
manifold-family M , there is an even number of room-partitionings.

Proof. Choose a vertex, say w, to be special. A w-skew room-family for
manifold-family M means a room-family, R = [Ri : i = 1, . . . , h] for M such
that w is not in any of the rooms Ri, some vertex v is in exactly two of
the Ri, and every other vertex is in exactly one of the Ri. Consider the
exchange-graph X, determined by M and w, where the nodes of X are all the
room-partitionings for M and all the w-skew room-families for M . Two nodes
of X are joined by an edge of X when each is obtained from the other by
replacing one room by another. It is easy to see that the room-partitionings
for M are all one-degree nodes of X, and the w-skew room-families for M are
two-degree nodes in X. Hence X consists of disjoint simple cycles and simple
paths, whose ends are the room-partitionings. 2

Of course Theorem 2.1 is Theorem 4.1 where all the manifolds of M are
the same, and the Theorem 3.5 is where h = 2.

5 Generalization to d-oiks

A d-oik C = (V, F ), d ≥ 1, recently introduced by Edmonds [4], is a finite
set V of elements, called the vertices of C, and a family of subsets of V each
of size d + 1, called the rooms of C, satisfying the following property: every
subset of V of d elements is in an even number of the rooms. A wall of a room
is a set obtained by deleting one vertex of the room, and so any wall of a room
in an oik is the wall of a positive even number of rooms.

Let M = [(V, Fi) : i = 1, . . . , h] be an indexed collection of oiks, called an
oik-family, all on the same vertex-set V . A room-family R = [Ri : i = 1, . . . , h],



for oik-family M , is where, for each i, Ri is a room of oik (V, Fi). A room-
partitioning R for M is a room-family whose rooms partition V .

The concept of oik clearly generalizes the definition of simplicial pseudo
manifold. The unifying Theorem 4.1 can then also be seen as an instance of
the following theorem [4]:

Theorem 5.1 Given any oik-family M , there is an even number of room-
partitionings for M .

Given a room-partitioning for M , an exchange algorithm can find another
room-partitioning for M , once again by replacing one room by another. Our
Corollary 2.3 shows that this algorithm is not a polynomial-time algorithm
even for explicit (planar) 2-oiks, answering an open question in [4]. It would
be interesting to characterize oiks for which an exchange algorithm is always
well-bounded in the number of rooms.
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