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Abstract: The experimental validation of a real-time optimization (RTO) strategy for the optimal op-
eration of a solid oxide fuel cell (SOFC) stack is reported in this paper. Unlike many existing studies,
the RTO approach presented here utilizes the constraint-adaptation methodology, which assumes that
the optimal operating point lies on a set of constraints and then seeks to satisfy those constraints in
practice via bias update terms. These biases correspond to the difference between predicted and mea-
sured outputs and are updated at each steady-state iteration, allowing the RTO to successfully meet
the optimal operating conditions of a 6-cell SOFC stack, despite significant plant-model mismatch. The
effects of the bias update filter values and of the RTO frequency on the power tracking and constraint
handling are also investigated.
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1. Introduction

In the recent decade, fuel cells have received grow-
ing attention as viable energy alternatives, advo-
cated as a cleaner and more efficient energy source.
There remains, however, a number of open prob-
lems with fuel cell technology that must be resolved
before it can be put into widespread use and become
a practical, capable substitute for current methods.
One of these issues lies in the life of a cell, which
can be shortened significantly if the system does
not successfully adhere to certain safe operating re-
gions, qualified by constraints on certain input and
output variables. In addition to simply being safe,
the cell must also perform optimally and be able
to operate at the highest efficiency for any imme-
diate power demand. For these reasons, the do-
mains of control and optimization have been in-
creasingly called upon for improved fuel cell per-
formance. Unfortunately, despite a large number
of theoretical contributions - the majority of which
have focused on control (see, for example, [5] or
[13]) and few on optimization ([6] and [14]) - there
still remains a large gap between simulation stud-
ies and reported experimental results. To the best of
the authors’ knowledge, all experimental studies so
far have been limited to proton exchange membrane

(PEM) cells ([1, 12, 9]), and many have sought ef-
ficiency based on specific criteria that were already
known in advance, rather than formally treating the
cell as a multiple-input, constrained optimization
problem with changing optimal conditions.

In this paper, a previously developed and simulated
constraint-adaptation methodology ([7]) is validated
experimentally for a 6-cell SOFC stack. Unlike the
method in [6], which seeks to track an optimality
criterion via model-predictive control, or the ap-
proach in [14], which aims to achieve optimality by
tracking the flow-dependent maximum power, the
constraint-adaptation methodology discussed here
works on the very simple - yet often true - premise
that the optimum of the problem lies somewhere on
the constraints. Therefore, if the proper set of con-
straints can be met in practice, then the optimality of
the process is guaranteed as well. Because of uncer-
tainty, the values of the constrained quantities given
by the model will rarely match those provided by
the real system, and so an adaptation - carried out
by adding a bias term to the modeled constraints -
is used to ensure that the constraints used by the op-
timization match those of the real system. In doing
so, the RTO iteratively drives the system to the true
constraints, with the speed of convergence dictated
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Figure 1: The setup of a typical stack.

by the way the bias update is filtered. As a demon-
stration of its robustness to uncertainty, the ability of
this method to reject long-term system degradation
has been shown via simulation in [2].

This paper will be structured as follows. In Section
2, the description of the experimental apparatus and
a summary of the model used for the SOFC stack
will be given. In Section 3, the constraint-adaptation
methodology will be discussed in detail. Its appli-
cation to the real system will then be outlined and
the tested scenarios explained. Section 4 will focus
on the results - looking not only at the general per-
formance of the experimental stack, but also at the
effects of altering the bias filters and optimization
frequency, and Section 5 will conclude the paper.

2. System Description
2.1. Experimental Setup

2.1.1. Design and Interface

The study presented in this article concerns
an SOFC short-stack developed at EPFL for
HTceramix-SOFCpower ([11, 4]). This stack con-
sists of planar anode-supported cells with an active
area of 50 cm2, pressed between gas-diffusion layers
(SOFConnexT M) and metallic interconnector plates.
The anodes are made of standard nickel/yttrium-
stabilized-zirconia (Ni-YSZ) cermet, while the thin
electrolyte consists of dense YSZ. The cathodes are
made of screen-printed (La,Sr)(Co,Fe)O3, allow-
ing standard operation temperatures between 650◦C
and 850◦C. A detailed description of its construc-
tion can be found in [11], and a photo of a typical
assembly is given in Fig. 1. A stack of 6 cells was
used for this study.

The stack was placed in a high-temperature furnace
at 775◦C and connected to a testing station provid-
ing controlled flow rates of air and preheated fuel

(∼770◦C). Additionally, an active load was used to
control the delivered current. The control of the test-
ing station was ensured by a LabVIEW interface in
which the RTO algorithm was implemented via a
MATLAB Script function.

2.1.2. System Constraints

Two key constraints limit the efficiency in an SOFC.
While the cell may deliver a given electrical power
at several different operating conditions (different
fuel flows and currents), the maximum electrical ef-
ficiency is usually found close to the highest achiev-
able fuel utilization (70-90%) - defined as the per-
centage of the fed fuel that reacts. However, to pre-
vent damages to the stack by local fuel starvation
and reoxidation of the anode [11], a conservative
maximum fuel utilization of 75% is set. In addi-
tion, it is known that significant internal losses are
detrimental to SOFC stacks. These losses appear as
differences between the ideal and measured cell po-
tential (overpotentials). Therefore, a minimum cell
voltage of 0.75V is set to protect the stack from ac-
celerated degradation, resulting in the second major
constraint for the system.

In addition, the air excess ratio (or just the “air ra-
tio”), defined as the stoichiometric ratio between the
oxygen fed to the system and the oxygen needed
to react with the fuel, must be kept within certain
bounds so as to avoid steep thermal gradients. For
this setup, the ratio is kept between 4 and 7. A lower
bound of 3.14 ml/(min · cm2)1 is also placed on the
fuel feed rate so as to avoid local (or widespread)
fuel starvation, and an upper bound of 30A is placed
on the current to avoid excessive heating ([7]).

To avoid damaging the stack, limits on the rate of
input changes were defined as 0.54 ml/(min2 · cm2),
1.37 ml/(min2 · cm2), 2.0 A/min for the hydrogen
flow, oxygen flow, and current, respectively. Condi-
tional laws were written into the LabVIEW code so
that any of these rates could be set to 0 in the case
of a fuel utilization or air ratio violation.

2.2. Steady-State SOFC Model

The steady-state model used to optimize the stack
is largely similar to that which has been previously
reported in [7]. As such, only the most fundamental
elements of the model, or any deviations from prior
reported work, are given here. For a full and detailed
treatment, the interested reader is referred to [7].

1All flux values, given in ml/(min · cm2), are calculated un-
der normal conditions.



Figure 2: The diagram of the SOFC system. A fuel
feed that is 97% hydrogen, 3% water is sent through
the anode, while air is fed through the cathode. The
stack is polarized with an exogenous current.

As mentioned in the previous section, the SOFC
is a system fed with O2 (air stream) and H2 (fuel
stream), which react electrochemically to produce
electrical power and heat. The fuel cells are usu-
ally assembled in stacks in order to reach the de-
sired voltage, and require an outside current source
to operate (Fig. 2).

Three inputs are used to control the operation of the
stack: the hydrogen flux ˙nH2 (in ml/(min · cm2)), the
oxygen fluxṅO2 (in ml/(min · cm2)), and the current
I (in A):
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As will be shown in the following section, the three
outputs of interest are the power densitypel (in
W/cm2), the cell potentialUcell (in V), and the elec-
trical efficiencyη. The potential is modeled based
on the equivalent circuit approach ([8]) :

Ucell = UN − Uact,c − Ui,e− Udis,c

−Udi f ,a − Udi f ,c − UMIC .
(2)

Here,UN denotes the reversible cell voltage, while
Uact,c, Udis,c, Udi f ,a denote the non-Ohmic over-
potential losses (cathode activation, cathode oxy-
gen dissociation, and diffusion at the anode, respec-
tively). Ui,e, Udi f ,c, and UMIC denote the Ohmic
losses (ionic conductivity, diffusion through the
cathode, and metallic interconnect, respectively).
The latter, not mentioned in [7], is defined as:

UMIC = (RMIC,1 + RMIC,2) I , (3)

with RMIC,1 andRMIC,2 denoting the resistances of
the two interconnects.

The values ofpel andη follow as functions ofUcell:

pel =
Ucell Ncells I

Ac

η =
pel Ac

ṅH2 QL
,

(4)

whereNcells is the number of cells in the stack,Ac

is the active area of the cell, andQL is the lower
heating value of the fuel. Unlike in the work in [7],
the parasitic power demand of the air blower is not
included in the definition ofη.

BecauseUcell, and thus alsopel andη, depend sub-
stantially on the temperature of the stack ([7]), an
energy balance is also required, and may be ex-
pressed as:

mcP
dT
dt
= −∆Ḣgas− pelAc − Q̇loss, (5)

with m, cP, andT used to express the mass, spe-
cific heat capacity, and temperature of the stack, re-
spectively. ∆Ḣgas denotes the enthalpy change for
the gases, whilėQloss denotes the radiative heat loss
calculated as:

Q̇loss= AασS B(T
4 − T4

f urn), (6)

whereA is the area of the stack,α is a transfer factor,
σS B is the Stefan-Boltzmann factor, andT f urn is the
temperature of the furnace.

To calculate the steady-state values ofUcell, pel, and
η, it is first necessary to integrate Eq. 5, and to use
the resulting steady-state temperature to obtain the
values of the potential, power, and efficiency. As
a result, while the response of these quantities to
changes in the inputs is practically instantaneous,
the true steady state of the system is governed by the
temperature as it gradually reaches its new value.
While some SOFC systems may have additional
dynamics depending on their setup ([10]), it is as-
sumed that, for the system at hand, these two time
scales - one instantaneous and one on the magnitude
of approximately 30 minutes - are the only signifi-
cant ones.

In testing this model against the real SOFC stack,
one can see a divergence between the predicted po-
tential and the actual value when the current is in-
creased (Fig. 3). This is particularly crucial for
the current range 18 to 25A, which is used through-
out many of the experiments (Section 4.). However,
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Figure 3: Current-potential (IV) curve foṙnH2 = 5
ml/(min · cm2), λair = 4.

the constraint-adaptation methodology, introduced
next, is an excellent tool for dealing with this de-
viation.

3. RTO via Constraint Adaptation
3.1. Methodological Overview

Process optimization typically involves the mini-
mization of a cost (or the maximization of a profit)
that is subject to certain equality and inequality con-
straints. This results in a nonlinear programming
(NLP) problem which, for the system described in
Section 2., may be written as:

max
u
η(u,θ)

s.t. : pel(u,θ) = pS
el

Ucell(u,θ) ≥ 0.75 V
ν(u) ≤ 0.75
4 ≤ λair (u) ≤ 7
u1 ≥ 3.14 ml/(min cm2)
u3 ≤ 30 A,

(7)

with the electrical efficiency η acting as the profit
function to be maximized. Here, the superscript
S denotes the setpoint for the power demand, ef-
fectively giving the optimization a second role as
a load-following controller. The fuel utilization,ν,
and the air ratio,λair , may be expressed in terms of
the inputs as:

ν =
NcellsI
2ṅH2F

=
Ncells

2F
u3

u1
(8)

λair = 2
ṅO2

ṅH2

= 2
u2

u1
, (9)

whereF is the Faraday constant.

The vector of uncertain parametersθ in (7) is used
to represent the model parameters that do not match
those of the real system.

With the steady-state model described in Subsec-
tion 2.2., the NLP problem (7) may be solved to ob-
tain an optimal set of inputs that theoretically maxi-
mizes the cell efficiency while satisfying all the con-
straints. However, due to plant-model mismatch and
process disturbances, this nominal solution is un-
likely to be optimal for the actual SOFC system. For
the system presented in this article, the optimization
is very intuitive and follows the following general
rules:

� At lower power demands, maximizeν to maxi-
mize efficiency, i.e.ν is the active constraint.

� For higher power demands,Ucell becomes the ac-
tive constraint, and pushingν to its boundary is
no longer optimal.

Because the fuel utilizationν is independent ofθ,
it is known with certitude and thus can be satisfied
exactly in (7). This is not true for the cell potential,
however, which cannot be modeled perfectly and is
often susceptible to uncertainty (as demonstrated in
Fig. 3). Therefore, it is possible for the nominal
problem to either underestimate or overestimate this
value, resulting in “optimal” input values that will,
in practice, either violate the constraint or reach an
early limit by assuming it is active when it is not.
This problem has been resolved in simulation in [7]
with the use of “modifiers”, or bias terms which are
added to the uncertain constraint quantities to cor-
rect the model estimation. Using the modifiers,ε,
for the power demand and the cell potential (but not
for the efficiency, as adding a constant term would
not affect the solution) results in a modified NLP
problem that reads:

max
u
η(u,θ)

s.t. : pel(u,θ) + εpel = pS
el

Ucell(u,θ) + εUcell ≥ 0.75 V
ν(u) ≤ 0.75
4 ≤ λair (u) ≤ 7
u1 ≥ 3.14 ml/(min cm2)
u3 ≤ 30 A.

(10)

As the modifiers are generally unable to converge to
the optimal values in a single iteration, convergence
is sought over a few iterations, using a low-pass fil-
ter with the filter constantsK as suggested in [3].
At the kth iteration, the optimization problem (10)
is solved foruk using the modifiersεpel

k−1 andεUcell
k−1

from the previous iteration. Then, the modifiers are
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Figure 4: Constraint-adaptation RTO scheme.

updated as follows:

ε
pel
k = (1− Kpel)ε

pel
k−1+

Kpel[pel,p,k − pel(uk,θ)]
ε

Ucell
k = (1− KUcell)ε

Ucell
k−1 +

KUcell[Ucell,p,k − Ucell(uk,θ)],

(11)

with the subscriptk indicating the iteration number
and the subscriptp used to denote a plant value.
At the optimum (fork → ∞), the modifiers will
have converged and will simply be the difference (or
bias2) between the actual and estimated values:

ε
pel
∞ = pel,p(u∞) − pel(u∞,θ)
ε

Ucell
∞ = Ucell,p(u∞) − Ucell(u∞,θ)

(12)

With the addition of the modifiers, the solution
given by the optimization is guaranteed, upon con-
vergence, to satisfy the constraints of the plant. The
general algorithm proceeds as follows:

1. Setk = 1 and choose initial values for the modi-
fiersεpel

0 andεUcell
0 .

2. Solve the modified optimization problem (10) to
obtain new input valuesuk.

3. Apply these input values and let the system con-
verge to a new steady state.

4. Update the modifiers according to (11). If
‖uk − uk−1‖ ≤ δ (whereδ is a user-specified crite-
rion), assume convergence. If not, setk := k + 1
and return to Step 2.

The algorithm is presented schematically in Fig. 4.

2To clarify, the complete differences between the model and
plant values are referred to as “bias”, while the partial, filtered
differences used in the optimization are called “modifiers”.

3.2. Application to the Real Stack

To test the effectiveness of the methodology pre-
sented above, a preset power demand profile,

pS
el(t) =



























0.30 W
cm2 t ≤ 90 min

0.38 W
cm2 90 min< t ≤ 180 min

0.30 W
cm2 t > 180 min

(13)

was taken to demonstrate how the change in active
constraints (fromν to Ucell) may occur. Note that
the power demand profile of Eq. 13 acts as a dis-
turbance at the RTO layer: in other words, it is
not knowna priori when and how the power de-
mand may change. An RTO iteration frequency of
30 minutes was used, as this was generally the time
it took for the actual system to reach steady state.
The initial (sub-optimal) steady-state inputs were 5
ml/(min · cm2), 12.77 ml/(min · cm2), and 20 A for
the fuel flux, oxygen flux, and current, respectively.

4. Results and Discussion
4.1. Optimal Power Tracking with Differ-

ent Filters

The scenario described in Subsection 3.2. was tested
in the SOFC system for different values of the filter
constantsK . For this set of scenarios,KUcell was
set equal toKpel, and the two were varied together.
Three different filter values of 0.4, 0.7, and 1.0 (the
latter corresponding to full adaptation) were inves-
tigated. Complete results, including the input and
efficiency graphs, are presented in Fig. 5 for a fil-
ter value of 0.4. The subsequent sets (Fig. 6-7) are
given in their cut versions, and focus only on the
power tracking and constraints (the inputs and effi-
ciencies in these latter cases follow trends that are
very similar to those in the former).

It can be observed that the optimizer immediately
seeks to maximize the air ratio for all cases. This
is because, without any parasitic losses to the air
blower in the objective function, there is no reason
for the optimizer to keep it at low levels. The fuel
utilization also seems extremely sensitive to small
disturbances in the hydrogen flux, which leads to
occasional fluctuations and violations in this con-
straint. Finally, there is a “dip” in the fuel utilization
during power changes, which is due to the fact that
the system must keep the air ratio below its upper
limit during the transient and, for this reason, does
not decrease the hydrogen flux quickly enough to



0 30 60 90 120 150 180 210 240 270
0.25

0.3

0.35

0.4

0.45

Time (min)

p
e

l(W
/c

m
2
)

0 30 60 90 120 150 180 210 240 270
15

20

25

30

Time (min)

I 
(A

)

0 30 60 90 120 150 180 210 240 270

0.6

0.7

0.8

Time (min)

ν

0 30 60 90 120 150 180 210 240 270
0.7

0.75

0.8

0.85

Time (min)

U
c
e
ll (

V
)

0 30 60 90 120 150 180 210 240 270
35

40

45

50

55

Time (min)

η

0 30 60 90 120 150 180 210 240 270
0

10

20

30

Time (min)

F
lu

x
e

s
  
  
(m

l/
m

in
/c

m
2
)

 

 
H

2
O

2

Figure 5: RTO performance withKpel = KUcell = 0.4.

match a decrease in current. What results is a tem-
porarily low fuel utilization.

Otherwise, as expected, the filter constants affect the
speed of convergence to the optimum. With a low
filter, as in Fig. 5, convergence is very slow and
damped. For the medium-sized filter in Fig. 6, it
is quicker but still damped. For the full adaptation
case in Fig. 7, convergence is fast but oscillatory.

Of additional interest is the way the algorithm han-
dles the constraints. For fuel utilization, there are
practically no issues (except for the noisy perfor-
mance of the PI fuel flux controller), as there is
no uncertainty. More interesting is the electric po-
tential, whose constraint is initially violated when
the algorithm tries to use the modifiers obtained for
a low power demand to compute the optimum for
a higher one. With steady-state RTO alone, there
seems to be no means to solve this problem, as the
converged modifiers from the first power demand al-
ways lead to this sort of violation in the second.

4.2. Optimal Filter Design

To improve power tracking and constraint satisfac-
tion, it is possible to assign different values to the
modifiers. From the bias values in Table 1 (taken
from the experiment depicted in Fig. 7), it is clear
that the bias for the electric potential constraint
changes little during operation at the given condi-
tions. Therefore, it is of interest to get to this value
as quickly as possible so as to obtain and maintain
an accurate prediction. One way is to use the high-
est possible value (i.e. 1) forKUcell (it is readily seen
that using lower values, as in Fig. 5, only leads to
greater violations and slower convergence).

For the power demand, it is more difficult to esti-
mate an optimal filter value. A value of 0.7 results
in a second-iteration step that is too small, while a
value of 1.0 leads to a step that is too big (compare

the instances att = 120, 210 between Fig. 6 and
7). Assuming that the optimal value lies somewhere
in between, one may chooseKpel = 0.85. Imple-
menting this value does indeed result in much better
power tracking, as shown in Fig. 8. The potential
constraint is violated, but returns back to its bound
quickly due to the large filter value.
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Figure 6: RTO performance withKpel = KUcell =

0.7.

4.3. Fast RTO

Although SOFCs with the capability to track con-
stant power demand profiles may be of use indus-
trially, many applications involve power demand
changes that occur much more frequently than on
the scale proposed in the preceding experiments.
For this reason, the use of “fast” RTO was investi-
gated. Instead of waiting for the system to reach true
steady state with constant temperature (∼30 min)
before implementing the RTO, it was assumed that



Table 1: Values of the bias/modifiers for the experiment in Fig. 7.

t (min) 0 30 60 90 120 150 180 210 240 270
εpel (W/cm2) 11.9 19.9 17.8 18.2 26.7 24.8 24.7 17.3 18.5 18.3
εUcell (V) 0.101 0.164 0.163 0.162 0.166 0.163 0.161 0.161 0.163 0.165
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Figure 7: RTO performance withKpel = KUcell =

1.0.
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Figure 8: RTO performance withKpel = 0.85 and
KUcell = 1.0.

the majority of the output response had already oc-
curred at the electrochemical scale (< 1 sec). With
this assumption, the temperature dynamics were ig-

nored and treated like a slow-scale parametric drift,
and the RTO frequency was increased to an action
every 10 seconds. The optimal filter constants found
in the previous section were retained. A power-
demand profile spanning one hour of operation was
generated, with a new random power demand be-
tween 0.30 and 0.38 W/cm2 being given every 5
minutes. Towards the end of the experiment, a 15
minute stretch was used to manually test the ability
of this algorithm to meet the maximum power with-
out violating the constraint. A converged plant at
pS

el = 0.30 W/cm2 was used as a starting point. The
results are presented in Fig. 9.

The outcome is very promising. Owing to the fact
that there is a very large difference between the two
time scales, the optimizer does not suffer from the
lack of true steady-state bias, and is able to also act
as a very effectivecontroller - quickly tracking the
appropriate power demand without needing any ex-
tensive tuning. Via its role as an optimizer, it main-
tains the efficiency at near-optimal levels through-
out the course of operation. Finally, unlike in the
previous cases where the slow updates allowed vio-
lations, the potential constraint is approached and
met, rather than violated, with this method. One
does notice, however, that new power demands can-
not be met if the change in the demand is too large
(the last iteration in Fig. 9), but this is a limitation
of the physical system, rather than of the algorithm.

5. Conclusions

An RTO with constraint adaptation was investigated
for an experimental SOFC stack. It was shown that,
despite uncertainty and plant-model mismatch, the
adaptive optimization algorithm was able to suc-
cessfully drive the system to its true optimum, con-
verging to the specified power demand and to the
proper active constraint. With additional studies, it
was shown that tuning the filter values could result
in even better performance and faster convergence.
A high-frequency RTO was also attempted, and it
was demonstrated that ignoring the transient effects
of the temperature did not harm the performance of
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Figure 9: Performance of the fast RTO.

the algorithm. As a result, the RTO acted as both an
optimizer and a controller in this case.

Though not addressed in this paper, this mecha-
nism still has open issues that must be looked at.
A more rigorous theoretical treatment of the filter
tuning is still needed. The efficacy of the proposed
method for more complicated SOFC problems, such
as those involving steam reformers, cost criteria
with parasitic losses, or heat demand-following with
co-generation, is yet to be studied.
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