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Abstract. In this paper, we present a fast method to detect humans from videos captured in
surveillance applications. It is based on a cascade of LogitBoost classifiers relying on features
mapped from the Riemanian manifold of region covariance matrices computed from input image
features. The method was extended in several ways. First, as the mapping process is slow for
high dimensional input image feature space, we propose to select weak classifiers based on subsets
of the complete image feature space, corresponding to sub-matrices of the full covariance matrix.
In addition, we propose to combine these sub-matrix covariance features with the means of the
image features computed within the same subwindow, which are readily available from the fast
covariance extraction process based on integral images. Finally, in the context of video acquired
with stationary cameras, we propose to fuse image features from the spatial and temporal domains
in order to take advantage of both appearance and foreground information based on background
subtraction to detect humans. We evaluated our method on a large dataset of videos coming from
several databases (CAVIAR, PETS, ...). The results show that our approach can process from
5 to 20 frames/second (for a 384x288 video) while achieving similar performance than existing
methods.
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1 Introduction

Detecting humans in images and videos is one of the important challenges in computer vision. This is
due to factors such as the large variation of appearance and pose that human forms can take due to
their clothing, the nature of articulations of the body, the changes in camera view point or illumination
variations. In this paper, we address the fast detection of humans in videos recorded by a stationary
camera. This is an essential step in many applications related to surveillance and smart spaces such
as meeting rooms or offices. Indeed, improving human modeling and detection is crucial for tracking
algorithms, especially when scenes become more crowded.

In general, there are two main approaches to tackle the detection of humans in images. The first
consists of modeling the human by body parts whose locations are constrained by a geometric model
[8, 11, 9]. In [11], body parts were represented by combinations of joint orientation and position
histograms. Separate Adaboost detectors were trained for the face and head as well as front and
side profiles of upper and lower body parts. Human localization was then obtained by optimizing the
likelihood of part occurrence along with the geometric relation. As another example, [9], proposed
a probabilistic human detector for crowded scenes that combines evidence from local features with
a top-down segmentation and verification step. However, while these techniques usually attempt to
provide a general framework that can be applied to complex objects [10], they usually do not lend
themselves to fast implementations. In addition, while they usually take into account, in a quite
accurate fashion, the articulated nature of the human body, this might not be so appropriate when
dealing with low resolution human images such as those often encountered in surveillance videos.

The second approaches are based on applying a human detector for all possible subwindows in
a given image. In [6], a direct approach was used in which edge images were matched to a set of
human examplars using a chamfer distance. In [13], a SVM classifier was learned using Haar wavelets
as human descriptors. In [19], an efficient detector applicable to videos was built using a cascade
of Adaboost classifiers relying also on Haar wavelet descriptors but extracted from spatio-temporal
differences. Recently, [3] proposed a very good detector that relied on a linear SVM classifier applied
to densely sampled histograms of orientation gradient (HOG). It was extended in [4] to videos using
histograms of differential optical flow features in addition to HOG. As the approach in [3] is relatively
slow, the application of the cascade and boosting framework to the HOG features was proposed in
[21, 1]. Finally, very recently, [18] proposed a method that outperformed previous methods [21, 3]. It is
based on a cascade of LogitBoost classifiers that uses covariance features as human descriptors. More
precisely, subwindows of the detection windows are represented by the covariance matrix of image
features, such as spatial location, intensity, gradient magnitude and orientation. The LogitBoost
classifier was modified by mapping the covariance matrix features in an appropriate space to account
for the fact that covariance matrices do not lie in a vector space but in a Riemannian manifold. This
resulted in superior performance.

In the present paper, we rely the method of Tuzel et al. [18] to detect humans in videos captured
from stationary cameras. We extended the method in several ways to speed up the computation
and take into account the temporal information. First, as the covariance mapping step, which is
performed for each weak classifier, is slow for high dimensional input image feature space, we propose
to use weak classifiers based on subsets of the complete image feature space. This corresponds to using
sub-matrices of the full covariance matrix and allows us to explore the covariance between features
in small groups rather than altogether for each weak classifier. As the number of subsets to explore
increases exponentially, we propose a tractable method to select with high probability the subset that
provides the best performance in the logit-boost training stage.

Secondly, we propose to combine these sub-matrix covariance features with the means of the image
features computed within the same subwindow, which are available at no additional cost given the
extraction process based on integral images. While these features may or may not improve the results,
depending on the features used, they allow faster rejection at a reduced cost.

Thirdly, in the context of videos acquired with stationary cameras, we propose to fuse image
features from the spatial and temporal domains in order to take advantage of both appearance and
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foreground information. While in the past background subtraction results have commonly be used
as a region of interest (ROI) selection process, e.g. [7] (an exception is [19]), we propose here to use
them directly as features in the classifiers. This has several advantages. First, due to the cascade
approach, the temporal features still play implicitly a ROI role allowing for faster processing. This will
be achieved in a more informative way, by exploring the correlation between these temporal features
and the spatial ones. Secondly, we propose to use foreground probabilities rather than background
subtraction binary masks. This is interesting as these probabilities can exhibit variations related to
the human body pose (to the contrary of cast shadow for instance), as illustrated by some examples
in Fig. 3. In addition, this choice alleviates the need for setting the background detection threshold;
a sensitive issue in practice. When too low a threshold is used, the resulting over-detection produces
less informative masks. When too high a threshold is used, there will be missed detections. Our choice
should thus be more robust against variation in the contrast between humans and the background.

Altogether, the result is a near real-time human detector that performs accurately on challenging
datasets. The rest of the paper is organized as follows. Section 2 introduces the covariance features.
In Section 3 we presents a brief description of the LogitBoost classification algorithm for Riemanian
manifolds. Section 4 presents our approach. Experimental results are presented in Section 5.

2 Region Covariance Descriptors

Let I be an input image of dimension W × H. From this image we can extract at each pixel location
x = (x, y)⊤ a set of features such as intensity, gradient, and filter responses. We denote by d the
dimension of this feature set. Accordingly, we can define a W × H × d feature image H.
Selected Features: To detect humans in videos, we propose to use the following 8-dimensional set H(x)
of features for each pixel x:

H=

[

x |Ix| |Iy|
√

I2
x+I2

y arctan
|Iy|

|Ix|
G

√

G2
x+G2

y

]⊤

(1)

where Ix and Iy are the first-order intensity derivatives, and arctan
|Iy|
|Ix|

represents the edge orientation.

G denotes a foreground probability value, that is a real number between 0 and 1 indicating the
probability that the pixel x belongs to the foreground, and Gx and Gy are the corresponding first-
order derivatives. With respect to [18], the main difference is in using the two foreground related
measures instead of second-order intensity derivatives Ixx and Iyy of the original images. In the
context of human detection in videos, the foreground measure should be much more informative. To
extract the foreground features from a video sequence captured from a stationary camera, we rely
on the robust background subtraction technique described in [20]. In short, its main characteristics
are the use of an approach similar to the Mixture of Gaussian (MoG) [16], the use of Local Binary
Pattern features as well as a perceptual distance in the color space to avoid the detection of shadows,
and the use of hysteresis values to model the temporal dynamics of the mixture weights. Examples
are shown in Fig. 3.
Covariance computation: Given a rectangular window R, we can compute the covariance matrix CR

of the features inside that window according to:

CR =
1

|R| − 1

∑

x∈R

(H(x) − mR)(H(x) − mR)⊤ (2)

where mR is the mean vector of the features in the region R, i.e. mR = 1
|R|

∑

x∈R H(x), and | · |

denotes the set size operator. The covariance matrix is a very informative descriptor which encodes
information about the variance of the features inside the region, their correlations with each other,
and spatial layout. It can be computed efficiently using integral images [17].
Covariance normalization: The covariance features are robust towards constant illumination changes.
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To allow robustness against local linear variations of the illumination, we apply the following normal-
ization. Let r be a possible subwindow inside the window R in which we want to detect a person. We
first compute the covariance of the subwindow Cr using the integral representation. Then, all entries
of the covariance Cr are normalized w.r.t. the standard deviations of their corresponding features
inside the detection window R, which can be obtained from the diagonal terms of the covariance CR

[18]. The resulting covariance is denoted C′
r.

3 LogitBoost Learning on Riemannian Space

LogitBoost algorithm: We first briefly introduce the standard LogitBoost algorithm on vector spaces
[5], which is a variant of the popular Adaboost algorithm. In this section, let {xi, yi)}i=1...N be the
set of training examples, with yi ∈ {0, 1} and xi ∈ R

n. The goal is to find a decision function F which
divides the input space into the 2 classes. In LogitBoost, this function is defined as a sum of weak
classifiers, and the probability of an example x being in class 1 (positive) is represented by

p(x)=
eF (x)

eF (x) + e−F (x)
, F (x)=

1

2

∑NL

l=1
fl(x). (3)

The LogitBoost algorithm iteratively learns the set of weak classifiers {fl}l=1...NL
by minimizing the

negative binomial log-likelihood of the training data:

−
∑N

i
[yi log(p(xi)) + (1 − yi) log(1 − p(xi))] , (4)

through Newton iterations. At each iteration l, this is achieved by solving a weighted least-square

regression problem:
∑N

i=1 wi‖fl(xi)− zi‖
2, where zi = yi−p(xi)

p(xi)(1−p(xi))
denotes the response values, and

the weights are given by wi = p(xi)(1 − p(xi)).
LogitBoost for Riemannian manifolds: However, since covariance matrices do not lie in a vector space
but in the Riemannian manifold of symmetric positive definite matrices M, Tuzel et al. [18] proposed
modifications to the original LogitBoost algorithm to specifically account for the Riemannian geometry.
This was done by introducing a mapping h : M → R

n projecting the input covariance features into
the Euclidian tangent space at a point µl of the manifold M:

h : X 7→ x = h(X) = vecµ
l

(

logµ
l
(X)

)

(5)

where the vec and log operators are defined by vecZ(y) = upper(Z− 1

2 yZ− 1

2 ) with upper denoting

the vector form of the upper triangular part of the matrix, and log
Z
(Y) = Z

1

2 log(Z− 1

2 YZ− 1

2 )Z
1

2

and log(Σ) = U log(D)U⊤ where Σ = UDU⊤ is the eigenvalue decomposition of the symmetric
matrix Σ, and log(D) is a diagonal matrix whose entries are the logarithm of the diagonal terms of
D [14, 18]. One question that arises is: for a weak classifier fl, how can we select the projection point
µl? Tuzel et al. [18] proposed to use the weighted mean of all training examples, which is defined by:

µl = arg min
Y∈M

∑N

i=1 wid
2(Xi,Y) where the function d2(X,Y) measures the distance between two

points X and Y in the Riemannian space M. This minimization is achieved using a gradient descent
procedure described in [14]. Since the weights are adjusted through boosting, at a given iteration l, the
mean will move towards the examples which have not been well classified during previous iterations,
allowing to build more accurate classifiers for these points. Ultimately, a weak classifier is defined as:
fl(X) = gl(h(X)) where gl can be any function from R

n → R. In this paper, we used linear functions.
Learning with a cascade: In [18], the above method was implemented within a cascade of LogitBoost
rejection classifiers, and we follow this approach (details are given in the next Section). Also, at each
iteration l, there is not only one single weak classifier available. Rather, a collection of weak classifiers
are learned and the one that minimizes the negative binomial log-likelihood (4) is actually added
as fl to form the decision function F . The collection of classifiers is made out of all the covariance
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Fig. 1: Relative computation time of LogitBoost classifiers, for different feature sizes. Size one is
taken as reference.

features that can be extracted from the subwindows r of the detection window R. However, to keep
the computation tractable, only a subset is tested. At each boosting iteration l, we randomly select
Nw = 200 subwindows whose size is at least 1/10 of the width and height of the detection window
[18].

4 Proposed Algorithm

In this section, we describe the improvements we made to the approach as well as more technical
details about the cascade training.

4.1 Using Feature Subsets

The cascade of LogitBoost classifiers is quite fast. However, at runtime, most of the computation
time is spent on the eigenvalue decomposition requested to compute the logarithm of a matrix in the
mapping step (cf (5) and formulas that follow). Of course, the load depends on the feature dimension,
as illustrated in Fig. 1, which shows the relative computation time of a LogitBoost classifier composed
of 10 weak classifiers built according to the approach described in Section 3, with different feature
dimensions. One option to speed-up the process could be to decrease the overall feature set size.
However, this could be at the cost of performance. What we propose instead is to use weak classifiers
relying on subsets of the full feature set. In this way, all the features are kept and the more consistent
correlation between them can be exploited.
Selecting the feature subsets: Assume that we have a d-dimensional feature vector, and that we are
interested in selecting subsets of size m(< d). Let Sm

d = {Sm,i}i=1...Cd
m

denote the set of all subsets of

size m, where Sm,i is the i-th such m-subset, and Cd
m = d!

(d−m)!×m! denotes the number of un-ordered
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Fig. 2: Grouth-truth ranks of {Lr(Sm,i)} vs. approximated ranks of {L̃r(Sm,i)}, for m = 3 and 4.

m−subsets. At each step of the LogitBoost algorithm, we would like to find the best subwindow-
subset couple (r⋆, i⋆) that provides the minimum negative binomial log-likelihood, i.e.: (r⋆, i⋆) =
arg minr,i Lr(Sm,i), where Lr(Sm,i) denotes the negative binomial log-likelihood defined in (4) after
the training of the weak classifier on subwindow r with the feature subset Sm,i. Such an exhaustive
search involve the training of Nw ×Cd

m weak classifiers, which becomes quickly intractable when m is
large (the classifier is more costly to train), and Cd

m is large.
Rather than using random selection of the feature subsets to test, we adopted the following approach.
First we fully test all the 2-subsets, whose corresponding weak classifiers can be trained very fast, and
obtain the set {Lr(S2,i)}i=1...Cn

2
where smaller value means that the pair of features is a better choice

for classification. Then, for each subset Sm,i, we compute a substitute value of negative binomial

log-likelihood L̃r(Sm,i) =
∑

S2,s∈Sm,i
Lr(S2,s) and then select the q best subsets according to these

values to be actually tested. The principle that we use is that good pairs of features, which exhibit
high correlation feature discrimination, should produce good feature subsets of higher dimension.

We examined this principle using the following experiments. We trained a human detector with 20
cascade levels consisting of weak classifiers learned from m-subsets. For each tested subwindow and
for all the m-subsets, we computed L and their substitute values L̃, to compare the ranks according
to the ground truth L and those according to the substitute L̃. Fig. 2 shows the obtained results for
m = 3 and 4. The different curves plot the probability that within the first q values of L̃ (horizontal
axis), we find at least one of the k best subset (curve tag, k=1,3,5, or 10) according to the ground
truth L, or in mathematical form: P (∃i|Rank(Lr(Sm,i)) ≤ k and Rank(L̃r(Sm,i)) ≤ q). As can be

seen, by selecting q = 8 subsets (out of 56) for m = 3 and q = 12 for m = 4 (out of 70) using L̃,
we can see that the chances that one of them is actually one of the top 3 best are higher than 94%.
Thus our approach provides a better way of selecting good m-subset features than uniform random
selection, and saves a significant amount of time in training.

4.2 Using Mean Features

The covariance matrix Cr of a subwindow r can be efficiently computed using integral images [17].
When doing the computation, the mean features mr of the subwindow r are also computed. Thus,
we propose to use these means as additional features for training and detection in the LogitBoost
algorithm. Since these features directly lie in a d-dimensional Euclidean space (i.e. mr ∈ R

d),
we don’t need any form of mapping like in the covariance case. However, in order to be robust
against illumination changes, the subwindow mean vector entries of mr are normalized w.r.t. the
corresponding entries of the mean vector mR in the detection window R, which results in m′

r. The
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weak classifiers that we propose are thus defined as: fl(Xr) = gl(h(C′
r),m

′
r) where h is the mapping

function defined in (5) that projects the normalized covariance C′
r features into the tangent space at

the weighted-mean matrix, as explained in Section 3. In other words, we use the concatenation of the
mapped covariance features with the normalized mean features in the linear function gl to be used in
the LogitBoost classifier.1

4.3 Training the cascade

The human detector is trained using a rejection cascade of LogitBoost classifiers framework. In
experiments, we used K = 30 cascade levels. The number NL

k of weak classifiers composing the
k-th cascade level is selected by optimizing the LogitBoost classifier to correctly detect at least 99.8%
of the positive examples, while rejecting at least 30% of the negative examples. In addition, we
enforce a margin constraint between the positive examples and the decision boundary. Let pk(x) be
the probability of an example x being positive at the cascade level k, as defined in (3). Let xp be
the positive example that has the (0.998Np)-th largest probability among all the positive examples
and xn be the negative example that has the (0.3Nn)-th smallest probability among all the negative
examples where Np and Nn are the numbers of positive and negative examples used for training at
the cascade level k. Weak classifiers are added to the cascade level k until pk(xp) − pk(xn) > thb

where we set thb = 0.2. Finally, at test time, a new example x will be rejected by the cascade level k

if pk(x) ≤ pk(xn). In order to train a cascade level k, we used Np = 4000 and Nn = 8000 positive and
negative examples. These examples were obtained by applying the detector up to the k − 1th level
to a set of around 10000 positive examples and those with the least probability of being positive are
kept for training. In a similar way, the negative examples were selected as the false positive examples
of the k − 1th detector applied to training data, as described in the next Section.

5 Experimental Results

5.1 Training and Testing Datasets

We collected a total of 15 video sequences captured from stationary cameras. There are 10 indoor and
5 outdoor video sequences. Several video sequences are selected from the shopping center CAVIAR
data2, for which ground truth is available, from the PETS data3, and from several metro station cam-
eras. The background subtraction method proposed in [20] was used to produce all the foreground
probability maps, and a total of around 10000 positive examples were extracted from these 15 video
sequences. Some typical examples are shown in Figure 3. Note that in these examples, there exist
the large variations of appearances, pose, camera view-points, the presence of luggage or trolleys,
occlusions, and the variability in the foreground extraction.
Negative examples were obtained in the following way. First, we collected 1000 still images without
persons and coupled them with inconsistent foreground detection results from the above video se-
quences (Data N1). Secondly, we directly cropped about 1000 large regions from the collected video
data which don’t contain complete humans (Data N2). Thirdly, we further cropped as some single
negative examples about 15000 smaller regions which overlap by less than 50% with correct person
locations (Data N3). Finally, to obtain the negative examples we used bootstrapping. More precisely,
after the learning of each new cascade classifier, the full cascade of previously trained classifiers was
applied to the N1, N2 and N3 datasets, and the detected false positives (limited to 8000) are used
as negative examples for the next cascade learning step. In this way, we are able to obtain training
examples that ‘look like’ moving people (but are not), and which are therefore more relevant and
useful for training the final classifier.

1Note that when a feature subset is used for the covariance, only the means of that subset are used in the weak
classifier.

2Available via http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
3Available via http://www.cvg.rdg.ac.uk/PETS2006/data.html
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Fig. 3: Positive examples with corresponding foreground probability maps (light - high probability,
dark - low probability).

For testing, we set apart 523 images from video clips belonging to 10 of the above sequences and
not used for training, and added data from 2 new video sequences. From this testing data, a total
of 1927 humans was annotated, comprising 327 humans with significant partial occlusion by other
people, 35 humans only partially visible, and around 200 humans with a resolution of less than 700
pixels.

5.2 Evaluation Methodology

The detectors were evaluated on the testing data by applying them on image subwindows with different
locations, scales, and aspect ratios, according to the following: the width ranged from 25 to 100 pixels;
the aspect ratio (height divided by width) ranged from 1.8 to 3.0. The positive detections were then
filtered out by keeping local maxima of these detection outputs according to the probabilities defined
in (3) as the final detected persons. Two types of performance measure curves were used. In both
cases, curves were generated by adding cascade levels one by one.

Detection Error Tradeoff (DET) curves : In the recent literature [3, 21, 12, 18], DET curves have
been used to quantify the raw binary classifier performance at the window level. DET curves measure
the proportion of true detections against the proportion of false positives. They plot the miss rate,

#FalseNeg

#TruePos+#FalseNeg
, versus false positives (here the False Positives Per tested Window or FPPW) on

a log-log scale. To produce this curve, the 1927 positive examples of the testing data were used to
evaluate the miss-rate, while the FPPW was obtained by testing all searching windows of the testing
data which do not overlap or overlap by less than 50% with any positive example. The overlap is

measured as the F-measure Farea = 2ρπ
ρ+π

, where ρ = |GT∩C|
|GT | and π = |GT∩C|

|C| are the area recall and
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Fig. 4: The performance of different approaches for our method with 8-dimensional features.

precision, with GT denoting the ground truth region, and C the tested window.

Recall-Precision (RP) curves: RP curves are more appropriate to measure the accuracy of the object
detection and localisation from a user point of view [2, 15]. RP curves integrates the post-processing
steps (e.g. how to combine several raw detector positive output into one or several detected humans).
Recall and precision are defined as #TruePos

#TruePos+#FalseNeg
and #TruePos

#TruePos+#FalsePos
, respectively. A detected

output is said to match the ground truth if their Farea measure is above 0.5. Only one-to-one matches
are allowed between detected and ground truth regions.

5.3 Results

We will consider the method of Tuzel et al [18] as our baseline. Three main improvements to this
method were made to handle video data: integration of foreground probability features, selection of
feature subsets, and use of mean (average) features in addition to covariance. We trained several
detectors with or without the proposed improvements to evaluate their impact on the detection per-
formance. These detectors are named according to the specific feature or approach that is used. For
example, the detector Fg-Cov-Avg-8 uses the 8-dimensional covariance and mean features defined in
(1) which integrate intensity and foreground information. When foreground features are not used, we
used the 8-dimensional features defined in [18].

In the first experiment, we trained four detectors with/without the use of foreground information
and mean features. The DET and RP curves of these detectors applied on the testing data are
shown in Fig. 4. We can observe that the integration of the foreground information provides much
better detection performance. For instance, the RP curve shows that for a recall of 0.9, only around
1 out of 5 detections is correct with [18], while with the foreground features, around 3 out of 5
detections are correct. Besides, we can see that the use of the mean features improves the results
almost systematically, but usually not significantly.

In the second experiment, we trained three new detectors based on 2, 3 and 4-subset features
(Fg-Cov-Avg-2 to Fg-Cov-Avg-4, respectively). In addition, we trained a combined detector based
on 2-subset features in the first 15 cascade levels, 3-subset features in the subsequent 10 levels, and
4-subset features in the final 5 levels (Fg-Cov-Avg-[2,3,4]). Fig. 6 shows the RP curve that we obtain.
From the results, we observe that the use of subset features result in similar detection performance
than with the use of the full set of 8-dimensional features. Overall, the combined Fg-Cov-Avg-[2,3,4]
detector provides the best results, beating the approach with 8-dimensional features most of the time.
However, the main interest of our approach is the computation time. Fig. 5 shows the average numbers
of searching windows per second that a detector processes when applied on the testing data. The same
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Fig. 5: Average numbers of searching windows (per second) of 8 different approaches for our method.

computer (with Intel(R) Core(TM)2 CPU 2.0GHz) was used in all the cases. The first observation is
that while the mean features only slightly improve the performance, they offer a speed gain of nearly
30% (e.g. compare Tuzel et al’s method [18] with Cov-Avg-8). Secondly, as could be expected, the
use of the foreground features also helps in increasing the speed by rejecting false hypothesis more
quickly. Finally, the main computational gain is obtained by using feature subsets. For instance,
the detector Fg-Cov-Avg-2 runs around 13 times faster than Fg-Cov-Avg-8 (and more than 20 times
faster than [18]), which is consistent with the computation times shown in Fig. 1 for one cascade
level. The combined detector Fg-Cov-Avg-[2,3,4] achieves a similar speed while slightly improving the
performance (see Fig. 6). Finally, given these numbers, we can apply these two detectors to videos
of size 384x288 (e.g. CAVIAR data) and process 5-20 frames/second when including the adaptive
background subtraction process.

Finally, to further speed up the process and improve detection performance, we propose to exploit
rough ground plane geometrical constraints to limit the human heights from 150cm to 220cm. We
applied the detectors again on the testing data using this additional constraint. Fig. 6 shows the gain
obtained using this constraint, which is mainly due to the removal of some of the false positives.

Fig. 7 shows some detection examples for CAVIAR, PETS and other scenes of our testing data,
obtained with the Fg-Cov-Avg-2∗ detector with geometrical constraint. Green dots show the positive
window detection, while red bounding boxes with red center dots are the final detected results after
the local maximum post-processing step. Despite the large variability of appearance, pose and view
points, as well as partial occlusion, and the overall small size of people, there are only a few false
positives and negatives. The main errors come for the strong specular reflections and cast shadow
(e.g. in CAVIAR, these reflections sometimes almost produce upside-down foreground detection), bad
foreground results produced by moving objects (moving escalator in the Metro scene), or occlusions
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Fig. 6: Performance of different approaches with/without ground-plane geometrical constraint. De-
tectors labelled by ∗ used ground-plane geometrical constraint for detection.

by other persons or objects (e.g. bicycles), etc. In addition, as the proposed method focuses on full
human body detection, some humans who are only partially visible are not detected. Video examples
are provided as accompanying material.
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