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Résumé. Visual surveillance is an important computer vision research problem. As more and
more surveillance cameras appear around us, the demand for automatic methods for video analysis
is increasing. Such methods have broad applications including surveillance for safety in public
transportation, public areas, and in schools and hospitals. Automatic surveillance is also essential
in the fight against terrorism. In this light, the PETS 2006 data corpus contains seven left-
luggage scenarios with increasing scene complexity. The challenge is to automatically determine
when pieces of luggage have been abandoned by their owners using video data, and set an alarm.
In this paper, we present a solution to this problem using a two-tiered approach. The first step
is to track objects in the scene using a trans-dimensional Markov Chain Monte Carlo tracking
model suited for use in generic blob tracking tasks. The tracker uses a single camera view, and it
does not differentiate between people and luggage. The problem of determining if a luggage item
is left unattended is solved by analyzing the output of the tracking system in a detection process.
Our model was evaluated over the entire data set, and successfully detected the left-luggage in all
but one of the seven scenarios.
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Fig. 1 – Experimental Setup. An example from the PETS 2006 data set, sequence S1 camera 3. A man sets his bag
on the ground and leaves it unattended.

1 Introduction

In recent years the number of video surveillance cameras has increased dramatically. Typically,
the purpose of these cameras is to aid in keeping public areas such as subway systems, town centers,
schools, hospitals, financial institutions and sporting arenas safe. With the increase in cameras comes
an increased demand for automatic methods for interpreting the video data.

The PETS 2006 data set presents a typical security problem : detecting items of luggage left
unattended at a busy train station in the UK. In this scenario, if an item of luggage is left unattended
for more than 30s, an alarm should be raised. This is a challenging problem for automatic systems, as
it requires two key elements : the ability to reliably detect luggage items, and the ability to reliably
determine the owner of the luggage and if they have left the item unattended.

Our approach to this problem is two-tiered. In the first stage, we apply a probabilistic tracking
model to one of the camera views (though four views were provided, we restrict ourselves to camera
3). Our tracking model uses a mixed-state Dynamic Bayesian Network to jointly represent the number
of people in the scene and their locations and size. It automatically infers the number of objects in the
scene and their positions by estimating the mean configuration of a trans-dimensional Markov Chain
Monte Carlo (MCMC) sample chain.

In the second stage, the results of the tracking model are passed to a bag detection process, which
uses the object identities and locations from the tracker to attempt to solve the left-luggage problem.
The process first searches for potential bag objects, evaluating the likelihood that they are indeed a
bag. It then verifies the candidate bags, and searches the sequences for the owners of the bags. Finally,
once the bags and owners have been identified, it checks to see if the alarm criteria has been met.

The remainder of the paper is organized as follows. We discuss the data in Section 2. The tracking
model is presented in Section 3. The process for detecting bags is described in Section 4. We present
results in Section 5 and finish with some concluding remarks in Section 6.

2 The Left Luggage Problem

In public places such as mass transit stations, the detection of abandoned or left-luggage items has
very strong safety implications. The aim of the PETS 2006 workshop is to evaluate existing systems
performing this task in a real-world environment. Previous work in detecting baggage includes e.g.
[3], where still bags are detected in public transport vehicles, and [2], where motion cues were used
to detect suspicious background changes. Other work has focused on attempting to detect people
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Tab. 1 – Challenges in the PETS 2006 data corpus.
Seq. length luggage num people abandoned difficulty

(s) items nearby ? (rated by PETS)
S1 121 1 backpack 1 yes 1/5
S2 102 1 suitcase 2 yes 3/5
S3 94 1 briefcase 1 no 1/5
S4 122 1 suitcase 2 yes 4/5
S5 136 1 ski equipment 1 yes 2/5
S6 112 1 backpack 2 yes 3/5
S7 136 1 suitcase 6 yes 5/5

carrying objects using silhouettes, e.g. [4]. Additionally, there has been previous work done on other
real-world tracking and behavior recognition tasks (including work done for PETS), such as detecting
people passing by a shop window [8, 5].

The PETS data corpus contains seven sequences (labeled S1 to S7) of varying difficulty in which
actors (sometimes) abandon their piece of luggage within the view of a set of four cameras. An example
from sequence S1 can be seen in Figure 1. A brief qualitative description of the sequences appears in
Table 1.

An item of luggage is owned by the person who enters the scene with that piece of luggage. It is
attended to as long as it is in physical contact with the person, or within two meters of the person
(as measured on the floor plane). The item becomes unattended once the owner is further than two
meters from the bag. The item becomes abandoned if the owner moves more than three meters from
the bag (see Figure 2). The PETS task is to recognize these events, to trigger a warning 30s after the
item is unattended, and to trigger an alarm 30s after it is abandoned.

The data set contains several challenges. The bags vary in size ; they are typically small (suitcases
and backpacks) but also include large items like ski equipment. The activities of the actors also create
challenges for detecting left-luggage items by attempting to confuse ownership of the item of luggage.
In sequence S4, the luggage owner sets down his suitcase, is joined by another actor, and leaves (with
the second actor still in close proximity to the suitcase). In sequence S7, the luggage owner leaves his
suitcase and walks away, after which five other people move in close proximity to the the suitcase.

A shortcoming of the PETS 2006 data corpus is that no training data is provided, only the test
sequences. We refrained from learning on the test set as much as possible, but a small amount of tuning
was unavoidable. Any parameters of our model learned directly from the data corpus are mentioned
in the following sections.

Fig. 2 – Alarm Conditions. The green cross indicates the position of the bag on the floor plane. Owners inside the
area of the yellow ring (2 meters) are considered to be attending to their luggage. Owners between the yellow ring and
red ring (3 meters) left their luggage unattended. Owners outside the red ring have abandoned their luggage. A warning
should be triggered if a bag is unattended for 30s or more, and an alarm should be triggered if a bag is abandoned for
30s or more.
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3 Trans-Dimensional MCMC Tracking

The first stage of left-luggage detection is tracking. Our approach jointly models the number of
objects in the scene, their locations, and their size in a mixed-state Dynamic Bayesian Network. With
this model and foreground segmentation features, we infer a solution to the tracking problem using
trans-dimensional MCMC sampling.

Solving the multi-object tracking problem with particle filters (PF) is a well studied topic, and
many previous efforts have adopted a rigorous joint state-space formulation to the problem [6, 7, 9].
However, sampling on a joint state-space quickly becomes inefficient as the dimensionality increases
when objects are added. Recently, work has concentrated on using MCMC sampling to track multiple
objects more efficiently [7, 9, 11]. The model in [7] tracked a fixed number of interacting objects using
MCMC sampling while [9] extended this model to handle varying number of objects via reversible-
jump MCMC sampling.

In a Bayesian approach, tracking can be seen as the estimation of the filtering distribution of a
state Xt given a sequence of observations Z1:t = (Z1, ...,Zt), p(Xt|Z1:t). In our model, the state is a
joint multi-object configuration and the observations consist of information extracted from the image
sequence. The filtering distribution is recursively computed by

p(Xt|Z1:t) = C−1p(Zt|Xt) × (1)
∫

Xt−1

p(Xt|Xt−1)p(Xt−1|Z1:t−1)dXt−1,

where p(Xt|Xt−1) is a dynamic model governing the predictive temporal evolution of the state,
p(Zt|Xt) is the observation likelihood (measuring how the predictions fit the observations), and C

is a normalization constant.
Under the assumption that the distribution p(Xt−1|Z1:t−1) can be approximated by a set of un-

weighted particles {X
(n)
t |n = 1, ..., N}, where X

(n)
t denotes the n-th sample, the Monte Carlo approxi-

mation of Eq. 1 becomes

p(Xt|Z1:t) ≈ C−1p(Zt|Xt)
∑

n

p(Xt|X
(n)
t−1). (2)

The filtering distribution in Eq. 2 can be inferred using MCMC sampling as outlined in Section 3.4.

3.1 State Model for Varying Numbers of Objects

The dimension of the state vector must be able to vary along with the number of objects in the
scene in order to model them correctly. The state at time t contains multiple objects, and is defined
by Xt = {Xi,t|i ∈ It}, where It is the set of object indexes, mt = |It| denotes the number of objects
and | · | indicates set cardinality. The special case of zero objects in the scene is denoted by Xt = ∅.

The state of a single object is defined as a bounding box (see Figure 3) and denoted by Xi,t =
(xi,t, yi,t, syi,t, ei,t) where xi,t, yi,t is the location in the image, syi,t is the height scale factor, and ei,t

is the eccentricity defined by the ratio of the width over the height.

3.2 Dynamics and Interaction

Our dynamic model for a variable number of objects is

p(Xt|Xt−1) ∝
∏

i∈It

p(Xi,t|Xi,t−1)p0(Xt) (3)

def
= pV (Xt|Xt−1)p0(Xt), (4)

where pV is the predictive distribution. Following [9], we define pV as pV (Xt|Xt−1) =
∏

i∈It

p(Xi,t|Xt−1)
if Xt 6= ∅, and pV (Xt|Xt−1) = C otherwise. Additionally, we define p(Xi,t|Xt−1) either as the object
dynamics p(Xi,t|Xi,t−1) if object i existed in the previous frame, or as a distribution pinit(Xi,t) over
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Fig. 3 – The state model for multiple objects.

potential initial object birth positions otherwise. The single object dynamics is given by p(Xi,t|Xi,t−1),
where the dynamics of the body state Xi,t is modeled as a 2nd order auto-regressive (AR) process.

As in [7, 9], the interaction model p0(Xt) prevents two trackers from fitting the same object. This
is achieved by exploiting a pairwise Markov Random Field (MRF) whose graph nodes are defined at
each time step by the objects and the links by the set C of pairs of proximate objects. By defining
an appropriate potential function φ(Xi,t,Xj,t), the interaction model, p0(Xt) =

∏

ij∈C
φ(Xi,t,Xj,t),

enforces constraints in the dynamic model of objects based on the locations of the object’s neighbors.
With these terms defined, the Monte Carlo approximation of the filtering distribution in Eq. 2

becomes

p(Xt|Z1:t) ≈ C−1p(Zt|Xt)
∏

ij∈C

φ(Xi,t,Xj,t) ×

∑

n

pV (Xt|X
(n)
t−1). (5)

3.3 Observation Model

The observation model makes use of a single foreground segmentation observation source, Zt, as
described in [10], from which two features are constructed. These features form the zero-object likelihood

p(Zzero
t |Xi,t) and the multi-object likelihood p(Zmulti

i,t |Xi,t). The multi-object likelihood is responsible
for fitting the bounding boxes to foreground blobs and is defined for each object i present in the scene.
The zero-object likelihood does not depend on the current number of objects, and is responsible for
detecting new objects appearing in the scene. These terms are combined to form the overall likelihood,

p(Zt|Xt) =

[

∏

i∈It

p(Zmulti
i,t |Xi,t)

]
1

mt

p(Zzero
t |Xt). (6)

The multi-object likelihood for a given object i is defined by the response of a 2-D Gaussian centered
at a learned position in precision-recall space (νl, ρl) to the values given by that objects current state
(νi

t , ρ
i
t) (where ν and ρ are precision and recall, respectively) [9]. The multi-object likelihood terms in

Eq. 6 are normalized by mt to be invariant to changing numbers of objects. The precision for object
i is defined as the area given by the intersection of the spatial support of object i and the foreground
F , over the spatial support of object i. The recall of object i is defined as the area given by the
intersection of the spatial support of object i and the dominant foreground blob it covers Fp, over
the size of the foreground blob it is covering. A special case for recall occurs when multiple objects
overlap the same foreground blob. In such situations, the upper term of the recall for each of the
affected objects is computed as the intersection of the combined spatial supports with the foreground
blob.

The zero-object likelihood gives low likelihoods to large areas of uncovered pixels, thus encouraging
the model to place a tracker over all large-enough foreground patches. This is done by computing a



6 IDIAP–RR 06-39

0 500 1000 1500
0

0.5

1

1.5

Weighted Uncovered Foreground Pixels

Z
er

o−
O

bj
ec

t L
ik

el
ih

oo
d

Zero−Object Likelihood

B 

Fig. 4 – The Zero-Object likelihood defined over the number of weighted uncovered pixels.

weighted uncovered pixel count between the foreground segmentation and the current state Xi
t. Pixels

from blobs unassociated with any tracker i receive b times the weight of normal pixels. If U is the
number of weighted uncovered foreground pixels, the zero-object likelihood is computed as

p(Zzero
t |Xi,t) ∝ exp(−λ max(0, U − B)) (7)

where λ is a hyper-parameter and B is the amount of weighted uncovered foreground pixels to ignore
before penalization begins (see Figure 4).

3.4 Inference with Trans-Dimensional MCMC

To solve the inference issue in large dimensional state-spaces, we have adopted the Reversible-Jump
MCMC (RJMCMC) sampling scheme proposed by several authors [11, 9] to efficiently sample over the
posterior distribution, which has been shown to be superior to a Sequential Importance Resampling
(SIR) PF for joint distributions over multiple objects.

In RJMCMC, a Markov Chain is defined such that its stationary distribution is equal to the target
distribution, Eq. 5 in our case. The Markov Chain must be defined over a variable-dimensional space
to accommodate the varying number of objects, and is sampled using the Metropolis-Hastings (MH)
algorithm. Starting from an arbitrary configuration, the algorithm proceeds by repetitively selecting
a move type, υ from a set of moves Υ with prior probability pυ and sampling a new configuration X∗

from a proposal distribution q(X∗|X). The move can either change the dimensionality of the state (as
in birth or death) or keep it fixed. The proposed configuration is then added to the Markov Chain
with probability

α = min

(

1,
p(X∗)q(X|X∗)

p(X)q(X∗|X)

)

(8)

or the current configuration otherwise. The acceptance ratio α can be re-expressed through dimension-

matching as

α = min

(

1,
p(X∗)pυqυ(X)

p(X)pυ∗qυ∗(X∗)

)

(9)

where qυ is a move-specific distribution and pυ is the prior probability of choosing a particular move
type.

We define three different move types in our model : birth, death, and update :
– Birth of a new object, implying a dimension increase, from mt to mt + 1.
– Death of an existing object, implying a dimension decrease, from mt to mt − 1.
– Update of the state parameters of an existing object according to the dynamic process described

in Section 3.2.
The tracking solution at time t is determined by computing the mean estimate of the MCMC chain

at time t.



IDIAP–RR 06-39 7

Fig. 5 – Object blobs (yellow contour on the right) are constructed from bounding boxes (left) and foreground
segmentation (right).

4 Left-Luggage Detection Process

The second stage of our model is the left-luggage detection process. It is necessary to search for
bags separately because the tracking model does not differentiate between people and bags. Also,
the left-luggage detection process is necessary to overcome failures of the tracking model to retain
consistent identities of people and bags over time.

The left-luggage detection process uses the output of the tracking model and the foreground
segmentation, F , for each frame as input, identifies the luggage items, and determines if/when they
are abandoned. The output of the tracking model contains the number of objects, their identities and
locations, and parameters of the bounding boxes.

The left-luggage detection process relies on three critical assumptions about the properties of a
left-luggage item :

1. Left-luggage items probably don’t move.

2. Left-luggage items probably appear smaller than people.

3. Left-luggage items must have an owner.

The first assumption is made with the understanding that we are only searching for unattended
(stationary) luggage. For this case it is a valid assumption. The more difficult task of detecting luggage
moving with its owner requires more information than is provided by the tracker.

To tackle the left-luggage problem, the detection process breaks it into the following steps :
– Step 1 : Identify the luggage item(s).
– Step 2 : Identify the owners(s).
– Step 3 : Test for alarm conditions.

Step 1. To identify the bags, we start by processing the tracker bounding boxes (Xt) and the fore-
ground segmentation F to form object blobs by taking the intersection of the areas in each frame,

X
i

t ∩ F , as seen in Figure 5. The mean x and y positions of the blobs are computed, and the size of
the blobs are recorded. A 5-frame sliding window is then used to calculate the blob velocities at each
instant. Examples of blob size and velocity for sequence S1 can be seen in Figure 6. Following the
intuition of our assumptions, likelihoods are defined such that small and slow moving blobs are more
likely to be items of luggage :

ps(B
i = 1|X

i

1:t) ∝ N (si
t, µs, σs) (10)

pv(B
i = 1|X

i

1:t) ∝ exp(−λvi
t) (11)

where ps is the size likelihood, pv is the velocity likelihood, Bi = 1 indicates that blob i is a bag, si
t is

the size of blob i and time t, µs is the mean bag blob size, σs is the bag blob variance, vi
t is the blob

velocity and λ is a hyper-parameter. These parameters were hand picked with knowledge of the data,
but not tuned (see Section 5). The velocity and size likelihood terms can be seen in Figure 7. Because
long-living blobs are more likely to be pieces of left-luggage, we sum the frame-wise likelihoods without
normalizing by blob lifetime. The overall likelihood that a blob is a left-luggage item combines pv and
ps,

p(Bi = 1|X
i

1:t) ∝
∑

t=1:T

N (si
t, µs, σs)exp(−λvi

t). (12)

An example of the overall likelihoods for each blob can be seen in the top panel of Figure 8.
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The bag likelihood term p(Bi = 1|X
i

1:t) gives preference to long-lasting, slow, small objects as seen

in the top of Figure 8. Bag candidates are selected by thresholding the likelihood, p(Bi = 1|X
i

1:t) > Tb.
In the example case of S1, this means blobs 41 (which tracked the actual bag) and 18 (which tracked
the owner of the bag) will be selected as bag candidates. Because of errors in tracking, there could
be several unreliable bag candidates. Thus, in order to be identified as a bag, the candidates must
pass the following additional criteria : (1) they must not lie at the borders of the image (preventing
border artifacts), and (2) their stationary position must not lie on top of other bag candidates (this
eliminates the problem of repeated trackers following the same bag).

The next part of the detection process is to determine the lifespan of the bag. The identities of the
tracker are too unreliable to perform this alone, as they are prone to swapping and dying. But as we
have assumed that items of left luggage do not move, we can use the segmented foreground image to
reconstruct the lifespan of the bag. A shape template T i is constructed from the longest segment of
frames below a low velocity threshold, Tv, to model what the bag looks like when it is stationary. The
template is a normalized sum of binary image patches taken from the segmented foreground image
around the boundaries of the bag candidate blob with the background pixels values changed from 0
to -1.

A bag existence likelihood in a given frame is defined for the blob candidate by extracting image
patches from the binary image at the stationary bag location It and performing an element-wise
multiplication

p(Et = 1|Bi) ∝
∑

u

∑

v

T i(u, v) × It(u, v) (13)

where Et = 1 indicates that a bag exists at time t, and u and v are pixel indices. The bag existence
likelihood is computed over the entire sequence for each bag candidate. An example of the existence
likelihood for the bag found from blob 41 in the example can be seen in Figure 8 (bottom). A thre-
shold, Te, is defined as 80% of of the maximal likelihood value. The bag is defined as existing in frames
with existence likelihoods above the threshold.

Step 2. In step 1, the existence and location of bags in the sequence were determined ; in step 2 we
must identify the owner of the bag. Unlike left-luggage items, we cannot assume the owner will remain
stationary, so we must rely on the results of the tracker to identify the owner.

Typically, when a piece of luggage is set down, the tracking results in a single bounding box contain
both the owner and the bag. Separate bounding boxes only result when the owner moves away from
the bag, in which case, one of two cases can occur : (1) the original bounding box follows the owner
and a new box is born to track the bag, or (2) the original bounding box stays with the bag, and a new
bounding box is born and follows the owner. Thus, to identify the owner of the bag, we inspect the his-
tory of the tracker present when the bag first appeared as determined by the bag existence likelihood.
If that tracker moves away and dies while the bag remains stationary, it must be the one identifying
the owner. In this case, we designate the blob results computed from the estimate of the tracker and
the foreground segmentation as the owner. If the tracker remains with the bag and dies, we begin a
search for nearby births of new trackers within radius r pixels. The first nearby birth is deemed the ow-
ner. If no nearby births are found, the bag has no owner, and violates assumption 3, so it is thrown out.

Step 3. With the bag and owner identified, and knowledge of their location in a given frame, the
last task is straightforward : determining if/when the bag is left unattended and sounding the alarm
(with one slight complication). Thus far, we have been working within the camera image plane. To
transform our image coordinates to the world coordinate system, we computed the 2D homography
between the image plane and the floor of the train station using calibration information from the floor
pattern provided by PETS [1]. Using the homography matrix H, a set of coordinates in the image
γ1 is transformed to the floor plane of the train station γ2 by the discrete linear transform (DLT)
γ2 = Hγ1 This can even be done for the image itself (see Figure 9).

However, the blob centroids of objects in the image do not lay on the floor plane, so using the DLT
on these coordinates will yield incorrect locations in the world coordinate system. Thus, we estimate
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Tab. 2 – Luggage Detection Results (for bags set on the floor, even if never left unattended). Mean
results are computed over 5 runs for each sequence.

seq # luggage items x location y location

ground truth 1 .22 -.44
S1 mean result 1.0 .22 -.29

error 0% 0.16 meters
ground truth 1 .34 -.52

S2 mean result 1.2 .23 -.31
error 20% 0.22 meters

ground truth 1 .86 -.54
S3 mean result 0.0 - -

error 100% N/A
ground truth 1 .24 -.27

S4 mean result 1.0 .13 .03
error 0% 0.32 meters

ground truth 1 .34 -.56
S5 mean result 1.0 .24 -.49

error 0% 0.13 meters
ground truth 1 .80 -.78

S6 mean result 1.0 .65 -.41
error 0% 0.40 meters

ground truth 1 .35 -.57
S7 mean result 1.0 .32 -.39

error 0% 0.19 meters

the foot position of each blob by taking its bottommost y value and the mean x value, and estimate its
world location by passing this point to the DLT. Now triggering warnings and alarms for unattended
luggage can be performed by computing the distance between the bag and owner and counting frames.

It should be noted that the left-luggage detection process can be performed online using the 30s
alarm window to search for bag items and their owners.

5 Results

To evaluate the performance of our model, a series of experiments was performed over the entire
data corpus. Because the MCMC tracker is a stochastic process, five experimental runs were performed
over each sequence, and the mean values computed over these runs. To speed up computation time,
the size of the images was reduced to half resolution (360 × 288).

As previously mentioned, because no training set was provided, some amount of training was
done on the test set. Specifically, the foreground precision parameters of the foreground model for
the tracker were learned (by annotating 41 bounding boxes from sequences S1 and S3, computing
the foreground precision, and simulating more data points by perturbing these annotations). Several
other parameters were hand-selected including the e and sy limits of the bounding boxes and the
parameters of the size and velocity models, but these values were not extensively tuned, and remained
constant for all seven sequences. Specific parameter values used in our experiments were : µs = 380,
σs = 10000, λ = 10, Tv = 1.5, Tb = 5000, r = 100, b = 3, B = 800.

We separated the evaluation into two tasks : luggage detection (Table 2) and alarm detection
(Table 3). Luggage detection refers to finding the correct number of pieces of luggage set on the floor
and their locations, even if they are never left unattended (as is the case in S3). Alarm detection refers
to the ability of the model to trigger an alarm or warning event when the conditions are met.

The error values reported for # luggage items, # alarms, and # warnings are computed similarly
to the word error rate, often used in speech recognition :

error rate =
deletions + insertions

events to detect
× 100 (14)

As shown in Table 2, our model consistently detected each item of luggage in sequences S1, S2,
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Tab. 3 – Alarm Detection Results (Mean results are computed over 5 runs for each sequence).

seq # Alarms # Warnings Alarm time Warning time

ground truth 1 1 113.7s 113.0s
S1 mean result 1.0 1.0 112.9s 112.8s

error 0% 0% 0.78s 0.18s
ground truth 1 1 91.8s 91.2s

S2 mean result 1.0 1.2 90.8s 90.2s
error 0% 20% 1.08s 1.05s

ground truth 0 0 - -
S3 mean result 0.0 0.0 - -

error 0% 0% - -
ground truth 1 1 104.1s 103.4s

S4 mean result 0.0 0.0 - -
error 100% 100% - -

ground truth 1 1 110.6s 110.4s
S5 mean result 1.0 1.0 110.6s 110.5s

error 0% 0% 0.04s 0.45s
ground truth 1 1 96.9s 96.3s

S6 mean result 1.0 1.0 96.9s 96.1s
error 0% 0% 0.08s 0.18s

ground truth 1 1 94.0s 92.7s
S7 mean result 1.0 1.0 90.4s 90.3s

error 0% 0% 3.56s 2.38s

S4, S5, S6, and S7. A false positive (FP) bag was detected in one run of sequence S2 as a result of
trash bins being moved and disrupting the foreground segmentation (the tracker mistook a trash bin
for a piece of luggage). We report 100% error for detecting luggage items in S3, which is due to the
fact that the owner never moves away from the bag, and takes the bag with him as he leaves the
scene (never generating a very bag-like blob). However, it should be noted that for this sequence, our
system correctly predicted 0 alarms and 0 warnings.

The spatial errors were typically small (ranging from 0.13 meters to 0.40 meters), though they could
be improved by using multiple camera views to localize the objects, or by using the full resolution
images. The standard deviation in x ranged from 0.006 to 0.04 meters, and in y from 0.009 to .09
meters (not shown in Table 2).

As seen in Table 3, our model successfully predicted alarm events in all sequences but S4, with the
exception of a FP warning in S2. Of these sequences, the alarms and warnings were generated within
1.1s of the ground truth with the exception of S7 (the most difficult sequence). Standard deviation in
alarm events was typically less than 1s, but approximately 2s for S2 and S7 (not shown in Table 3).

Our model reported a 100% error rate for detecting warnings and alarms in S4. In this sequence,
the bag owner sets down his bag, another actor joins him, and the owner leaves. The second actor
stays in close proximity to the bag for the duration of the sequence. In this case, our model repeatedly
mistook the second actor as the bag owner, and erroneously did not trigger any alarms. This situation
could have been avoided with better identity recognition in the tracker (perhaps by modeling object
color).

In Figure 10, we present the tracker outputs for one of the runs on sequence S5. Colored contours
are drawn around detected objects, and the item of luggage is highlighted after it is detected. Videos
showing typical results for each of the sequences are available at http://www.idiap.ch/∼smith.

6 Conclusion and Future Work

In this paper, we have presented a two-tiered solution to the left-luggage problem, wherein a
detection process uses the output of an RJMCMC tracker to find abandoned pieces of luggage. We
evaluated the model on the PETS 2006 data corpus which consisted of seven scenarios, and correctly
predicted the alarm events in six of the seven scenarios with good accuracy. Despite less-than-perfect
tracking results for a single camera view, the bag detection process was able to perform well for high-

http://www.idiap.ch/~smith
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level tasks. Possible avenues for future work include using multiple camera views and investigating
methods for maintaining object identities in the tracker better.
Acknowledgements : This work was partly supported by the Swiss National Center of Competence in Research on
Interactive Multimodal Information Management (IM2), the European Union 6th FWP IST Integrated Project AMI
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Fig. 6 – (top) Size and (bottom) velocity for each object computed over the course of sequence S1. In this example,
blob 41 was tracking the bag, and blob 18 was tracking the owner of the bag.
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velocity (pv).
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Fig. 9 – Image from S1 (camera 3) transformed by the DLT. In this plane, floor distance can be directly calculated
between the bag and owner.
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Fig. 10 – Results : detecting left luggage items for sequence S5 from the PETS 2006 data corpus. The luggage owner
is seen arriving in frame 994, loiters for a bit in frame 1201, and places his ski equipment against the wall in frames
1802 and 1821. In frame 1985 the bag is detected, but the owner is still within the attending limits. In frame 2015, the
model has determined he is more than 3 meters from the bag, and marks the bag as unattended. In frame 2760, 30s
have passed since the owner left the 2 meter limit, and a warning is triggered (ground truth warning occurs in frame
2749). In frame 2767, 30s have passed since the owner left the 3 meter limit, and an alarm is triggered (ground truth
alarm occurs in frame 2764).


