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Abstract. We discuss a method to extract independent dynamical systems underlying a single

or multiple channels of observation. In particular, we search for one dimensional subsignals to

aid the interpretability of the decomposition. The method uses an approximate Bayesian analysis

to determine automatically the number and appropriate complexity of the underlying dynamics,

with a preference for the simplest solution. We apply this method to unfiltered EEG signals

to discover low complexity sources with preferential spectral properties, demonstrating improved

interpretability of the extracted sources over related methods.
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1 Introduction

Decomposing a multivariate time-series vn
t , t = 1, . . . , T , n = 1, . . . , V into a set of C simpler sub-

signals (sources) is a central goal in signal processing and is of particular interest in the analysis of
biomedical signals. The goal of this paper is to introduce a model which can automatically determine
the number of sources underlying the observations and in which we can bias the sources to be in certain
frequency ranges. Furthermore, we are interested in taking into account the temporal structure of the
time-series which can help in obtaining a good decomposition, especially when C > V . More specifi-
cally, our criterion for the decomposition is that independent dynamical systems generate the sources
which, under linear noisy mixing, give rise to the observations. For any two scalar sources si

t and sj
t

and all times t, we seek a model of statistically independent dynamics p(si
1:T , sj

1:T ) = p(si
1:T )p(sj

1:T ).
Furthermore, the aim is to find a matrix W that relates the sources st = vert(s1

t , . . . , s
C
t ) to obser-

vations vt = vert(v1
t , . . . , vV

t ) through noisy mixing1. This is a form of Independent Components
Analysis (ICA) [1] although it differs from the more standard assumption of independence at each

time step, that is p(si
1:T , sj

1:T ) =
∏T

t=1 p(si
t)p(sj

t ). We consider a Linear Gaussian State-Space Model
(LGSSM), which is a powerful, yet interpretable and tractable, model. We constrain the LGSSM
in order that independent dynamical processes can be identified and furthermore that scalar sources
can be extracted from the signal. To determine the correct number of underlying processes and bias
the solution towards a certain dynamics, we use a Variational Bayesian analysis which defines a prior
distribution over the model parameters.

There are several existing decomposition methods which encode constraints such as desired frequen-
cies of the independent sources (see for example [2, 3]). However, these methods do not automatically
determine the correct number of underlying sources nor do they consider the dynamics of the signal in
the model structure. A closely related technique to ours is (Non) Linear Dynamical Factor Analysis
(NDFA) [4, 5]. Whilst being an attractive and powerful method, standard NDFA places no constraint
that the observations are formed from mixing independent scalar sources, which makes interpretation
of the resulting sources difficult. Furthermore, NDFA does not directly force the sources to contain
particular frequencies but rather attempts to bias the discovered sources by careful initialization [5].
In addition, NDFA uses nonlinear state dynamics (and mixing), which hampers inference and makes
the incorporation of known constraints more complex.

Inference in the Variational Bayesian LGSSM has previously been achieved using Belief Propaga-
tion, and differs from inference in the Kalman filtering/smoothing literature, for which highly efficient
and stabilized procedures exist. A central contribution of this paper is to show how inference can

be performed using the standard Kalman filtering/smoothing recursions by augmenting the original
model.

2 Factorial Linear Gaussian State-Space Models

In LGSSMs [6], the hidden state vectors h1:T and the visible observations v1:T are linearly related by:

ht = Aht−1 + ηh
t , h1 ∼ N (µ,Σ) , ηh

t ∼ N (0H ,ΣH)

vt = Bht + ηv
t , ηv

t ∼ N (0V ,ΣV ) ,

where N denotes a Gaussian distribution. The notation 0D stands for a D × 1 zero vector. Proba-
bilistically:

p(v1:T , h1:T ) = p(v1|h1)p(h1)
T
∏

t=2

p(vt|ht)p(ht|ht−1) ,

with p(vt|ht)=N(Bht,ΣV ) and p(ht|ht−1)=N(Aht−1,ΣH). To make independent dynamical subsys-
tems we use block diagonal transition and state noise matrices A, ΣH and Σ, where each block c has

1vert(a, b, c) is the matrix formed by vertically stacking a, b and c.
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dimension Hc. A one dimensional source sc
t for each independent dynamical subsystem is formed from

sc
t = 1

T

c hc
t , where 1c is a unit vector and hc

t is the state of the dynamical system c. Combining the
sources, we can write st = Pht, where P = diag(1T

1 , . . . ,1T

C), ht = vert(h1
t , . . . , h

C
t ). The resulting

emission matrix is constrained to be of the form B = WP , where W is the V ×C mixing matrix and
P is a C × H projection, with H =

∑

c Hc. Such a constrained form for B is required to provide
interpretable scalar sources.

Bayesian Factorial Linear Gaussian State-Space Models

In our Bayesian treatment of learning we define the priors p(A|α) and p(W |β), where α and β are
hyperparameters. We do not define any prior for ΣH , ΣV , µ and Σ, which will formally be considered
as hyperparameters2. The total set of hyperparameters is Θ = {α, β,ΣH ,ΣV , µ,Σ}. Therefore:

p(v1:T |Θ) =

∫

A,W

p(v1:T |A,W,Θ)p(A|α)p(W |β)dAdW . (1)

Here we take the ML-II (‘evidence’) framework, which involves maximizing p(v1:T |Θ) with respect to
Θ [4, 7]. Ideally, the number of sources effectively contributing to the observed signal should be small.
This suggests the prior:

p(W |β) =

C
∏

j=1

(

βj

2π

)V/2

e−
βj
2

PV
i=1

W 2

ij .

We can bias A to be close to a desired transition Â (possibly zero) by using:

p(Ac|αc) =
(αc

2π

)H2

c /2

e−
αc
2

PHc
i,j=1(Ac

ij−Âc
ij)

2

for each component c, so that p(A|α) =
∏

c p(Ac|αc)
3.

Variational Bayes

Optimizing Eq. (1) with respect to Θ is difficult due to the intractability of the integrals. Instead we
consider the lower bound [4, 7]:

L = log p(v1:T |Θ) ≥Hq(A,W, h1:T ) (2)

+ 〈log p(v1:T , h1:T , A,W )〉q(A,W,h1:T ) ,

where we dropped the explicit dependence on Θ on the rhs4. The notation Hd(x) signifies the en-
tropy of the distribution d(x), and 〈·〉d(x) denotes the expectation operator. For certain variational
distributions q, we hope to achieve a tractable bound, which we may then optimize with respect to q
and Θ. The key approximation in Variational Bayes (VB) is q(A,W |h1:T ) ≡ q(A,W ). Since A and
W separate in the rhs of Eq. (2), optimally q(A,W ) = q(A)q(W ), hence:

L ≥− D(q(A), p(A)) − D(q(W ), p(W )) + Hq(h1:T )

+ 〈log p(v1:T , h1:T |A,W )〉q(h1:T )q(A)q(W ) ≡ F .

D(q(x), p(x)) is the KL divergence 〈log q(x)/p(x)〉q(x). The VB procedure iteratively performs co-

ordinate wise ascent of F with respect to q(W ), q(A), q(h1:T ) and Θ.

2A Bayesian treatment of ΣH , ΣV , µ and Σ is straightforward using conjugate priors (see [7, 8]) but is not taken
here for space restrictions and since we have little preference for constraining these parameters.

3For dimensional reasons, we can also assume a Gaussian prior on the columns of W with exponent − 1

2
βjWT

j Σ−1

V
Wj .

This simplifies the statistics of q(W ) and Eq. (4). The same holds for A. This is also convenient when we assume a
prior for ΣH and ΣV , since it ensures conjugacy [7, 8].

4Strictly we should write throughout q(·|v1:T ). We omit the dependence on v1:T for notational convenience.
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Determining q(W )

By examining F , optimally, q(W ) is a Gaussian. The covariance [ΣW ]ij,kl ≡
〈(

Wij − 〈Wij〉
)(

Wkl − 〈Wkl〉
)〉

(averages wrt q(W )) is given by the inverse of:

[

Σ−1
W

]

ij,kl
=
[

Σ−1
V

]

ik

∑

t

〈

h̃j
t h̃

l
t

〉

q(ht)
+ βjδikδjl ,

where h̃t = Pht and δij is the Kronecker delta function. The mean is given by:

〈Wij〉 =
∑

k,l,n,t

[ΣW ]ij,kl

[

Σ−1
V

]

k,n

〈

h̃l
t

〉

q(ht)
vn

t .

Determining q(A)

Optimally we have a factorized distribution q(A) =
∏

c q(Ac), where q(Ac) is Gaussian with inverse
covariance given by (dropping the dependence on c):

[

Σ−1
A

]

ij,kl
=
[

Σ−1
H

]

ik

T
∑

t=2

〈

hj
t−1h

l
t−1

〉

q(ht−1)
+ αδikδjl .

The mean is:

〈Aij〉=
∑

k,l

[ΣA]ij,kl

(

αÂkl+
∑

n

[

Σ−1
H

]

kn

T
∑

t=2

〈

hl
t−1h

n
t

〉

q(ht−1:t)

)

.

Inference on q(h1:T )

Optimally q(h1:T ) is Gaussian since its log is quadratic in h1:T , being namely5:

−
1

2

T
∑

t=1

〈

(vt − WPht)
TΣ−1

V (vt − WPht)
〉

q(W )
(3)

−
1

2

T
∑

t=2

〈

(ht − Aht−1)
T

Σ−1
H (ht − Aht−1)

〉

q(A)
.

We can carry out the averages over A and W since q(A) and q(W ) are Gaussian and the above
is quadratic in the parameters A and W . In order to compute the required statistics 〈ht〉q(ht)

and
〈

ht−1h
T

t

〉

q(ht−1:t)
, our aim is to represent Eq. (3) as the log q̃(h1:T |ṽ1:T ) of a LGSSM with some suitable

parameters. To do that we use a mean + fluctuation decomposition:

〈

(vt − Bht)
TΣ−1

V (vt − Bht)
〉

q(W )

= (vt − 〈B〉ht)
TΣ−1

V (vt − 〈B〉ht) + hT

t PTSW Pht ,

where 〈B〉 ≡ 〈W 〉P and the fluctuation is by determined by:

[SW ]jl =
V
∑

i,k=1

[ΣW ]ij,kl

[

Σ−1
V

]

ik
, j, l ∈ 1, . . . , C. (4)

5For simplicity, we ignore the contribution from h1 and a constant term.
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Similarly:

〈

(ht − Aht−1)
TΣ−1

H (ht − Aht−1)
〉

q(A)

= (ht − 〈A〉ht−1)
TΣ−1

H (ht − 〈A〉ht−1) + hT

t−1SAht−1 ,

[SA]jl =

H
∑

i,k=1

[ΣA]ij,kl

[

Σ−1
H

]

ik
, j, l ∈ 1, . . . ,H.

To represent Eq. (3) as a LGSSM q̃(h1:T |ṽ1:T ), we augment vt and B as:

ṽt = vert(vt,0H ,0C), B̃ = vert(〈B〉 , UA, UW P ),

where UA is the Cholesky decomposition of SA, so that UT

AUA = SA. Similarly, UW is the Cholesky
decomposition of SW . The equivalent LGSSM is then completed by specifying Ã ≡ 〈A〉, Σ̃H ≡ ΣH ,
Σ̃V ≡ diag(ΣV , I, I), µ̃ ≡ µ, Σ̃ ≡ Σ6. In this way any standard inference routines in the literature
may be applied to compute q(ht) = q̃(ht|ṽ1:T ), including those specifically addressed at improving
numerical stability [9]. In the experiments, we used the standard predictor-corrector filtering and
Rauch-Tung-Striebel smoothing [9]. A minor modification to the standard predictor-corrector filtering
routine may be applied for computational efficiency (see [8] for details). This method is considerably
simpler and more general than the procedure given in [7], which is based on Belief Propagation and
do not correspond to any of the standard forms in the Kalman filtering/smoothing literature.

Finding the Optimal Θ

Differentiating F with respect to Θ we find that, optimally:

βj =
V

∑

i

〈

W 2
ij

〉

q(W )

, αc =
H2

c
∑

i,j

〈

[Ac−Âc]2ij

〉

q(Ac)

,

ΣV =
1

T

T
∑

t=1

〈

(vt−WPht) (vt−WPht)
T

〉

q(W )q(ht)
,

Σc
H =

1

T−1

T
∑

t=2

〈

(

hc
t−Achc

t−1

)(

hc
t−Achc

t−1

)T
〉

q(Ac)q(hc
t−1:t

)
,

Σ =
〈

(h1−µ) (h1−µ)
T

〉

q(h1)
, µ = 〈h1〉q(h1)

.

2.1 Demonstration

In a proof of concept experiment, we used a FLGSSM to generate 3 sources sc
t with random 5 × 5

transition matrices Ac, µ = 0H and Σ ≡ ΣH ≡ I, see Fig. 1a. The sources were mixed into three
observations vt = Wst + ηv

t , for W chosen with elements from a zero mean unit variance Gaussian
distribution, and ΣV = I (Fig. 1b). We then trained a Bayesian FLGSSM with 5 sources and 7 × 7
transition matrices Ac. To bias the model to find the simplest sources, we used zero matrices Âc

for all sources. In Fig. 1c we plot the estimated sources from our method after convergence. Two
of the 5 sources have been removed, and the remaining three are a reasonable estimation of the
original sources. Another possible approach for introducing prior knowledge is to use a Maximum a
Posteriori (MAP) procedure by adding a prior term to the original log-likelihood log p(v1:T |A,W,Θ)+
log p(A|α) + log p(W |β). However, it is not clear how to reliably find the hyperparameters α and β

6Strictly, we need a time-dependent emission B̃t = B̃, for t = 1, . . . , T − 1. For time T , B̃T has the Cholesky factor
UA replaced by a zero matrix.



6 IDIAP–RR 05-84
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Figure 1: (a) Original sources st. (b) Observations resulting from mixing the original sources, vt =
Wst +ηv

t , ηv
t ∼ N (0V , I). (c) Recovered sources using the Bayesian FLGSSM. (d) Sources found with

MAP FLGSSM. The retained sources have been rescaled to aid visualization.

in this case. One solution is to estimate them by optimizing the new objective function jointly with
respect to the parameters and hyperparameters (this is the so-called joint map estimation – see for
example [10]). The complexity of this approach is similar to the unaugmented Bayesian LGSSM,
although in this case solving a Sylvester equation is required for updating the parameters. A typical
result of using this joint MAP approach on the artificial data is presented in Fig. 1d. The joint MAP
does not estimate the hyperparameters well, so that an incorrect number of sources is found, and the
sources are not as well estimated as in the Bayesian procedure.

2.2 Application to EEG Analysis

In Fig. 2a we plot three seconds of EEG data recorded from 4 channels (located in the right hemisphere)
while a person is performing imagined movement of the right hand. As is typical in EEG, each channel
shows drift terms below 1 Hz which correspond to artifacts of the instrumentation, together with the
presence of 50 Hz mains contamination. These effects mask the rhythmical activity related to the
mental task, mainly centered at 10 and 20 Hz, which we want to extract. Standard ICA methods such
as FastICA do not find satisfactory sources based on raw ‘noisy’ data, and preprocessing with band-
pass filters is usually required. Additionally, in EEG research, flexibility in the number of recovered
sources is important, since there may be many independent oscillators of interest underlying the
observations and we would like some way to automatically determine their effective number. To
preferentially find sources at particular frequencies, we specified a block diagonal matrix Âc with each

block being a rotation at the desired frequency ω:

(

cos (2πω/N) − sin (2πω/N)
sin (2πω/N) cos (2πω/N)

)

, where N is

the number of samples per second. In order to extract the dominant drifts below 1 Hz, the mains
contaminations and the oscillations related to the mental task, we defined the following 16 groups of
frequencies ω: [0.5], [0.5], [0.5], [0.5]; [10,11], [10,11], [10,11], [10,11]; [20,21], [20,21], [20,21], [20,21];
[50], [50], [50], [50]. Hence, the total hidden dimension of the FLGSSM is H = 48. The temporal
evolution of the sources obtained after training the Bayesian FLGSSM is shown in Fig. 2b (grouped
by frequency range). This method removed 4 unnecessary sources from the mixing matrix W , that is
one [10,11] Hz and three [20,21] Hz sources. We can see that the first 4 sources (counting from the
top down) contain dominant low frequency drift, source 5, 6 and 8 contain [10,11] Hz, while source 10
contains [20,21] Hz centered activity. Out of the 4 sources initialized to 50 Hz, only 2 retained 50 Hz
activity, while the Ac of the other two have changed to model other frequencies present in the EEG.
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Figure 2: (a) Three seconds of unfiltered EEG data recorded from 4 electrodes. (b) The 16 sources st

estimated by the Bayesian FLGSSM. (b) Sources estimated by the MAP FLGSSM. (c) The 16 factors
estimated by NDFA. The retained sources have been rescaled to aid visualization.

The MAP FLGSSM approach is presented in Fig. 2c. We can see that none of the [10,11] Hz
sources has been removed, even if contribution of source 8 to the observations is relatively small. One
Ac biased at [10,11] Hz includes other frequencies in addition to 10 Hz (source 7). As in the Bayesian
case, only one [20,21] Hz component is retained. There are two dominant 50 Hz components, however
none of 50 Hz sources has been removed. In conclusion, the Bayesian FLGSSM seems better able to
remove unnecessary components and gives cleaner sources at the desired frequencies.

To asses the advantage of using prior frequencies for extracting task-related information and the
potential limitations of using a linear model, we compared our method with NDFA [4]. We extracted
16 factors using a NDFA model in which both MLPs had one hidden layer of 30 neurons. In Fig.
2d we show the temporal evolution of the resulting factors. The first 10 factors from the top give
the strongest contribution to the observations. In agreement with the Bayesian FLGSSM, there are 2
main 50 Hz sources (first two factors), although a small 50 Hz activity is present also in other factors,
namely 7, 11, 12 and 14. The slow drift has not been isolated and is present in almost all factors.
The information related to hand movement, namely [10,20] Hz activity, is spread over factors 3, 4,
9, 10 and 13, which however contain also other frequencies. The prior specification of independent
dynamical processes at particular frequencies has therefore helped the Bayesian FLGSSM to better
isolate the activity of interest into a smaller number of sources and, among these sources, to separate
the contribution of oscillators at 10 Hz and 20 Hz.
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3 Conclusion

We presented a method to identify independent dynamical sources in noisy temporal data, based on
a Bayesian procedure which automatically biases the solution to finding a small number of sources
with preferential dynamics. This procedure is closely related to others previously proposed in the
literature, but has the property that the sources are themselves projections from higher dimensional
independent linear dynamical systems. Here we concentrated on the projection to a single dimension
since this aids interpretability of the signals, being of particular importance for applications in biomed-
ical signal analysis. An advantage of our linear dynamics approach is tractability of inference, and
we demonstrated how the statistics of the hidden variables in the Bayesian LGSSM can be estimated
by using any Kalman filtering/smoothing routine. The method is able then to automatically extract
signals, for example, biased towards particular frequencies.
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