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ABSTRACT
In this paper, we consider the problem of speaker verifica-
tion as a two-class object detection problem in computer
vision, where the object instances are 1-D short-time spec-
tral vectors obtained from the speech signal. More precisely,
we investigate the general problem of speaker verification
in the presence of additive white Gaussian noise, which we
consider as analogous to visual object detection under vary-
ing illumination conditions. Inspired by their recent success
in illumination-robust object detection, we apply a certain
class of binary-valued pixel-pair based features called Ferns
for noise-robust speaker verification. Intensive experiments
on a benchmark database according to a standard evaluation
protocol have shown the advantage of the proposed features
in the presence of moderate to extremely high amounts of
additive noise.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Fea-
ture evaluation and selection; I.5.3 [Pattern Recognition]:
Applications—Signal Processing

General Terms
Algorithms, Performance, Design, Verification

Keywords
Speaker verification, noise robustness, additive white Gaus-
sian noise, Local Binary Patterns, binary features, object
detection

1. INTRODUCTION
Speaker verification systems have emerged as one of the

major applications of speech processing technologies [1], used
for secure financial transactions, access control to locations,
computer systems and networks [6]. The goal of automatic
speaker verification is to accept or reject a claimed identity
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based on the speech samples obtained from the user [2]. In
this work, we considered text-independent speaker verifica-
tion.

The first step in a speaker verification system is feature
extraction. It extracts speaker-specific information from the
speech data. Assuming speech signals are generated from
quasi-stationary processes, short-term spectral analysis is
applied to short speech segments, yielding a sequence of
short-time spectra carrying speaker-specific information [6].
Usually, these short-time spectra are further transformed
into more sophisticated feature vectors, involving further
computations [1] like Mel-frequency Cepstral Coefficients
(MFCC) [3]. After extraction, the features are modelled
using various techniques, the most popular being Gaussian
Mixture Models (GMM) [14] where generally a client-specific
speaker model and a client-independent world model are
trained. A score is calculated, typically a log-likelihood ra-
tio, and a decision is obtained by comparing this score to a
pre-defined threshold.

One of the main challenges to current speaker verification
systems is the presence of background noise which tend to
degrade verification performance. The second challenge is
the reduction of computational complexity of the system at
the same time.

In this work, we have addressed these challenges by view-
ing the problem of speaker verification from the perspec-
tive of computer vision. More precisely, we consider the
spectral vectors obtained from speech data collected from
a particular user as instances of a particular object class.
The corruption by additive noise is considered as analogous
to ambient illumination changes which change the appear-
ance of the object. In this context, binary-valued pixel-pair
based features like Local Binary Patterns (LBP) [11], [15]
and Ferns [12] have been recently used successfully for fast
illumination-robust object detection. By definition, their
value depends on the comparison of intensities of two pixel
values, thus they are independent of monotonic illumina-
tion changes. Furthermore, the final decision is based on
a combination of individual decision scores calculated from
a set of distinct features. Some of the individual features
might produce erroneous decision scores due to noise but
it is less likely that their combined decision will be erro-
neous. Drawing from this idea, we have applied a certain
class of these features called single-pair Ferns in the problem
of noise-robust speaker verification. We hypothesize that
such illumination-robust features will show a more grace-
ful degradation of verification performance with increasing
amount of noise, as compared to conventional features like



Figure 1: LBP robustness to monotonic gray-scale

transformations. On the top row, the original image

(left) as well as several images (right) obtained by vary-

ing the brightness, contrast and illumination. The bot-

tom row shows the corresponding LBP images which are

almost identical.

MFCC. Furthermore, our binary features are simple to cal-
culate, requiring a small number of comparisons and addi-
tions per feature vector, as compared to additional compu-
tations for the calculation of MFCC. Finally, we use a very
simple feature selection method, and a Naive-Bayes classi-
fier for obtaining the decision, as opposed to GMM which
is more computationally intensive. To our knowledge, this
class of pixel-pair based binary features have not been used
before in the context of speaker verification. Haitsma et al.
have used bit matrices obtained from comparisons of filter-
banked spectrogram values as Audio Fingerprint blocks [5].
However, their work differs from ours in several aspects, in
terms of methodology and application.

The rest of the paper is organized as follows. In Sec.2,
we give a brief overview of binary features followed by a
detailed description of the proposed Fern-Audio features in
Sec.3. We describe our experiments in Sec.4 and highlight
certain aspects of our work in Sec.5. Finally, Sec.6 outlines
the main conclusions of our work.

2. BINARY FEATURES
Let us consider a feature vector

−→
X = [X(1), · · · , X(L)]T .

In computer vision,
−→
X is an image and each element a gray-

level pixel intensity. A binary feature φi is defined by an

ordered pair k(i) = {k
(i)
1 , k

(i)
2 }, with its elements varying

from 1 to L. Its value φi(
−→
X ) is 1 if X(k

(i)
1 ) is greater than

or equal to X(k
(i)
2 ) and 0 otherwise. Thus it remains un-

changed as long as X(k
(i)
1 ) and X(k

(i)
2 ) preserve their re-

lationship. This makes such features robust to monotonic
illumination changes. As an example, fig.1 shows the robust-
ness of the Local Binary Pattern feature, a generalization of
the simple feature φi to changes in brightness, contrast and
illumination.

3. FERN-AUDIO FEATURES

3.1 Feature representation
The proposed Fern-Audio features are an adaptation of

the binary features in Sec.2 to audio data. Given a speech
waveform, it is broken up into overlapping frames and a
Hamming window is applied to each frame. An N -point
Fast Fourier Transform (FFT) is applied to each frame. The
magnitudes of the Fourier coefficients are calculated and half
of them are removed since they are redundant, forming the

spectral vector
−→
X of length L = N

2
+ 1.

−→
X is considered

the equivalent of images of objects of a particular class in
an object detection task. As in Sec.2, each Fern-Audio fea-

ture φi is parameterized by two numbers, in this case two

frequencies, k
(i)
1 and k

(i)
2 lying between 0 and N

2
. The Fern

feature φi(
−→
X ) is defined as,

φi(
−→
X ) =

(

1 if X(k
(i)
1 ) ≥ X(k

(i)
2 ),

0 if X(k
(i)
1 ) < X(k

(i)
2 ).

(1)

Following the bounds for k
(i)
1 and k

(i)
2 , the number of such

features is NF = (N
2

+ 1)2. The features φi are binary
features which simply model the interrelationship between
the individual frequency components of the spectral vectors.
The motivation behind using these features is that, different
channel conditions and other effects might degrade the au-
dio signal leading to a change in the shape of the spectrum
emitted by the speaker. However, it is hypothesized that the
precise relationship between frequency components, whether
one is greater or lesser than another, will remain untouched,
not for all such features but at least for a majority of selected
features within a single spectral vector.

3.2 Classifier design
Given a test spectral vector

−→
X , the aim is to decide if

it belongs to the client class, ωclient or the impostor class,

ωimp. Let us denote by ω(
−→
X ) the yet unknown class of the

test vector, by Φ = {φ1, φ2, · · ·φNF
} the complete Fern

feature set, and by F = {f1, f2, · · · fNF
} the corresponding

Fern feature values extracted from
−→
X , i.e. φi(

−→
X ) = fi,

where fi ∈ {0, 1} for each i ∈ {1, · · · , NF }. We define a

score S(
−→
X ) calculated from the vector,

−→
X as a log-likelihood

ratio,

S(
−→
X ) = log

"

P (ω(
−→
X ) = ωclient|Φ = F )

P (ω(
−→
X ) = ωimp|Φ = F )

#

. (2)

Thus, we decide that
−→
X belongs to the client class, ωclient if

S(
−→
X ) > θ, a pre-defined threshold optimized over a separate

development set, and to the impostor class otherwise [1]. As-
suming conditional independence between the features and
a Naive Bayes probabilistic model, we can calculate,

S(
−→
X ) = log

 

P (ω(
−→
X ) = ωclient)

P (ω(
−→
X ) = ωimp)

!

(3)

+ log

 

Q

φi∈Φ P (φi = fi|ω(
−→
X ) = ωclient)

Q

φi∈Φ P (φi = fi|ω(
−→
X ) = ωimp)

!

= C +
X

φi∈Φ

σi(
−→
X )

where C = log

„

P (ω(
−→
X)=ωclient)

P (ω(
−→
X)=ωimp)

«

is the contribution from

the client and impostor prior probabilities assumed to be
constant, while σi is the contribution of each feature, φi,

σi(
−→
X ) = log

"

P (φi = fi|ω(
−→
X ) = ωclient)

P (φi = fi|ω(
−→
X ) = ωimp)

#

. (4)

To calculate σi(
−→
X ), we approximate by counting over the

training dataset,

P (φi = fi|ω(
−→
X ) = ωclient) =

PNclient

r=1 1
{φi(

−→
X

(r)
client

)=fi}

Nclient

(5)



Nclient is the number of client training samples, {
−→
X

(r)
client}

Nclients
r=1

is the client training dataset. For the impostor case, we
count over a single world model dataset which is client in-
dependent,

P (φi = fi|ω(
−→
X ) = ωimp) =

PNimp

r=1 1
{φi(

−→
X

(r)
imp

)=fi}

Nimp

(6)

where Nimp is the number of world model training samples,

{
−→
X

(r)
imp}

Nimp

r=1 , the world model training dataset. In both
cases, the calculation is finished in only a single pass over
the training data.

3.3 Feature selection
We need to select optimal features from the complete set

Φ. For this, we consider the worst-case scenario, i.e. the
case with the minimum magnitude of σi. Precisely, we select
those features φi which maximize this minimum magnitude
of σi because it can be shown that this will in turn maximize

the magnitude of S(
−→
X ) (ref. Eqn.3). Indeed, it is clear that

larger the magnitude of S(
−→
X ), more reliable our decision

will be. We consider the minimum possible value of σi as
the efficiency of the feature φi, denoted by Ei. Using Eqn.4,
it can be calculated as,

Ei = min

" ˛

˛

˛

˛

˛

log

 

P (φi = 1|ω(
−→
X ) = ωclient)

P (φi = 1|ω(
−→
X ) = ωimp)

!˛

˛

˛

˛

˛

, (7)

˛

˛

˛

˛

˛

log

 

P (φi = 0|ω(
−→
X ) = ωclient)

P (φi = 0|ω(
−→
X ) = ωimp)

!˛

˛

˛

˛

˛

#

.

We observe that the efficiency measure Ei is somewhat re-
lated to the conditional entropy [13] associated with the fea-
ture φi with the expectation being replaced by the minimum
value. In other words, given a speaker class ωclient, an opti-
mal feature for that class (i.e one with a high value of Ei),
is one which has a constant value (either 1 or 0 in this case)
over most of the spectral vectors belonging to that class,
and a different value (0 or 1 respectively) for spectral vec-
tors of the impostor class ωimp. All the features {φi} are
sorted in descending order of their Ei. The best Nb features
from among the complete set Φ are chosen as those with the
highest Nb values of Ei. It is expected that these features
will contribute to increased magnitude of the final score S,
and hence will make the final classification more reliable.

Furthermore, due to higher Ei values, these features are

typically associated with frequency components X(k
(i)
1 ) and

X(k
(i)
2 ) whose magnitudes are well separated from each other,

for that particular client. Hence, when speech is corrupted

by additive noise, the corresponding feature value, φi(
−→
X )

(Eqn.1) is less likely to change, irrespective of whether the
noise is wideband or narrowband.

In practice, we can reduce the feature selection time by
starting with a much smaller subset of features by a random
pre-selection without degradation of performance. After the
Nb features are selected, the final score is obtained by sum-
ming the scores across those Nb features for every frame, and
finally summing and normalizing the scores over the entire
speech signal.

4. EXPERIMENTS

4.1 Database and Protocols
We tested our proposed Fern-based audio features on the

XM2VTS audio database [9]. We chose this database be-
cause it is part of publicly available standard database [7],
[10], [4], with a clearly defined set of protocols. Also, the
speech data is relatively clean. We required clean data be-
cause we wanted to investigate the effect of additive white
Gaussian noise on the speech, starting from clean speech,
with a Signal to Noise Ratio (SNR) of around 30dB to very
high values of noise (SNR = -10 dB). The XM2VTS database
comprises of four sessions with 200 clients and 95 impostors,
each session having two recordings called the first and sec-
ond shot. Each recording lasts about 4 seconds. Following
the Lausanne protocol 1 [8], we used the first shot of Ses-
sions 1, 2 and 3 of the database as the training data for each
client model and the second shot of Sessions 1, 2 and 3 as
the development data to select the decision threshold. We
selected a global threshold optimized according to Equal Er-
ror Rate (EER, i.e. Percentage of False Acceptance = Per-
centage of False Rejection) on the development data. We
have not considered any score normalization techniques nor
client-specific thresholds.

Finally, for the test we used the original data from Session
4 (both shots 1 and 2) of the XM2VTS database, following
the Lausanne protocol 1. Additionally, we considered noisy
speech signal by adding white Gaussian noise at SNR =
20dB, 15dB, 10dB, 5dB, 0dB, -5dB and -10dB to the original
clean speech, obtaining 7 noisy speech signals for each speech
file. We tested separately on these clean and noisy speech
data and examine the degradation of performance of our
proposed system comparing it with the performance of a
baseline MFCC-GMM system. For testing, we use the global
threshold obtained in the development phase to calculate the
False Acceptance and False Rejection rates. Following usual
practice, we report the Half Total Error Rate (HTER) which
is the average of the two.

4.2 Experimental Setup
For this database, the sampling frequency fs is 8kHz.

The speech waveform is broken up into frames of length 20
msec, with an overlap of 10 msec. For the FFT, we chose
N = 256. For the feature selection, we examined with values
of the number of features, Nb ranging from 1 to 1000.

We compared our proposed system to a baseline MFCC-
GMM system with two configurations (2 and 32 Gaussians)
[1]. The baseline system included a noise-removal step by
Cepstral Mean Subtraction (CMS) [1]. Our proposed setup
has no equivalent noise-removal step because we hypothesize
it will be relatively robust to such noise. For the baseline
systems, we also implemented Silence Removal by modelling
the speech/non-speech segments using a Bi-Gaussian fit over
the MFCC features [1]. However, for our proposed features,
we cannot use such a technique, because we do not calculate
MFCC and also we wanted to maintain the low computa-
tional cost requirements. As an alternative, we first sorted
the frame energies, and retained 20% of the higher energy
frames for training and 10% for testing. It is to be noted
that these are not optimized and purely experimental.

To justify our feature selection scheme, we also compared
our proposed system with a similar system using the same
Fern-Audio features but where the features are selected uni-



Table 1: Speaker Verification performance (HTER%) on the XM2VTS database.
System Configuration Silence removal clean 20dB 15dB 10dB 5dB 0dB -5dB -10dB

1 MFCC-GMM 32 Gaussians Bi-Gaussian 1.4 9.5 20.0 33.7 41.1 45.4 47.7 49.1

(Baseline) 2 Gaussians 7.8 20.5 26.1 32.2 35.7 39.6 46.0 49.6
32 Gaussians Frame energy 1.9 10.7 20.3 33.1 42.1 46.5 48.6 49.7
2 Gaussians sorting 8.6 18.8 26.3 32.1 39.6 44.3 47.3 48.8

2 Fern-Audio Nb = 5 17.1 18.2 18.9 19.5 21.7 21.6 24.2 37.1
features Nb = 10 Frame energy 16.2 17.8 18.0 18.7 19.3 20.5 21.6 34.8
with optimized Nb = 20 sorting 14.6 15.3 15.8 16.9 18.7 20.3 21.7 37.2

feature selection Nb = 50 15.2 16.5 17.1 18.3 20.0 21.7 23.9 37.3
3 Fern-Audio Nb = 5 33.5 40.0 41.7 43.8 46.0 47.0 48.0 48.9

features Nb = 10 Frame energy 25.5 36.2 39.1 42.2 44.4 46.2 47.9 48.9
with random Nb = 20 sorting 23.4 35.0 39.1 43.0 45.8 48.1 48.4 49.3
feature selection Nb = 50 21.3 34.1 39.2 43.9 45.5 48.7 48.9 49.7

formly randomly from the feature set Φ instead of using the
optimality criterion in Eqn.7.

4.3 Results
In Table 1, we report the verification performance of dif-

ferent systems, in terms of the HTER% on the test data,
using a global threshold optimized according to EER crite-
rion on the development data (ref. Sec.4.1). A total of 3
systems are represented. System 1 is the baseline, with (16
MFCC + 16 delta-MFCC) features [4], modelled by GMM
( either with 2 Gaussians or 32 Gaussians) [1]. It has a
CMS step, and silence removal is either by bi-Gaussian or
by sorting on frame energies. System 2 shows our proposed
approach, with the number of optimally chosen Fern-Audio
features Nb varying from 5 to 50. System 3 uses the pro-
posed Fern-Audio features but uses random selection. The
HTER% for the best performing configuration is highlighted
in bold for the first two systems.

5. DISCUSSIONS
Performance From Table 1, we observe that the base-

line system performs far better than the proposed system
on clean speech. However, our proposed system begins to
outperform the best among the baseline system configura-
tions (highlighted in bold, system 1, Table 1) as the SNR
falls below 20dB. At SNRs at and below 10dB, the base-
line system quickly approaches pure chance performance
( 50%) while the performance of our proposed system de-
grades much more slowly, the HTER remaining below 25%
till SNR=-5dB which is a statistically significant improve-
ment over the baseline system. The best performance for the
Fern features occurs at an Nb of 10 to 20. We also exam-
ined cases of Nb from 1 to 1000, however, the performance
degrades in both directions.

System requirements Our proposed system is compu-
tationally much faster because 1) there is no computation
of summation over bands, logarithms and inverse DCT as
in the baseline MFCC system, 2) there is no CMS step, 3)
feature modelling is by a Naive Bayes probabilistic model
involving only a small number of additions ( 10 to 20 cor-
responding to the optimal Nb ), 4) feature selection is by a
simple counting procedure and requires only one pass over
the feature set, and 5) during testing of the model, each Fern
can be obtained by one simple comparison operation in con-
trast to GMM-based systems which involve more intensive

calculations. Our proposed system is also less intensive on
storage space requirements because only 2 × Nb, i.e. 20 to
40 σi values need to be stored per client model, while for the
baseline system, 2×32×32, i.e 2048 values need to be stored.

Feature selection The role of our feature selection strat-
egy is justified because our proposed approach performs sig-
nificantly better than a similar system with randomly chosen
features (system 3 in the table).

Comparison details It cannot be argued that the Fern
features are performing better than the baseline system due
to over-learning by the baseline system because even with a
very weak baseline system (system 1, configuration : 2 Gaus-
sians), the HTER% increases rapidly with decreasing SNR.
Similarly, it cannot be argued that the Fern features are per-
forming better due to the different silence removal technique
used (sorting on frame energies), because an MFCC-GMM
system with the same silence removal technique as ours (sys-
tem 1, 32 and 2 Gaussians, Silence Removal method : sorting
) performs similarly as the MFCC-GMM system with silence
removal by bi-Gaussian, and is worse than the proposed sys-
tem with various high levels of noise.

Other reported systems Experiments have been car-
ried out on additive white Gaussian noise-corrupted speech
data from the XM2VTS database using conventional MFCC
features by Nefian et al.[10] and Fox et al.[4]. Our system
outperforms theirs by a significant margin.

Robustness to voice synthesis A useful aspect of the
proposed framework is that the Fern models do not store
any client-specific spectral shape information. They only
store discriminative frequency points and the table of log-
likelihood ratios, {σi}. Thus, the proposed models may be
more robust against efforts to reconstruct a synthetic voice
model from stolen model parameters than an equivalent
MFCC-GMM model. This could be an advantage because
this means that such a verification system is not susceptible
to attacks using stolen model data.

Future work As a part of future work, we shall investi-
gate the effect of other noise types on the proposed method,
for example, babble noise and pink noise. It is to be noted
that the proposed features individually examine only a dis-
tinct and small part of the whole spectrum (two frequency



components). Hence, additive noise might affect some of
the selected features, but it is less likely that it will affect
too many of them all at the same time, so as to change
the final decision. This will be true irrespective of the type
of noise, whether wideband or narrowband, corrupting the
speech data. This is likely to make the proposed method
robust even in such cases. In future, we shall also use other
more challenging speaker corpora for the speaker verifica-
tion experiments and investigate more sophisticated feature
selection strategies than the current Naive-Bayes framework.

6. CONCLUSIONS
Inspired by recent advances in computer vision, we have

proposed an alternative feature set called Fern-Audio fea-
tures for speaker verification. Using a Naive-Bayes classifier
and a simple feature selection procedure, our system out-
performs the baseline system in an unmatched noisy test
scenario involving additive white Gaussian noise across a
wide range of SNRs. At the same time, it is less intensive
on computation and storage requirements than the baseline
system showing promise for use in real-time systems.
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