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ABSTRACT

We present a framework to apply Volterra series to analyziilayered perceptrons trained to estimate the posteriaigbil-

ities of phonemes in automatic speech recognition. Thetiitksh\Volterra kernels reveal the spectro-temporal pagi¢hat are
learned by the trained system for each phoneme. To demtm#tmapplicability of Volterra series, we analyze a majtdred
perceptron trained using Mel filter bank energy featuresaaradyze its first order Volterra kernels.

Index Terms— Volterra series, multilayered perceptrons, speech rétiogn

1. INTRODUCTION

Multilayered perceptron (MLP) based acoustic modelingamg extensively used in the state-of-the-art automatez=sp
recognition (ASR) [1][2]. The MLP is trained as a phonemessifier, and estimates the posterior probabilities of thmpimes
conditioned on the input features. The estimates of pastprobabilities are used in ASR typically as local acoustiores

in hybrid hidden Markov model (HMM) - artificial neural netwosystem [3] or as features (after logarithm and principal
component analysis transformation) to a standard HMM - Gaunsmixture model system [4]. Due to its usage in the latter
approach, the estimated posterior probabilities are aisavk as phoneme posterior features.

MLP based acoustic modeling has been shown to improve récmgaccuracies in ASR. However, once trained, the MLP
is typically not further analyzed. The estimated postepimbabilities are typically evaluated using (i) framedephoneme
classification accuracy (ii) phonetic confusion matriy finutual information between the estimated posterior pbilities and
its ground truth phonetic labels or (iv) the final speech gadtion accuracy. While the above metrics indicate the gesdrof
the phoneme posterior estimates, none of them reveal aogmation on the spectro-temporal patterns that the trasgetém
has learned. An understanding of the properties of speachdd by the trained system could eventually lead to impnarés
in the present approaches.

One way to analyze the trained system is to treat it as a remlinlack-box and present white Gaussian noise as input. The
characteristics of the unknown system can be measured bg-cmrelating the input white noise and the output of trstesy
[5]- Such an approach is typically used to analyze unknowfobical systems [6][7]. However, the three layered MLPduhs
phoneme posterior estimator, which is typically used in ASRimple enough and its trained model parameters are glread
known. In this work we focus on the analytical analysis oftiiagned system.

We formulate a framework to apply Volterra series [8] to gmalthe trained MLPs. It is important to incorporate the
feature extraction into this analysis because the idedtif@terra kernels can then be interpreted as spectro-tehpatterns.
The combined system is nonlinear and time-invariant, whtedinite impulse response (FIR) filters used in featureaexion
introduce memory and the activation functions in the MLRddtice nonlinearity. \Volterra series has been used to model
recurrent neural networks to analyze nonlinear propediedectronic devices [9]. The contributions of our work luabe (i)
formulation of a framework to apply Volterra series to azal\WLPs estimating posterior probability of phonemes (@latical
identification of the Volterra kernels, (iii) addressing teffect of feature mean and variance normalization, (hgreesxample,
application of \olterra series to analyze an MLP trainedgdViel filter bank energies, and (v) discussion on the apiiticaf
\olterra series to analyze MLPs trained using MFCC and MRA&HRtures.



2. PHONEME POSTERIOR ESTIMATOR

Fig. 1(a) is the block schematic of a typical phoneme pastgriobability estimator, showing the feature extractismell as
the MLP classifier. This generic block schematic is applieab typical speech recognition features such as Mel fidgark
cepstral coefficients (MFCCs), Mel filter-bank (MFB) enegiand multi-resolution relative spectra (MRASTA) featur

2.1. Auditory analysis

Auditory analysis is a common stage across almost all feadutraction techniques. Short time Fourier analysis ifopeied

on speech signal with an analysis window of typically 25 nd aframe shift of 10 ms. Auditory filters that are equally sgzhc

in Mel or Bark frequency scale are applied on the Fourier ritaga spectrum, and log energies in the auditory channels ar
computed.

2.2. Feature specific LTI system

The trajectories of the log energies from the auditory asialgire then processed by a linear time-invariant (LTl)esystvhose
impulse response is decided by the feature extraction hesad. For Mel frequency cepstral coefficients (MFCC), thistem
consists of discrete cosine transform (DCT), the FIR filtexpuired to compute the delta and delta-delta coefficiamtd,the
filters creating a temporal context of features. In the céseuiti-resolution relative spectra (MRASTA) features [1the LTI
system consists of a bank of zero mean filters whose shapatisftlither first or second derivative of a Gaussian function
For Mel filter bank energy (MFB) features, the system comsi$toank of time shifted Kronecker delta functions requited
create a temporal context of features. Since the filtersisittock operate on the trajectories of the auditory spectrhis
stage can be interpreted as filtering the modulation spmabfithe speech in the sub bands. From a mathematical pekapect
the difference between the above feature extraction tgakesiis in the impulse response of the LTI system.

2.3. Feature Normalization

The input features to the MLP are normalized to zero mean aitdariance so that the operating point on the hidden duina
function is in the linear region, leading to a faster coneae of the back propagation training algorithm [11]. Featu
normalization also addresses to a certain extent the misncaused when the MLP is trained and tested on different data

2.4. Multilayered perceptron

A three layered MLP is typically used in posterior featurér@stion. The normalized features presented at the inyat la

of the MLP are projected to a higher dimensional hidden layign sigmoid or hyperbolic tangent activation function. €Th
output node of the MLP represents the basic modeling unipeésh such as a phoneme. Softmax nonlinearity is applied at
the output layer and the model parameters are optimized usinimum cross entropy error criterion. It has been shovan th
MLP classifier with sufficient capacity, and trained on ertodgta estimates the Bayes@posterioriprobability of the output
class, conditioned on the input features [12].

Feature extraction techniques are typically motivatedhwy gerceptual or production properties of speech. But the pa
rameters of the MLP classifier are optimized to achieve mimmphoneme classification error using the derived featunes o
cross-validation data. It is not obvious what spectro-terajproperties of speech the combined system has learried form
of its trained weights. In this work, we use Volterra ser@slbtain insights about the phoneme posterior estimator.

3. VOLTERRA SERIES

An LTI system can be completely characterized by its impuésponse function. Volterra series is an infinite seriechvhi
can be used to express the input-output relationship in &nsam time-invariant system. Each term in the series is &imu
dimensional convolution between the input to the systemitsn\dolterra kernels. The identified Volterra kernels coetply
characterize the nonlinear systemz(f) is the input to a nonlinear system an) its output, Volterra series expansion for the
system can be expressed as

y(t) = Z G [gn, z(1)]
n=0
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Fig. 1. (a) Estimation of posterior probabilities of phonemes gsan MLP. (b) Part of the system that is analyzed using Vaiterr
series.

where {G,,} is the set of Volterra functionals, af@,, } is the set of the Volterra kernels for the nonlinear systefre Zeroth
order Volterra functional is given b§\ [go, z(t)] = go ; the first and second order functionals are given by

G [gn, (1)) = / o ()t — 7)dr

G2 g2, x(t)] = /11%2 g2(71, T2)x(t — 71 )2 (t — T2)dT1dT>

The first order Volterra functional; [¢1, z(¢)] is the linear convolutional integral, and its kerrel(t) is the most familiar
time-domain description of an LTI systeie( impulse response function). In the following section, wesant a mathematical
framework to apply Volterra series expansion to a threertay®ILP estimating the posterior probabilities of phonemes

The canonical structure of the Volterra series providesnauitive framework to identify the linear, quadratic, andhrer
order components of the nonlinear system. When the systemkisown, e.g. biological systems, the nonlinear system is
modeled using an alternative representation known as \Wmaréges expansion [13], whose functionals are orthogoritil w
respect to white Gaussian noise. The Wiener kernels amagstil using cross-correlation based methods [5]. The valte
kernels are subsequently computed from the Wiener kerhrethe posterior feature extraction using a three layeredPMie
are able to identify the Volterra kernels analytically ascdissed in the following section.

3.1. Volterra Kernel Identification: Three layered MLP

Fig. 1(b) shows a part of the phoneme posterior estimatoidtmaodeled using Volterra series. It is a multi-input, molitput,
nonlinear time-invariant system comprising of an LTI filkemk followed by the MLP. The input to the system are log eiesrg
from the auditory analysis, (t), k = 1,2... K, whereK is the number of auditory channels. The output of the systetime
accumulated suny (t), j = 1,2... N before the output nonlinearity, whené is the number of output nodes in the MLP. The
\olterra series expansion of such a system can be expressed a

K K K
v (t) =g + Z gil (1) @py (t—11)dm + Z Z
1 ki=1ko=1

ki=1"T

/ / gile (7’1,7’2)$kl (t*Tl)CEkz (t*TQ)dTldT2+... (1)
JT1 /T2

where, the termgg, gil (11), gilkz (m1, 72) are the zeroth, first, and second order Volterra kernelectisely of the phoneme

j. The variables, > . .. denote time, and, k5 . .. denote the frequencies on the Mel or Bark scale. We idertidyatbove
\olterra kernels in terms of the impulse response of the y§team and the parameters of the MLP.



Even though the above system is a discrete-time system,eveomsinuous-time notations through out this paper foitglar
The LTI system, which is a part of feature extraction cosstdta bank ofL. FIR filters, each with an impulse response of
hi(t), 1 =1,2... L. The component of the feature vectar; (¢) is obtained by convolving the inpu,(¢) with the impulse
responsé, (t), and given by

et (t) = / ha (7) s (¢ — 7) dr. @

The MLP consists o x L input nodes which is same as the dimension of the featurewédthidden nodes, and/ output

nodes. The inpug; (¢) to the hidden nonlinearity functiog;(.) is the linear combination of the input featungs; (¢t) weighted
by the MLP weights from the input to the hidden Iaye};r’l, and given by

K L
=3 whuk (t ®)

k=11=1

Here, we assume that features presented to the MLP are noialioed. Kernel identification for normalized features is

discussed in section 3.2. The accumulated sum aj’theutput node is the linear combination of the outputs at tloigldm
layer and the weights connecting the hidden and the outpei taf the MLP, and given by

M .
(1) =Dl 9isi (1) (4)

#i(.) = ¢(h; + .) is the nonlinearity at thé" hidden node, wherg; is the bias ana(.) is the nonlinear activation function
(sigmoid, hyperbolic tangent). To derive the Volterra l&sn; (.) is approximated using a polynomial expansion of the form

¢i (8 (t)) = ao,i + a1,is; (t) + az;si (t)2 + ..., (5)

where the coefficienta ;, a1 ;... are scalar constants. Polynomial expansion of the nonltyesnd the estimation of the
coefficients is discussed in section 3.3. By substitutingrn(%4), we obtain

M
J t) = ZCZ |:a0,i +ai,; s (t) +ag,; S; (t)Q + .. :| .
=1

M _ M ) M )
:ZC? aovi—l—ZCZ au Sz(t)-i-ZCZ (Lz,i S; (t)2+ (6)
i=1 i=1 i=1

By substituting (2) and (3) in (6) we obtain

M M
yj (t):zcz a07i+ZC] a“ Z Zwklll/ hll Tl).fbkl (thl)d’Tl#*
i=1 i=1

ki=10=1 1

K L
Zc as; Z Z Z Zwlilllwlizlz/ / hi, (11) hyy (12) gy (6 —T1) Tk (E — T2) dTidTe + ...
1 S

ki=111=1ko=112=1

By exchanging summation and integration, and rearrangings in the above equation, we obtain

M

yj (t) - [ZC ag,;

* Z / [Zd a,i Z W, i, (71)] xp, (t— 1) dr+

=1

Z Z / / [ZC a2,i Z Z wklzlwkzuhll (71) hu, (72)] Tg, (t—71) gy (t — T2) dTidT2 + .

k1=1ko= I1=11>=1



\olterra kernels are identified by comparing the above éqoab the Volterra series expansion in (1). The first threkevioa
kernels are given by
M

=3 (7)

i=1

gl (11) ZC alzzwklllhh 71) (8)

=1

L L

gklkz 7'177'2 ZCJGQ i Z Z w2111w2212h11 (Tl) h, (7—2) 9)
l1=112=1
The identified Volterra kernels are functions of the impuissponses of the filters in the LTI system, and the paramefers
the functions are determined by the weights of the MLP. Sipadly, the first order Volterra kernel is a linear combiatiof
the impulse responses of the filters. In the following sextive identify the \olterra kernels when the MLP is traineéhgs
features that are normalized to zero mean and unit varisdeseussed in section 2.3.

3.2. Volterra Kernel Identification: Feature Normalization

Suppose that the feature vector componegni(t) has a mean; and a standard deviation, ;. The mean and standard
deviation are estimated on the training data. The MLP is¢@iusing features normalized to zero mean and unit variamncke
given by

ukl(t) Ukl( )—/Lk,z (10)
Okl
By substituting the normalized feature component in (3) plviin
K L
si(t) =Y whyi(t)
k=11=1
- K& i Uk (T) — fay
=Y up el
k=11=1 kol
=5(t) — A (11)
where,
K L ]
$it) =D D kg uka(b), (12)
k=1 1=1
W, =L and (13)
’ Ok,

L i Mkl
Ai:ZZwk’lg . (14)

The feature normalization can be incorporated into thermpatars of the MLP by appropriately modifying the hidden lziad
the weights connecting the input and hidden layers of the Mh output at thg*” output node can be written from (6) as

oo M
=D > dan (3:(t) = A)". (15)

n=0 i=1



By using binomial series expansion (15) can be rewritten as

ZZ amZ( > (si()" (=A)"" (16)

n=0 i=1

By collecting the polynomial term&;(¢))", (16) can be rewritten as

co M
S35 s O) s where a7

r=01:=1
dr,i = i (7:) An,i (_Ai)n_yl (18)

\olterra kernels are identified by following the simplifizats described in section 3.1 except for using (17) instéd6)o The
first three Volterra kernels are identified as

M .
=> dao, (19)
i=1
g,Cl (1) ZCJ ar; Z W1,y (1) (20)
I1=1
gklkz 1,72) ZCJ@ i Z Z wklllwkgbhll (1) by (72) (21)

l1=11>=1

It can be seen that the \Volterra kernels are of the same matiwaiform as those corresponding to unnormalized feaflmeat
the weights and the coefficients of polynomial expansioregpopriately modified by the mean and variance of the featur
The new weights connecting the input and hidden layer of the M/i,z is given by (13), and the new polynomial coefficients
are given by (18). For example, the zeroth, first, and secomer polynomial coefficients are given by

2 3
G0 = ap; — ADjar; + ANjaz; — Afas; +

a1 =ay; — 20;as,; + 3A%az,; — 4A3ay; +
CAlQ’i = a2 — 3Aia3,i + 6A12a4’1- - 10A§’a57i +

It can be seen from the expression for Volterra kernels (22)-and (18) that due to feature normalization, the Vodterr
kernels are also in the form of an infinite series. Howeveprarctice the order of the Volterra series as well as the falte
kernels is decided by the order of the polynomial approxiomadf the hidden nonlinearity. Moreover, the coefficieats; in
(18) approach towards zero as the ordds increased. In cases where the features are zero meanrbunitosariance [10],
the polynomial coefficients remain unchanged\as= 0, but MLP weights are appropriately scaled by the featureawae.

3.3. Polynomial expansion of the activation function

A key aspect in the derivation of the Volterra kernels is tb/pomial expansion (5) of the nonlinearity at the hiddedem
Polynomial expansion of activation functions such as signsdivergent if approximated for all possible values o thput
(—o0, 00). However, as a consequence of feature normalization, teeatipg point on the nonlinearity is in a relatively small
region containing the linear part of the function.

Fig. 2(a) shows the histogram of the input (which includesttias) to the sigmoid function at a hidden node, and is obthin
on the cross-validation data. We fit a polynomial functiorceftain order in the range of values observed in the histogra
leaving out a small fraction on the tail. The coefficientshaf polynomial are optimized to minimize the least mean szj@enor
between the sigmoid function and its polynomial approxiomain the region of interest. Fig. 2(b) is the plot of the smjch
activation function and its polynomial approximation. &rthe hidden bias is incorporated in the polynomial exmemghe
estimated coefficients are different for each hidden node.
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3.4. Interpretation of Volterra kernels

The first order Volterra kerneji(t) (t denotes timek denotes frequency, anddenotes the phoneme) is the linear transfer
function of the posterior feature extraction system. Theetreversed linear kernel can be interpreted as a matcted fil
capturing the spectro-temporal patterns learned by thersysrhe second order kerrg.ﬂkl1 ko (t1,t2) for the phonemeg reveals
the correlations across different frequency barids X,) at different timesf, ¢2). Similarly the higher order Volterra kernels
reveal the higher order correlations in the nonlinear syste

4. VOLTERRA ANALYSIS ON MFB FEATURES

To demonstrate the applicability of Volterra series expamsve analyze a posterior feature extraction system, evtiesr MLP
trained on the standard TIMIT database using using Mel firk energy (MFB) features. The log-energies from the 26
auditory channels are presented to the MLP with a contex#6fris. Hence the LTI system in Fig. 1 is a bank of 17 FIR
filters with shifted Kronecker delta impulse response fiomg. The input layer of the MLP consists of 442 nodes, theldmd
layer consists of 1000 nodes, and the output layer condi8% wodes corresponding to the number of phonemes. Thértgain
set consists of 153 minutes (375 speakers), cross-validaét consists of 34 minutes (87 speakers), and test sastsoni68
minutes (168 speakers) of speech.

The Volterra kernels are derived using (20). We fit a polyradrfunction of order3 to the hidden nonlinearity, leaving
out 5% of the points on the tail of the histogram. The identified le¢snare applied in the Volterra series (1) to estimate
the phoneme posterior probabilities. The estimated pritithed are evaluated by applying them in phoneme classifina
or isolated phoneme recognition experiments. Phonemesifitadion facilitates accurate analysis of the resultsnasritions
and deletions are avoided. However, the trends observeldangme classification are also observed in phoneme re@gnit
experiments. Viterbi algorithm is applied on the phonemstgx@or probabilities with a minimum duration of three staper
phoneme [3]. Table 1 shows the phoneme classification acgotatained by using linear and quadratic approximatiorhef t
MLP using Volterra series. The accuracy obtained usingevidt series should converge to the accuracy obtained using t
MLP as the order of the series is increased.

model | series order accuracy (%)

linear 1 38.2
quadratic 2 43.7

MLP 00 77.9

Table 1. Phoneme classification accuracy obtained by linear and catadapproximation of the MLP using Volterra series.

Fig. 3 shows the first order \olterra kernel for phonemes(éyg. bea) and /eh/ €.g. bet). It can be seen that in the case
of phoneme /iy/, the system has learned to emphasize 200430fequency band which corresponds to its first formant. In
case of /eh/, the system has learned to emphasize slighgtighfrequency region of 400-500 Hz, which correspondsstbirit
formant. Fig. 4 shows the first order Volterra kernel for ti®mpemes /s/d.g. see) and /z/€.g. zoo). It can be seen that for
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both these phonemes, the system has learned to emphasiugthefrequency regions. However, the unvoiced phonefhig /s
distinguished from the voiced phoneme /z/ by the lack of g@ner its low frequency region.
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5. APPLICATION TO MRASTA AND MFCC FEATURES

In this section, we discuss the identification of the Volidternels when the MLP is trained using MRASTA, and the stethda
MFCC features. It can be recalled that to apply Volterra ysig) the system should be in the form given by Fig. 1, wheee th
MLP is preceded by a FIR filter bank.

MRASTA features

In MRASTA feature extraction [10], the trajectories of legergies from the auditory filters are processed by an LTtegys
consisting of a bank of FIR filters. The impulse responsetionof the filters are of the shape of either first or second/déve

of a Gaussian function as shown in Fig. 5. The variance of thes&an function controls the time resolution of the filters
A typical implementation of MRASTA filter bank consists ofyéi first and second derivatives of the Gaussian functioh wit
standard deviation varying between 8 ms to 130 ms. The Valtarnels are derived using (19)-(21). The features am@ zer
mean since the Gaussian derivative functions are zero raearhence\; = 0 for the i*" hidden node in (18). The weights
connecting the input and hidden layer are scaled by thenegiaf the feature component as (13).

amplitude

time (ms)

Fig. 5. Impulse response of MRASTA filters.



MFCC features

We discuss the MFCC features in its most generic form, whgnamhic cepstral coefficients are also appended to the static
coefficients, and the concatenated features are presentbd MLP with a certain (typically 90 ms) temporal contexheT
framework discussed in section 3.1 cannot be directly adpth MFCC features because the discrete cosine transfo@m)(D
operation mixes the energies from the auditory channelswveder, the DCT operation can be incorporated in the MLP by
appropriately modifying its parameters as shown in Fig. lis Tearrangement does not change the functionality of vbeatl
system in any way, but brings it to a form suitable for appdyifolterra series expansion discussed so far.

MEB DCT delta temporal
D delta—delta context

bias 7

feature
normalization

input

weights s

fe e W nonlinearity
(a) Standard computation of MFCC features and the MLP.
bias n
feature ;
Mel FIR filter bank s | blockDCT | ¢ ure. input
filter bank normalization weights s
energiesMFB) | delta, delta-delta, temporal context Dp e %, w nonlinearity
(b) The DCT operation is applied after FIR filters.
bias ¥’

input
weights

Wwr

\ 4

MFB FIR filter bank ‘
delta, delta-delta, temporal context ‘

(c) The DCT coefficients, cepstral feature mean and varianceorporated into the MLP parameters

nonlinearity

Fig. 6. Rearrangement of MFCC feature extraction to apply Voltesgsies analysis.

In the following description, the size of the vectors andnas are given in square brackets next to the variable name.
Let Ny denote the number of Mel auditory filters and denote the number of static cepstral coefficients derivéagus
DCT matrix D [N, x Ny]. As shown in Fig. 6(b), the dynamic cepstral coefficientat{st delta, delta-delta), and a temporal
context of N, frames are computed using a single filter bank comprisingf filters'. The impulse response for deriving
static cepstral coefficient is a simple Kronecker delta fimmc The typical impulse response functions for derivirgdta, and
delta-delta coefficients are shown in Fig. 7. A temporal ernof NV, frames at the input of the MLP is created using an FIR
filter bank with time shifted Kronecker delta functions agpirtse response. As shown in Fig. 6(b), the cosine transfam c

0.26 0.1
0.1 0.05
1T 1 0e  off
-0.1 L -0.05 l) 4>
0 0 7 o1 0 5

Fig. 7. Typical impulse response for delta, and delta-delta femtxtraction in the standard HTK implementation.

applied after the filter barfkusing a block diagonal transformation matiix; [3N;N. x 3N;N], obtained by repeating the
original DCT matrix3 N, times along the diagonal. The concatenated cepstral &aaatore [3N; N, x 1] is computed from
the filter bank output vectos [3N;N; x 1] as

c=Dpgs (22)

1The impulse response of a cascade of two LTI systems with impedg®nses,, (t) andh, (t) is given by the convolutioh,, (t) = hq(t) * hy(t).
2The cosine transform is applied along the frequency andltee ffiank is applied along time. Hence the operations cantbecimanged.




Furthermore, the block DCT matrix and the mean and variaftieeocepstral features are incorporated into the MLP by
appropriately modifying the bias at the hidden layer andabights connecting the input and the hidden layer of the NHdP.
this, we denote the mean of the concatenated MFCC cepsatatéevector ag.. [3N;N. x 1], the diagonal matrix containing
the feature variance &%. [3N;N. x 3N; N,|, and the weight matrix between the input and hidden layeh(id hidden nodes)
of the MLP asiV [M x 3N;N,]. If we denote the bias vector at the hidden layek @&/ x 1], then the input to the nonlinearity
at the hidden layes [M x 1] is given by

s=h+ WS 2 (c— p) (23)
- (hf WE*%;LC) + WS iDps
=h + W's (24)
where,
W =W 2Dg, (25)
W=h—A, and (26)
A=W 7y, (27)

It can be seen that the input to the activation function athillelen layer can be computed either using (23) as shown in
Fig. 6(a) or (24) as shown in Fig. 6(c). However, in the lattee FIR filters are applied directly on the log-energiesriro
the auditory filter bank as required by the Volterra analfidmework shown in Fig. 1. \olterra analysis is applied oa th
modified MLP parameters which are given by (25) and (26). Teamof the MFCC feature vector is reflected in the correction
to the hidden biag\ = [A; ... A, ... Ay, and is given by (27). The correction to the hidden higss used to modify the
coefficients of the polynomial expansion of the sigmoid fioicat thei*” hidden node using (18). The modified MLP weights
and the coefficients of the polynomial expansion are useeéiivelthe Volterra kernels using (19)-(21).

6. SUMMARY AND CONCLUSION

The main objective of this work was to provide a frameworkpplgt Volterra series to analyze MLP based phoneme posterior
probability estimation. We include a part of the featureastion (LTI system following the auditory analysis) in taealysis
framework because the Volterra kernels can be interpretsgectro-temporal patterns.

In this work, the linear Volterra kernels are interpretedpsctro-temporal patterns. The second order kernels cewddl
useful correlations across different frequency channetifferent time instants. The spectro-temporal pattefiasrgby the
\olterra kernels may not be consistent with the existingiatio phonetic knowledge of phonemes in all aspects. Thisdause
the Volterra kernels can only reveal the information ledrbyg the MLP to discriminate among phonemes.

Future work includes a detailed analysis into the spe@nopbral properties learned by the system for differentufeat
extraction techniques. V\olterra analysis can also be usesbmpare posterior feature extraction systems that difféhe
amount of the training data or the number of hidden nodesarMhP.
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