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Résumé. We investigate the detection of spoken terms in conversational speech using phoneme
recognition with the objective of achieving smaller index size as well as faster search speed.
Speech is processed and indexed as a sequence of one best phoneme sequence. We propose the
use of a probabilistic pronunciation model for the search term to compensate for the errors in
the recognition of phonemes. This model is derived using the pronunciation of the word and the
phoneme confusion matrix. Experiments are performed on the conversational telephone speech
database distributed by NIST for the 2006 spoken term detection. We achieve about 1500 times
smaller index size and 14 times faster search speed compared to the state-of-the-art system using
phoneme lattice at the cost of relatively lower detection performance.
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1 Introduction

Spoken term detection (STD) [2] refers to detecting a word or a phrase in unconstrained speech.
STD technology is useful in searching large archives of recorded speech such as conversational telephone
speech, multi-party meetings etc.

The system consists of two stages - indexing and searching. In the indexing stage, speech is pro-
cessed and stored in an easy to search form known as index. This involves tagging speech using the
sequence of recognized words or phonemes. In the search stage, the index is searched and the exact
location of the term is determined.

Spoken term detection can be approached in two ways that differ in the basic unit used for indexing.
In the word lattice based approach, the index is a word lattice and is obtained by large vocabulary
continuous speech recognition (LVCSR). In the phoneme lattice based approach, the index is a pho-
neme lattice and is obtained by phoneme recognition.

The current dominant approaches to STD are based on the use of word lattices obtained from
LVCSR. A word lattice is a compact representation of the multiple word hypotheses for a given
speech utterance. The posterior probability of a word conditioned on the entire utterance can be com-
puted from the word lattice using the forward backward re-estimation algorithm. The word posterior
probability was first proposed as a confidence measure in LVCSR [12] [4]. Subsequently, it has been
successfully applied for spoken term detection in the 2006 NIST evaluation [7] [11] [10].

The major drawback in the word lattice based approach is its inability to detect out-of-vocabulary
words in the LVCSR system. It is often the case that search terms of interest are named entities (names
of persons, places, etc) which evolve over time and updating the language model and dictionary is
necessary [3]. Moreover, recognition errors may also be introduced as the ASR language model forces
meaningful sentences [3].

The above drawbacks can be effectively addressed by using an vocabulary independent approach
for indexing such as phoneme recognition. However, the accuracy of recognition of phonemes in conver-
sational speech is only about 50-60% because useful prior knowledge such as word language model
and pronunciation dictionary is not used. This problem may be reduced to a certain extent by using
a phoneme lattice instead of a one best sequence of phonemes.

A phoneme lattice represents multiple phoneme hypotheses for a given speech utterance. Unlike
the word lattice, the phoneme lattice does not contain any words. Hence, in the search stage, the
pronunciation of the required search term is searched in the phoneme lattice using dynamic time
alignment based methods [6] [8].

Apart from the performance, the processing requirements such as the index size, indexing time, and
the search time determine the feasibility of a practical large scale deployment of the STD system. Word
lattice based STD systems require a large index space and indexing is slow, but search is instantaneous.
On the other hand, in phoneme lattice based STD system, the size of the index remains more or less
the same, indexing is relatively faster, but search is slower.

With an objective of achieving smaller index size as well as faster search speed in a phoneme based
STD, we investigate the use of one best phoneme sequence for indexing and a probabilistic pronuncia-
tion model for the search term. The pronunciation model uses information from the phoneme confusion
matrix to compensate for the errors in the recognition of phonemes. We compare our approach to the
state-of-the art STD system using phoneme lattices [9]. It is expected that the performance of the
proposed system will be inferior compared to the lattice based system. However, the proposed method
will result in significantly smaller index size and faster search speed.

The potential applications of the proposed approach include (a) searching very large archives such
as speech/multimedia content available on the web, in which case the storage space for the index is
paramount, and (b) fast preselection of speech utterances to be subsequently searched using more
sophisticated methods.

The rest of the paper is organized as follows : Section 2 explains the background to our approach to
STD, Section 3 describes the probabilistic pronunciation model for the search term and its detection.
The phoneme lattice based state-of-the-art system used for comparison is discussed in Section 4.
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The experimental setup is described in Section 5 and results are presented in Section 6. Finally, the
summary and future scope is discussed in Section 7.

2 Background

In STD, the search terms are specified as a sequence of words, but the basic acoustic modeling
units are typically phonemes. Hence, there is a need for a phonetic pronunciation dictionary, which
maps the words to its correct pronunciation. Dictionaries also include multiple pronunciations for a
word to account for the known pronunciation variants. In this work, we use a probabilistic model
for the pronunciation of the search terms to compensate for the errors in the one best recognition of
phonemes.

laal O O laal
O O
pi O O
L(pilp:)
O p;
7] o /2
Ins(*) O O Ddl (*)
phonemes phonemes
spoken received

F1G. 1 — Noisy channel model for the phoneme recognizer

Errors in the recognition of phonemes could be due to (i) mispronunciation by the speaker, or (ii)
inaccurate modeling of phonemes leading to acoustic confusion. To capture the systematic errors in
the recognition of phonemes due to acoustic confusion, we treat the phoneme recognition system as a
discrete, memoryless, and noisy channel. As shown in Figure 1, the phonemes spoken are taken as the
source symbols and the recognized phonemes as received symbols. Moreover, an additional symbol ‘*’
at the input denotes insertion and the symbol ‘*’ at the output denotes the deletion of a phoneme.
The properties of such a simplified model can be captured using the following parameters.

— Pi(p;) : Insertion probability of phoneme p; and can be interpreted as P(p;|*) in Figure 1.

— Ps(pj|pi) : Probability of phoneme p; substituted for p;. The case where p; = * denotes the

deletion of p;.

— Py : Unconditional probability of substitution. Deletion is a special case of substitution.

— P; : Unconditional probability of insertion, Ps + P; = 1.

The above probabilities are estimated by dynamic time alignment of the reference phoneme se-
quence to the recognized phoneme sequence and normalizing the substitution, insertion, and deletion
counts. The estimated parameters of a noisy channel model for the phoneme recognizer captures its
error characteristics and is generally referred to as the confusion matrix.

In modeling the search term, the confusion matrix obtained from a noisy channel model is treated
as the prior knowledge of the phoneme recognizer. The probabilistic pronunciation model for the
search term is derived using the correct pronunciation, obtained from the dictionary and the noisy
channel model of the phoneme recognizer as explained in the following section.
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F1G. 2 — A probabilistic pronuciation model for a search term ‘JAPAN’ with a correct pronuciation
of /ih/ Jax/ /p/ Jae/ /n/. Symbol *’ represents the hidden state for insertion. jpj and i/p/, denotes
the entry to and exit from the model (not shown for every phoneme).

3 STD using Phoneme Sequence

A search term is modeled using an hidden Markov model (HMM). The phonemes in the correct
pronunciation for the search term are taken as the hidden states of the model. Moreover, there is an
optional hidden state (‘*’) for insertion that can be entered with certain probability P;. The emission
probability in the insertion state is given by the phoneme insertion probability from the confusion
matrix. The emission probability in the phonemic state p; is given by the conditional probability
P(p;|p;) from the confusion matrix. The special case where the phoneme p; = ¢ * ¢ represents the
deletion of phoneme p;. The topology of the model is determined by the correct pronunciation of the
search term. The model parameters are obtained from the phonetic confusion matrix.

Figure 2 is a schematic of the proposed pronunciation model for the word ‘Japan’ with pronuncia-
tion /jh/ /ax/ /p/ /ae/ /n/. This model can be used to generate the sequence of phonemes likely to be
observed at the output of the recognizer when the word ‘Japan’ is spoken. We further relax the model
by letting it begin and end at any phoneme in pronunciation. The symbol ‘jp;’ denotes the entry to
the model and ‘j/p;’ denotes exit from the model. By fixing a parameter N, the relaxed model can ge-
nerate all N-length sequence of phonemes that are likely to be observed at the output of the recognizer
when the word ‘Japan’ is spoken. Conversely, given any N-length sequence of observed phonemes, we
could find the state sequence in the model that is most likely to have generated the observed phoneme
subsequence. Subsequently, the conditional probability P(observed seq|state seq,word model) is ta-
ken as the score for the observed phoneme sequence given the model. The three cases of substitution,
insertion, and deletion are described below with example for N = 3.

Substitution :

observed phoneme sequence (q) = {jh, ey, p}
aligned observation sequence(q/) = {jh, ey, p}
aligned best state sequence (s) = {jh, ax, p}

P(q!|s,W) = P(jh|jh) . P(ey|ax) . P(p|p)

Deletion :

observed phoneme sequence (q) = {jh, ax, ae}
aligned observation sequence(q/) = {jh, ax, *, ae}
aligned best state sequence (s) = {jh, ax, p, ae}
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P(ql|s, W) = P(jh|jh) . P(az|ax) . P(x|p) . P(aelae)

Insertion :

observed phoneme sequence (¢) = {jh, ax, ax}
aligned observation sequence(q/) = {jh, ax, ax}
aligned best state sequence (s) = {jh, *, ax }

P(q/|s,W) = P(jh|jh) . P(az|*) . P(ax|ax)

This proposed approach can be seen as an extension of the work in [5], where a similar model was
investigated for keyword spotting. Our work differs from the previous study in the following aspects :
(a) precise formulation of the problem as a probabilistic pronunciation model (b) best state sequence
is obtained by dynamic time alignment, (c¢) usage of the estimated conditional probabilities in word
detection, and (d) using this method on conversational speech as opposed to the simulated sequence
of phonemes.

To search for a particular term in sequence of phonemes, we first apply a sliding window N
phonemes long with a shift of 1 phoneme. The probability of the windowed phoneme subsequence
given the model for the search term is computed. The estimated probability is expected to be high
when the search term is indeed present and to be low otherwise. Figure 3 shows the log-probability
of the phonemes in the sliding window given the model for the word ‘Arizona’.

One way of detecting the word would be to simply apply a preselected threshold on the log-
probabilities. In this work, we use a garbage model to estimate a reference score and apply Viterbi
decoding. Moreover, since the search term and hence the number of phonemes is known a priori, we
exploit this by enforcing minimum duration constraints while detection.

3.1 Garbage Model

In keyword spotting, garbage models are used to absorb any non-keyword speech. Typical garbage
modeling techniques include explicit training of an HMM or GMM on non-keyword speech, an ergodic
network of trained phoneme models etc. The garbage model provides a reference score to compare
the keyword model score. In this work we propose the use of a N-gram phoneme language model as
a garbage model.

N-gram phoneme language models are typically used to capture phonotactic prior knowledge
in phoneme recognition. N-gram model estimates the probability P(qk|q,’§:]1v 41, G), where q,]::}\, 11
denotes the N — 1 phonemes proceeding g. We use the joint probability P(gf_ +1/G), which can be
obtained using Baye’s rule as the garbage model score.

Figure 3 is a plot of the log-probability of the phoneme in the sliding window given the model
for the word ‘Arizona’ as well as the garbage model. It can be seen that when the word ‘Arizona’ is
present in the phoneme sequence, the word model score is higher than the garbage model score.

The search term and the garbage models are modeled using a left-right HMM with certain number
of states (M), which is proportional to the number of phonemes (MM,) in the search term and is
given by My = M, — N + 1. In the case of longer search terms, the minimum duration could be
further reduced to increase detection rate. The emission probability in every state of the search term
is P(q|s, W), obtained from the proposed method pronunciation model. The emission probability in
each of the garbage model state is taken as P(¢|G). Viterbi algorithm is applied to detect the presence
of the search term. By using minimum duration constraint, the spurious peaks that are likely to occur
due to the relaxed pronunciation model are suppressed.
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Fia. 3 — Log-probability of the phonemes in the sliding window along the observed phoneme sequence,

given the pronunciation model for the word ‘Arizona’, and the garbage model.

4 STD using Phoneme Lattice

We compare the proposed method to the state-of-the-art system where the pronunciation for the
search term is searched in the phoneme lattice [8]. The phoneme lattice is a directed acyclic graph
whose nodes represents the time information and the arcs contains the phoneme and its acoustic model
likelihood. Phoneme language model probabilities are not considered in the search.

The confidence measure C(S) for the hypothesized search term S with begin time ¢, and end time
te is given by

C(S) = La(ty) +1(S) + Lp(te) — Loest, (1)
where, L, (ty) denotes the accumulated forward log-likelihood from the start of the lattice to the search
term S, Lg(t.) is the accumulated backward log-likelihood from the end of the lattice to end of the
search term, Lyes; denotes the log-likelihood of the best path through the lattice, and 1(S) denotes
the log-likelihood of the search term and is given by

K

108) = i La(i) + (1 — ¢4) L. (2)

i=1

The variable ¢; = 1 if the ¢** phoneme in the search term matches with the i*® phoneme in the
K-length substring of the lattice. I, (i) is the acoustic likelihood for the i*" phoneme, and I, is the
penalty for the mismatch.
The accumulated forward and backward log-likelihoods at a node N in the phoneme lattice are
recursively computed as
La(N):HJ{ral;X [la(NP7N)+La(NP)] (3)

Lp(N) = max [la(N, NF) + L(Nr)] (4)

where, Np is the set of nodes preceding N in the phoneme lattice and I,(Np, N) is the corresponding
acoustic model log-likelihood. Similarly, Nz is the set of nodes following N and [,(Np, N) is the
log-likelihood for the arc. The first node has L, (first) = 1, and the last node has Lg(last) = 1.

By Viterbi search, we obtain several overlapping hypothesis for the search term with different begin
and end times and confidence measure. We select the hypothesis with the highest confidence measure.
The final hypothesis could be either accepted or rejected by comparing the confidence measure to a
pre-selected threshold.

5 Experimental Setup

Experiments were performed on three hours of two-channel conversational telephone speech (CTS)
development database distributed by NIST for the 2006 spoken term detection evaluation (STDO06) [2].
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A neural network based speech-silence algorithm is applied to obtain 5257 utterances comprising three
hours of speech to be searched.

The search terms were selected from the dryrun set distributed for the STDO06 evaluation. Of the
1107 search terms in the list, we select only those terms that occur at least once in the test speech.
We also drop the search terms with fewer than four phonemes as any phoneme based STD will give
high false alarms [3]. The final search list consists of 153 single-word, 78 two-word, and 12 three-word
search terms.

5.1 Acoustic Modeling

The acoustic models are based on the hidden Markov model - Gaussian mixture models, trained
using multi-pass training strategy. These models were trained using 277 hrs of ctstrain04 database,
which is a subset of hitrain03 set defined at Cambridge university.

The base features comprises of 12 Mel frequency perceptual linear predictive coefficients and raw
log-energy. Feature normalization techniques such as cepstral mean/variance normalization, vocal
tract length normalization are applied. Model adaptation techniques such as maximum likelihood
linear regression (MLLR) and constrained MLLR are also used. These features are finally appended
to the posterior based features from a neural network. Feature extraction and training of the acoustic
models was done at Brno University of Technology. A detailed description of the system can be found
at [10].

5.2 Phoneme Recognition

Context-dependent acoustic models were used for recognition of phonemes with a bigram phoneme
language model. Posterior based pruning was applied to obtain compact lattices. These phoneme
lattices were subsequently used for searching in the baseline method.

Viterbi decoding was applied on the phoneme lattice to obtain one best sequence of phonemes to
be used in the proposed method. We obtain a phoneme recognition accuracy of 64%.

5.3 Evaluation Metric

The performance of the proposed method is evaluated using the actual term-weighted value
(ATWYV) [1] defined by NIST for STDO06 evaluation, and is defined as

T

ATWY =1~ 25 (Pasiat) + BPra(t),

t=1
where, the probability of miss (Pys;ss(t)) and probability of false alarm Pp4(t) for the term ¢ is given
by

Ncor'r (t)

Pariss(t) =1 — ’ d P t) =
Miss (t) Nowe) " Fal(t)

Nspurious (t)
Tspeech - Ntrue(t)

Neorr(t) is the number of correct detections, Nyque(t) is the number of true occurrences of the term
in the test corpus, Nspurious(t) denotes the number of spurious detections of the term, and Tspeecn 1S
the duration of the test speech in seconds. 3 is set to be 1000.

A perfect system (Pariss = 0,Pra = 0) has an ATWV = 1.0. A system that does nothing
(Prviss = 1,Prpa = 0) has an ATWV = 0. Assuming that Tspeecn, >> Nipye, if the system gives
perfect detection (Ppiss = 0), but 3.6 false alarms per hour for each term, we get an ATWV = 0.
This shows that ATWYV is a stricter evaluation metric compared to figure-of-merit which is typically
used in evaluating keyword spotting systems.
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6 Results

To study the performance of the proposed STD system for different lengths (in term of number
of phonemes) of the search term, the search terms are sub-divided into groups containing 5-6, 7-8,
9-10, 11-13, 14-16, and above 17 phonemes. The pronunciation for search terms with multiple words
is obtained by concatenating the individual word pronunciations.

TAB. 1 — ATWYV of the proposed method compared to the baseline system.
’ phonemes \ 5-6 \ 7-8 \ 9-10 \ 11-13 \ 14-16 \ 17+ ‘

baseline 0.55 | 0.69 | 0.80 | 0.73 0.74 | 0.71

proposed(N=3) | 0.23 | 0.27 | 0.45 | 0.60 | 0.70 | 0.94

Table 1 shows the ATWYV for the proposed probabilistic pronunciation model as compared to the
state-of-the-art phoneme lattice based system. It can be seen that the phoneme lattice based approach
outperforms the proposed method, especially for search terms with fewer number of phonemes. This
is because the confusions captured by the phoneme lattice P(p;|p;, X) is conditioned on the observed
data X and hence is more accurate. On the other hand, the confusion matrix P(p;|p;) used in the
proposed approach is averaged over all the data.

6.1 Processing Requirements

In spoken term detection, emphasis is also on (i) size of the index, (ii) indexing speed, and (iii)
search speed. Table 2 shows the index size, indexing speed and the average search speed for the
proposed method as compared to the baseline phoneme lattice based approach.

TAB. 2 — Indexing size, indexing speed, and search speed for the proposed system as compared to
the phoneme lattice based system. Notations are MB :megabytes, Hs :hours of speech, Hp :processing
hours, and sp :processing seconds.

index size | indexing speed | search speed

(MB/Hs) (Hp/Hs) (sp/Hs)
baseline 187.3 86.0 13.5
proposed 0.127 86.0 1.0

It can be seen from the Table 2 that the proposed method needs about 1500 times less memory
for storing the index and is about 14 times faster when compared to the phoneme lattice based
system. Moreover, during search, building the probabilistic pronunciation model is takes most of the
computational time. Once the pronunciation model is estimated, searching takes 0.52 sp/Hs which
is approximately 7000 times faster than real time. Thus, at the expense of reduced performance, we
achieve an order of three magnitude reduction in the size of the index and order of magnitude increase
in search speed.

6.2 Effect of phoneme recognition accuracy

Since the proposed method uses a one best sequence of phonemes for detecting the search terms,
we analyze the performance of the system for different phoneme recognition accuracies. Different
recognition accuracies are simulated by replacing the phonemes in the reference transcription by ran-
domly generated phonemes. The probability mass function for the random generation is obtained from
the confusion matrix. By controlling the number of substitutions, we simulate recognition accuracies
between 100% and 65%.
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70 80 90 100
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F1G. 4 — Plot of the mean ATWV (and the standard deviation) measure for simulated phoneme
recognition accuracies.

Figure 4 shows the performance of the STD for search terms containing 11-13 phonemes for different
accuracies of recognition of phonemes. It can be seen that perfect phoneme recognition does not give an
ATWYV of 1.0. Analysis of the results reveal that this is mainly because of the pronunciation ambiguities
that cannot be resolved in a phoneme based methods. Inaccurate speech silence segmentation leading
to a multi-word spoken term segmented into different utterances is also observed. It can also be seen
that improved phoneme recognition greatly improves the ATWYV. This justifies the renewed research
interest in recognition of phonemes.

7 Discussion And Future Work

Traditionally, in keyword spotting as well as in spoken term detection using phoneme recognition,
the pronunciation of the keyword is searched in the phoneme lattice using dynamic time alignment
based methods. In this work, we use a one best sequence of phonemes and investigated a probabilistic
model for the keyword. The pronunciation model is derived from the word pronunciation and the
phonetic confusion matrix. Both the phoneme lattice as well as the confusion matrix capture the
confusion among phonemes. The phonetic confusion captured by the phoneme lattice is conditioned
on the observed data and is more accurate compared to the confusion matrix. This is also reflected in
the experimental results.

In this work, we present the preliminary results obtained using a probabilistic pronunciation model.
We have used a very simplistic model to estimate the phonetic confusions in a phoneme recognizer. Fu-
ture work include the use of more informative models such as bigram confusion matrix P(p;, p;|pk, pi)-

8 Conclusions

We demonstrate a fast approximate spoken term detection system that uses one best sequence of
recognized phonemes as the index. A probabilistic pronunciation model for the search term is used
to compensate the errors in recognition of phonemes. As expected, the performance of such system
is inferior compared to the state-of-the-art phoneme lattice based system. However, the proposed
approach could be particularly useful in practical scenarios where the size of the index, and the search
speed are critical.
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