REPORT

CALIBRATION FROM STATISTICAL
PROPERTIES OF THE VISUAL WORLD

Etienne Grossmarin  José Antonio Gaspadr
Francesco Oraborfa

IDIAP—-RR 08-63

JuLy 2008

IDIAP RESEARCH

TO APPEAR IN
Proceedings of the 10th European Conference on Computen\isCCV
2008)

& TYZX, Inc., Menlo Park, USA
ISR, Instituto Superior Técnico, Lisbon, Portugal
C |diap Research Institute, Martigny, Switzerland

IDIAP Research Institute www.idiap.ch

Av. des Prés-Beudin 20 P.O.Box 592 1920 Martigny — Switzerland
Tel: +41 27 721 77 11 Fax: +41 27 721 77 12 Email: info@idiap.ch






IDIAP Research Report 08-63

CALIBRATION FROM STATISTICAL PROPERTIES OF THE
VISUAL WORLD

Etienne Grossmann José Antonio Gaspar Francesco Orabona

JuLy 2008

TO APPEAR IN
Proceedings of the 10th European Conference on ComputenisCCV 2008)

Abstract. What does a blind entity need in order to determine the geometry of the phbticells that it
carries through a changing lightfield? In this paper, we show that vededknowledge of some statistical
properties of the environment is sufficient for this task. We show thaesdissimilarity measures between
pairs of signals produced by photocells are strongly related to the arsgydaration between the photocells.
Based on real-world data, we model this relation quantitatively, using dlasity measures based on the
correlation and conditional entropy. We show that this model allows to estitha angular separation from
the dissimilarity. Although the resulting estimators are not very accuratg ntlantain their performance
throughout different visual environments, suggesting that the neu=ides a very general property of our
visual world. Finally, leveraging this method to estimate angles from sigaias,pve show how distance
geometry techniques allow to recover the complete sensor geometry.
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Figure 1: A discrete camera consists of a number of phow¢egikels) that measure the light traveling along
pencil of lines.

1 Introduction

This paper departs from traditional computer vision by nmsidering images or image features as input.
Instead, we take signals generated by photocells with umkroosientation and a common center of projection,
and explore the information these signals can shed on tl®sand its surrounding world.

We are particularly interested in determining whether tilgeals allow to determine the geometry of the
sensor, that is, to calibrate a sensor like the one showrgir&il. Psychological experiments [1] showed that
a person wearing distorting glasses for a few days, aftenacanfusing and disturbing period, could learn the
necessary image correction to restart interacting effelgtwith the environment. Can a computer do the same
when, rather than distorted images, it is given the signaldyced by individual photocells? In this situation,
it is clear that traditional calibration techniques [2, 8¢ aut of the question.

Less traditional non-parametric methods that assume athrimoage mapping and smooth motion [4] can
obviously not be applied either. Using controlled-lighitratli or known calibration, matches could be obtained,
allowing to use match-based non-parametric techniquedri3his study however, we wish to exclude known
calibration objects and other controlled stimuli.

Our approach is inspired from the work of Pierce and Kuip6fsWwho measure the dissimilarity, or dis-
tance, between sensor elements that are not necessahnilyséigsors. The elements are then embedded in a
metric space using metric scaling [7], which also detersithe dimension of the space. A relaxation method
then improves this embedding, so that the Euclidean disthatween sensor elements better matches the dis-
similarity between the sensor inputs. Getting close to tiosblpm addressed in the present paper, the authors
use this method to reconstitute the geometry of a rectanguiay of visual sensors that scans a fronto-parallel
image.

Going further, Olsson et al. [8] use the information dise@ot[9] as a more appropriate method to measure
the distance between visual or other sensor elements. Téeyshow how visual sensors -the pixels of the
camera of a mobile robot- can be mapped to a plane, eitheg tlsnmethod of [6], or their own, that embeds
sensor elements specifically in a square grid.

The works of Olsson et al. and of Pierce and Kuipers are vaeyasting to computer vision researchers,
but they cannot calibrate an arbitrary discrete cameraggime embedding space is either abstract or fixed to a
grid. In both cases, it lacks an explicit connection to thergetry of the sensor.

Grossmann et al [10] partially fill this gap by showing that thformation distance can be used to estimate
the angular separation between pairs of photocells, andthere, estimate the geometry of a sensor of limited
angular radius.

Because the present work exploits statistical properti¢senlight-field of the world surrounding a light
sensor, it is also related to research on the statisticgdepties of real-world images. In that area, a model
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Figure 2: The process of estimating the geometry of an unkrdigcrete camera.

of image formation is used, but images, rather than seqseace studied. That research has put in evidence
fundamental properties, in terms of local, global and spéstatistics, of real-world images, and found ways
to exploit these properties for computer vision tasks, @scblassification [11], image restoration [12] and 3D
inference [13]. Although these results are of great intethsy are not directly applicable in our case, mainly
because we lack images.

Moreover, these statistics are about planar images, whiathindrance in our case: first, we do not want
to exclude the case of visual sensor elements that are segpdamore than 180 degrees, such as the increas-
ingly popular omnidirectional cameras. Also, the locatistecal properties of perspective images depend of
the orientation of the image plane with respect to the scexegpt in special constrained cases such as the
fronto-parallel “leaf world” of Wu et al. [14]. Defining ima&s on the unit sphere thus appears as a natural
way to render image statistics independent of the sensentation, at least with proper assumptions on the
surrounding world and/or the motion of the sensor.

The present article elaborates and improves over our previmrk [10]. We innovate by showing that the
correlation, like the information distance, can be usedrtwipe geometric information about a sensor. Also,
we use a simpler method to model to relation between anglkésignal statistics.

More important, we go much beyond [15] in showing that thisdelogeneralizes well to diverse visual
environments, and can thus be considered to be a reliabtaathastic of our visual world. In addition, we
show that the presented calibration method performs muttarpfor example by allowing to calibrate sensors
that cover more than one hemisphere.

1.1 Proposed approach

The present work relies on statistical properties of tha daeams produced by pairs of sensor elements that
depend only on thengular separation between the photocells. For example, if the sampled ligttfea
homogeneous random field defined on the sphere [16], therotagiance between observations depends only
on the angular separation between the sampled points.

This assumption does not hold in general in our anisotropiddy but it does hold, e.g. if the orientation
of the sensor is uniformly distributed amongst all unitagnsformations of the sphere, that is, if the sensor is
randomly oriented, so that each photocell is just as likelyample the light-field in any direction.

This assumption of homogeneity -or isotropy- of the samfitgatfield is of great practical utility, in con-
junction with a few other assumptions of good behavior: iis thiork, we only use statistics that converge
properly (e.g. in probability or more strongly) when siglaigths tend to infinity.

Perhaps more importantly we are only interested in stegidgtiat have an expectancy that is a strictly
monotonous function of the angular separation of the pgihotocells. That s, i, y are two signals (random
variables) generated by two photocells separated by ae anghdd (z, y) is the considered statistic, then the
expectancy ofl (x, y) is a strictly monotonous function éf for 0 < # < w. The importance of this last point
is that this function can be inverted, resulting in a funaéibmodel that links the value of the statistic to the
angle.

The statistic-to-angle graph of such statistics is theiarpknowledge about the world that we leverage
to estimate the geometry of discrete cameras. In the presei we use discrepancy measures based on the
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correlation or conditional entropy, defined in Section 3.Skction 4, we show how to build the considered
graph.

Having obtained angle estimates, we recover the sensorajggiim Section 5.1, by embedding the angles
in a sphere. This is done using simple techniques from distgeometry [17]. Experimental results are pre-
sented in Section 5.2. Finally, Section 6 presents somdusinoos and possible directions for future research.
The calibration process considered in the present worktl;ed in Figure 2. The statistic-to-angle modeling
produces the crucial functional relation used in the tfican right element of Figure 2.

2 Discrete camera model and ssimulation

Before entering into the details of our methodology forrasting the sensor geometry, we define the discrete
camera and explain how to simulate it using an omnidirealionage sensor.

We define a discrete camera [10] as a seVgihotocells indexed by e {1, ..., N}, pointing in directions
X; € R3 and having a unique center of projection. These photocelisiiee along the time, brightness
measurements (¢, ¢) in the range{0, .. .,255}. The directions of the light rays, contrarily to conventibn
cameras, are not necessarily organized in a regular gridnyMaamples of cameras can be found under
these definitions. One example is the linear camera, whetkeak; are co-planar. Another example is the
conventional perspective camera which comprises a regtangrid of photocells that are enumerated in our
model by a single index

{Xi | XiNKfl[ s } 0§i<HW}

whereW, H are the image width and heighk is the intrinsic parameters matri% represents the integer
modulo operation and | is the lower-rounding operation. Cameras equipped witlejistienses, or having log-
polar sensors, can also be modeled again by selin represent the directions of the light-rays associated
to the image pixels. In the same vein, omnidirectional cam&aving a single projection center, as the ones
represented by the unified projection model [18], also fihagroposed model. In this paper we use a calibrated
omnidirectional camera to simulate various discrete camer

2.1 |mage sensor

We simulate a discrete camera with known Euclidean georbgtsampling a calibrated panoramic image with
unigue projection center at fixed locations. Since the can®ecalibrated, it is straightforward to locate the
position (u, v) in the panoramic image corresponding to the 3D direcfioof a photocell that is part of the
simulated discrete camera. In the present work, we useshilimterpolation to measure the graylevel value at
non-integer coordinates:, v).

Images are acquired by a VStone catadiopric camera consistia perspective camera fitted to a hyper-
bolic mirror, shown in Figure 3, left. This system is mode&sisingle projection center camera [18] with a
360° x 210° field of view and a~ 45° blind spot at the south pole (Fig. 3, right). The mirror odespa
453 x 453 pixel region of the image. The angular separation betwegghhering pixels in the panoramic
image is usually slightly smaller than 0.5Also, some mild vignetting occurs, that could be correctepart
for these minor inconveniences, simulating a discrete carbg an omnidirectional camera presents many
advantages: no other specialized hardware is needed ahaeexdirectional image can be used to simulate
many discrete camera “images”, as in Fig. 4, right. With eespo perspective cameras, the available field of
view allows to study very-wide-angle discrete cameras.

3 Distances between pairsof signals

In this section, we define the measures of distance betwgaalsj correlation and information distance, that
will later be used to estimate angles.
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Figure 3: Left: The camera used to sample omnidirectional images (imagenmad). Right: A calibrated
omnidirectional image mapped to a sphere.

3.1 Corredation distance

We call correlation distance between signalg) andy (t), 1 < ¢t < T, the quantity

de (z,y) = 5 (1= C(z,9)),

DN | =

whereC (z,y) is the correlation between the signals. It is easy to vehifitd. (., .) is a distance.

For the task considered in this paper, it is natural to prifercorrelation distance over the variance or the
(squared) Euclidean distande — y||°, because both vary with signal amplitude (and offset, fer Idtter),
whereasli. (., .) is offset- and scale-invariant.

3.2 Information distance

Given two random variablesandy (in our case, the values produced by individual pixels okamite camera)
taking values in a discrete sft, ..., Q}, theinformation distance between: andy is [9]:

d(z,y) = H(zly)+H (ylr) = 2H (z,y) — H (y) — H (2), 1)

where H (x,y) is the Shannon entropy of the paired random varidble/), and H (x) and H (y) are the
entropies ofr andy, respectively. It is easy to show that Eq. (1) defines a distaver random variables.
This distance is bounded b¥ (x,y) < log, @, and is conveniently replaced thereafter by tioemalized
information distance :

df(x,y)zd(x,y)/H(x,y), (2)

which is bounded by 1, independently@f[9].

It should be noted that estimating the information distaec®n-trivial: naively replacing unknown prob-
abilitiesp,. (¢) by sample frequencies, (¢) =|{t|x (t) = q}| /T, whereT is the signal length and| denotes
the set cardinal, yields a biased estima‘fb(x). This estimator has expectancy

1
Al Q-1 1_quz(tI) 1
E{H}_H— T O ) ©)

This expression shows the slow convergence rate and stiasgobH (). We somewnhat alleviate these
problems by first, correcting for the first bias tef — 1) /27, i.e. applying the Miller-Madow correction;
and by re-quantizing the signal to a much smaller numberref, [9) = 4. Extensive benchmarking in [15] has
shown these choices to be beneficial.
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Figure 4:L eft: Geometry of a discrete camera consisting of a planar arrélyirty one (31) pixels, spanning
180 in the plane. The first two pixels are separated by Otle separation between consecutive photocells
increases geometrically (ratte 1.14), so that the 34t photocell is antipodal with respect to the firRight:

Two instances of the linear discrete camera, inserted imandirectional image. Pixels locations are indicated
by small crosses connected by white lines.

4 Estimating angular separation from inter-signal distance

As explained earlier, our a-priori knowledge of the worldlwie encoded in a graph mapping a measure of
discrepancy between two signals, to the angular separbéitmeen the photocells that generated the signals.
We now show how to build this graph, and assess its effe@s®at estimating angles.

For this purpose, we use the 31-pixel planar discrete cafoefgrobe”) shown in Fig. 4, left. This probe
design allows to study the effect of angular separationgingnfrom 0.5 to 180 degrees and each sample
provides 465=31(31-1)/2 pixel pairs. In the “tighter” paftthe discrete camera layout, there exists a slight
linear dependence between the values of consecutive pixelso aliasing.

The camera is hand-held and undergoes “random” generéibmtnd translation, according to the author’s
whim, while remaining near the middle of the room, at 1.0 ® rheters from the ground. We acquired three
sequences consecutively, in very similar conditions aimpbthem in a single sequence totaling 1359 images,
i.e. approximately 5 minutes of video at “4.5 frames per 8dco

To simulate the discrete camera, we randomly choose antati@m (i.e. half a great circle) such that all
pixels of the discrete camera fall in the field of view of th@peamic camera. Figure 4 shows two such choices
of orientations. For each choice of orientation, we prodacequence dfl samplese (i,t), 1 < i < 31,

1 <t <1359, where each: (4, t) € {0,...,255}. Choosing 100 different orientations, we obtain 100 digcre
sensors and 100 arrays of data(i, t), 1 < n < 100. Appending these arrays we obtain 31 signa(s, ¢) of
length to 135900.

We then compute, for each pair of pixels (indicésy ¢, j < 31, the correlation and information distances,
d. (4,7) andd; (4, j). Joining to these the known angular separatthnswe obtain a set of pair@; ;,d (i, 7)),
1<4,j<3l.

From this dataset, we build a constant by parts model of tipe@=ancy of the distance, knowing the
angle. For the correlation distance, we limit the absciesatues in[0,1/2]. After verifying and, if needed
enforcing, the monotonicity of this model, we invert it, ailsting a graph of angles as a function of (correlation
or information) distances. Strict monotonicity has to béoesed for the correlation-based data, owing to the
relatively small number of data points used for each quadtangle.

Figure 5 shows the resulting graphs. This figure shows ongeafiajor issues that appear when estimating
the angular separation between pixels from the correlatianformation distance: the graphs become very
steep for large values of the distance, indicating thatlsthahges of the distance result in large changes in the
estimated angle. On the other hand, for small distance salle curves are much flatter, suggesting that small
angles can be determined with greater accuracy. Both tanmedsarticularly true for the information distance.
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Figure 5: Models relating correlation (left) or informatidistance (right) to angular separation between pho-
tocells. These models were build from simulated signaldpeed by the linear probe of Fig. 4, left. Signals of
lengthT" = 135900, acquired indoors were used.

4.1 Experimental validation

We now assess how well angles can be estimated from the godyphised in the previous section. For this
purpose, we use 100 sets of 31 signalgi, t), 1 <n < 100,1 <14 < 31,1 <t < 1359 acquired in the same
conditions as above. We compute the correlation and infoomalistances of pairs of signads (n, 4, j) and

dy (n,4,j) and, using the models in Fig. 5, angular estimates:, i, j) andd; (n, i, 5).

Figure 6 shows the precision and accuracy of the estimatgié@nThis figure shows that the estimated
angles are fairly accurate for angular separations snéiéer5°, but degrades sharply for greater values. As
could be expected from our comments at the beginning of ttiose the curves confirm that the information
distance yields better estimates of small angles, whileetattion distance does best (but still not very well) for
larger angles.

We now turn to the generalization ability of the models in.FEgFor this purpose, we use 100 31-uplets of
signals of length 2349, taken from an out- and indoor secgieioar images of which are shown in Fig. 7. In
this sequence, and contrarily to the previous sequenceathera remains mostly horizontal. Also, the scene
is usually farther away and more textured. A lot of saturaisoalso apparent.

Following the previous procedure, we estimate angles filuesd new signals and show the precision and
accuracy statistics in Figure 8.

The striking resemblance between Figures 8 and 6 indichtastie models in Fig. 5 generalize pretty
well to outdoors scenes. We surmise that the fact that theledion distance yields more accurate estimates
outdoors than indoors is due to the extra texture, whicte@®es the correlation distance for small angles, and
corrects the bias in angular estimates observed near thie ofithe top left curve of Fig. 6.

5 Calibrating a discrete camera

Having seen the qualities and shortcomings of the proposgk &stimators, we now show how to use them
to calibrate a discrete camera.

To stress the generalization ability of the angle estinsatall the reconstructions produced by the above
method are obtained from the in- and outdoors sequence o¥ Figther than from the indoors sequence used
to build the distance-to-angle models.

5.1 Embedding pointsin the sphere

The last step we take to calibrate a discrete camera reqahesg the problem:
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Figure 6: Precision and accuracy of angles estimated frameletion (left) or information distance (right).
The boxplots at the top show théh5percentile, first quartile, median, third quartile ancﬂbﬁercentile of
the estimated angles, plotted against the true angles. dthento curves show the mean absolute error in the
estimated angles. These statistics were generated frorplaf@r probes (Fig. 4, left) and signals of length
T = 1359. The angles were estimated using the models of Fig. 5. Thwlsigvere acquired in the same
conditions as those used to build the models.

Problem 1) Spherical embedding problem: Given angle estimates;, 1 < ,j < N, find pointsX; on the
unit sphere, separated by angles approximately equg) tee. X, X; ~ cos 6;;, for all i, j.

This problem can be reduced to the classical problem ofriistgeometry [17]:

Problem 2) Euclidean embedding problem: Given distance estimatds;;, 1 < ¢,j < N, find pointsY; in a
metric vector space, such that, forallj, ||Y; — Y;|| ~ D;;

Indeed, by defining an extra poidf, = (0,0,0), and distanced;; = /2 —2cos¥,; for i,j # 0 and
D,; = 1, the mapping of the first problem to the second is immediadéut®ns to both problems (with exact
equality, rather than approximate) were published in 193%[ Schoenberg’s Theorem 2 [19] states that if the
matrix C with termsC};; = cos 6;; is positive semidefinite with rank > 1, then there exist points on the unit
(r — 1) —dimensional sphere that verify,” X; = C;; for all 4, j. This result directly suggests the following
method for embedding points in the 2-sphere:

1. Build the matrixC with termsC};; = cos#;;,1 <i,j < N.

2. Compute, using the SVD decomposition, the rank-3 apprationC = UU " of C, whereU is N x 3.

1schoenberg cites previous work by Klanfer and by Menger izivwe did have access.
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Figure 7: Four images from a sequence of 2349 images acdndedrs and outdoors at approximately 4.5FPS.

3. DefineX; = (U1, Uiz, Uis) / |(Uir, Uiz, Uss) ||

One should note that this very simple algorithm is not optimanany ways. In particular, it does not take into
account that the error in the anglgs is greater in some cases than in others. It is easy to vertflyttte the
problem is not directly tractable by variable-error faiation methods used in computer vision.

Noting that the error in the estimated angles is approxilymaimportional to the actual angle suggests
an embedding method that weighs less heavily large angsiemates. One such method is Sammon’s algo-
rithm [20], which we adapt and modify for the purpose of spterembedding from our noisy data. In this
paper, we minimize the sum

L otherwise

0, L — #} if Oy # 1
sz‘,j (X' X; - Cz’j)2a wherew;; = { max{ T1-Ci; 1-C i 7
n

4,9

To reflect the fact that big angles are less well estimatedset€’;, = 0.9, so that estimates greater than
acos(0.9) ~ 25° be ignored. The other parameterjs set to 1, allowing the pointX; to stray a little bit
away from the unit sphere. Our implementation is inspirethigysecond-order iterative method of Cawley and
Talbot (ttp://theoval . sys. uea. ac. uk/ ~gcc/ mat | ab/ def aul t. ht m ). For initialization, we use an
adaptation of [21] to the spherical metric embedding problehich will be described in detail elsewhere.

5.2 Sensor calibration

We now evaluate the results of this embedding algorithm d¢a pieoduced by the angle-estimating method of
Sec. 4. For this purpose, we produce sequences of pixellsigrnie same conditions as previously, using the
outdoors and indoors sequence shown in Figure 7, excepthtbhaensor shape is different. The information
and correlation distances between pixels is then estinfedetthese signals, the angular separation between
the pixels is estimated using Sec. 4, and the embedding cheft®ec. 5.1 is applied to these angle estimates.

Figure 10 shows the results of our calibration method on@srovering more than a hemisphere, which
thus cannot be embedded in a plane without significant diistor It should be noted that, although the true
sensor is each time more than hemispheric, the estimatidatadn is in both cases smaller. This shrinkage is
a known effect of some embedding algorithms, which we cotihapt to correct.

Figure 11 shows how our method applies to signals producediifferent sensor from the one used to build
the distance-to-angle models, namely an Olympus Stylusca@@era. An 8-by-8 square grid pixels spanning
34 degrees was sampled along a 22822 image sequence takersiadid outdoors. From this sequence, the
estimated angles were generally greater than the true anghéch explains the absence of shrinkage. The
higher angle estimates were possibly due to higher texturteats of the sequence. The estimated angles were
also fairly noisy, possibly due to the sequence length, amdurmise that longer sequences would yield better
results.

These results represent typical results that researchpreducing our method may encounter. Results
from other experiments will be presented elsewhere.
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Figure 8: Precision and accuracy of angles estimated inahree conditions as in Fig. 6, except that signals
extracted from an indoors-and-outdoors sequence (Figerg wsed. These figures show that the models in
Fig. 5 generalize fairly well to signals produced in coratig different from that in which the models were
produced. In particular, the angles estimated from theetation distance are improved w.r.t. those of Fig. 6
(see text).

6 Discussion

In this paper, we have shown that simple models exist thateslignal discrepancy to angular separation, and
are valid in indoors and outdoors scenes. This suggestisterce of near-universal properties of our visual
world, in line with other work showing statistical propediof natural images. Contrarily to previous works,
we consider statistics of the lightfield taken as a functiefirgtd on the sphere, rather than the plane, a choice
that allows us to consider fields of view greater than 180ekgr

We addressed the problem of determining the geometry of af pétotocells in a very general setting. We
have confirmed that a discrete camera can be calibrated tgeadatent, using just two pieces of data: a table
relating signal distances to angles; and a long enoughligigoduced by the camera.

The presented results are both superior and of a much widgesthan that of [15]: we have shown
that it is necessary neither to strictly enforce the assiompthat the camera directs each pixel uniformly in all
directions, nor that statistically similar environmengésused to build the statistic-to-angle table and to calbrat
the discrete camera. This flexibility reinforces the impres that models such as those shown in Figure 5 have
a more general validity than the context of calibration.

We showed also that angle estimators based on correlatibimmimation distance (entropy) have different
performance characteristics. It would be very interestingpply machine learning techniques to leverage the
power of many such weak estimators.

Finally a more curious question is worth asking in the futucan the problem of angle estimation be
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Figure 9: Precision and accuracy of angles estimated inaime £onditions as in Fig. 8, except that the planar
probes are constrained to remain approximately horizofflaése figures show that the models in Fig. 5 are
usable even if the isotropy assumption of the moving ergityat valid.

altogether bypassed in a geometrically meaningful califmgprocedure? Embedding methods based on rank
or connectivity [17, 22], e.g. correlation or informatioistdnce, suggest that this is possible.
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