Semantic Segmentation of Radio Programs Using Social Network Analysis and Duration Distribution Modeling

This work presents and compare two approaches for the semantic segmentation of broadcast news: the first is based on Social Network Analysis, the second is based on Poisson Stochastic Processes. The experiments are performed over 27 hours of material: preliminary results are obtained by addressing the problem of splitting different episodes of the same program into two parts corresponding to a news bulletin and a talk-show respectively. The results show that the transition point between the two parts can be detected with an average error of around three minutes, i.e. roughly 5 percent of each episode duration.


Presented at:
IEEE International Conference on Multimedia and Expo (ICME)
Year:
2007
Note:
IDIAP-RR 06-75
Laboratories:




 Record created 2010-02-11, last modified 2018-09-13

n/a:
Download fulltextPDF
External links:
Download fulltextURL
Download fulltextRelated documents
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)