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1 Introduction

1.1 Brain Machine Interface Systems

Today's Brain-Machine Interfaces (BMIs) and Brain-Computer Interfaces (BCIs) represent a wide
and active research eld in the context of neurophysiology, neuroengineering, signgbrocessing and
machine learning. The main goal of Brain-Machine Interfaces is to allow sevéy handicapped persons
to communicate with their environment and recover motor abilities, by means of a arti cial interface
controlled in real time by electrical brain activity. The art of interfaci ng the brain with arti cial
devices, such as computers or neuroprosthesis, has been described in several scienti d@es: new
readers could, for example, have a relatively complete review of invasive and nonsasive! BMI
research with [28], [31] and [50]. Recently, it was proven that a mobile abot could be guided by a
non-invasive BCI system in a realistic environment [33]; this shows greigoromise for future applications
to real life, for example with the creation of an intelligent wheelchair or an arti cial limb. In this
work, exclusively non-invasive BCI systems are considered, and we will simplyefer as "BCI systems"
from now. This choice is motivated by the fact that such interfaces can be used déctly on human
beings, and therefore provide ethically correct solutions and applications in the shd term.

The architecture of a standard BCI system illustrates the multidisciplinary characteristic of this
scienti ¢ discipline. In order to extract meaningful commands and information from raw electrical
activity of the brain, several important issues have to be addressed, as showin gure 1.

Acquisition System __' Feature Extraction i_ .l | Feature C Iasqlf‘catmn _,_ -\uiun (.mu’amr
- 1 L)1|..|l|| \lLu ll I'|m\_-“1111. b Statistical Classifier

ST |

Figure 1. Architecture of a standard BCI system. (Source: Courtesy of J. del R. M&n)

The rst step, and maybe the most important, is the acquisition of the neurophysiological signal.
The importance of having a clean signal from the beginning is crucial for later proeessing, and the
acquisition system must be chosen and used with special care. In section 4, assgm measuring
electroencephalogram (EEG) activity is described.

The second part of the process represents the main point of this work, namely the ssition of
key features in the input signal, allowing to extract only the most relevant EEG components,

INon-invasive means outside the skull, without a ecting it s urgically.
2See section 2.1 for a de nition.
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for which the performance of the system is the best. Special attention must beaid to this
feature selectionprocess, since it can improve the e ciency of the BCI system, both in terms of
recognition rate and computational load.

Once the features have been chosen, the BCI system must determine, for a given EEG actiyi
the most probable command meant by the user. This process is assessed byclassi cation
procedure and is directly related to machine learning algorithms.

Finally, the extracted command must activate the BCI system according to the usels intention.
The system output can be for example a motor command, or the choice of a letter inrder to
write a message. Moreover, a feedback has to be provided to the user in order to cfothe loop,
in case of an error in the system detection. This nal step is more related to roltics, and is
beyond the scope of this work.

Recently, non-invasive methods estimating intracranial sources from scalp EE have been de-
veloped by several scienti ¢ groups. These methods, often callethverse solutions could be of high
interest for BCI research, since estimated intracranial activity could provide a better spatial resolution
than mere EEGs in order to decode brain activity, and thus user's intents. Morewer, these models
allow a better understanding of dynamic neuronal processes in humans. Such methods are debed
in section 2 and are extensively used in the context of BCI throughout this study.

1.2 Outline of the Thesis

More precisely, this thesis focuses on the coupling of BCI feature selection methods tiinverse
solutions estimating intracranial activity. Indeed, approximating neuronal sources implies that the
number of measurement points increases drastically. Therefore, feature selectiomethods become
essential in order to minimize computational load. Moreover, we want to assss the potentialities of
integrating inverse solutions in a BCI system in order to improve overal performances. The following
points are presented:

In chapter 2, the challenging issue of estimating non-invasively intracranialactivity is addressed.
The mathematical framework of the problem as well as three di erent models used duringhis
work are described.

In chapter 3, three feature selection methods that have been studied and developed during
this work are described. The rst method is the well-known Relief algorithm, and its modi ed
versions; the second method is an improved version of a simple power discriminamethod, and
the third method is an algorithm based on linear discriminant analysis.

Finally, all methods and models are compared and tested in a speci c application relted to
BCI research: detection of error-related potentials. In chapter 5, the state 6 the art of error-
related potentials is presented; on this basis, we can compare in chapter 6 the dérent feature
selection methods in terms of classi cation accuracy. Chapter 7 compares the di erentriverse
solutions, both in terms of localization of the selected features and in termsf classi cation
of cognitive states. Finally, in chapter 8, we assess the potential impreements of integrating
inverse solutions in a BCI system with respect to a standard BCI system basd on EEG. All
these investigations aim at providing an extension to a previous study made atDIAP about
error-related potentials.
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2 Estimation of Intracranial Activity from Scalp EEG

The main goal of this thesis is to use estimated intracranial activity conbined with feature selection
methods in order to improve current BCI systems. In this chapter, we provide a theoetical framework
of intracranial activity estimation and its underlying concepts. Besides, three nverse models that have
been used during our studies are presented, with an emphasis on their respective speci cities

It is worth to note that brain electromagnetic tomography i.e. the non-invasive three-dimensional
reconstruction of the neuronal sources of the brain's electrical activity measured at lte scalp, is a
very wide and complex research eld. During this work, we only considered these inverseolutions
as available tools that we integrated in BCI systems; a description of he design and development
of such models is beyond the scope of our work, but interested readers will nd severaeferences
throughout this chapter. However, this chapter should provide all the necessary elementfor a good
understanding of our studies.

2.1 EEG Measurements

Before presenting the inverse models that we studied during this work, we shortlyremind the basic
principles of electroencephalogram (EEG) measurements; plenty of books, like fazxample [45], can
give supplementary information on EEG signals, EEG processing and applicatins.

EEG measures the joint electrical activity of millions of active neurons in the brain. It can be
measured with electrodes at the surface of the scalp, or intracranially; during ths current study,
only non-invasive scalp EEG has been investigated. The EEG activity mainly e ects the more or less
synchronous activation of a large population of neurons, and more precisely thepostsynaptic activity;
the intracranial mean measure of this postsynaptic activity is calledlocal eld potentials (LFP). For
more details about synaptic transmission and neuronal activation, refer to 6].

If in a large population, neurons are spatially aligned and have a synchronouscivity, the resulting
superimposed electrical eld will be detected by electrodes at the scalp surface. Thistsiation is often
encountered for cortical pyramidal neurons, since they are oriented perpendicularly tadhe cortical
surface, and their activity is thus most likely to be measured by EEG (see gure?2).

EEG can give neuronal information within a millisecond timescale: this very gpod temporal res-
olution allows to better understand neuronal dynamics and is the biggest advantagen using this
technique, with respect to other imaging techniques such as magnetic resonance imagifiyIRI) or
positron-emission tomography (PET). However, the distance between the electrdes and the actual
source of neuronal activity is an important drawback of EEG measurements, isice it creates a low-
pass ltering on the source signal. Thus, spatial resolution can become a problenm order to precisely
describe neuronal processes; for this reason, estimation of intracranial acity from scalp EEG is a
key challenge in neuronal data processing.

2.2 The Inverse Problem: A General Approach

Estimating the neuronal sources that generated a given potential map at the scalgurface requires the
solution of an inverse problem Such inverse problems are always initially undetermined, i.e. there is
no unique solution. These problems require therefore supplementary a priori constrata in order to be
univocally solved. The ultimate goal is then to un-mix the signals measured at thescalp, attributing
to each brain area its own estimated temporal activity.

Historically, two di erent possible directions have been investigated in ader to solve this inverse
problem and nd the generators of a given scalp activity; a global review can be fand in [30]. On
one hand, the so-calleddipole localization modelsassume that only a limited number of generators are
active over a period of time (e.g. [44], [11]); these generators are tygally modeled asequivalent current
dipoles (ECD). The number of generators that can be active at a given time is limited by the number
of electrodes used for EEG measurements; thus, when in a given problem, the exact numbef dipole
sources cannot be determined a priori, this family of methods is not very appropriate.In such cases,
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Figure 2: EEG principle: electrical elds generated by aligned pyramidal cells. (Source:Bear [6],
2001, p.637)

distributed modelsbased on the linear theory in conjunction with mathematical and/or biophysical a

priori constraints are more likely to be used (e.g. [10], [18], [1].4], [3],[24]); these distributed models
do not need a priori assumptions about the number of source generators, and estimat®rtical current

density by using sophisticated computational algorithms and detailed geometricamodels of the head
as volume conductor. With this approach, typically thousands of ECD covering evenly he cortical

mantle are used, and their strength is estimated by using linear inverse proceduresn this work, only

distributed models are considered.

2.2.1 Distributed Linear Inverse Estimation

For clarity purposes, we adopt the notation used in [9] for the formulation of inverse estimation, and
we follow a similar reasoning to present the general form of a distributed lineainverse estimation.
Assuming a measurement noise1, an estimate of the dipole source con guration that generated a
scalp potential b is obtained by solving the linear system:

AX +n=b 1)

where A is am n matrix with m the number of sensors andn the number of modeled sources.
The matrix A is called the lead eld matrix : the j column A represents the potential distribution
over the m sensors due to each unitaryj ™ cortical dipole, and the collection of A; describe how
each dipole generates the potential distribution over the head model. The estimabn of the cortical
current density x is called the solution of the linear inverse problem, or inverse solution. Inmost
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cases, the dimension of the vectox is greater than the number of measurement® of about one order
of magnitude; thus, the linear system is strongly under-determined, and can have an in nitenumber
of possible solutions. In order to solve this problem for a unique solution, ssuming that n is normally
distributed, a regularization scheme utilizing the Lagrange multiplier is applied, and the following
functional has to be minimized:

g =argmin() ; = kAx bk + 2kxk3 )
X

where the matrix N is the metric of the source space, i.e. the space of the current strength solutions
X, and the matrix M is the metric of the data space, namely the space in whiclb is considered. If
no a priori information is added to equation (2), M and N are set to identity, and the estimation
made is calledminimum norm estimation (MN). Interpreting (2), it appears that on one hand, we
try to minimize the energy of the error on the sensor data, given by the rst term of . On the other
hand, a second term involving the energy of the sourc& regularizes the ill-posed problem: this term,
modulated by , tends to minimize the overall intensity of the current distribution. At the end, a
unique solution will be found, because only one combination of intracranial sowes t exactly the
data, and has at the same time the lowest overall intensity. The problem is tha the algorithm favors
weak and localized activation patterns, instead of solutions with strong acivation of a large nhumber
of solution points. Thus, the MN algorithm favors super cial sources, since less activity is required
in super cial solution points to provide a certain surface voltage distribution: such models are not
satisfying, because it means that deeper sources are incorrectly projected on the suckaof the scalp.
In order to cope with this problem, a well-known solution proposes to take io account a compensation
factor for each dipole that equalizes the visibility of the dipoles from the £nsors point of view. This
so-calledcolumn norm normalization changes the source metridN as follows:

(N i = kA k 2 3

with (N 1)ii the i element of the inverse of the diagonal matrixN and kA ;k the L, norm of the
i column of the lead matrix A. The use of this de nition of the matrix N is known asweighted
minimal norm solution (WMN), and penalizes dipoles close to the sensors in the solution of the invees
problem, since they have a largekA k. Thus, WMN solutions provide better estimates of intracranial
activity, especially in the case of deep sources.

Equations (1), (2) and (3) set a general framework for distributed linear inverse models. From that
point, a lot of free parameters have to be carefully chosen in order to conveggto the best unique
solution as possible. For example, the choice of additional constraints is acial in terms of model
speci city, and can drastically change the behaviour of the inverse solution. Addiional constraints
come from assumptions about likely current source distribution and statistics, sensor statistics, and
information from other imaging techniques. In the next section, three inverse mdels with di erent
assumptions are presented.

2.3 Inverse Solutions
2.3.1 CCD Inverse Model

The rst presented model, that we will call CCD inverse model for 'cortical current density inverse
model", has been developed and provided by a research group working in the IRCCS Fundene Santa
Lucia, located in Rome®. References about this approach can be found in [4] and [5]. The model aims
at providing an estimation of the activity of the cortical mantle. The procedur e follows the reasoning
of section 2.2.1 and includes:

1. a realistic magnetic resonance-constructed average head model.

2. multi-dipole cortical source model.

Shttp://www.hsantalucia.it/
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3. regularised, weighted, minimum-norm linear inverse source estimate based orobndary element
mathematics (WMN).

First, a geometrical reconstruction of the cortical surface is obtained from nagnetic resonance imaging
(MRI). In this model, the 152 subjects average brain of Montreal Neurologeal Institute * was used
to have a realistic head model. At that point, an important anatomical constraint is considered: it
is assumed that much of the observable EEG is produced by currents owing in the apicatlendrites
of cortical pyramidal cells. The columnar organization of the cortex implies tat the resulting local
dipole moment is assumed to be oriented perpendicularly to the cortical surfaceThus, if the shape
of the cortical mantle is known, we can divide it into patches that are su cient ly small so that a
dipole in the center of a patch is representative of any dipole distribution wthin the patch. With
the constraint of perpendicular orientation of the dipoles, the inverse problemreduces to estimating
scalar distributions of dipole strength over the oriented patch.

In the case of the CCD inverse model, the MRI-based reconstruction of the head modetbe corti-
cal mantle as a polyhedron with triangular faces, preserving the general featuresf the neocortical
envelope; then, an orthogonal unitary ECD was placed in each node (overtex) of the triangulated
surface. On the whole, 3013 discrete current dipoles are chosen to represent the conmtimm current
source distribution; see gure 3 for a view of the brain provided by the model.

R
IR RS
AV P RN
NSRS

=

Figure 3: CCD inverse model: front and lateral views of the cortical mante modeled with 3013 vertices
of a polyhedron with triangular faces.

The second constraint of the CCD inverse model is based on WMN estimates, andrices the dipoles
to explain the recorded data with a minimum or a low amount of energy, whitout penalzing too much
deeper sources, as explained in section 2.2.1. During this thesis work, the CCD iexse model has
been used extensively, both for localization studies and for BCl-oriented classation procedures, and
showed impressive results.

2.3.2 SsLORETA Inverse Model

The second inverse model is atandardized low resolution brain electromagnetic tomogphy method
(SLORETA): this software, known for its zero localization error, is freely provided by the KEY Insti-

tute for Brain-Mind Research® in Zurich. We used this software only as a localization tool throughout
the studies, but a description of the method for localizing sources is useful here. The voluencon-
ductor model is a three-shell spherical head model registered to the Talairach human braiatlas [46],

4http://www.bic.mni.mcgill.ca/
Shttp://www.unizh.ch/keyinst/index.html
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available as a digitzed MRI from the Montreal Neurological Institute imaging center; the solution
points are placed on a 3D regular grid covering the whole brain.

Historically, a rst method called low resolution electromagnetic tomography (LORETA) was intro-
duced by Pascual-Marqui in [38] and [37]. In this method, an additional constrain called Laplacian
Weighted Minimum Norm was added to the typical WMN depth weighting. This method selects
the solution having the smoothest spatial distribution by minimizing the Lapl acian of the weighted
sources, a measure of spatial roughness. A physiological assumption is hidden bahithis method:
the model assumes that neighboring grid points, i.e. neighboring neurons, are one likely to be syn-
chronized (similar orientation and strength) than grid points that are f ar from each other. Thus, this
maximization of smoothness is applied to nd a unique distribution of electrical activity in the brain.
The characteristic feature of this solution is its low spatial resolution, which is a direct consequence
of the smoothness constraint: LORETA provides rather blurred images of a pointsource, conserving
the location of the maximal activity with a certain degree of dispersion, & shown in gure 4, gener-
ated by sSLORETA. Furthermore, the assumption that two neighboring areas arecorrelated has to be
considered with caution; indeed, functionally distinct areas can be anatomically very abse. However,
the localizations made by LORETA are satisfying in most cases.

¢

q ) oAy

- :: , ‘\‘ L .("lt “

SIS P
e ‘k '

-

Figure 4. sSLORETA model: front and lateral views of the brain during a localization study.

Recently, a new version of the method, called standardized low resolution brain eleadmagnetic
tomography (SLORETA) has been developed, and yields images of standardized current deity with
zero localization error. The di erence with the previous algorithm is that SLORE TA employs the
current density estimate given by the minimum norm solution, and localization inference is based on
standardized values of the current density estimates, as explained in [36]. Only by $elf, the solution of
the MN inverse solution is incapable of correct localization of deep sources. Whtthis standardization
process, SLORETA reaches zero localization error, even if the sources are deep. Howevke drawback
of this method is that because of this standardization process, SLORETAS not an authentic solution
to the inverse problem; according to the KEY Institute website, it seems that a new verson of the
software, called eLORETA (for "exact low resolution brain electromagnetic tomography") will soon
be released, and will provide a formal solution providing exact localizationto test point sources.

2.3.3 ELECTRA-LAURA Inverse Model

The third inverse solution presented here is slightly di erent from the previous models; this is a
distributed source model called ELECTRA (for electrical analysis), developed byGrave de Peralta
Menendez and colleagues ([23], [24]) in Geneva University Hospital (HUG). In comjpction with this
linear distributed model, a regularization strategy called LAURA (local autoregressive averages) is
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applied on the inverse solution.

The di erence of ELECTRA-LAURA model is that the source model is changed with respectto the

previous models, based on the following considerations: the microscopic current owwg in biological

tissue can be decomposed into two terms: @rimary current (or active current) and a secondary cur-
rent (or volume current). Primary currents are induced by ionic ow between intra- and extra-cellular

space in activated neurons, whereas volume currents are passive currents representitnge electrical

response of the media to compensate charge accumulation driven by primary curresit according to
electrochemical gradient. It has been shown in [39] that only volume currents areneasured by EEG,
and not active currents: this observation is crucial, since the mathematical impication is that the

currents measured by EEG are ohmic and can be modeled asotational currents. Thus, the ELEC-

TRA source model only estimates ohmic currents; it is not an inverse solutionbut rather a source
model in which the generators of the scalp maps are the intracranial potentits instead of the usual
3D current densities.

In order to reach a unique solution, a regularization strategy called LAURA (for "local auto-regressive
averages') incorporates biophysical laws as constraints in the MN algathm ([24], [22]). According

to Maxwell equations, the strength of the sources fall o with the inverse of the cubic distance for
vector elds, and with the inverse of the squared distance for potential elds. LAURA integrates these
laws in terms of a local autoregressive average with coe cients depending on thelistances between
solution points.

The model provided by Geneva's group is composed of a solution space formed by24Dnodes (re-
ferred to asvoxelg homogeneously distributed within the inner compartment of a realistic head model:
once again, the head model is the average brain of Montreal Neurological Instite. The voxels are
restricted to the grey matter and form an isotropic grid of 6 mm resolution. A view of the solution

space of this model is presented in gure 5.

Figure 5: Isotropic 3D grid of voxels provided by ELECTRA-LAURA inver se model.

The most interesting point with ELECTRA-LAURA inverse solution is t hat the model allows an
estimation of the 3D distribution of electrical potentials in the brain as if they were recorded with
intracranial electrodes. As we mentioned above, LFPs arise largely from dendtic activity over large
brain regions and thus provide a measure of the input to a given area, and of the lotarocessing
within this area. Recently, LFPs revealed themselves to be of crucial interest foproviding meaningful
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information about neuronal processes related to motor actions (e.g. [13], 84, [40]), and more generally
about brain dynamics (e.g. [49], [19]). Hence, estimating the LFP activity fom the scalp EEG
represent a very challenging and exciting issue, since it can provide a non-invasive wao investigate
neuronal processes in humans with a highly relevant physiological meaning.
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3 Feature Selection Methods: Filter Methods

In a BCI classi cation context, data describing a given mental task are fed toa classi er for decision
making. Ideally, the classi er should be able to use whichever features are necessagnd discard the
irrelevant features. However, it is known that the complexity of many learning algorithms depends
on the number of input dimensions, as well as on the size of the data sample. Mostlipr this reason,
researchers are interested in reducing the dimensionality of the problem. Therefore, faare selection
methods are crucial in order to choose a smaller number of features that will desdre the data at
best. In a classi cation task, the features have to be selected according to theirlality to discriminate
between the dierent classes of a given problem. Thus, a good feature selection shouprovide
accurate discrimination and reduce the computational load. Therefore, feature selectio has become
a very active eld of research in the context of BCI (see [32]).

This chapter describes three feature selection methods that have been implemented and testddring
this work. Before presenting our methods in details, a brief introduction about feature selection
modalities justi es our choice of methods. Then, section 3.2 introduces the so-called &ief and
ReliefF algorithms. Section 3.3 describes a modi ed version of a simple power stiriminant function.
Finally, section 3.4 presents an algorithm based on linear disriminant anajsis.

3.1 Filter Methods vs. Wrapper Methods

Feature selection aims at nding those relevant components for which the performrance of the learned
classier is the best. From this idea, we can di erentiate two processes, that wewill consider as
separated: feature selection on one hand, and induction, i.e., the process of learning the appriate
classi er, on the other hand. Depending on the relationship between these processes, it imgsible to
distinguish two important families of methods:

1. Filter methods - the feature selection is done before induction algorithm.
2. Wrapper methods - the feature selection processsesthe induction algorithm.

Filter methods are applied on the entire dataset, andbefore the induction algorithm, as shown
in gure 6. The name given to these methods is meaningful, since irrelevant attribues in the initial
dataset are ltered, creating a simpli ed dataset for the induction algorithm. The m ain disadvantage
of Iter methods is that feature selection is completely independent of the induction algoithm, and
the former cannot be guided by the classi er error rate. Indeed, the criteria used to decide if feature
is relevant or not vary from a Iter method to another, and in most of cases, thes criteria are not
exactly the same as those of the induction algorithm. Thus, the best features setted by the Iter
method are not necessarily the best features according to the criteria of the induction lgorithm.

Training set Training set* . ) Classi er
—g> Feature selection 9 »  Induction algorithm

Figure 6: Schematic process of a Iter method.

On the contrary, wrapper methods use the induction algorithm to make the selection,as shown
in gure 7. Following a given strategy, the feature selection process exploreshe state spaceof each
subset of features in the entire training set. For each state, i.e. each subset aédtures, the evaluation
of the quality of the subset is done by an appropriate function executing the induction agorithm.
The latter builds a classi er based on the simpli ed training set containing the featur es of the current
subset, and estimates the performance of the classi er. From this estimation, te feature selection
process decides to keep this subset of features, or to try another one. Going from one stab another
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is done by using operators that delete or add features from or to the current set: sirting from an
empty set and adding features is calledorward selection whereas starting with the full set of features
and deleting them is called backward elimination. At the end of the feature selection process, the
selected relevant features are used to build the nal classi er, which is tested on a tdfg set totally
independent of the training set.

In the case of wrapper methods, there is a strong interaction between selection andduction algo-
rithms. The estimated performance of the classi er is the quality criteria for the selection of features:
in some sense, these features are speci cally chosen for the nal classi er. Thus, wpper methods
nd more relevant features than lter methods in most of the cases. However, the magr disadvantage
of wrapper methods is the high computational complexity of the process. Exploring & the subset of
features for a given training set implies a lot of iterations, and building a clasi er for each iteration
is highly time consuming.

Selection of a Training set*

Training set i .
— > subset of features » Induction algorithm

Performance

ini *
Training set e,

Evaluation

Training set* Classi er Classi er

Induction algorithm

Y Performance

Test set* ) estimation
Evaluation —

Figure 7: Schematic process of a wrapper method.

For BCl applications, it seems that wrapper methods are reasonably not appropria¢, because of the
slowness of the feature selection process. Indeed, the goal of a BCI system is to dectdain activity
in real time; it is clear that wrapper methods don't allow this kind of quick processes. Therefore,
this chapter focuses on Iter methods only, so that if one of the methods shows great proise during
oine ® analysis, it will be possible to integrate it in a real BCI system.

3.2 Relief and ReliefF Algorithms

The Relief family of algorithms, rstly described in 1992 [26], is a graip of general and successful
attribute estimators, well described by Robnik-Sikonja and Kononenko [41]. This section provides a
theoretical description of these methods, as well as a presentation of the practicanplementation of
the methods.

3.2.1 Theory of Relief and ReliefF Algorithms

In this section, we describe the Relief algorithms implemented during this work, ad their theoretical
properties. We assume that exampless;|,, ..., I, in the instance space are described by a vector of

target value ;. The examples are therefore points in thea dimensional space. We will rst describe
the original Relief algorithm, limited to classi cation problems with tw o classes; then we will discuss
its ReliefF extension for multiclass problems.

60 ine" means 'hot in real time".
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Relief Algorithm The original Relief algorithm [26] deals exclusively with two class problem.The
main idea of the method is to estimate the quality of attributes (or features), by determining how
well their values distinguish between instances that are near to each other. More prea$y, Relief acts
iteratively: in each iteration, Relief selects a random instanceR;, and then searches for two nearest
neighbors: one from the same class, calledearest hit H, and the other from the other class, called
nearest miss M. The quality estimation W[A] is updated for all attributes A depending on their
values for Rj, M and H; at the end, the weight assigned to every feature is a real value in the range
[ 1;1] . A pseudo-code of the algorithm is given in gure 8.

Figure 8: Pseudo code of the basic Relief algorithm.

Function di ( A,l1,l2) is used to calculate the di erence between the values of the attributeA for
two instances|, and | ,. For numerical attributes, it is de ned as:

jvalue(A;11) value(A;l7)j

di( Alylz) = max(A) min (A)

(4)

This function is also used to compute the distance between instances to nd nearest neighbsr In
this process, the total distance can be simply assumed to be the sum of distancesemall attributes
(Manhattan distance).

The idea behind the process of Relief algorithm can be intuitivey understood. On one hand,
di erent values of the attribute A betweenR; and M means that this attribute A tends to separate
two instances with di erent class labeling; in this case, the attribute has a desied discriminative e ect,
and the quality estimation W[A] is thus increased. On the other hand, ifA shows dierent values
for R; and H, W[A] will be decreased, because attributeA tends to separate instances of the same
class. The whole process is repeatett times, wherem can be de ned by the user. At the end of the
iterative process, the vectorW will give for each feature a score representing the ability of the feature
to separate instances of di erent classes and keep instances of the same class near toheather.

ReliefF algorithm An extended version of Relief, called ReliefF algorithm, was developed in 1994
[27]. This algorithm is not limited to problems with two classes and is knavn to be more robust
to noise. The di erence with the original Relief algorithm is that after having r andomly selected an
instance R;, ReliefF searches fok of its nearest neighbors from the same class, called nearest hit; ,
and k nearest neighbors from each of the di erent classes, called nearest missilg (C). The quality
estimation W[A] for all attributes is updated depending on their values for R;, H; and M; (C), as
shown in the pseudo-code of gure 9. The contribution of all the hits and all the mises are averaged
in the update formula, and the contribution for each class of the misses is wghted with the prior
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probability of that class P(C). In this work, all classes are assumed to have the same prior probability
The factor 1 P (class(R;)) dividing each probability weight ensures that misses' probability weights
sum to 1, thus providing symmetric contributions of hits and misses. The wholeprocess is repeated
for m times.

The most important di erence of ReliefF algorithm is the user-de ned parameter k, that has
several advantages:

Selection ofk nearest hits and misses provides greater robustness of the algorithm concerning
noise. To illustrate this assumption, let us consider a situation where two insances of a class are
outliers, namely far from the mean of the class, but somehow near to each other. Ithis case, if
one of the outliers is selected a&;, the nearest hit H will surely be the other outlier. If only one
neighbor is considered, most of the attributes will be very similar between the slected outlier
R; and his neighborH , although they are not representative of the mean behaviour of the class,
and the corresponding quality estimates will be increased. On the contrary, if sesral neighbors
are observed, the other nearest hitH;, i = 2;:::; k, will have di erent values of attributes from
those of Rj. The weighted contribution of the k neighbor will thus update the vector W in a
more appropriate way. In that sense, taking several neighbors applies a Iteringon noisy data.

The parameterk is also useful in order to control the locality of the estimates. Whenk is small,

the quality estimation WJ[A] of attribute A is based on the similarity of attribute A between
instances that are near to each other, in a very local domain. Wherk increases, the weighted
sum contributing to the update of W[A] contains instances that are more distant from each
other; the locality of the estimates is less restricted.

Figure 9: Pseudo code of the extended ReliefF algorithm.
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3.2.2 Implementation and Validation under Matlab

Relief and ReliefF algorithms have both been implemented under Matlab 7.1 Several versions of the
algorithms have been implemented: one version is the basic Relief algorithm ifdwo class problems,
as described in section 3.2.1. ReliefF algorithm for multiclass problems hakseen coded as well, and
a version of ReliefF for two class problems has been developed, in order to take ahtage of the
parameter k even for two class problems.

In order to verify that the algorithms have been implemented correctly, we reproducedan example
given in the reference [41]. In this example, a Boolean problem is presented, where theast value is
denedas =(A1"Ay)_(AL™ A3). Table 1 gives a schematic description of the problem.

,_
=]
@
>

o
>

N
>
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Responsible attributes
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A, orA,

Aq or Az

A, or A,

O~NOOTRAWNPE
cNoNeoNeoN N N o
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OFrPOFrRPORFrOPRFr
eNeoNeNeNoll N
>
it

A1;Az) or (Az;A3)

Table 1: Schematic description of the concept = (A1 " A,) (A1 A3z) and the responsibility of the
attributes for the change of the predicted value.

The right most column of the table shows the attributes responsible for the chage of the predicted
value. For example, in line 1,A; is responsible for the class assignment because changing its value to
0 would change to 0, while changing only one ofA; or A3 would leave unchanged. The other lines
can be explained similarly. It is then possible to give an estimate of themportance of each feature:
A will get the estimate % = % = 0:75, since it is alone responsible for lines 1,5,6,7, shares
the credit for lines 2 and 3, and cooperates in both credits for line 8. SimilarlyA, and A3 both get

estimates 2 %8+ Z= % =0:1875. In order to scatter the concept and make the problem more di cult
to solve, ve random binary attributes, A4 to Ag, were added besides the relevant featuref;, A,
and A3. ReliefF was then applied on this problem, and the results for the values ofA;, A, and Aj
are shown in gure 10. The X-axis of the gure represents the number of trials fo one class; it means
that the dataset will then contain 2 Nygigs instances. We can observe that when the number of
trials increases, the estimate forA; converges to 0.75, and the estimates foA, and A3 approach the
expected value 0.1875; of course, the convergence is not exact because we are obseraipgactical
case of the theoretical concept, involving randomly generated data. The estimates ahe random

features A4 to Ag are set to O relatively quickly during the iterations.

3.2.3 Convergence of Relief and ReliefF Algorithms

Since the algorithms of Relief family are iterative, the issue of the convergnce and the stability of the

process have to be investigated, in order to assess the parameters that will primle a correct estimate

of the quality of the features. Two concepts are crucial for iterative algorithms: the convergence of
the algorithm on one hand, and the stability of the convergence on the other hand.

Figure 10 shows that when the number of trials increases above a certain threstdlthe algorithm
will converge accurately. It is therefore likely to have big datasets containng a lot of single trials,
so that the algorithm can approximate correctly the importance of each featue. However, even

7 http://www.mathworks.com/
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Figure 10: Estimates of the attributes made by ReliefF for the Boolean probém
=(A1" A2) _ (A1" Ag).

if the number of trials is small, Relief(F) algorithm can provide a pretty good estimate of the
features quality, as shown in the same gure.

The second important free parameter of Relief(F) algorithms is the number ofterations made by
the algorithm. This user-de ned parameter seems to have a signi cative e ect on the stablity of
the estimates. In order to show this dependency, we repeated the Boolean problem experimntef
section 3.2.2 for di erent numbers of iterations, as shown in gure 11. Forconsistency purpose,
the parameter Nje; is de ned as a fraction of the current Nyiys Value, in order to apply always
the same relative number of iterations with respect to the dataset, wherNyiqs increases. Figure
11 shows that the estimates of the features are more stable whe e, 0:5 Nyiais ; We can
keep this value in mind as a reference, but each application could need a speci c ne-tuning of
Nier in order to ensure the best convergence.

3.3 Modi ed Discriminant Power Method

In this section, we present a very simple but e cient feature selection method that we cdled discrimi-

nant power function (DP) [21]. More precisely, we implemented a modi ed version of the DP function
that can deal with noisy data. The basic method will be rst introduced, and then the modied

method implemented during this work will be described.
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Figure 11: Comparison of convergence for di erent numbers of iterations: (3Njer =0:1 Nyiqs ; (D)
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3.3.1 Basic DP Function

A basic DP function estimates the quality of a given feature following a verysimple principle: if the
distribution of the feature, namely its probability density function (pdf), is di erent for each class,
then the feature is a good candidate to discriminate between these classes. More pregly, let us take
the example of a two class problem. If the distribution of the featuref for class 1,pd1(f), is well
separated from the distribution of the same feature for class 2pdf,(f ), then the feature f has a high
discriminant power; otherwise if pdf1(f ) and pdf,(f ) are strongly overlapping, the discriminant power
of feature f is low.

Actually, the basic version of DP function doesn't make an estimation of thepdf of each class for a
given featuref , but simply looks for the maximum and minimum sample values of featuref for each
class over all trials. With these boundariesmax(ss ) and min (sg ) for the k" class and for featuref
the algorithm can then calculate the proportion of samples of featuref lying in the non-overlapping
zones between boundaries of each class. For a two class problem, the formula of thesaiminant
power of featuref would be:

N1

ND¢q1 = 1sia(i) >max (si2) +1 (spa(i) <min (st2) 5)
i=1
Ntz

ND¢, = 1sia(j)>max(sp1) +1 (Sr2(j) <min (sf1) (6)
j=1

ND¢¢+ NDg¢>

DP() = Ni1 + N2

()
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where N¢; and N;, are the respective number of samples (or trials) for each classs1 and s, are
vectors containing the samples of class 1 and 2 for feature, ND¢; and ND¢, are the number of
discriminant samples of each class located in non-overlapping zones, andx}(is a function de ned by:

1 if xistrue

1(x) = 0 otherwise

©)

The basic DP algorithm returns a value DP(f ) between 0 and 1 for each feature. This value can be
thought of as the discriminant power of the feature, since it is the percentage ofliscriminant samples
over all trials. A graphical representation of the process of the basic DP functin can be found in
gure 12. The score returned by the DP algorithm for the example of this gure is the number of
samples lying out of the grey shaded area divided by the total number of samples ofdth classes.

pdf
A overlapping zone Bl cass1

Bl cass?

>
s>

Figure 12: Schematic representation of basic DP algorithm.

The advantage of this basic method is that the mathematic operations involed in the process
are very simple, and thus quickly computed: this feature selection method is indeed veryast and
practical for online® applications of a learning process. However, the basic DP function has a major
drawback: it is highly sensitive to noisy data. An example of this weakness ishown in gure 13. The
distributions shown in gure 13 are relatively well separated, and should give agood result in terms of
disriminant power. The only di erence with gure 12 is that one of the samples of class 1 is corrupted
by noise, and can be considered as an outlier. The basic DP function will assume thoutlier sample to
be the maximum of class 1 distribution, and the resulting "overlapping" zone will entirely encompass
the distribution of class 2, since the grey shaded area of gure 13 is only de ned by the érema of
class 2. Comparing this situation with gure 12, it is straightforwa rd to conclude that in this case,
the resulting score of DP algorithm will not be representative of the non-overapping property of the
observed classes, even though the distributions of class 1 and 2 are not totallwerlapping.

3.3.2 Modied DP Function

In order to cope with noisy data, a little preprocessing step has been added to the @inal DP
algorithm: the distributions of both classes are rst truncated, in order to keep only a given percentage
of the data around the mean of each distribution. This pruning step will discard outlier data if the

8'online" means 'in real time".
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Figure 13: Sensitivity to noise of basic DP algorithm.

percentage of truncated data is well chosen. It is known that under the assumption of aaormal
distribution, and for a given integer k, a certain percentage of the values are withink standard
deviations from the mean . Table 2 gives several di erent values of con dence intervals and the
corresponding proportion of data within the interval, for normal distribut ions. If we are not sure of

Con dence Interval % of data in the interval
[ o+ ] 68%
[ 1177 ; +1:177 ] 76%
[ 2 5 +2 ] 95%
[ 3 ; +3 ] 99%

Table 2: Con dence intervals and their corresponding proportion of data within the interval for normal
distributions.

the normality of the distribution, a more general formula is provided by Chebyshev's inequality

1
o ©

Note that only the casek > 1 gives useful information. Thus, even if the distributions are not normal,
at least 100 (1 k%)% of the values are within k standard deviations from the mean .

Keeping a too high percentage of the original data could maintain some outlier d in the pruned
dataset, and the DP score would remain meaningless. The issue is thus to assegdsch is the percentage
of noisy data in a given application. In this sense, thefull width at half maximum (FWHM) value
seems to be a good choice for an upper limit in the pruning process. The FWHM valuesian expression
of the extent of a function, given by the di erence between the two extreme values of thendependent
variable at which the dependent variable is equal to half of its maximum value. A illustration of
FWHM value is given in gure 14 for a normal distribution; in this specic case, the relationship
between FWHM and the standard deviation is:

FWHM=2 © 2 In(2) 2:354 (10)

Pr(jX i k)

and FWHM is the interval P 2 In(2) , which means that we keep 76% of the samples after having
truncated the distributions, according to normal distribution knowledge. In the impl ementation of the
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modi ed version of DP algorithm, we deciqu to approximate the distributions by normal distributions,
and simply keep data in the interval 2 In(2) = 1:177 , assuming that the maximum
value is near from the mean . Of course, taking the interval | 1177 ; +1:177 ] as the
threshold of our algorithm is arbitrary and gives a comfortable margin; in any speci ¢ application,
if the percentage of noisy data is precisely known, the pruning threshold can be tuned sdcat only
outlier data are discarded. Nevertheless, it is crucial to keep in mind that if the amaint of noisy
data is big, the distributions will not be strictly normal anymore, since the mean will be shifted away
from the maximum value of the distribution: in this case, the percentages givenn table 2 are too
optimistic, and the pruning threshold will have to be chosen with care. But in any case, we believe
that the approximation of nearly normal distributions is acceptable for most applications, and our
choice of FWHM as truncated interval provides a good trade-o in order to remove noise without
losing too much information about the actual distribution.

pdf FWHM =2 © 2 in@

>

: I :
P ey P

Figure 14: lllustration of full width at half maximum value.

With this modi ed DP algorithm, the problematic situation of gure 13 can be solved, as shown
in gure 15. If the percentage of noisy data is not too big, the outliers of clas 1 will be discarded by
the preprocessing step, and the remaining truncated distributions will re ect the real non-ovefapping
property of the classes. Indeed, we can see that the grey shaded overlapping zone is de ned byrexhe
values of both classes, and the resulting score given by the modi ed DP algotitm is thus meaningful
in terms of discriminant power.

3.3.3 Validation with Synthetic Data

In order to compare the basic version of DP algorithm with the modi ed version implemented during
this work, a typical example with synthetic data has been generated and analysed.nl this two class
problem, both class have initially normal distributions; class 1 has a mean ; = 0 and a standard
deviation ; = 0:7, while class 2 has a mean, = 3 and a standard deviation , = 0:7. In order to
make the situation more problematic, we added outlier samples to the rst classwith mean e =10
and a standard deviation nose = 0:3. It is important to note that the population of outlier data
is relatively big, since it was set to 17% of the total population of classl. Thus, the distribution of
class 1 is surely not normal anymore: the new mean of class 1 after noise additiess ¢ = 1:69 and
its standard deviation is { = 3:814. The resulting classes are shown in gure 16.

Even with the presence of noise in the rst dataset, it is obvious that class 1 an are well separated,
and could give very good classi cation performances in a machine learning contéxHowever, the basic
DP method will give a low score for the observed situation, because the oventging zone will be totally
de ned by samples of class 1, encompassing class 2 distribution. This con guration isimsilar to the
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Figure 15: Schematic representation of modi ed DP algorithm.
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Figure 16: Comparison of DP algorithms: Initial distributions for class 1 and 2.

case presented in gure 13, and provides a score that does not illustrate the separdity of the classes,
since only one class contributes to the score. Table 3 shows th DP values of each ret for the
current problem.

On the contrary, the modi ed DP method can deal with this kind of situation, as shown in gure
17. By truncating both distributions and keeping only the interval [ 1177 ; +1:177 ] of
the FWHM value, the algorithm ignores all the noisy samples, and returns its scee only based on
relevant samples of both distributions. Even if the modi ed DP value is a litt le bit erroneous with
respect to the actual situation because both distributions have been rstly truncated, this score is
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Method Truncated Interval DP score (%)
Basic DP method - 39:56%
Modi ed DP method | [ 1177 o, +1:177 ] 91:34%
Modi ed DP method [ 2 ; +2 ] 50:57%

Table 3: Scores of di erent DP methods.
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Figure 17: Comparison of DP algorithms: distributions for class 1 and 2after modi ed DP method.
Truncated interval: [ 177, +1:277 ]

now representative of the separability of the classes, since the boundaries of theerylapping zone are
de ned by both classes. Moreover, even if the red distribution of the second class I&s a bit too
much truncated in gure 17, we have to keep in mind that in real applications, and especially for
applications dealing with bioelectrical signals, acquired data are always nojs and follow normal law
only approximately. Thus, after the preprocessing step of modi ed DP algorithm, truncated data will
look more like the blue distribution of gure 17 than like the red one.

Finally, we show in gure 18 that if we choose the interval[ 2 ; +2 ]to truncate the samples,
the DP score of the same example drops again to a low value of BY%, because some outliers samples,
indicated by the black arrow, are kept despite the preprocessing step of our modi ed algrithm.

An important observation can be done at this point: the fact that, for thi s application, the interval
[ 2 ] is too big and keeps noisy samples, can give us information about the "normiy" of class
1. When we introduce k = 2 in Chebyshev's inequality, we obtain that 75% of the values should be
within the interval if the distribution was not normal. Knowing that noisy dat a in class 1 represent
17% of the population, we can infer that in our example, the interval [ 2 ] contain at least 83%
of the values. This means that class 1, as expected, still has some similagg with a purely normal
distribution, which, by the way, would contain 95% of the population, as shown in table 2.
The conclusion is that taking FWHM value as truncating interval is a reasonable margin, if the
distributions are assumed to be approximately normal, since a maximum of 7% of the values would
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Figure 18: Comparison of DP algorithms: distributions for class 1 and 2after modi ed DP method.
Truncated interval: [ 2 5 +2 ]

be kept, in the case of a quasi-normal distribution; in this situation, noise emoval will be done
successfully in most cases, whereas bigger intervals can fail for some sitigats.

3.4 LDA-based Feature Selection Method

In this section, we propose a feature selection method based on a linear discrimintaclassi er. After
a brief survey about linear discriminant analysis (LDA), the principle of this algorithm is described.

3.4.1 Linear Discriminant Analysis

Linear discriminant analysis (LDA) [2] is a supervised method for dimensionality reduction for clas-
si cation problem. We present here the case where there are two classes; generalizatito K > 2
classes is straightforward.

Given samples from two classe€; and C,, we want to nd the direction, as de ned by a vector w,
such that when the data are projected ontow, the examples from the two classes are as well separated
as possible. the projection ofx on the direction of w is

z=w'x (12)

Thus, if d is the number of dimensions of the input space, equation (11) is a dimensionality reduabn
from d to 1.
;1 and 1 are the means of samples fronC; before and after projection, respectively. Note that
12<%and ;2<. Given a sampleX = fx!;rigsuchthatrt =1if x! 2 C; andrt =0 if x' 2 Cy,

P
Txtrt
vz X T (12)

rt

P
= tWIDXt(l rt)sz (13)
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The scatter of samples forC; and C, after projection are

i (wixt  g)%rt (14)

t

X
(whx' )% Y (15)
t
After projection, for the classes to be well separated, we would like the means tbe as far as possible

A X2

2
2

Q
Qs 2
0,

Figure 19: 2D two class data projected onw.

and the examples of classes be scattered in a region that is as small as pb#si So we wantjm;  myj
to be large ands? + s3 to be small (see gure 19). Fisher's linear discriminant is w that maximizes

2

J(w)

Rewriting the numerator, we get

(1 2)2 =(w' 1 w' 2)2
=w'( 1 20 1 z)TW
=w'Sgw (17)
where
Sg=( 4 20 1 z)T (18)

is the between-class scatter matrix The denominator is the sum of the scatter of examples around
their means after projection and can be rewritten as

% (WTXt l)Zrt

X
wT(x! (X' ) wr!
t
w'Siw (19)
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where X
Si=  r'(x" pxt T (20)
t

is the within-class scatter matrix for C;. Ps—lﬂ is the estimator of the covariance matrix ;. Similarly,
t
2=wTS,w with S, = (1 r)(x" (X! ,)T, and we get

2+ 2=wTsyw (21)

where Sy = S; + S; is the total within-class scatter matrix. Note that 2+ 2 divided by the total
number of samples is the variance of the pooled data. Equation (16) can be reitten as

wTSgw - jwr( 5)j?

J = 22
(w) wTSww wTSyww (22)
Taking the derivative of J with respect to w and setting it equal to 0, we get

wi( 2) wi( 2)
—_— 2 ——=°S =0 23
wTSww (1 2 wTSww ww (23)

Given that WVTV$371W\NZ) is a constant, we have

w = CSWl( 1 2) (24)

where c is some constant. Since we are more interested in the direction than in the magtude, we can
just take c=1 and nd w. To summarize, we have projected the samples frond dimensions to one,
and any classi cation method can be used afterward. Fisher's linear discriminahis optimal when the
classes are normally distributed, but it can be used even when the classes are not norma

3.4.2 Proposed Algorithm

We developed a feature selection based on LDA classi cation, in order to establish ranking of the
features in a given data set. A very basic LDA classi er was implemented on Mathb; the advantage is
that such classi ers are quick, and can be used in an iterative procedure. The Ma#b function takes
two labeled matrices as inputs: the rst matrix is the training set used to tune the classi er, and the
second is a test set allowing to return a score for the performance of the classi. The process is the
following, for the case of the selection oNg features amongN;s initial features:

Each feature is considered independently, andNs matrices are built with all the labeled trials
of the data set for each feature.

A LDA classi cation procedure is applied on each of these matrices, giving a lisof N; scores.
The ranking of these scores gives the ranking of the corresponding features.

The Ngg best features are kept from this list.

LDA classi cation is a relatively quick process, and that is the reason why we chose an LDA classi er
in our method. It is clear that we could have chosen any other classi er, such as a gesian classi er or
an arti cial neural networks, in order to insert it in our algorithm. But itis important to understand
that in this feature selection procedure, the absolute scores of classi cation are rigeally important in
order to create the ranking of the features: the interesting point is the relative scores between features.
Thus, the choice of the classi er is not crucial, and we decided to take the fastest one.
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4 EEG Acquisition System

4.1 Experimental Setup

The EEG measurement system of IDIAP BCI group comes from Biosemi Instrumenration Company,

Amsterdam, Netherland °. The model is an Active Two System, with 64 EEG electrodes following the
10-20 international electrode layout (see gure 20). Moreover, 8 supplementary elctrode channels can
be used for complementary measurement, such as EMG. The digital resolution igery good (31.25nV)
and the input range is 524mVpp.

Figure 20: 64 EEG electrodes following the 10-20 international electrode layd.

In order to e ciently connect the system to the ground, the Biosemi system uses two electodes: a
Common Mode Sense (CMS) electrode and a Driven Right Leg electrode (DRL). The CM&lectrode
measures the potential of the patient, while the DRL electrode closes the loop beteen the patient
and the A/D converter. The DRL electrode is directly connected to a Driven Right Leg circuit [29],
in order to reduce the common-mode voltage and protect the patient by limiting the output current.

The Active Two system can assume any electrode or combination of electrodes to libe reference
of measurement, providing a su cient Common Mode Rejection Ratio of 80dB.

4.2 Data Preprocessing

EEG signals were acquired continuously during relatively long sessions; theittls had to be segmented
afterward. The sampling frequency was 512Hz for the speci ¢ applications of this wrk. The pre-
processing made on raw EEG data was applied systematically. These preprocessingss are the
following:

9 http://www.biosemi.com/
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EEG signals are rst saved in 24 bits binarized integers BDF format by the LabVIEW 1° software
provided by Biosemi. The rst operation is to convert these data in ASCII les w ith physiological
amplitudes, i.e. V .

We remove the mean activity of each electrode independently. This DC Removal procedures
crucial in order to set all electrodes to the same order of amplitude, and thus avoid lsises among
electrodes.

If needed, lters can be applied on the signals, in order to keep a speci ¢ band frequency.

We consider the mean of all the connected electrodes as the reference, in order to remove the
background EEG activity. This reference is called Common Average Reference (CAR and is
simply the mean activity of all electrodes; we remove it at each time sample.

If needed, a speci ¢ matrix applying a linear inverse solution and transforming scép EEG data
into estimated intracranial activity is applied at this step.

10 http://www.ni.com/labview/
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5 Error-Related Potentials
5.1 State of the Art

In contrast to other interaction modalities, a unique feature of the \brain channel"is that it conveys
both information from which we can derive mental control commands to opeate a brain-actuated
device as well as information about cognitive states that are crucial for a puposeful interaction, all
this on the millisecond range. One of these states is the awareness of erroneous res®s, which a
number of groups have recently started to explore as a way to improve the perfmmance of BCls: see
for instance [42], [7], [35], [16] and [15].

Since the late 1980s, di erent physiological studies have shown the presence of erieelated potentials
(ErrP) in the EEG recorded right after people get aware they have made an error([8],[14], [25]).
Apart from Schalk et al. (2000) who investigated ErrP in real BCI feedback, most of these studies
show the presence of ErrP in typical choice reaction tasks ([7],[35],[8L#]). In this kind of tasks,
the subject is asked to respond as quickly as possible to a stimulus and Errilsometimes referred
to as \response ErrP") arise following errors due to the subject's incorrectmotor action. The main
components here are a negative potential showing up 80 ms after the incorrect respse followed
by a larger positive peak showing up between 200 and 500 ms after the incorrecesponse. More
recently, other studies have also shown the presence of ErrP in typical reinforcemeneérning tasks
where the subject is asked to make a choice and ErrP (sometimes referred to agddback ErrP") arise
following the presentation of a stimulus that indicates incorrect performance [5]. The main component
here is a negative de ection observed 250 ms after presentation of the feedback indicag incorrect
performance. Finally, other studies reported the presence of ErrP (that we will reér to as\observation
ErrP") following observation of errors made by an operator during choicereaction tasks [47] where the
operator needs to respond to stimuli. As in the feedback ErrP, the main componenhere is a negative
potential showing up 250 ms after the incorrect response of the operator perfoing the task. ErrP
are most probably generated in a brain area called anterior cingulate cortex (AC), which is crucial
for regulating emotional responses [25].

An important aspect of the rst two described ErrP is that they always foll ow an error made by
the subject himself. First, the subject makes a selection, and then ErrP arise eithesimply after the
occurrence of an error (choice reaction task) or after a feedback indicating the errofreinforcement
learning task). However, in the context of a BCI or human-computer interaction in general, the
central question is to know if ErrP are also elicited when the error is madeby the interface during the
recognition of the subject's intent. Investigations have been made at IDIAP about this precise issue.

5.2 IDIAP Research: Previous Study

Very recently, Ferrez and Milan investigated in [15] how ErrP could be used to improve the perfor-
mance of a BCI. Especially, if ErrP are also elicited when the error is made Y the interface, then it
could be integrated in a BCI in the following way as shown in gure 21: after translating the sub-
ject's intention into a control command, the BCI provides a feedback of that command, which will be
actually executed only if no ErrP follows the feedback. This should greatly increasehe reliability of
the BCI system, as shown in the paper.

5.2.1 Experimental Setup

To test the presence of ErrP after a feedback indicating errors made by the interfacenithe recognition
of the subject's intent, a human-robot interaction task where the subject has tobring the robot to

targets 2 or 3 steps either to the left or to the right was simulated. To isolde the issue of the
recognition of ErrP out of the more di cult and general problem of a whole BCI where erroneous
feedback can be due to non-optimal performance of both the interface (i.e., the claser embedded
into the interface) and the user himself, in the following experiments the subjectdelivers commands
manually and not mentally. Five volunteer healthy subjects participated in these experiments. The
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Figure 21: Exploiting error-related potentials (ErrP) in a brain-contro lled mobile robot. The subject
receives visual feedback indicating the output of the classier before the actual execution fothe
associated command (e.g., \TURN LEFT"). If the feedback generates an ErrP (keft), this command
is simply ignored and the robot will stay executing the previous command. Otherwisethe command
is sent to the robot (right).

system moved the cursor with an error rate of 20%; i.e., at each step, thereag a 20% probability that
the cursor moved in the opposite direction. Subjects performed 10 sessions of 3nmuies on 2 di erent
days, corresponding to 75 single trials per session; it means that in each sessions, about 60 correct
trials and 15 error trials were recorded. The delay between the two days of measuresnts was about
3 months. The sampling rate was 512 Hz and signals were measured at full DRaw EEG potentials
were rst spatially Itered by subtracting from each electrode the common average reference at each
time step. Then, a 1-10 Hz bandpass lIter was applied, as ErrP are known to be a relately slow
cortical potential.

Only interesting part of the recorded signal was kept as follows: half-second windosvstarting 150
ms after the feedback and ending 650 ms after the feedback were extracted. EEG signals wehen
subsampled from 512 Hz to 64 Hz (i.e., one point out of 8 was taken) beforeadsi cation, which was
entirely based on temporal features. The two di erent classes are recognized by adsissian classi er.

5.2.2 Results

Figure 22 shows the di erence error-minus-correct for channel FCz for the ve subjects pls the grand
average of the ve subjects for the two days of recordings. A rst sharp negativepeak (Ne) can be
clearly seen 250 ms after the feedback. A later positive peak (Pe) appears betwe820 ms after the
feedback. Finally a second negative peak occurs about 450 ms after the feedback. Figu8 also shows
the scalp potentials topographies, for the grand average EEG of the ve sufects, at the occurrence
of the maximum of the Ne, the Pe and the additional negative peak: a rst fronto-central negativity
appears after 250 ms, followed by a fronto-central positivity at 320ms and followed by a fronto-
central negativity at 450 ms. Moreover, the feasibility of detecting single-tial erroneous responses
was explored, by means of a 10-fold cross-validation study where the testing set gsists of one of the
recorded sessions. In this way, testing is always done on a di erent recording sesa to those used
for training the model. To summarize, the existence of a new kind of error-related ptentials, called
\interaction ErrP", was con rmed; the feasibility of detecting single-trial err oneous responses is very
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Figure 22: Left. Average EEG for the dierence error-minus-correct at channel FCz for the ve
subjects plus the grand average of them for the rst day. Right. Scalp potential topographies, for the
grand average EEG of the ve subjects, at the occurrence of the peaks. Small lled ciles indicate
positions of the electrodes (frontal on top), Cz being in the middle.

important, since it could improve the performance and reliability of a BCI system.

5.3 Objectives: Extending the Study

From that point, our goal in next three sections is two-fold. On one hand, comparigns of all the
methods and models presented in the previous sections are done in the framework of errelated
potentials study; advantages and drawbacks of each method are pointed ougnd inverse solutions are
compared based on di erent quality criteria.

But most importantly, all these comparisons are done with the same underlyng objective: providing
an extension to the article presented in section 5.2. Indeed, we aim at extending the stly to the use
of inverse solutions, as well as new feature selection methods. In order to do ive took the same data
sets with the ve subjects, and reproduced the experiments reported in [15] with ony slight di erences
allowing us to do a consistent comparison between EEG and inverse solutions. HE process was the
following:

The same preprocessing as described in section 5.2.1 was applied on data beforessilaation.

A 10-fold cross-validation was done on the rst day of recording for the ve subjects, and for
both EEG signals and intracranial signals obtained by applying the CCD inverse model. In
each fold, a feature selection was done with our LDA-based method: a given number fgatures
was kept for the classi cation procedure. For the inverse model, we repeated the whelprocess
varying the number of kept features, in order to look for an optimal number of features.

Instead of keeping always the same two electrodes (FCz and Cz) for all the foldssain the
previous study, we decided to take the two best electrodes after feature selection independént
for each fold. Thus, a direct comparison could be made with CCD inverse modekince we did
exactly the same with the vertices of the model.

Instead of a gaussian classi er, we used a simple LDA classi er for the classiation procedure
of each fold. We justify this choice by noting that this classi er does not need any tining, as
the statistical gaussian classi er does. Thus, we could repeat our experiences elgsand vary
the number of selected features for the inverse solutions. Moreover, we are ninterested in
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the comparison between EEG and inverse models, or the comparison between featuselection
methods, than in the absolute scores of classi cation. Even if the scores given bgur LDA

classi er are expected to be lower than in [15], we are interested in relatig di erences between
scores.

For one of the subject (subject 4), we extended our experiments to other feature selectio
methods and inverse solutions, in order to allow comparisons. Thus, the sameross-validation
process was applied, taking successively modi ed DP function and ReliefF algorithm fothe
feature selection step. In order to compare inverse models, 10-fold cross-wdition was also
applied on ELECTRA-LAURA inverse solution.

Finally, for both EEG and CCD inverse solution, we classi ed each of the D sessions of the
second day of recording with selected features based on all the sessions of the rst da&§y doing
this generalization over extended periods of time, we could have a clear idea of the prepies of
stability of EEG and CCD inverse model over time.
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6 Comparing Feature Selection Methods

Error-related potentials are very convenient for feature selection method teing, since we know ap-
proximately which part of the brain should be more involved in the process oferror detection. Indeed,
several articles, including studies in which EEG and functional MRI were measured simltaneously
[12], have shown strong relationship between the error negativity (ERN) anderror-related anterior
cingulate cortex (ACC) activation 1. Thus, we can reasonably expect that our methods select channels
that are located near fronto-central areas. In this chapter, the feature selectin methods presented in
section 3 are validated on EEG data, and then applied on the CCD inverse model ithe framework
of a 10-fold cross-validation on one of the subjects.

6.1 Method of Comparison

The ranking of the channels, i.e. the electrodes or the cortical vertices, was establied for each fold
of the cross-validation as follows:

For our LDA-based feature selection method, we built for each of theN¢ channels a LDA classi er

and measured its classi cation score on the training set of the current fold. The taining set is a

matrix containing only the activity of the corresponding channels and of dimensionN s 32

(because we subsampled at 64z and took 0:5 time windows). We take the classi cation score
as the quality estimation of the channel. At the end, a list of N; scores gave the ranking of the
channels for a given fold.

For ReliefF algorithm and the modi ed DP function, the estimation of the qualit y of a given
channel was done in two steps. First, the methods were applied on each of thds matrices
described above, in order to get an estimation of the discriminant power of edcof the 32 time
samples. Then, these 32 scores were simply sumed to have a unique score for a givemalea
This quality estimation is meaningful, because if the 32 time samples are nmre discriminative in
average for a given channel than for the other features, the resulting sum will be liger, giving
a good score to the channel.

6.2 Selection of Relevant Scalp Channels

As a validation of our feature selection methods, we rst applied them on EEG sigals, in order to
select relevant electrodes that could better discriminate between correct trials and eor trials. We
analyzed the data set made of all the trials of the rst day of recording of subject 4 The number
of iterations of ReliefF algorithm was set equal to the number of correct trids of the data set. The
results are shown in table 4.

Rank 1 2 3 4 5 6 7 8 9 10

LDA-based method | Fz | FC1 | FCz | FC2 | F1 | F2 | P8 | P6 | FC3 | C1
Modi ed DP FCz |FC1| Fz |FC2 | F2 | F1 | Cz|C1| P8 | PO7
ReliefF FCz | FC1 |FC2 | Fz |F2 | Cz|Cl1|F1| P8 | PO7

Table 4: Rankings of electrodes for subject 4, day I, for the three feature selectiomethods.

As expected, the best electrodes are all located in fronto-central areas (see guréZor EEG cap
layout). Moreover, the reliability of our methods is demonstrated, since the fourbest electrodes are
the same for all methods. Beside the strong activation of fronto-central aeas, we note that electrode
P8 is part of the ten best electrodes for the three methods: activation of parietalareas has already
been reported by other studies [48]. A possible interpretation could be that thé parietal activation is
related to associative areas activated by the occurrence of an error.

1 see [46] for a detailed atlas of the brain.
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6.3 Selection of Relevant Cortical Areas

The second step was to compare the methods by using the CCD inverse solution. Heregvassessed
the quality of each feature selection both in terms of classi cation accuracy ad localization of the
features, by means of a 10-fold cross-validation on the rst day of recording obubject 4.

6.3.1 Cross-Validation

The results of the cross-validation procedure are shown in gure 23 for each feate selection method,
and for di erent numbers of selected features. We can do the following observations

T
= Well-classified Correct trials for LDA
Well-classified Correct trials for modified DP
Well-classified Correct trials for ReliefF
= Well-classified Error trials for LDA
Well-classified Error trials for modified DP
0.95 — Well Error trials for ReliefF H
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Figure 23: Results of 10-fold cross-validation for di erent feature selecion methods, and di erent
numbers of selected features.

All three methods provide roughly the same results in terms of classi cation accuacy. We could
have expected the LDA-based method to be the best of the three methods, since the criteriaf
selection of features for this method is based on the LDA classi er applied in the clssi cation
process of the cross-validation. But we see that ReliefF and the modi ed DP function & as
e cient as the LDA-based method. An explanation could be that with ReliefF and the mo di ed
DP function, we sum the discriminative powers of the 32 time samples. Thus, tté way of
computing the scores of the channels gives a dierent, and maybe better idea of the globa
discriminative behaviour of a given channel over time.

Interestingly, we note that the best classi cation accuracies are often obtainedwith a small
number of selected channels. Indeed, the best accuracy for the classi cation of correct tis
(89.66%) is obtained by the LDA-based method for 15 selected vertices, whereas ftine clas-
si cation of error trials, the LDA-based method reaches 84.14% for 5 selectedertices. For
ReliefF algorithm, the optimal number of selected features is a little bit bigger (between 50 and
120 vertices), but still acceptable. These observations are of the highest importece, since the
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Figure 24: Localization of features made by the LDA-based method on fold 1 ofhe cross-validation
procedure.

dimension of the input space would not explode with only 15 to 100 selected features,laling
online implementation.

Comparing the methods in terms of computational speed, it appears that ReliefF algrithm is
by far the worst of the methods. Indeed, ReliefF is an iterative methods, and a certen number
of iterations must be done in order to converge to a good estimation of the wplity of each
feature. In these experiments, the number of iterations was set equal to the numbeof trials
of one class, which is an acceptable value (see section 3.2.3). But these itdmats have to be
done oneach feature of the initial input space, which means a lot of times when we deal with
inverse solutions (for instance, 3013 times for CCD inverse model). Thughe feature selection
made by ReliefF was a very long process; online implementations of such methods wd be
impossible. As opposed to ReliefF algorithm, the LDA-based method and the moded DP
function were much faster; the modi ed DP function was the fastest method, selecting éatures
almost instantaneously.

6.3.2 Localization of Features

In order to assess the quality of the feature selection made by our methods, we alrved the locations
of the selected features in randomly selected folds of the cross-validation. We chethe %, 5 and 9"
folds, and looked at the 50 best features in each folds, for each method. Resulise shown in gures
24 to 28. Once again, our methods provide features with physiological meaning, conming the rst
investigations with EEG signals. Here, with the help of inverse solutims, we can even go further in
the details of the localization, and look at the Brodmann areas? (BA) involved in the process of error
discrimination. In gures 24, 25 and 26, we see that our LDA-based method selected féares in two
relevant areas of the brain: rst, a focus is found in fronto-central area, at the surface of the cortex.
This area is the 6" Brodmann area, which encompasses pre-motor and supplementary motor cortex
(pre-SMA). The second cluster of selected features is focused on the rostral and caudal cingté zone
(BA 24 and 32). In terms of neurophysiology, both selected areas are well-kmm to be involved in

12For an online atlas: http://spot.colorado.edu/ dubin/talks/brodmann/brodmann.html
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Figure 25: Localization of features made by the LDA-based method on fold 5 ofhe cross-validation
procedure.

error detection and correction processes [17]. Since similar foci (BA 24 and 32)enre found for the
modi ed DP method and for the ReliefF algorithm, we only displayed top views of the localizations
of features for these methods. Thus, it proves that our methods are able to select relamt features in
terms of physiology.

Moreover, we tried to assess the stability of the selections by comparing, feeach method indepen-
dently, the selections made in the di erent folds of the cross-validation. First, we took each possible
pair of folds (45) and calculated the percentage of identical selected vertices withithe 20 best fea-
tures; we restricted the lists to the 20 best features, since we saw that a smatumber of them already
provides good classi cation accuracy. Then, we averaged these 45 percentages to havelobal idea
of the stability of the feature selection between two di erent folds. The second sép was to look for
the relevant vertices that were selected inall folds; once again, we considered the 20 best features,
and looked for those that were present in all of the 10 folds. Results are shawin table 5.

Averaged % of identical | # of identical selected
Method selected vertices over vertices in all folds
all possible pairs of folds
LDA-based 45.89% 1
Modi ed DP 91.67% 14
ReliefF 59.89% 3

Table 5: Stability of feature selections depending on the method. The 20 best selected feaes are
considered.

We see that the modi ed DP method selects its features with an impressive regulaty. Besides,
it is possible to con rm that statement simply by looking at gure 27. Indeed, the clusters located
on pre-SMA are very similar between the folds; for instance, 98% of the selected véces (49 over 50)
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Figure 26: Localization of features made by the LDA-based method on fold 9 othe cross-validation
procedure.

Figure 27: Localization of features made by modi ed DP method on fold 1 (top) 5 (bottom left) and
9 (bottom right) of the cross-validation procedure.

are similar between fold 0 and 4! The LDA-based method performs less stableslections than the
other methods, but this results must be considered with care. Indeed, even if the patterns of sstted
vertices were slightly di erent from one fold to the other, the global clusters were always located on
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Figure 28: Localization of features made by ReliefF method on fold 1 (top),5 (bottom left) and 9
(bottom right) of the cross-validation procedure.

BAG6 and BA24-32, as shown in the related gures. Thus, we believe that the propely of stability of
a feature selection cannot be completely de ned only by looking at the number of constary selected
features, as table 5 does; we should rather look at the stability of the globashape of the clusters of
features over time. The proof is that the LDA-based method was the best one in termsef classi cation
accuracy after cross-validation (see section 6.3.1); our interpretation ighat the algorithm chose for
each fold the best combination of verticeswithin the same physiologically relevant areaThese selected
vertices may be di erent from one fold to the other, but the combination is always the most e cient
in terms of discrimination. Thus, table 5 tells us about the strict stabilit y of the feature selections,
but we should not do any conclusions based on these values about the global e ciency of the miebds
in the context of a BCI system, since our ultimate goal is to reach the highestlassi cation accuracy.
More investigations about stability of the selected features are done in nextections, and validate our
statements.
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7 Comparing Inverse Solutions

We provide in this chapter a comparison of the inverse solutions presented in sdon 2.3. This

comparison will be based on di erent criteria. For one of the models, namely thesLORETA inverse

solution, we did not have access to the transformation matrix; thus, the sftware was used as a
'‘black box", and only localization studies are reported here, in order to givean idea about the results
provided by this inverse model. For the LAURA-ELECTRA and CCD inverse solutions, a more

complete comparison was made, following the process of chapter 6.

7.1 SLORETA : Localization of Relevant Cortical Areas

sLORETA inverse solution is known to be the only localization tool with zero localization error [36].
The software is available on sSLORETA websité® as a 'blackbox" software: the user doesn't really
know about the details of the localization process and the creation of the trangfrmation matrix,
except the theoretical elements of chapter 2.3.2. Even if the software is very eadyp install and to
use, it is impossible to apply our machine learning methods without the transfornation matrix. Thus,
we restricted our study of SLORETA model to a localization study aiming at showing the advantages
and drawbacks of this inverse method. The process was the following:

We computed the matrix of the averaged EEG activity of subject 4 over day |. The dimensions

of the matrix are 64 512, since we used 64 electrodes and considered a time window of 1 second
right after the occurrence of an error, with a sampling frequency of 512Hz. For in@nce, the
averaged waveform of error trials of electrode FCz is shown in gure 29.

We loaded the matrix in sSLORETA software as well as a map of the 64 used elembdes and
the sampling frequency. From that point, everything was generated internally, sothat the
localization could be immediately visualized in the main display window of thesoftware.

The advantage of SLORETA is that the localization can be observed over time.Indeed, a very e cient
and practical visualization tool is provided in the software, allowing to see theevolution of neuronal
patterns of a given process over time. Thus, SLORETA visualization tool is ugful to understand the
underlying psychophysiological processes of error detection.

To illustrate that, we analyzed cerebral activations at four well chosen instants of the error process;
these instants are marked with red circles in gure 29.

Figure 30 to 33 show 3D cortical views as well as Talairach slices of lolized activity related to
each of the red circles of gure 29.
We make the following observations:

As expected, typical areas involved in error potentials such as pre-SMA (BA6) o ACC (BA24-
32) are activated. Interestingly, we note that activation of areas BA6 and BA24-32 is stronger
at instants corresponding to the peaks of the averaged error potential, namglthe negative peak
(230ms after error occurrence) and the subsequent positive peak (300ms after erroccurrence);
between the peaks, activation patterns of lateral prefrontal cortex (PFC) and orbito-frontal
cortex similar to those of gure 30 are observed (not shown).

Such activation of PFC in the context of error detection has already been extensivgl commented
in the literature. Particularly, Gehring and Knight [20] reported an interact ion of the lateral
prefrontal cortex with the anterior cingulate cortex in monitoring behavior and in guiding com-
pensatory system: PFC could be related to monitoring processes, whereas ACC armte-SMA
are more involved in error detection. This hypothesis seems to be in agreementith the patterns
of activation we observed on our BCI signals.

13 http:/iww.unizh.ch/keyinst/NewLORETA/LORETAO1.htm
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Figure 29: Mean activity of electrode FCz.

Figure 30: sSLORETA localized activity 181:6ms after error occurrence.

Finally, 50ms after the second positive peak, activations of parietal acas are observed: these
associative areas could be related to the fact that the subject becomes awaretbe error. Indeed,
it has been proposed that the positive peak of an error potential was asstated with conscious
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Figure 31: sLORETA localized activity 232:4ms after error occurrence.

Figure 32: sLORETA localized activity 294:9ms after error occurrence.
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Figure 33: sSLORETA localized activity 363:2ms after error occurrence.

error recognition [34]; in our case, the activation of associative areasnly 50ms after the positive
peak agrees with that hypothesis.

By means of SLORETA visualization software, a rough idea of the underlying psybophysiological
process of error monitoring related to BCI can be described. However, a major dmback of SLORETA
has to be emphasized: the foci of activation are very blurred, with respect to the clugrs of relevant
vertices provided by the CCD inverse model in gures 24, 25 and 26, for instance. Theeason of that
oversmoothing is the use of the Laplacian Weighted Minimum Norm constraint Eee section 2.3.2).
Thus, the lack of precision in the de nition of the foci of activation could be a limitation for the use
of SLORETA as classi cation tool in the context of BCI.

7.2 LAURA-ELECTRA and CCD Inverse Models

For ELECTRA-LAURA and CCD inverse solutions, a more complete comparism is allowed, since the
transformation matrices are provided. Thus, we reproduce the same comparisoprocess as in chapter
6; the classi cation accuracy is rst compared for both methods after 10-fold cress-validation on the

rst day of recording of subject 4. Then, the localization of the relevant selected featires is analyzed.
As a feature selection method, we chose the LDA-based method for both models, sinitewas the

method providing the best classi cation performances.

7.2.1 Cross-Validation

The results of the 10-fold cross-validation procedure are shown in gure 34, inwhich we compare
the CCD inverse model and the ELECTRA-LAURA inverse solution for di erent numbers of selected
channels.

Observing this gure, we can do the following remarks:

Both inverse solutions provide their best performances with a small number bselected channels.
Indeed, the CCD inverse model reaches the best classi cation of correct trials witiN¢hannels =
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Figure 34: Results of 10-fold cross-validation of subject 4, day |, for EECTRA-LAURA and CCD
inverse model.

15, and the best classi cation of erroneous trials with Nchannes = 5, whereas ELECTRA-
LAURA model uses N¢hannets = 5 to get the best performances in the classi cation of both
correct and erroneous trials. We see that in these cases, the dimensionality of thaput space is
relatively small, and feature selection algorithms, for instance, can be qukly applied on it. This
observation con rms our belief that inverse solutions could be of high interestin the context
of BCI research, since it is possible to take advantage of the spatial retution of such methods
without being limited by computational resources.

It seems that the CCD inverse model always provides better performances in termfalassi cation
accuracy, independently of the number of selected channels. In order to con rm our observation,
we performed a Wilcoxon rank sum test on our samples following this procedure: r§ we
considered for each model, the best cross-validation results (see previous remdok the respective
optimal numbers of selected channels for each model). Then, we calculated for each arge
solution what we call the accuracy valueof each fold of the cross-validation, de ned by:

accuracy = Lot Beo. (25)
Ctot + Etot

where C.. and E. are the number of correctly classi ed correct trials and error trials, respec-
tively, and Ci,; and Eiy are the total number of correct and error trials. This accuracy value
takes into account that there are more correct trials than error trials in each fold, and then the
contribution of the correct trials classi cation accuracy will have a slightly larger contribution
to the nal value. Thus, we obtained 10 values for each inverse solution. Then, we @aplied the
Wilcoxon test with the null hypothesis Hg being that the means of the samples are equal; we
performed it at the 0:05 signi cance level. We obtained that Hy was rejected with a p-value of
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p = 0:028. Thus, there is a signi cant di erence between the models in terms of classi caton
performances.

7.2.2 Localization of Features

The second part of the comparison of the inverse models consists in observing thechtion of the
selected channels in the brain. Figures 24, 25 and 26 already show the localizatiori the 50 best
vertices selected by the CCD inverse model in folds number 1, 5 and 9, with the LDAased feature
selection. Figures 35 to 37 show the localization of the features made by the ELETRA-LAURA
model in the same conditions: the red points are the 50 selected voxels, whereas th&ue crosses
represent the location of anterior cingulate cortex. In addition, table 6 repoits the same analysis
described in section 6.3.2 aiming at characterizing the regularity in the selectin of the channels for
each method.

Figure 35: Localization of ELECTRA-LAURA features made by the LDA-based method on fold 1 of
the cross-validation procedure.

Averaged % of identical | # of identical selected
Inverse model selected channels over channels in all folds
all possible pairs of folds
CCD inverse 45.89% 1
ELECTRA-LAURA 63.89% 5

Table 6: Stability of channel selections depending on the inverse solution. The 20 bestelected
channels are considered, and LDA-based feature selection is applied.

We note that:

While the CCD inverse model selects channels located in physiologically relevaareas like pre-
SMA and ACC, it appears that the 50 best voxels selected by ELECTRA-LAURA do not show
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Figure 36: Localization of ELECTRA-LAURA features made by the LDA-based method on fold 5 of
the cross-validation procedure.

Figure 37: Localization of ELECTRA-LAURA features made by the LDA-based method on fold 9 of
the cross-validation procedure.

similar properties; there is no clear cluster in the con guration of the selected voels, even though
most of the selected voxels are in the right hemisphere. Moreover, none of the 50 hesxels
are located in the ACC ( gures can be misleading, since these are 2D views), andhé 5 voxels
that are present in all folds have no physiological meaning, since they are locatl on the cortical
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surface of right hemisphere. Therefore, a physiological interpretation of thedcalization of the
features is di cult in this case.

Interestingly, we see in table 6 that the ELECTRA-LAURA method selects its channels with a
bigger regularity than the CCD inverse model. However, we saw in the previousestion that the
performances of the CCD inverse model in terms of classi cation accuracy were gii catively

better than those of LAURA-ELECTRA inverse solution, even though the di erence was not
so big. This somehow paradoxical result proves that the most important propety for a good
classi cation performance is not the regularity of the selection itself, but mare the regularity in

the clustering tendency of the selection.
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8 Comparing EEG and CCD Inverse Model

In order to complete our study on inverse solutions and their integration into BCI systems, we compare
in this chapter the performances of the CCD inverse model with those of EEG sigals in the case of
the cross-validation procedure described in section 5.3. This comparison aimg axtending IDIAP
studies on BCI error-related potentials, since we would like to assess thenprovement due to the use
of inverse solutions in this speci ¢ application.

8.1 Cross-Validation

The cross-validation procedure was done for the ve subjects, on the st day of recording. The only
di erences with respect to the process adopted in [15] is that we selected in each foldhé 2 best EEG
electrodes before classi cation. Doing this, we can do a better comparison withhe inverse models,
since we select the best channels in each fold as well. In addition, we use a LDA-basethssi er

instead of the gaussian classi er used in [15]; thus, we expect our classi catioscores to be a little
bit lower than in the article. But as we already mentioned before, we are more riterested in the

relative di erences between scalp EEG and CCD inverse model. Figures 38 to 42 shothe results

of the cross-validation for the 5 subjects. Well classi ed correct and erroneous tals are shown for
the CCD inverse model for di erent number of selected vertices. In addition, superinposed dashed
lines represent the corresponding EEG classi cation scores for correct and erroneousidts, obtained

by selecting the 2 best electrodes in each fold. Results are summarized in the upper paof table 7

for the ve subjects and the average of them; for each subject, the classi cation sore for the opimal

number of selected channels is displayed. We can do the following observations:

T T T
= Well-classified Correct trials for CCD inverse model
== Well-classified Correct trials for EEG
= Well-classified Error trials for CCD inverse model
= = Well-classified Error trials for EEG
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Figure 38: Results of 10-fold cross-validation for day |, subject 1. Resu#t of CCD inverse model are
shown for di erent number of selected features; superimposed dashed lines represent thesults of
EEG by taking the 2 best electrodes in each fold.

By looking at gures 38 to 42, we see that the classi cation scores provided by le inverse
solution is better than the results provided by EEG in most cases. Here, it is inportant to
note that for the ve subjects, the best classi cation scores are often obtained vith a small
number of selected channels. Even if for subject 3 and 5, the maximal scores are obtad for a
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Figure 39: Same as gure 38 for subject 2.
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Figure 40: Same as gure 38 for subject 3.

51



IDIAP{Com 07-04

1 T T T
Well-classified Correct trials for CCD inverse model
= = Well-classified Correct trials for EEG
Well-classified Error trials for CCD inverse model
= = Well-classified Error trials for EEG
0.95 4

)
©
T

Il

LDA Discrimination Accuracy
1
1
1 1
! : ‘
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

o

©

a
T

I

0.75 1 1 1 1 1 1
50 100 150 200 250 300 350

Number of vertices as features
Figure 41: Same as gure 38 for subject 4.
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Figure 42: Same as gure 38 for subject 5.
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bigger number of selected channels, we see on the pro les that with a small number oé#tures,
the scores are already in the same range as the maximal score. Moreover, feubject 2, the
classi cation scores of well-classi ed correct trials decrease drastically ashie number of selected
vertices increases.

Table 7 illustrates well the improvement due to the use of the CCD inverse solubn. Indeed, for
all subjects, the classi cation scores are signi cantly higher for the CCD inverse solution than
for EEG, and the standard deviations of CCD inverse results are smaller iraverage.

In order to assess the signi cance of this improvement, we performed a Wilcoxorest similarly
as we did in section 7.2.1 on the accuracy values of each subject for EEG and CCDverse
model, and on the averaged accuracy values. The results are shown in table 8: onlylgects 4
and 5 do not show signi cant improvement when we use the inverse model. More impdantly,

the test on the grand average rejected the null hypothesis, proving that in averge, applying an
inverse model provides signi cantly better results.

| Subjectl  Subject2  Subject3  Subject4  Subject5 Average

10-fold cross-validation Day I: EEG
C 834 73 611 138 774 75 880 34 855 7:3 79:1 108
E |l 723 140 643 201 710 157 829 11.3 772 131 735 7.0

10-fold cross-validation Day |: CCD inverse model
Cc| 870 23 702 138 858 43 897 35 873 59 836 77
E|l 793 65 776 195 812 195 841 107 789 104 799 28

Day Il classi ed with Day |: EEG

c| 778 7.3 826 39 757 75 908 31 778 73 809 6:1
E || 738 103 415 179 653 146 685 139 738 103 64:6 134
Day Il classi ed with Day |: CCD inverse model

C| 880 59 825 41 869 56 914 41 885 69 875 32
E 793 98 452 175 749 97 814 101 776 98 717 15:.0

Table 7: Percentages (mean and standard deviations) of correctly recognized correctials (C) and
error trials (E) for the ve subjects and the average of them, performing a 16fold cross-validation on
day I, and using data of day | to classify day Il. Results are shown for both EEG and CCD inverse
model.

10-fold cross-validation Day |
Subject 1 Subject 2 Subject 3
Ho rejected Ho rejected Ho rejected
p=0:0101 p=0:0191 p = 0:0065
Subject 4 Subject 5 Average
Ho not rejected Hg not rejected H ¢ rejected
p=0:1974 p=0:4723 p =0:001

Table 8: Results of Wilcoxon tests applied on the 5 subjects and the average ohém for the cross-
validation on day I, to assess signi cant di erences between EEG and CCD inversamodel. Tests are
performed at the 0.05 signi cance level; the null hypothesisHq states that the means are equal.
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8.2 Generalization

The second objective of our analysis was to quantify the improvement due to the ws of our CCD
inverse solution when generalizing over extended periods of time. We built a LDA clas er based
on the whole data set of the # day of recording, and we classi ed the 10 sessions of the'® day of
recording with this classi er. We remind that the delay between the two days of recordings was about
3 months. The results are shown in the lower part of table 7. Once again, the clascation scores
increase signi cantly when using the inverse solution. Maximal improvements é more than 10% were
obtained for the classi cation of correct trial for subjects 1, 3 and 5, and forthe classi cation of erro-
neous trials for subject 4. The average improvement was about +7% for both caect and erroneous
trial classi cation. In table 9, the results of Wilcoxon tests performed on each subject and on the
average of the subjects con rm the global signi cance of this improvement.

Day Il classi ed with Day |
Subject 1 Subject 2 Subject 3
Ho rejected Ho not rejected  Hg rejected
p =0:0036 p=0:79 p=0:001
Subject 4 Subject 5 Average
Ho not rejected Ho rejected H o rejected
p=0:42 p = 0:0002 p = 0:0002

Table 9: Results of Wilcoxon tests applied on the 5 subjects and the average ohém for the clas-
si cation of Day Il using a classi er built on data of Day |, to assess signi cant di erences between
EEG and CCD inverse model. Tests are performed at the @5 signi cance level; the null hypothesis
H, states that the means are equal.
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9 Discussions and Conclusions

In this last chapter, a synoptic view of this master thesis is provided as well a propositions of future
investigations. The dierent issues that we addressed during this study, namely featre selection
methods and inverse solutions, will be disscussed successively, in order to sunmize the di erent

ndings of this long-term work.

9.1 Discussions
9.1.1 Feature Selection Methods

During this work, we implemented three feature selection methods, namely ReliefF glorithm, a mod-
i ed DP function and an LDA-based Iter method, and we applied them in the context of a speci ¢

BCI application, namely error-related potentials. We analyzed their respectiveperformances both in
terms of localization of the features and classi cation accuracy. Our conclusions ar the following:

All our methods were able to select relevant scalp electrodes as well as relevant ratranial
channels in the context of an error-potential study conducted at IDIAP and extended in this
work.

In terms of localization of the features, the modi ed DP method showed an impresie regularity
in the selection of its features. From one fold of the cross-validation to mother, most of the
selected features were identical with the modi ed DP function, whereas the features changed
slightly from one fold to the other for the two other methods. However, the bes classi cation
performance was obtained by the LDA-based method, which was the worst method indrms of
regularity in the selection. These results are not contradictory, since the featues selected by
the LDA-based method were always located in the same physiologically meanifigi area as the
modi ed DP function, namely pre-SMA and ACC. Thus, it seems that the strict regularity of
the selection is not very important in order to achieve good classi cation esults, as long as the
con guration of the selected features is representative of the underlying physiologial process.

In terms of computational time, the ReliefF algorithm is by far the worst method. When
dealing with high dimensional input spaces, which is the case with inverse solutits, this iterative
algorithm takes a lot of time in order to converge and return its result. In addition, since the
number of iterations is not known for a given application, its choice is arbitrary and we cannot
always be sure that the algorithm converged correctly. On the contrary, the LDA-based feature
selection method is quite fast, even when we applied it on inverse solution dataand the modi ed
DP function is almost instantaneous. Thus, for future investigations, and in case of online
implementation, we suggest to keep the LDA-based method and the modi ed DP function ony.

9.1.2 Inverse Solutions

This thesis was the opportunity to have a rst contact with the captivating research eld of inverse
models. It is clear that the goal of this work was not to go into the details d the complex theories of
inverse solutions, but rather to apply them in practical BCI applications, and assess their abilities to
provide new results for BCI research.

It appeared that the so-called CCD inverse model provided impressive results, b in terms
of localization of cortical activity and classi cation of single trial s in the context of BCI error-
related potentials. All the foci of activity observed with this model during o ur experiments were
in agreement with neurophysiological evidences in the eld of error potentials. Krther, it was
statistically proven that this inverse solution can improve the performances of an error detection
system for BCI with respect to a system based on EEG.
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We encountered some problems in localizing correctly clusters of activity relatedd error detec-
tion with the ELECTRA-LAURA model. Since our work is only the beginning of a lo nger process
aiming at combining inverse solutions like ELECTRA-LAURA with standard BCI methods, we
can only conclude that further investigations are needed in order to understand the reasonsfo
these unexpected results. Indeed, estimated local eld potentials have a crucial physiogical
meaning, and integrating this model into BCI systems could be useful to better undersand the
neuronal processes that we try to decode.

During our experiments on inverse solutions, we found that in average, only amall number
of channels had to be selected in order to achieve very good results in terms of slagtrial
classi cation of error-related potentials signals. This nding is probably the most important of
this thesis, since the main problem with inverse solutions is the dramatic incease of the initial
input space. Thus, by selecting a small number of relevant intracranial channels by mans
of appropriate feature selections, we can reduce the problem to the size of a standardE&
problem, and bene t from the better spatial resolution of inverse solutions without being limited
by computational problems. Moreover, online implementations including inverse shutions can
be allowed if the number of channels is not too big. These results show great prose for future
investigations about inverse solutions and their integration into BCI systems.

sLORETA inverse model has been used in this study as a visualization tool only.lts abilities
to describe neurophysiological processes over time are impressive, as well &s simplicity of
use. SLORETA allowed us to begin a pyschophysiological description of the undeying pro-
cess of BCI error-related potentials. An interesting study would consist in inting out the
di erences between "standard" error potentials elicited by the subject himself, and BO-driven
error-potentials. The rst elements of such a study are provided in this work. Moreover, we
could even extend the investigations to the comparison of di erent experimental potocols re-
lated to BCI error-related potentials. In our study, commands are delivered maually by the
users; it would be interesting to see the di erences in the psychophysiological pieess when the
subjects deliver the same commands, but mentally, by means of a brain-computer intertze.

In this thesis, we considered the application of error-related potentials in oder to apply our methods
and inverse models. The choice of this particular application was based on thisgraple idea: since error
potentials are temporally well de ned and focused on precise areas of the brain, ivould facilitate the
estimation of the quality of the methods and of the inverse solutions.

However, now that inverse solutions have proven to be useful for BCI, we haveotde ne precisely which
applications of BCI research really need the contribution of inverse models. Fsecially, we think that
inverse solutions are really useful for decoding neuronal processes that are not cleatbcalized, such
as movement imagination for instance. Indeed, this kind of mental task involes di erent processes
synchronizing at di erent instants and di erent locations in the brain. Scalp EEG el ectrodes will have
di culties in order to decode precisely such neuronal patterns, and the enhanced spatial resolutin
provided by inverse solutions becomes crucial in such cases. Thus, future invegétions will have to
be done in order to assess the potentialities of inverse solutions in the ctext of motor imagery.

9.2 Conclusion

MAIA Project The current study is related to an European project called MAIA* (Mental Aug-
mentation through Determination of Intended Action { Non Invasive Brain Interaction with Robots).
The goal of this project is to develop non-invasive prosthesis driven by a BCI sstem. Particularly,
one of the major objectives is to perform recognition of the subject's motorintent from the analysis
of high resolution brain maps, which estimates intracranial potentials from scalp EEG. In addition,
recognition of cognitive states such as error-related potentials detection W be integrated in the sys-
tem. Final applications will be an intelligent BCI-driven wheelchair, or the control of a robot arm.

14 http://www.maia-project.org/
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Thanks to this project, | had the opportunity to attend the 2006 MAIA Workshop *°, which took place
in Rome in November 2006.

Finally, the results of this study are satisfying, since the main goals ofthe thesis are achieved:
we developed and compared feature selection methods, and we assessed the potetyiadf inverse
models in the context of BCI research. Of course, this master thesis is only the begning of a much
harder and longer work, aiming at integrating inverse models in a real BCI sgtem. However, the
results reported in this thesis give new insights into how such models can be peessed, and future
investigations promise to be exciting.

15More infos on MAIA website.
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