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1 Introduction

1.1 Brain Machine Interface Systems

Today’s Brain-Machine Interfaces (BMIs) and Brain-Computer Interfaces (BCIs) represent a wide
and active research field in the context of neurophysiology, neuroengineering, signal processing and
machine learning. The main goal of Brain-Machine Interfaces is to allow severly handicapped persons
to communicate with their environment and recover motor abilities, by means of an artificial interface
controlled in real time by electrical brain activity. The art of interfacing the brain with artificial
devices, such as computers or neuroprosthesis, has been described in several scientific articles: new
readers could, for example, have a relatively complete review of invasive and non-invasive1 BMI
research with [28], [31] and [50]. Recently, it was proven that a mobile robot could be guided by a
non-invasive BCI system in a realistic environment [33]; this shows great promise for future applications
to real life, for example with the creation of an intelligent wheelchair or an artificial limb. In this
work, exclusively non-invasive BCI systems are considered, and we will simply refer as ”BCI systems”
from now. This choice is motivated by the fact that such interfaces can be used directly on human
beings, and therefore provide ethically correct solutions and applications in the short term.

The architecture of a standard BCI system illustrates the multidisciplinary characteristic of this
scientific discipline. In order to extract meaningful commands and information from raw electrical
activity of the brain, several important issues have to be addressed, as shown in figure 1.

Figure 1: Architecture of a standard BCI system. (Source: Courtesy of J. del R. Millán)

• The first step, and maybe the most important, is the acquisition of the neurophysiological signal.
The importance of having a clean signal from the beginning is crucial for later processing, and the
acquisition system must be chosen and used with special care. In section 4, a system measuring
electroencephalogram2 (EEG) activity is described.

• The second part of the process represents the main point of this work, namely the selection of
key features in the input signal, allowing to extract only the most relevant EEG components,

1Non-invasive means outside the skull, without affecting it surgically.
2See section 2.1 for a definition.
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for which the performance of the system is the best. Special attention must be paid to this
feature selection process, since it can improve the efficiency of the BCI system, both in terms of
recognition rate and computational load.

• Once the features have been chosen, the BCI system must determine, for a given EEG activity,
the most probable command meant by the user. This process is assessed by a classification
procedure, and is directly related to machine learning algorithms.

• Finally, the extracted command must activate the BCI system according to the user’s intention.
The system output can be for example a motor command, or the choice of a letter in order to
write a message. Moreover, a feedback has to be provided to the user in order to close the loop,
in case of an error in the system detection. This final step is more related to robotics, and is
beyond the scope of this work.

Recently, non-invasive methods estimating intracranial sources from scalp EEG have been de-
veloped by several scientific groups. These methods, often called inverse solutions, could be of high
interest for BCI research, since estimated intracranial activity could provide a better spatial resolution
than mere EEGs in order to decode brain activity, and thus user’s intents. Moreover, these models
allow a better understanding of dynamic neuronal processes in humans. Such methods are described
in section 2 and are extensively used in the context of BCI throughout this study.

1.2 Outline of the Thesis

More precisely, this thesis focuses on the coupling of BCI feature selection methods with inverse
solutions estimating intracranial activity. Indeed, approximating neuronal sources implies that the
number of measurement points increases drastically. Therefore, feature selection methods become
essential in order to minimize computational load. Moreover, we want to assess the potentialities of
integrating inverse solutions in a BCI system in order to improve overall performances. The following
points are presented:

• In chapter 2, the challenging issue of estimating non-invasively intracranial activity is addressed.
The mathematical framework of the problem as well as three different models used during this
work are described.

• In chapter 3, three feature selection methods that have been studied and developed during
this work are described. The first method is the well-known Relief algorithm, and its modified
versions; the second method is an improved version of a simple power discriminant method, and
the third method is an algorithm based on linear discriminant analysis.

• Finally, all methods and models are compared and tested in a specific application related to
BCI research: detection of error-related potentials. In chapter 5, the state of the art of error-
related potentials is presented; on this basis, we can compare in chapter 6 the different feature
selection methods in terms of classification accuracy. Chapter 7 compares the different inverse
solutions, both in terms of localization of the selected features and in terms of classification
of cognitive states. Finally, in chapter 8, we assess the potential improvements of integrating
inverse solutions in a BCI system with respect to a standard BCI system based on EEG. All
these investigations aim at providing an extension to a previous study made at IDIAP about
error-related potentials.
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Part I

Methods
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2 Estimation of Intracranial Activity from Scalp EEG

The main goal of this thesis is to use estimated intracranial activity combined with feature selection
methods in order to improve current BCI systems. In this chapter, we provide a theoretical framework
of intracranial activity estimation and its underlying concepts. Besides, three inverse models that have
been used during our studies are presented, with an emphasis on their respective specificities.

It is worth to note that brain electromagnetic tomography, i.e. the non-invasive three-dimensional
reconstruction of the neuronal sources of the brain’s electrical activity measured at the scalp, is a
very wide and complex research field. During this work, we only considered these inverse solutions
as available tools that we integrated in BCI systems; a description of the design and development
of such models is beyond the scope of our work, but interested readers will find several references
throughout this chapter. However, this chapter should provide all the necessary elements for a good
understanding of our studies.

2.1 EEG Measurements

Before presenting the inverse models that we studied during this work, we shortly remind the basic
principles of electroencephalogram (EEG) measurements; plenty of books, like for example [45], can
give supplementary information on EEG signals, EEG processing and applications.

EEG measures the joint electrical activity of millions of active neurons in the brain. It can be
measured with electrodes at the surface of the scalp, or intracranially; during this current study,
only non-invasive scalp EEG has been investigated. The EEG activity mainly reflects the more or less
synchronous activation of a large population of neurons, and more precisely their postsynaptic activity ;
the intracranial mean measure of this postsynaptic activity is called local field potentials (LFP). For
more details about synaptic transmission and neuronal activation, refer to [6].

If in a large population, neurons are spatially aligned and have a synchronous activity, the resulting
superimposed electrical field will be detected by electrodes at the scalp surface. This situation is often
encountered for cortical pyramidal neurons, since they are oriented perpendicularly to the cortical
surface, and their activity is thus most likely to be measured by EEG (see figure 2).

EEG can give neuronal information within a millisecond timescale: this very good temporal res-
olution allows to better understand neuronal dynamics and is the biggest advantage in using this
technique, with respect to other imaging techniques such as magnetic resonance imaging (MRI) or
positron-emission tomography (PET). However, the distance between the electrodes and the actual
source of neuronal activity is an important drawback of EEG measurements, since it creates a low-
pass filtering on the source signal. Thus, spatial resolution can become a problem in order to precisely
describe neuronal processes; for this reason, estimation of intracranial activity from scalp EEG is a
key challenge in neuronal data processing.

2.2 The Inverse Problem: A General Approach

Estimating the neuronal sources that generated a given potential map at the scalp surface requires the
solution of an inverse problem. Such inverse problems are always initially undetermined, i.e. there is
no unique solution. These problems require therefore supplementary a priori constraints in order to be
univocally solved. The ultimate goal is then to un-mix the signals measured at the scalp, attributing
to each brain area its own estimated temporal activity.

Historically, two different possible directions have been investigated in order to solve this inverse
problem and find the generators of a given scalp activity; a global review can be found in [30]. On
one hand, the so-called dipole localization models assume that only a limited number of generators are
active over a period of time (e.g. [44], [11]); these generators are typically modeled as equivalent current
dipoles (ECD). The number of generators that can be active at a given time is limited by the number
of electrodes used for EEG measurements; thus, when in a given problem, the exact number of dipole
sources cannot be determined a priori, this family of methods is not very appropriate. In such cases,
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Figure 2: EEG principle: electrical fields generated by aligned pyramidal cells. (Source: Bear [6],
2001, p.637)

distributed models based on the linear theory in conjunction with mathematical and/or biophysical a
priori constraints are more likely to be used (e.g. [10], [18], [1], [4], [3],[24]); these distributed models
do not need a priori assumptions about the number of source generators, and estimate cortical current
density by using sophisticated computational algorithms and detailed geometrical models of the head
as volume conductor. With this approach, typically thousands of ECD covering evenly the cortical
mantle are used, and their strength is estimated by using linear inverse procedures. In this work, only
distributed models are considered.

2.2.1 Distributed Linear Inverse Estimation

For clarity purposes, we adopt the notation used in [9] for the formulation of inverse estimation, and
we follow a similar reasoning to present the general form of a distributed linear inverse estimation.
Assuming a measurement noise n, an estimate of the dipole source configuration that generated a
scalp potential b is obtained by solving the linear system:

Ax + n = b (1)

where A is a m × n matrix with m the number of sensors and n the number of modeled sources.
The matrix A is called the leadfield matrix : the jth column Aj represents the potential distribution
over the m sensors due to each unitary jth cortical dipole, and the collection of Aj describe how
each dipole generates the potential distribution over the head model. The estimation of the cortical
current density x is called the solution of the linear inverse problem, or inverse solution. In most
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cases, the dimension of the vector x is greater than the number of measurements b of about one order
of magnitude; thus, the linear system is strongly under-determined, and can have an infinite number
of possible solutions. In order to solve this problem for a unique solution, assuming that n is normally
distributed, a regularization scheme utilizing the Lagrange multiplier λ is applied, and the following
functional has to be minimized:

x̂ = arg min
x

(Φ), Φ = ‖Ax − b‖2
M + λ2‖x‖2

N (2)

where the matrix N is the metric of the source space, i.e. the space of the current strength solutions
x, and the matrix M is the metric of the data space, namely the space in which b is considered. If
no a priori information is added to equation (2), M and N are set to identity, and the estimation
made is called minimum norm estimation (MN). Interpreting (2), it appears that on one hand, we
try to minimize the energy of the error on the sensor data, given by the first term of Φ. On the other
hand, a second term involving the energy of the source x regularizes the ill-posed problem: this term,
modulated by λ, tends to minimize the overall intensity of the current distribution. At the end, a
unique solution will be found, because only one combination of intracranial sources fit exactly the
data, and has at the same time the lowest overall intensity. The problem is that the algorithm favors
weak and localized activation patterns, instead of solutions with strong activation of a large number
of solution points. Thus, the MN algorithm favors superficial sources, since less activity is required
in superficial solution points to provide a certain surface voltage distribution: such models are not
satisfying, because it means that deeper sources are incorrectly projected on the surface of the scalp.
In order to cope with this problem, a well-known solution proposes to take into account a compensation
factor for each dipole that equalizes the visibility of the dipoles from the sensors point of view. This
so-called column norm normalization changes the source metric N as follows:

(N−1)ii = ‖A·i‖
−2 (3)

with (N−1)ii the ith element of the inverse of the diagonal matrix N and ‖A·i‖ the L2 norm of the
ith column of the lead matrix A. The use of this definition of the matrix N is known as weighted
minimal norm solution (WMN), and penalizes dipoles close to the sensors in the solution of the inverse
problem, since they have a large ‖A·i‖. Thus, WMN solutions provide better estimates of intracranial
activity, especially in the case of deep sources.
Equations (1), (2) and (3) set a general framework for distributed linear inverse models. From that
point, a lot of free parameters have to be carefully chosen in order to converge to the best unique
solution as possible. For example, the choice of additional constraints is crucial in terms of model
specificity, and can drastically change the behaviour of the inverse solution. Additional constraints
come from assumptions about likely current source distribution and statistics, sensor statistics, and
information from other imaging techniques. In the next section, three inverse models with different
assumptions are presented.

2.3 Inverse Solutions

2.3.1 CCD Inverse Model

The first presented model, that we will call CCD inverse model for ”cortical current density inverse
model”, has been developed and provided by a research group working in the IRCCS Fundazione Santa
Lucia, located in Rome3. References about this approach can be found in [4] and [5]. The model aims
at providing an estimation of the activity of the cortical mantle. The procedure follows the reasoning
of section 2.2.1 and includes:

1. a realistic magnetic resonance-constructed average head model.

2. multi-dipole cortical source model.

3http://www.hsantalucia.it/
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3. regularised, weighted, minimum-norm linear inverse source estimate based on boundary element
mathematics (WMN).

First, a geometrical reconstruction of the cortical surface is obtained from magnetic resonance imaging
(MRI). In this model, the 152 subjects average brain of Montreal Neurological Institute4 was used
to have a realistic head model. At that point, an important anatomical constraint is considered: it
is assumed that much of the observable EEG is produced by currents flowing in the apical dendrites
of cortical pyramidal cells. The columnar organization of the cortex implies that the resulting local
dipole moment is assumed to be oriented perpendicularly to the cortical surface. Thus, if the shape
of the cortical mantle is known, we can divide it into patches that are sufficiently small so that a
dipole in the center of a patch is representative of any dipole distribution within the patch. With
the constraint of perpendicular orientation of the dipoles, the inverse problem reduces to estimating
scalar distributions of dipole strength over the oriented patch.
In the case of the CCD inverse model, the MRI-based reconstruction of the head models the corti-
cal mantle as a polyhedron with triangular faces, preserving the general features of the neocortical
envelope; then, an orthogonal unitary ECD was placed in each node (or vertex ) of the triangulated
surface. On the whole, 3013 discrete current dipoles are chosen to represent the continuum current
source distribution; see figure 3 for a view of the brain provided by the model.

Figure 3: CCD inverse model: front and lateral views of the cortical mantle modeled with 3013 vertices
of a polyhedron with triangular faces.

The second constraint of the CCD inverse model is based on WMN estimates, and forces the dipoles
to explain the recorded data with a minimum or a low amount of energy, whitout penalizing too much
deeper sources, as explained in section 2.2.1. During this thesis work, the CCD inverse model has
been used extensively, both for localization studies and for BCI-oriented classification procedures, and
showed impressive results.

2.3.2 sLORETA Inverse Model

The second inverse model is a standardized low resolution brain electromagnetic tomography method
(sLORETA): this software, known for its zero localization error, is freely provided by the KEY Insti-
tute for Brain-Mind Research5 in Zürich. We used this software only as a localization tool throughout
the studies, but a description of the method for localizing sources is useful here. The volume con-
ductor model is a three-shell spherical head model registered to the Talairach human brain atlas [46],

4http://www.bic.mni.mcgill.ca/
5http://www.unizh.ch/keyinst/index.html
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available as a digitzed MRI from the Montreal Neurological Institute imaging center; the solution
points are placed on a 3D regular grid covering the whole brain.
Historically, a first method called low resolution electromagnetic tomography (LORETA) was intro-
duced by Pascual-Marqui in [38] and [37]. In this method, an additional constraint called Laplacian
Weighted Minimum Norm was added to the typical WMN depth weighting. This method selects
the solution having the smoothest spatial distribution by minimizing the Laplacian of the weighted
sources, a measure of spatial roughness. A physiological assumption is hidden behind this method:
the model assumes that neighboring grid points, i.e. neighboring neurons, are more likely to be syn-
chronized (similar orientation and strength) than grid points that are far from each other. Thus, this
maximization of smoothness is applied to find a unique distribution of electrical activity in the brain.
The characteristic feature of this solution is its low spatial resolution, which is a direct consequence
of the smoothness constraint: LORETA provides rather blurred images of a point source, conserving
the location of the maximal activity with a certain degree of dispersion, as shown in figure 4, gener-
ated by sLORETA. Furthermore, the assumption that two neighboring areas are correlated has to be
considered with caution; indeed, functionally distinct areas can be anatomically very close. However,
the localizations made by LORETA are satisfying in most cases.

Figure 4: sLORETA model: front and lateral views of the brain during a localization study.

Recently, a new version of the method, called standardized low resolution brain electromagnetic
tomography (sLORETA) has been developed, and yields images of standardized current density with
zero localization error. The difference with the previous algorithm is that sLORETA employs the
current density estimate given by the minimum norm solution, and localization inference is based on
standardized values of the current density estimates, as explained in [36]. Only by itself, the solution of
the MN inverse solution is incapable of correct localization of deep sources. With this standardization
process, sLORETA reaches zero localization error, even if the sources are deep. However, the drawback
of this method is that because of this standardization process, sLORETA is not an authentic solution
to the inverse problem; according to the KEY Institute website, it seems that a new version of the
software, called eLORETA (for ”exact low resolution brain electromagnetic tomography”) will soon
be released, and will provide a formal solution providing exact localization to test point sources.

2.3.3 ELECTRA-LAURA Inverse Model

The third inverse solution presented here is slightly different from the previous models; this is a
distributed source model called ELECTRA (for electrical analysis), developed by Grave de Peralta
Menendez and colleagues ([23], [24]) in Geneva University Hospital (HUG). In conjunction with this
linear distributed model, a regularization strategy called LAURA (local autoregressive averages) is
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applied on the inverse solution.
The difference of ELECTRA-LAURA model is that the source model is changed with respect to the
previous models, based on the following considerations: the microscopic current flowing in biological
tissue can be decomposed into two terms: a primary current (or active current) and a secondary cur-
rent (or volume current). Primary currents are induced by ionic flow between intra- and extra-cellular
space in activated neurons, whereas volume currents are passive currents representing the electrical
response of the media to compensate charge accumulation driven by primary currents, according to
electrochemical gradient. It has been shown in [39] that only volume currents are measured by EEG,
and not active currents: this observation is crucial, since the mathematical implication is that the
currents measured by EEG are ohmic and can be modeled as irrotational currents. Thus, the ELEC-
TRA source model only estimates ohmic currents; it is not an inverse solution, but rather a source
model in which the generators of the scalp maps are the intracranial potentials instead of the usual
3D current densities.
In order to reach a unique solution, a regularization strategy called LAURA (for ”local auto-regressive
averages”) incorporates biophysical laws as constraints in the MN algorithm ([24], [22]). According
to Maxwell equations, the strength of the sources fall off with the inverse of the cubic distance for
vector fields, and with the inverse of the squared distance for potential fields. LAURA integrates these
laws in terms of a local autoregressive average with coefficients depending on the distances between
solution points.
The model provided by Geneva’s group is composed of a solution space formed by 4024 nodes (re-
ferred to as voxels) homogeneously distributed within the inner compartment of a realistic head model:
once again, the head model is the average brain of Montreal Neurological Institute. The voxels are
restricted to the grey matter and form an isotropic grid of 6 mm resolution. A view of the solution
space of this model is presented in figure 5.

Figure 5: Isotropic 3D grid of voxels provided by ELECTRA-LAURA inverse model.

The most interesting point with ELECTRA-LAURA inverse solution is that the model allows an
estimation of the 3D distribution of electrical potentials in the brain as if they were recorded with
intracranial electrodes. As we mentioned above, LFPs arise largely from dendritic activity over large
brain regions and thus provide a measure of the input to a given area, and of the local processing
within this area. Recently, LFPs revealed themselves to be of crucial interest for providing meaningful
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information about neuronal processes related to motor actions (e.g. [13], [43], [40]), and more generally
about brain dynamics (e.g. [49], [19]). Hence, estimating the LFP activity from the scalp EEG
represent a very challenging and exciting issue, since it can provide a non-invasive way to investigate
neuronal processes in humans with a highly relevant physiological meaning.
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3 Feature Selection Methods: Filter Methods

In a BCI classification context, data describing a given mental task are fed to a classifier for decision
making. Ideally, the classifier should be able to use whichever features are necessary, and discard the
irrelevant features. However, it is known that the complexity of many learning algorithms depends
on the number of input dimensions, as well as on the size of the data sample. Mostly for this reason,
researchers are interested in reducing the dimensionality of the problem. Therefore, feature selection
methods are crucial in order to choose a smaller number of features that will describe the data at
best. In a classification task, the features have to be selected according to their ability to discriminate
between the different classes of a given problem. Thus, a good feature selection should provide
accurate discrimination and reduce the computational load. Therefore, feature selection has become
a very active field of research in the context of BCI (see [32]).
This chapter describes three feature selection methods that have been implemented and tested during
this work. Before presenting our methods in details, a brief introduction about feature selection
modalities justifies our choice of methods. Then, section 3.2 introduces the so-called Relief and
ReliefF algorithms. Section 3.3 describes a modified version of a simple power discriminant function.
Finally, section 3.4 presents an algorithm based on linear disriminant analysis.

3.1 Filter Methods vs. Wrapper Methods

Feature selection aims at finding those relevant components for which the performance of the learned
classifier is the best. From this idea, we can differentiate two processes, that we will consider as
separated: feature selection on one hand, and induction, i.e., the process of learning the appropriate
classifier, on the other hand. Depending on the relationship between these processes, it is possible to
distinguish two important families of methods:

1. Filter methods - the feature selection is done before induction algorithm.

2. Wrapper methods - the feature selection process uses the induction algorithm.

Filter methods are applied on the entire dataset, and before the induction algorithm, as shown
in figure 6. The name given to these methods is meaningful, since irrelevant attributes in the initial
dataset are filtered, creating a simplified dataset for the induction algorithm. The main disadvantage
of filter methods is that feature selection is completely independent of the induction algorithm, and
the former cannot be guided by the classifier error rate. Indeed, the criteria used to decide if a feature
is relevant or not vary from a filter method to another, and in most of cases, these criteria are not
exactly the same as those of the induction algorithm. Thus, the best features selected by the filter
method are not necessarily the best features according to the criteria of the induction algorithm.

Training set Training set*
Induction algorithmFeature selection

Classifier

Figure 6: Schematic process of a filter method.

On the contrary, wrapper methods use the induction algorithm to make the selection, as shown
in figure 7. Following a given strategy, the feature selection process explores the state space of each
subset of features in the entire training set. For each state, i.e. each subset of features, the evaluation
of the quality of the subset is done by an appropriate function executing the induction algorithm.
The latter builds a classifier based on the simplified training set containing the features of the current
subset, and estimates the performance of the classifier. From this estimation, the feature selection
process decides to keep this subset of features, or to try another one. Going from one state to another
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is done by using operators that delete or add features from or to the current set: starting from an
empty set and adding features is called forward selection, whereas starting with the full set of features
and deleting them is called backward elimination. At the end of the feature selection process, the
selected relevant features are used to build the final classifier, which is tested on a testing set totally
independent of the training set.
In the case of wrapper methods, there is a strong interaction between selection and induction algo-
rithms. The estimated performance of the classifier is the quality criteria for the selection of features:
in some sense, these features are specifically chosen for the final classifier. Thus, wrapper methods
find more relevant features than filter methods in most of the cases. However, the major disadvantage
of wrapper methods is the high computational complexity of the process. Exploring all the subset of
features for a given training set implies a lot of iterations, and building a classifier for each iteration
is highly time consuming.

Training set Training set*

Training set*

Training set*

Induction algorithm

Induction algorithm
Selection of a

subset of features

Evaluation

Evaluation

Performance

Performance

estimation

estimationTest set*

Classifier Classifier

Figure 7: Schematic process of a wrapper method.

For BCI applications, it seems that wrapper methods are reasonably not appropriate, because of the
slowness of the feature selection process. Indeed, the goal of a BCI system is to decode brain activity
in real time; it is clear that wrapper methods don’t allow this kind of quick processes. Therefore,
this chapter focuses on filter methods only, so that if one of the methods shows great promise during
offline6 analysis, it will be possible to integrate it in a real BCI system.

3.2 Relief and ReliefF Algorithms

The Relief family of algorithms, firstly described in 1992 [26], is a group of general and successful
attribute estimators, well described by Robnik-Šikonja and Kononenko [41]. This section provides a
theoretical description of these methods, as well as a presentation of the practical implementation of
the methods.

3.2.1 Theory of Relief and ReliefF Algorithms

In this section, we describe the Relief algorithms implemented during this work, and their theoretical
properties. We assume that examples I1, I2, . . . , In in the instance space are described by a vector of
attributes Ai, i = 1, . . . , a, where a is the number of explanatory attributes, and are labelled with the
target value τj . The examples are therefore points in the a dimensional space. We will first describe
the original Relief algorithm, limited to classification problems with two classes; then we will discuss
its ReliefF extension for multiclass problems.

6”offline” means ”not in real time”.
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Relief Algorithm The original Relief algorithm [26] deals exclusively with two class problem. The
main idea of the method is to estimate the quality of attributes (or features), by determining how
well their values distinguish between instances that are near to each other. More precisely, Relief acts
iteratively: in each iteration, Relief selects a random instance Ri, and then searches for two nearest
neighbors: one from the same class, called nearest hit H, and the other from the other class, called
nearest miss M . The quality estimation W [A] is updated for all attributes A depending on their
values for Ri, M and H; at the end, the weight assigned to every feature is a real value in the range
[−1; 1] . A pseudo-code of the algorithm is given in figure 8.

Figure 8: Pseudo code of the basic Relief algorithm.

Function diff(A,I1,I2) is used to calculate the difference between the values of the attribute A for
two instances I1 and I2. For numerical attributes, it is defined as:

diff(A,I1,I2) =
|value(A, I1) − value(A, I2)|

max(A) − min(A)
(4)

This function is also used to compute the distance between instances to find nearest neighbors. In
this process, the total distance can be simply assumed to be the sum of distances over all attributes
(Manhattan distance).

The idea behind the process of Relief algorithm can be intuitivey understood. On one hand,
different values of the attribute A between Ri and M means that this attribute A tends to separate
two instances with different class labeling; in this case, the attribute has a desired discriminative effect,
and the quality estimation W [A] is thus increased. On the other hand, if A shows different values
for Ri and H, W [A] will be decreased, because attribute A tends to separate instances of the same
class. The whole process is repeated m times, where m can be defined by the user. At the end of the
iterative process, the vector W will give for each feature a score representing the ability of the feature
to separate instances of different classes and keep instances of the same class near to each other.

ReliefF algorithm An extended version of Relief, called ReliefF algorithm, was developed in 1994
[27]. This algorithm is not limited to problems with two classes and is known to be more robust
to noise. The difference with the original Relief algorithm is that after having randomly selected an
instance Ri, ReliefF searches for k of its nearest neighbors from the same class, called nearest hits Hj ,
and k nearest neighbors from each of the different classes, called nearest misses Mj(C). The quality
estimation W [A] for all attributes is updated depending on their values for Ri, Hj and Mj(C), as
shown in the pseudo-code of figure 9. The contribution of all the hits and all the misses are averaged
in the update formula, and the contribution for each class of the misses is weighted with the prior
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probability of that class P (C). In this work, all classes are assumed to have the same prior probability.
The factor 1−P (class(Ri)) dividing each probability weight ensures that misses’ probability weights
sum to 1, thus providing symmetric contributions of hits and misses. The whole process is repeated
for m times.

The most important difference of ReliefF algorithm is the user-defined parameter k, that has
several advantages:

• Selection of k nearest hits and misses provides greater robustness of the algorithm concerning
noise. To illustrate this assumption, let us consider a situation where two instances of a class are
outliers, namely far from the mean of the class, but somehow near to each other. In this case, if
one of the outliers is selected as Ri, the nearest hit H will surely be the other outlier. If only one
neighbor is considered, most of the attributes will be very similar between the selected outlier
Ri and his neighbor H, although they are not representative of the mean behaviour of the class,
and the corresponding quality estimates will be increased. On the contrary, if several neighbors
are observed, the other nearest hits Hi, i = 2, ..., k, will have different values of attributes from
those of Ri. The weighted contribution of the k neighbor will thus update the vector W in a
more appropriate way. In that sense, taking several neighbors applies a filtering on noisy data.

• The parameter k is also useful in order to control the locality of the estimates. When k is small,
the quality estimation W [A] of attribute A is based on the similarity of attribute A between
instances that are near to each other, in a very local domain. When k increases, the weighted
sum contributing to the update of W [A] contains instances that are more distant from each
other; the locality of the estimates is less restricted.

Figure 9: Pseudo code of the extended ReliefF algorithm.
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3.2.2 Implementation and Validation under Matlab

Relief and ReliefF algorithms have both been implemented under Matlab 7.17. Several versions of the
algorithms have been implemented: one version is the basic Relief algorithm for two class problems,
as described in section 3.2.1. ReliefF algorithm for multiclass problems has been coded as well, and
a version of ReliefF for two class problems has been developed, in order to take advantage of the
parameter k even for two class problems.

In order to verify that the algorithms have been implemented correctly, we reproduced an example
given in the reference [41]. In this example, a Boolean problem is presented, where the class value is
defined as τ = (A1 ∧ A2) ∨ (A1 ∧ A3). Table 1 gives a schematic description of the problem.

Line A1 A2 A3 τ Responsible attributes
1 1 1 1 1 A1

2 1 1 0 1 A1 or A2

3 1 0 1 1 A1 or A3

4 1 0 0 0 A2 or A2

5 0 1 1 0 A1

6 0 1 0 0 A1

7 0 0 1 0 A1

8 0 0 0 0 (A1, A2) or (A2, A3)

Table 1: Schematic description of the concept τ = (A1 ∧A2)∨ (A1 ∧A3) and the responsibility of the
attributes for the change of the predicted value.

The right most column of the table shows the attributes responsible for the change of the predicted
value. For example, in line 1, A1 is responsible for the class assignment because changing its value to
0 would change τ to 0, while changing only one of A2 or A3 would leave τ unchanged. The other lines
can be explained similarly. It is then possible to give an estimate of the importance of each feature:

A1 will get the estimate
4+2· 1

2
+2· 1

2

8 = 3
4 = 0.75, since it is alone responsible for lines 1,5,6,7, shares

the credit for lines 2 and 3, and cooperates in both credits for line 8. Similarly, A2 and A3 both get

estimates
2· 1

2
+ 1

2

8 = 3
16 = 0.1875. In order to scatter the concept and make the problem more difficult

to solve, five random binary attributes, A4 to A8, were added besides the relevant features A1, A2

and A3. ReliefF was then applied on this problem, and the results for the values of A1, A2 and A3

are shown in figure 10. The X-axis of the figure represents the number of trials for one class; it means
that the dataset will then contain 2 · Ntrials instances. We can observe that when the number of
trials increases, the estimate for A1 converges to 0.75, and the estimates for A2 and A3 approach the
expected value 0.1875; of course, the convergence is not exact because we are observing a practical
case of the theoretical concept, involving randomly generated data. The estimates of the random
features A4 to A8 are set to 0 relatively quickly during the iterations.

3.2.3 Convergence of Relief and ReliefF Algorithms

Since the algorithms of Relief family are iterative, the issue of the convergence and the stability of the
process have to be investigated, in order to assess the parameters that will provide a correct estimate
of the quality of the features. Two concepts are crucial for iterative algorithms: the convergence of
the algorithm on one hand, and the stability of the convergence on the other hand.

• Figure 10 shows that when the number of trials increases above a certain threshold, the algorithm
will converge accurately. It is therefore likely to have big datasets containing a lot of single trials,
so that the algorithm can approximate correctly the importance of each feature. However, even

7http://www.mathworks.com/
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Figure 10: Estimates of the attributes made by ReliefF for the Boolean problem
τ = (A1 ∧ A2) ∨ (A1 ∧ A3).

if the number of trials is small, Relief(F) algorithm can provide a pretty good estimate of the
features quality, as shown in the same figure.

• The second important free parameter of Relief(F) algorithms is the number of iterations made by
the algorithm. This user-defined parameter seems to have a significative effect on the stability of
the estimates. In order to show this dependency, we repeated the Boolean problem experiment of
section 3.2.2 for different numbers of iterations, as shown in figure 11. For consistency purpose,
the parameter Niter is defined as a fraction of the current Ntrials value, in order to apply always
the same relative number of iterations with respect to the dataset, when Ntrials increases. Figure
11 shows that the estimates of the features are more stable when Niter ≥ 0.5 · Ntrials; we can
keep this value in mind as a reference, but each application could need a specific fine-tuning of
Niter in order to ensure the best convergence.

3.3 Modified Discriminant Power Method

In this section, we present a very simple but efficient feature selection method that we called discrimi-
nant power function (DP) [21]. More precisely, we implemented a modified version of the DP function
that can deal with noisy data. The basic method will be first introduced, and then the modified
method implemented during this work will be described.
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Figure 11: Comparison of convergence for different numbers of iterations: (a) Niter = 0.1 ·Ntrials; (b)
Niter = 0.2 · Ntrials; (c) Niter = 0.5 · Ntrials; (d) Niter = 1 · Ntrials.

3.3.1 Basic DP Function

A basic DP function estimates the quality of a given feature following a very simple principle: if the
distribution of the feature, namely its probability density function (pdf), is different for each class,
then the feature is a good candidate to discriminate between these classes. More precisely, let us take
the example of a two class problem. If the distribution of the feature f for class 1, pdf1(f), is well
separated from the distribution of the same feature for class 2, pdf2(f), then the feature f has a high
discriminant power; otherwise if pdf1(f) and pdf2(f) are strongly overlapping, the discriminant power
of feature f is low.

Actually, the basic version of DP function doesn’t make an estimation of the pdf of each class for a
given feature f , but simply looks for the maximum and minimum sample values of feature f for each
class over all trials. With these boundaries max(sfk) and min(sfk) for the kth class and for feature f ,
the algorithm can then calculate the proportion of samples of feature f lying in the non-overlapping
zones between boundaries of each class. For a two class problem, the formula of the discriminant
power of feature f would be:

NDf1 =

Nt1
∑

i=1

(

1
(

sf1(i) > max(sf2)
)

+ 1
(

(sf1(i) < min(sf2)
)

)

(5)

NDf2 =

Nt2
∑

j=1

(

1
(

sf2(j) > max(sf1)
)

+ 1
(

(sf2(j) < min(sf1)
)

)

(6)

DP(f) =
NDf1 + NDf2

Nt1 + Nt2
(7)
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where Nt1 and Nt2 are the respective number of samples (or trials) for each class, sf1 and sf2 are
vectors containing the samples of class 1 and 2 for feature f , NDf1 and NDf2 are the number of
discriminant samples of each class located in non-overlapping zones, and 1(x) is a function defined by:

1(x) =

{

1 if x is true
0 otherwise

(8)

The basic DP algorithm returns a value DP(f) between 0 and 1 for each feature. This value can be
thought of as the discriminant power of the feature, since it is the percentage of discriminant samples
over all trials. A graphical representation of the process of the basic DP function can be found in
figure 12. The score returned by the DP algorithm for the example of this figure is the number of
samples lying out of the grey shaded area divided by the total number of samples of both classes.

class 1

class 2

pdf
overlapping zone

Figure 12: Schematic representation of basic DP algorithm.

The advantage of this basic method is that the mathematic operations involved in the process
are very simple, and thus quickly computed: this feature selection method is indeed very fast and
practical for online8 applications of a learning process. However, the basic DP function has a major
drawback: it is highly sensitive to noisy data. An example of this weakness is shown in figure 13. The
distributions shown in figure 13 are relatively well separated, and should give a good result in terms of
disriminant power. The only difference with figure 12 is that one of the samples of class 1 is corrupted
by noise, and can be considered as an outlier. The basic DP function will assume this outlier sample to
be the maximum of class 1 distribution, and the resulting ”overlapping” zone will entirely encompass
the distribution of class 2, since the grey shaded area of figure 13 is only defined by the extrema of
class 2. Comparing this situation with figure 12, it is straightforward to conclude that in this case,
the resulting score of DP algorithm will not be representative of the non-overlapping property of the
observed classes, even though the distributions of class 1 and 2 are not totally overlapping.

3.3.2 Modified DP Function

In order to cope with noisy data, a little preprocessing step has been added to the original DP
algorithm: the distributions of both classes are first truncated, in order to keep only a given percentage
of the data around the mean of each distribution. This pruning step will discard outlier data if the

8”online” means ”in real time”.



22 IDIAP–Com 07-04
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Figure 13: Sensitivity to noise of basic DP algorithm.

percentage of truncated data is well chosen. It is known that under the assumption of a normal
distribution, and for a given integer k, a certain percentage of the values are within k standard
deviations from the mean µ. Table 2 gives several different values of confidence intervals and the
corresponding proportion of data within the interval, for normal distributions. If we are not sure of

Confidence Interval % of data in the interval
[µ − σ;µ + σ] 68%

[µ − 1.177 · σ;µ + 1.177 · σ] 76%
[µ − 2 · σ;µ + 2 · σ] 95%
[µ − 3 · σ;µ + 3 · σ] 99%

Table 2: Confidence intervals and their corresponding proportion of data within the interval for normal
distributions.

the normality of the distribution, a more general formula is provided by Chebyshev’s inequality :

Pr(|X − µ| ≥ kσ) ≤
1

k2
(9)

Note that only the case k > 1 gives useful information. Thus, even if the distributions are not normal,
at least 100 · (1 − 1

k2 )% of the values are within k standard deviations from the mean µ.
Keeping a too high percentage of the original data could maintain some outlier data in the pruned

dataset, and the DP score would remain meaningless. The issue is thus to assess which is the percentage
of noisy data in a given application. In this sense, the full width at half maximum (FWHM) value
seems to be a good choice for an upper limit in the pruning process. The FWHM value is an expression
of the extent of a function, given by the difference between the two extreme values of the independent
variable at which the dependent variable is equal to half of its maximum value. An illustration of
FWHM value is given in figure 14 for a normal distribution; in this specific case, the relationship
between FWHM and the standard deviation is:

FWHM = 2 ·
√

2 · ln(2) · σ ≈ 2.354 · σ (10)

and FWHM is the interval µ±
√

2 · ln(2)·σ, which means that we keep 76% of the samples after having
truncated the distributions, according to normal distribution knowledge. In the implementation of the
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modified version of DP algorithm, we decided to approximate the distributions by normal distributions,
and simply keep data in the interval µ ±

√

2 · ln(2) · σ = µ ± 1.177 · σ, assuming that the maximum
value is near from the mean µ. Of course, taking the interval [µ − 1.177 · σ;µ + 1.177 · σ] as the
threshold of our algorithm is arbitrary and gives a comfortable margin; in any specific application,
if the percentage of noisy data is precisely known, the pruning threshold can be tuned so that only
outlier data are discarded. Nevertheless, it is crucial to keep in mind that if the amount of noisy
data is big, the distributions will not be strictly normal anymore, since the mean will be shifted away
from the maximum value of the distribution: in this case, the percentages given in table 2 are too
optimistic, and the pruning threshold will have to be chosen with care. But in any case, we believe
that the approximation of nearly normal distributions is acceptable for most applications, and our
choice of FWHM as truncated interval provides a good trade-off in order to remove noise without
losing too much information about the actual distribution.

µ

pdf FWHM = 2 ·
√

2 · ln(2) · σ

µ −
√

2 · ln(2) · σ µ +
√

2 · ln(2) · σ

1

1
2

Figure 14: Illustration of full width at half maximum value.

With this modified DP algorithm, the problematic situation of figure 13 can be solved, as shown
in figure 15. If the percentage of noisy data is not too big, the outliers of class 1 will be discarded by
the preprocessing step, and the remaining truncated distributions will reflect the real non-overlapping
property of the classes. Indeed, we can see that the grey shaded overlapping zone is defined by extreme
values of both classes, and the resulting score given by the modified DP algorithm is thus meaningful
in terms of discriminant power.

3.3.3 Validation with Synthetic Data

In order to compare the basic version of DP algorithm with the modified version implemented during
this work, a typical example with synthetic data has been generated and analysed. In this two class
problem, both class have initially normal distributions; class 1 has a mean µ1 = 0 and a standard
deviation σ1 = 0.7, while class 2 has a mean µ2 = 3 and a standard deviation σ2 = 0.7. In order to
make the situation more problematic, we added outlier samples to the first class, with mean µnoise = 10
and a standard deviation σnoise = 0.3. It is important to note that the population of outlier data
is relatively big, since it was set to 17% of the total population of class 1. Thus, the distribution of
class 1 is surely not normal anymore: the new mean of class 1 after noise addition is µ′

1 = 1.69 and
its standard deviation is σ′

1 = 3.814. The resulting classes are shown in figure 16.
Even with the presence of noise in the first dataset, it is obvious that class 1 and 2 are well separated,

and could give very good classification performances in a machine learning context. However, the basic
DP method will give a low score for the observed situation, because the overlapping zone will be totally
defined by samples of class 1, encompassing class 2 distribution. This configuration is similar to the
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Figure 15: Schematic representation of modified DP algorithm.
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Figure 16: Comparison of DP algorithms: Initial distributions for class 1 and 2.

case presented in figure 13, and provides a score that does not illustrate the separability of the classes,
since only one class contributes to the score. Table 3 shows th DP values of each method for the
current problem.

On the contrary, the modified DP method can deal with this kind of situation, as shown in figure
17. By truncating both distributions and keeping only the interval [µ − 1.177 · σ;µ + 1.177 · σ] of
the FWHM value, the algorithm ignores all the noisy samples, and returns its score only based on
relevant samples of both distributions. Even if the modified DP value is a little bit erroneous with
respect to the actual situation because both distributions have been firstly truncated, this score is
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Method Truncated Interval DP score (%)
Basic DP method - 39.56%

Modified DP method [µ − 1.177 · σ;µ + 1.177 · σ] 91.34%
Modified DP method [µ − 2 · σ;µ + 2 · σ] 50.57%

Table 3: Scores of different DP methods.
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Figure 17: Comparison of DP algorithms: distributions for class 1 and 2 after modified DP method.
Truncated interval: [µ − 1.177 · σ;µ + 1.177 · σ].

now representative of the separability of the classes, since the boundaries of the overlapping zone are
defined by both classes. Moreover, even if the red distribution of the second class looks a bit too
much truncated in figure 17, we have to keep in mind that in real applications, and especially for
applications dealing with bioelectrical signals, acquired data are always noisy, and follow normal law
only approximately. Thus, after the preprocessing step of modified DP algorithm, truncated data will
look more like the blue distribution of figure 17 than like the red one.
Finally, we show in figure 18 that if we choose the interval [µ− 2 ·σ;µ+2 ·σ] to truncate the samples,
the DP score of the same example drops again to a low value of 50.57%, because some outliers samples,
indicated by the black arrow, are kept despite the preprocessing step of our modified algorithm.

An important observation can be done at this point: the fact that, for this application, the interval
[µ ± 2σ] is too big and keeps noisy samples, can give us information about the ”normality” of class
1. When we introduce k = 2 in Chebyshev’s inequality, we obtain that 75% of the values should be
within the interval if the distribution was not normal. Knowing that noisy data in class 1 represent
17% of the population, we can infer that in our example, the interval [µ ± 2σ] contain at least 83%
of the values. This means that class 1, as expected, still has some similarities with a purely normal
distribution, which, by the way, would contain 95% of the population, as shown in table 2.
The conclusion is that taking FWHM value as truncating interval is a reasonable margin, if the
distributions are assumed to be approximately normal, since a maximum of 76% of the values would
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Figure 18: Comparison of DP algorithms: distributions for class 1 and 2 after modified DP method.
Truncated interval: [µ − 2 · σ;µ + 2 · σ].

be kept, in the case of a quasi-normal distribution; in this situation, noise removal will be done
successfully in most cases, whereas bigger intervals can fail for some situations.

3.4 LDA-based Feature Selection Method

In this section, we propose a feature selection method based on a linear discriminant classifier. After
a brief survey about linear discriminant analysis (LDA), the principle of this algorithm is described.

3.4.1 Linear Discriminant Analysis

Linear discriminant analysis (LDA) [2] is a supervised method for dimensionality reduction for clas-
sification problem. We present here the case where there are two classes; generalization to K > 2
classes is straightforward.
Given samples from two classes C1 and C2, we want to find the direction, as defined by a vector w,
such that when the data are projected onto w, the examples from the two classes are as well separated
as possible. the projection of x on the direction of w is

z = wT x (11)

Thus, if d is the number of dimensions of the input space, equation (11) is a dimensionality reduction
from d to 1.
µ1 and µ1 are the means of samples from C1 before and after projection, respectively. Note that
µ1 ∈ ℜd and µ1 ∈ ℜ. Given a sample X = {xt, rt} such that rt = 1 if xt ∈ C1 and rt = 0 if xt ∈ C2,

µ1 =

∑

t wT xtrt

∑

t rt
= wT µ1 (12)

µ2 =

∑

t wT xt(1 − rt)
∑

t rt
= wT µ2 (13)



IDIAP–Com 07-04 27

The scatter of samples for C1 and C2 after projection are

σ2
1 =

∑

t

(wT xt − µ1)
2rt (14)

σ2
2 =

∑

t

(wT xt − µ2)
2(1 − rt) (15)

After projection, for the classes to be well separated, we would like the means to be as far as possible

x1

x2

w

µ1

µ2

µ1

µ2

σ2
1

σ2
2

Figure 19: 2D two class data projected on w.

and the examples of classes be scattered in a region that is as small as possible. So we want |m1−m2|
to be large and s2

1 + s2
2 to be small (see figure 19). Fisher’s linear discriminant is w that maximizes

J(w) =
(µ1 − µ2)

2

σ2
1 + σ2

2

(16)

Rewriting the numerator, we get

(µ1 − µ2)
2 = (wT µ1 − wT µ2)

2

= wT (µ1 − µ2)(µ1 − µ2)
T w

= wT SBw (17)

where
SB = (µ1 − µ2)(µ1 − µ2)

T (18)

is the between-class scatter matrix. The denominator is the sum of the scatter of examples around
their means after projection and can be rewritten as

σ2
1 =

∑

t

(wT xt − µ1)
2rt

=
∑

t

wT (xt − µ1)(x
t − µ1)

T wrt

= wT S1w (19)
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where
S1 =

∑

t

rt(xt − µ1)(x
t − µ1)

T (20)

is the within-class scatter matrix for C1.
S1

P

t
rt is the estimator of the covariance matrix Σ1. Similarly,

σ2
2 = wT S2w with S2 =

∑

t(1 − rt)(xt − µ2)(x
t − µ2)

T , and we get

σ2
1 + σ2

2 = wT SW w (21)

where SW = S1 + S2 is the total within-class scatter matrix. Note that σ2
1 + σ2

2 divided by the total
number of samples is the variance of the pooled data. Equation (16) can be rewritten as

J(w) =
wT SBw

wT SW w
=

|wT (µ1 − µ2)|
2

wT SW w
(22)

Taking the derivative of J with respect to w and setting it equal to 0, we get

wT (µ1 − µ2)

wT SW w
·
(

2(µ1 − µ2) −
wT (µ1 − µ2)

wT SW w
SW w

)

= 0 (23)

Given that wT (µ
1
−µ

2
)

wT SW w
is a constant, we have

w = cS−1
W (µ1 − µ2) (24)

where c is some constant. Since we are more interested in the direction than in the magnitude, we can
just take c = 1 and find w. To summarize, we have projected the samples from d dimensions to one,
and any classification method can be used afterward. Fisher’s linear discriminant is optimal when the
classes are normally distributed, but it can be used even when the classes are not normal.

3.4.2 Proposed Algorithm

We developed a feature selection based on LDA classification, in order to establish a ranking of the
features in a given data set. A very basic LDA classifier was implemented on Matlab; the advantage is
that such classifiers are quick, and can be used in an iterative procedure. The Matlab function takes
two labeled matrices as inputs: the first matrix is the training set used to tune the classifier, and the
second is a test set allowing to return a score for the performance of the classifier. The process is the
following, for the case of the selection of Nsel features among Nf initial features:

• Each feature is considered independently, and Nf matrices are built with all the labeled trials
of the data set for each feature.

• A LDA classification procedure is applied on each of these matrices, giving a list of Nf scores.
The ranking of these scores gives the ranking of the corresponding features.

• The Nsel best features are kept from this list.

LDA classification is a relatively quick process, and that is the reason why we chose an LDA classifier
in our method. It is clear that we could have chosen any other classifier, such as a gaussian classifier or
an artificial neural networks, in order to insert it in our algorithm. But it is important to understand
that in this feature selection procedure, the absolute scores of classification are not really important in
order to create the ranking of the features: the interesting point is the relative scores between features.
Thus, the choice of the classifier is not crucial, and we decided to take the fastest one.
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Part II

Experimental Results: Error-Related

Potentials Study
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4 EEG Acquisition System

4.1 Experimental Setup

The EEG measurement system of IDIAP BCI group comes from Biosemi Instrumentation Company,
Amsterdam, Netherland 9. The model is an Active Two System, with 64 EEG electrodes following the
10-20 international electrode layout (see figure 20). Moreover, 8 supplementary electrode channels can
be used for complementary measurement, such as EMG. The digital resolution is very good (31.25nV)
and the input range is 524mVpp.

Figure 20: 64 EEG electrodes following the 10-20 international electrode layout.

In order to efficiently connect the system to the ground, the Biosemi system uses two electrodes: a
Common Mode Sense (CMS) electrode and a Driven Right Leg electrode (DRL). The CMS electrode
measures the potential of the patient, while the DRL electrode closes the loop between the patient
and the A/D converter. The DRL electrode is directly connected to a Driven Right Leg circuit [29],
in order to reduce the common-mode voltage and protect the patient by limiting the output current.

The Active Two system can assume any electrode or combination of electrodes to be the reference
of measurement, providing a sufficient Common Mode Rejection Ratio of 80dB.

4.2 Data Preprocessing

EEG signals were acquired continuously during relatively long sessions; the trials had to be segmented
afterward. The sampling frequency was 512Hz for the specific applications of this work. The pre-
processing made on raw EEG data was applied systematically. These preprocessing steps are the
following:

9http://www.biosemi.com/
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• EEG signals are first saved in 24 bits binarized integers BDF format by the LabVIEW10 software
provided by Biosemi. The first operation is to convert these data in ASCII files with physiological
amplitudes, i.e. µV .

• We remove the mean activity of each electrode independently. This DC Removal procedure is
crucial in order to set all electrodes to the same order of amplitude, and thus avoid biases among
electrodes.

• If needed, filters can be applied on the signals, in order to keep a specific band frequency.

• We consider the mean of all the connected electrodes as the reference, in order to remove the
background EEG activity. This reference is called Common Average Reference (CAR), and is
simply the mean activity of all electrodes; we remove it at each time sample.

• If needed, a specific matrix applying a linear inverse solution and transforming scalp EEG data
into estimated intracranial activity is applied at this step.

10http://www.ni.com/labview/
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5 Error-Related Potentials

5.1 State of the Art

In contrast to other interaction modalities, a unique feature of the “brain channel” is that it conveys
both information from which we can derive mental control commands to operate a brain-actuated
device as well as information about cognitive states that are crucial for a purposeful interaction, all
this on the millisecond range. One of these states is the awareness of erroneous responses, which a
number of groups have recently started to explore as a way to improve the performance of BCIs: see
for instance [42], [7], [35], [16] and [15].
Since the late 1980s, different physiological studies have shown the presence of error-related potentials
(ErrP) in the EEG recorded right after people get aware they have made an error ([8],[14], [25]).
Apart from Schalk et al. (2000) who investigated ErrP in real BCI feedback, most of these studies
show the presence of ErrP in typical choice reaction tasks ([7],[35],[8],[14]). In this kind of tasks,
the subject is asked to respond as quickly as possible to a stimulus and ErrP (sometimes referred
to as “response ErrP”) arise following errors due to the subject’s incorrect motor action. The main
components here are a negative potential showing up 80 ms after the incorrect response followed
by a larger positive peak showing up between 200 and 500 ms after the incorrect response. More
recently, other studies have also shown the presence of ErrP in typical reinforcement learning tasks
where the subject is asked to make a choice and ErrP (sometimes referred to as “feedback ErrP”) arise
following the presentation of a stimulus that indicates incorrect performance [25]. The main component
here is a negative deflection observed 250 ms after presentation of the feedback indicating incorrect
performance. Finally, other studies reported the presence of ErrP (that we will refer to as “observation
ErrP”) following observation of errors made by an operator during choice reaction tasks [47] where the
operator needs to respond to stimuli. As in the feedback ErrP, the main component here is a negative
potential showing up 250 ms after the incorrect response of the operator performing the task. ErrP
are most probably generated in a brain area called anterior cingulate cortex (ACC), which is crucial
for regulating emotional responses [25].
An important aspect of the first two described ErrP is that they always follow an error made by
the subject himself. First, the subject makes a selection, and then ErrP arise either simply after the
occurrence of an error (choice reaction task) or after a feedback indicating the error (reinforcement
learning task). However, in the context of a BCI or human-computer interaction in general, the
central question is to know if ErrP are also elicited when the error is made by the interface during the
recognition of the subject’s intent. Investigations have been made at IDIAP about this precise issue.

5.2 IDIAP Research: Previous Study

Very recently, Ferrez and Millán investigated in [15] how ErrP could be used to improve the perfor-
mance of a BCI. Especially, if ErrP are also elicited when the error is made by the interface, then it
could be integrated in a BCI in the following way as shown in figure 21: after translating the sub-
ject’s intention into a control command, the BCI provides a feedback of that command, which will be
actually executed only if no ErrP follows the feedback. This should greatly increase the reliability of
the BCI system, as shown in the paper.

5.2.1 Experimental Setup

To test the presence of ErrP after a feedback indicating errors made by the interface in the recognition
of the subject’s intent, a human-robot interaction task where the subject has to bring the robot to
targets 2 or 3 steps either to the left or to the right was simulated. To isolate the issue of the
recognition of ErrP out of the more difficult and general problem of a whole BCI where erroneous
feedback can be due to non-optimal performance of both the interface (i.e., the classifier embedded
into the interface) and the user himself, in the following experiments the subject delivers commands
manually and not mentally. Five volunteer healthy subjects participated in these experiments. The
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Figure 21: Exploiting error-related potentials (ErrP) in a brain-controlled mobile robot. The subject
receives visual feedback indicating the output of the classifier before the actual execution of the
associated command (e.g., “TURN LEFT”). If the feedback generates an ErrP (left), this command
is simply ignored and the robot will stay executing the previous command. Otherwise, the command
is sent to the robot (right).

system moved the cursor with an error rate of 20%; i.e., at each step, there was a 20% probability that
the cursor moved in the opposite direction. Subjects performed 10 sessions of 3 minutes on 2 different
days, corresponding to ∼75 single trials per session; it means that in each sessions, about 60 correct
trials and 15 error trials were recorded. The delay between the two days of measurements was about
3 months. The sampling rate was 512 Hz and signals were measured at full DC. Raw EEG potentials
were first spatially filtered by subtracting from each electrode the common average reference at each
time step. Then, a 1-10 Hz bandpass filter was applied, as ErrP are known to be a relatively slow
cortical potential.
Only interesting part of the recorded signal was kept as follows: half-second windows starting 150
ms after the feedback and ending 650 ms after the feedback were extracted. EEG signals were then
subsampled from 512 Hz to 64 Hz (i.e., one point out of 8 was taken) before classification, which was
entirely based on temporal features. The two different classes are recognized by a Gaussian classifier.

5.2.2 Results

Figure 22 shows the difference error-minus-correct for channel FCz for the five subjects plus the grand
average of the five subjects for the two days of recordings. A first sharp negative peak (Ne) can be
clearly seen 250 ms after the feedback. A later positive peak (Pe) appears between 320 ms after the
feedback. Finally a second negative peak occurs about 450 ms after the feedback. Figure 3 also shows
the scalp potentials topographies, for the grand average EEG of the five subjects, at the occurrence
of the maximum of the Ne, the Pe and the additional negative peak: a first fronto-central negativity
appears after 250 ms, followed by a fronto-central positivity at 320 ms and followed by a fronto-
central negativity at 450 ms. Moreover, the feasibility of detecting single-trial erroneous responses
was explored, by means of a 10-fold cross-validation study where the testing set consists of one of the
recorded sessions. In this way, testing is always done on a different recording session to those used
for training the model. To summarize, the existence of a new kind of error-related potentials, called
“interaction ErrP”, was confirmed; the feasibility of detecting single-trial erroneous responses is very
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Figure 22: Left. Average EEG for the difference error-minus-correct at channel FCz for the five
subjects plus the grand average of them for the first day. Right. Scalp potential topographies, for the
grand average EEG of the five subjects, at the occurrence of the peaks. Small filled circles indicate
positions of the electrodes (frontal on top), Cz being in the middle.

important, since it could improve the performance and reliability of a BCI system.

5.3 Objectives: Extending the Study

From that point, our goal in next three sections is two-fold. On one hand, comparisons of all the
methods and models presented in the previous sections are done in the framework of error-related
potentials study; advantages and drawbacks of each method are pointed out, and inverse solutions are
compared based on different quality criteria.
But most importantly, all these comparisons are done with the same underlying objective: providing
an extension to the article presented in section 5.2. Indeed, we aim at extending the study to the use
of inverse solutions, as well as new feature selection methods. In order to do it, we took the same data
sets with the five subjects, and reproduced the experiments reported in [15] with only slight differences
allowing us to do a consistent comparison between EEG and inverse solutions. The process was the
following:

• The same preprocessing as described in section 5.2.1 was applied on data before classification.

• A 10-fold cross-validation was done on the first day of recording for the five subjects, and for
both EEG signals and intracranial signals obtained by applying the CCD inverse model. In
each fold, a feature selection was done with our LDA-based method: a given number of features
was kept for the classification procedure. For the inverse model, we repeated the whole process
varying the number of kept features, in order to look for an optimal number of features.

• Instead of keeping always the same two electrodes (FCz and Cz) for all the folds as in the
previous study, we decided to take the two best electrodes after feature selection independently
for each fold. Thus, a direct comparison could be made with CCD inverse model, since we did
exactly the same with the vertices of the model.

• Instead of a gaussian classifier, we used a simple LDA classifier for the classification procedure
of each fold. We justify this choice by noting that this classifier does not need any tuning, as
the statistical gaussian classifier does. Thus, we could repeat our experiences easily and vary
the number of selected features for the inverse solutions. Moreover, we are more interested in



IDIAP–Com 07-04 35

the comparison between EEG and inverse models, or the comparison between feature selection
methods, than in the absolute scores of classification. Even if the scores given by our LDA
classifier are expected to be lower than in [15], we are interested in relative differences between
scores.

• For one of the subject (subject 4), we extended our experiments to other feature selection
methods and inverse solutions, in order to allow comparisons. Thus, the same cross-validation
process was applied, taking successively modified DP function and ReliefF algorithm for the
feature selection step. In order to compare inverse models, 10-fold cross-validation was also
applied on ELECTRA-LAURA inverse solution.

• Finally, for both EEG and CCD inverse solution, we classified each of the 10 sessions of the
second day of recording with selected features based on all the sessions of the first day. By doing
this generalization over extended periods of time, we could have a clear idea of the properties of
stability of EEG and CCD inverse model over time.
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6 Comparing Feature Selection Methods

Error-related potentials are very convenient for feature selection method testing, since we know ap-
proximately which part of the brain should be more involved in the process of error detection. Indeed,
several articles, including studies in which EEG and functional MRI were measured simultaneously
[12], have shown strong relationship between the error negativity (ERN) and error-related anterior
cingulate cortex (ACC) activation11. Thus, we can reasonably expect that our methods select channels
that are located near fronto-central areas. In this chapter, the feature selection methods presented in
section 3 are validated on EEG data, and then applied on the CCD inverse model in the framework
of a 10-fold cross-validation on one of the subjects.

6.1 Method of Comparison

The ranking of the channels, i.e. the electrodes or the cortical vertices, was established for each fold
of the cross-validation as follows:

• For our LDA-based feature selection method, we built for each of the Nf channels a LDA classifier
and measured its classification score on the training set of the current fold. The training set is a
matrix containing only the activity of the corresponding channels and of dimension Ntrials × 32
(because we subsampled at 64Hz and took 0.5 time windows). We take the classification score
as the quality estimation of the channel. At the end, a list of Nf scores gave the ranking of the
channels for a given fold.

• For ReliefF algorithm and the modified DP function, the estimation of the quality of a given
channel was done in two steps. First, the methods were applied on each of the Nf matrices
described above, in order to get an estimation of the discriminant power of each of the 32 time
samples. Then, these 32 scores were simply sumed to have a unique score for a given channel.
This quality estimation is meaningful, because if the 32 time samples are more discriminative in
average for a given channel than for the other features, the resulting sum will be bigger, giving
a good score to the channel.

6.2 Selection of Relevant Scalp Channels

As a validation of our feature selection methods, we first applied them on EEG signals, in order to
select relevant electrodes that could better discriminate between correct trials and error trials. We
analyzed the data set made of all the trials of the first day of recording of subject 4. The number
of iterations of ReliefF algorithm was set equal to the number of correct trials of the data set. The
results are shown in table 4.

Rank 1 2 3 4 5 6 7 8 9 10
LDA-based method Fz FC1 FCz FC2 F1 F2 P8 P6 FC3 C1

Modified DP FCz FC1 Fz FC2 F2 F1 Cz C1 P8 PO7
ReliefF FCz FC1 FC2 Fz F2 Cz C1 F1 P8 PO7

Table 4: Rankings of electrodes for subject 4, day I, for the three feature selection methods.

As expected, the best electrodes are all located in fronto-central areas (see figure 20 for EEG cap
layout). Moreover, the reliability of our methods is demonstrated, since the four best electrodes are
the same for all methods. Beside the strong activation of fronto-central areas, we note that electrode
P8 is part of the ten best electrodes for the three methods: activation of parietal areas has already
been reported by other studies [48]. A possible interpretation could be that this parietal activation is
related to associative areas activated by the occurrence of an error.

11see [46] for a detailed atlas of the brain.
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6.3 Selection of Relevant Cortical Areas

The second step was to compare the methods by using the CCD inverse solution. Here, we assessed
the quality of each feature selection both in terms of classification accuracy and localization of the
features, by means of a 10-fold cross-validation on the first day of recording of subject 4.

6.3.1 Cross-Validation

The results of the cross-validation procedure are shown in figure 23 for each feature selection method,
and for different numbers of selected features. We can do the following observations:
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Figure 23: Results of 10-fold cross-validation for different feature selection methods, and different
numbers of selected features.

• All three methods provide roughly the same results in terms of classification accuracy. We could
have expected the LDA-based method to be the best of the three methods, since the criteria of
selection of features for this method is based on the LDA classifier applied in the classification
process of the cross-validation. But we see that ReliefF and the modified DP function are as
efficient as the LDA-based method. An explanation could be that with ReliefF and the modified
DP function, we sum the discriminative powers of the 32 time samples. Thus, this way of
computing the scores of the channels gives a different, and maybe better idea of the global
discriminative behaviour of a given channel over time.

• Interestingly, we note that the best classification accuracies are often obtained with a small
number of selected channels. Indeed, the best accuracy for the classification of correct trials
(89.66%) is obtained by the LDA-based method for 15 selected vertices, whereas for the clas-
sification of error trials, the LDA-based method reaches 84.14% for 5 selected vertices. For
ReliefF algorithm, the optimal number of selected features is a little bit bigger (between 50 and
120 vertices), but still acceptable. These observations are of the highest importance, since the
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Figure 24: Localization of features made by the LDA-based method on fold 1 of the cross-validation
procedure.

dimension of the input space would not explode with only 15 to 100 selected features, allowing
online implementation.

• Comparing the methods in terms of computational speed, it appears that ReliefF algorithm is
by far the worst of the methods. Indeed, ReliefF is an iterative methods, and a certain number
of iterations must be done in order to converge to a good estimation of the quality of each
feature. In these experiments, the number of iterations was set equal to the number of trials
of one class, which is an acceptable value (see section 3.2.3). But these iterations have to be
done on each feature of the initial input space, which means a lot of times when we deal with
inverse solutions (for instance, 3013 times for CCD inverse model). Thus, the feature selection
made by ReliefF was a very long process; online implementations of such methods would be
impossible. As opposed to ReliefF algorithm, the LDA-based method and the modified DP
function were much faster; the modified DP function was the fastest method, selecting features
almost instantaneously.

6.3.2 Localization of Features

In order to assess the quality of the feature selection made by our methods, we observed the locations
of the selected features in randomly selected folds of the cross-validation. We chose the 1st, 5th and 9th

folds, and looked at the 50 best features in each folds, for each method. Results are shown in figures
24 to 28. Once again, our methods provide features with physiological meaning, confirming the first
investigations with EEG signals. Here, with the help of inverse solutions, we can even go further in
the details of the localization, and look at the Brodmann areas12 (BA) involved in the process of error
discrimination. In figures 24, 25 and 26, we see that our LDA-based method selected features in two
relevant areas of the brain: first, a focus is found in fronto-central area, at the surface of the cortex.
This area is the 6th Brodmann area, which encompasses pre-motor and supplementary motor cortex
(pre-SMA). The second cluster of selected features is focused on the rostral and caudal cingulate zone
(BA 24 and 32). In terms of neurophysiology, both selected areas are well-known to be involved in

12For an online atlas: http://spot.colorado.edu/∼dubin/talks/brodmann/brodmann.html
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Figure 25: Localization of features made by the LDA-based method on fold 5 of the cross-validation
procedure.

error detection and correction processes [17]. Since similar foci (BA 24 and 32) were found for the
modified DP method and for the ReliefF algorithm, we only displayed top views of the localizations
of features for these methods. Thus, it proves that our methods are able to select relevant features in
terms of physiology.

Moreover, we tried to assess the stability of the selections by comparing, for each method indepen-
dently, the selections made in the different folds of the cross-validation. First, we took each possible
pair of folds (45) and calculated the percentage of identical selected vertices within the 20 best fea-
tures; we restricted the lists to the 20 best features, since we saw that a small number of them already
provides good classification accuracy. Then, we averaged these 45 percentages to have a global idea
of the stability of the feature selection between two different folds. The second step was to look for
the relevant vertices that were selected in all folds; once again, we considered the 20 best features,
and looked for those that were present in all of the 10 folds. Results are shown in table 5.

Averaged % of identical # of identical selected
Method selected vertices over vertices in all folds

all possible pairs of folds
LDA-based 45.89% 1

Modified DP 91.67% 14
ReliefF 59.89% 3

Table 5: Stability of feature selections depending on the method. The 20 best selected features are
considered.

We see that the modified DP method selects its features with an impressive regularity. Besides,
it is possible to confirm that statement simply by looking at figure 27. Indeed, the clusters located
on pre-SMA are very similar between the folds; for instance, 98% of the selected vertices (49 over 50)
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Figure 26: Localization of features made by the LDA-based method on fold 9 of the cross-validation
procedure.

Figure 27: Localization of features made by modified DP method on fold 1 (top), 5 (bottom left) and
9 (bottom right) of the cross-validation procedure.

are similar between fold 0 and 4! The LDA-based method performs less stable selections than the
other methods, but this results must be considered with care. Indeed, even if the patterns of selected
vertices were slightly different from one fold to the other, the global clusters were always located on
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Figure 28: Localization of features made by ReliefF method on fold 1 (top), 5 (bottom left) and 9
(bottom right) of the cross-validation procedure.

BA6 and BA24-32, as shown in the related figures. Thus, we believe that the property of stability of
a feature selection cannot be completely defined only by looking at the number of constantly selected
features, as table 5 does; we should rather look at the stability of the global shape of the clusters of
features over time. The proof is that the LDA-based method was the best one in terms of classification
accuracy after cross-validation (see section 6.3.1); our interpretation is that the algorithm chose for
each fold the best combination of vertices within the same physiologically relevant area. These selected
vertices may be different from one fold to the other, but the combination is always the most efficient
in terms of discrimination. Thus, table 5 tells us about the strict stability of the feature selections,
but we should not do any conclusions based on these values about the global efficiency of the methods
in the context of a BCI system, since our ultimate goal is to reach the highest classification accuracy.
More investigations about stability of the selected features are done in next sections, and validate our
statements.
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7 Comparing Inverse Solutions

We provide in this chapter a comparison of the inverse solutions presented in section 2.3. This
comparison will be based on different criteria. For one of the models, namely the sLORETA inverse
solution, we did not have access to the transformation matrix; thus, the software was used as a
”black box”, and only localization studies are reported here, in order to give an idea about the results
provided by this inverse model. For the LAURA-ELECTRA and CCD inverse solutions, a more
complete comparison was made, following the process of chapter 6.

7.1 sLORETA : Localization of Relevant Cortical Areas

sLORETA inverse solution is known to be the only localization tool with zero localization error [36].
The software is available on sLORETA website13 as a ”blackbox” software: the user doesn’t really
know about the details of the localization process and the creation of the transformation matrix,
except the theoretical elements of chapter 2.3.2. Even if the software is very easy to install and to
use, it is impossible to apply our machine learning methods without the transformation matrix. Thus,
we restricted our study of sLORETA model to a localization study aiming at showing the advantages
and drawbacks of this inverse method. The process was the following:

• We computed the matrix of the averaged EEG activity of subject 4 over day I. The dimensions
of the matrix are 64×512, since we used 64 electrodes and considered a time window of 1 second
right after the occurrence of an error, with a sampling frequency of 512Hz. For instance, the
averaged waveform of error trials of electrode FCz is shown in figure 29.

• We loaded the matrix in sLORETA software as well as a map of the 64 used electrodes and
the sampling frequency. From that point, everything was generated internally, so that the
localization could be immediately visualized in the main display window of the software.

The advantage of sLORETA is that the localization can be observed over time. Indeed, a very efficient
and practical visualization tool is provided in the software, allowing to see the evolution of neuronal
patterns of a given process over time. Thus, sLORETA visualization tool is useful to understand the
underlying psychophysiological processes of error detection.
To illustrate that, we analyzed cerebral activations at four well chosen instants of the error process;
these instants are marked with red circles in figure 29.

Figure 30 to 33 show 3D cortical views as well as Talairach slices of localized activity related to
each of the red circles of figure 29.

We make the following observations:

• As expected, typical areas involved in error potentials such as pre-SMA (BA6) or ACC (BA24-
32) are activated. Interestingly, we note that activation of areas BA6 and BA24-32 is stronger
at instants corresponding to the peaks of the averaged error potential, namely the negative peak
(230ms after error occurrence) and the subsequent positive peak (300ms after error occurrence);
between the peaks, activation patterns of lateral prefrontal cortex (PFC) and orbito-frontal
cortex similar to those of figure 30 are observed (not shown).

• Such activation of PFC in the context of error detection has already been extensively commented
in the literature. Particularly, Gehring and Knight [20] reported an interaction of the lateral
prefrontal cortex with the anterior cingulate cortex in monitoring behavior and in guiding com-
pensatory system: PFC could be related to monitoring processes, whereas ACC and pre-SMA
are more involved in error detection. This hypothesis seems to be in agreement with the patterns
of activation we observed on our BCI signals.

13http://www.unizh.ch/keyinst/NewLORETA/LORETA01.htm
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Figure 29: Mean activity of electrode FCz.

Figure 30: sLORETA localized activity 181.6ms after error occurrence.

• Finally, 50ms after the second positive peak, activations of parietal areas are observed: these
associative areas could be related to the fact that the subject becomes aware of the error. Indeed,
it has been proposed that the positive peak of an error potential was associated with conscious
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Figure 31: sLORETA localized activity 232.4ms after error occurrence.

Figure 32: sLORETA localized activity 294.9ms after error occurrence.
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Figure 33: sLORETA localized activity 363.2ms after error occurrence.

error recognition [34]; in our case, the activation of associative areas only 50ms after the positive
peak agrees with that hypothesis.

By means of sLORETA visualization software, a rough idea of the underlying psychophysiological
process of error monitoring related to BCI can be described. However, a major drawback of sLORETA
has to be emphasized: the foci of activation are very blurred, with respect to the clusters of relevant
vertices provided by the CCD inverse model in figures 24, 25 and 26, for instance. The reason of that
oversmoothing is the use of the Laplacian Weighted Minimum Norm constraint (see section 2.3.2).
Thus, the lack of precision in the definition of the foci of activation could be a limitation for the use
of sLORETA as classification tool in the context of BCI.

7.2 LAURA-ELECTRA and CCD Inverse Models

For ELECTRA-LAURA and CCD inverse solutions, a more complete comparison is allowed, since the
transformation matrices are provided. Thus, we reproduce the same comparison process as in chapter
6; the classification accuracy is first compared for both methods after 10-fold cross-validation on the
first day of recording of subject 4. Then, the localization of the relevant selected features is analyzed.
As a feature selection method, we chose the LDA-based method for both models, since it was the
method providing the best classification performances.

7.2.1 Cross-Validation

The results of the 10-fold cross-validation procedure are shown in figure 34, in which we compare
the CCD inverse model and the ELECTRA-LAURA inverse solution for different numbers of selected
channels.

Observing this figure, we can do the following remarks:

• Both inverse solutions provide their best performances with a small number of selected channels.
Indeed, the CCD inverse model reaches the best classification of correct trials with Nchannels =
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Figure 34: Results of 10-fold cross-validation of subject 4, day I, for ELECTRA-LAURA and CCD
inverse model.

15, and the best classification of erroneous trials with Nchannels = 5, whereas ELECTRA-
LAURA model uses Nchannels = 5 to get the best performances in the classification of both
correct and erroneous trials. We see that in these cases, the dimensionality of the input space is
relatively small, and feature selection algorithms, for instance, can be quickly applied on it. This
observation confirms our belief that inverse solutions could be of high interest in the context
of BCI research, since it is possible to take advantage of the spatial resolution of such methods
without being limited by computational resources.

• It seems that the CCD inverse model always provides better performances in term of classification
accuracy, independently of the number of selected channels. In order to confirm our observation,
we performed a Wilcoxon rank sum test on our samples following this procedure: first, we
considered for each model, the best cross-validation results (see previous remark for the respective
optimal numbers of selected channels for each model). Then, we calculated for each inverse
solution what we call the accuracy value of each fold of the cross-validation, defined by:

accuracy =
Ccc + Ecc

Ctot + Etot

(25)

where Ccc and Ecc are the number of correctly classified correct trials and error trials, respec-
tively, and Ctot and Etot are the total number of correct and error trials. This accuracy value
takes into account that there are more correct trials than error trials in each fold, and then the
contribution of the correct trials classification accuracy will have a slightly larger contribution
to the final value. Thus, we obtained 10 values for each inverse solution. Then, we applied the
Wilcoxon test with the null hypothesis H0 being that the means of the samples are equal; we
performed it at the 0.05 significance level. We obtained that H0 was rejected with a p-value of
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p = 0.028. Thus, there is a significant difference between the models in terms of classification
performances.

7.2.2 Localization of Features

The second part of the comparison of the inverse models consists in observing the location of the
selected channels in the brain. Figures 24, 25 and 26 already show the localization of the 50 best
vertices selected by the CCD inverse model in folds number 1, 5 and 9, with the LDA-based feature
selection. Figures 35 to 37 show the localization of the features made by the ELECTRA-LAURA
model in the same conditions: the red points are the 50 selected voxels, whereas the blue crosses
represent the location of anterior cingulate cortex. In addition, table 6 reports the same analysis
described in section 6.3.2 aiming at characterizing the regularity in the selection of the channels for
each method.

Figure 35: Localization of ELECTRA-LAURA features made by the LDA-based method on fold 1 of
the cross-validation procedure.

Averaged % of identical # of identical selected
Inverse model selected channels over channels in all folds

all possible pairs of folds
CCD inverse 45.89% 1

ELECTRA-LAURA 63.89% 5

Table 6: Stability of channel selections depending on the inverse solution. The 20 best selected
channels are considered, and LDA-based feature selection is applied.

We note that:

• While the CCD inverse model selects channels located in physiologically relevant areas like pre-
SMA and ACC, it appears that the 50 best voxels selected by ELECTRA-LAURA do not show
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Figure 36: Localization of ELECTRA-LAURA features made by the LDA-based method on fold 5 of
the cross-validation procedure.

Figure 37: Localization of ELECTRA-LAURA features made by the LDA-based method on fold 9 of
the cross-validation procedure.

similar properties; there is no clear cluster in the configuration of the selected voxels, even though
most of the selected voxels are in the right hemisphere. Moreover, none of the 50 best voxels
are located in the ACC (figures can be misleading, since these are 2D views), and the 5 voxels
that are present in all folds have no physiological meaning, since they are located on the cortical
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surface of right hemisphere. Therefore, a physiological interpretation of the localization of the
features is difficult in this case.

• Interestingly, we see in table 6 that the ELECTRA-LAURA method selects its channels with a
bigger regularity than the CCD inverse model. However, we saw in the previous section that the
performances of the CCD inverse model in terms of classification accuracy were significatively
better than those of LAURA-ELECTRA inverse solution, even though the difference was not
so big. This somehow paradoxical result proves that the most important property for a good
classification performance is not the regularity of the selection itself, but more the regularity in
the clustering tendency of the selection.
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8 Comparing EEG and CCD Inverse Model

In order to complete our study on inverse solutions and their integration into BCI systems, we compare
in this chapter the performances of the CCD inverse model with those of EEG signals in the case of
the cross-validation procedure described in section 5.3. This comparison aims at extending IDIAP
studies on BCI error-related potentials, since we would like to assess the improvement due to the use
of inverse solutions in this specific application.

8.1 Cross-Validation

The cross-validation procedure was done for the five subjects, on the 1st day of recording. The only
differences with respect to the process adopted in [15] is that we selected in each fold the 2 best EEG
electrodes before classification. Doing this, we can do a better comparison with the inverse models,
since we select the best channels in each fold as well. In addition, we use a LDA-based classifier
instead of the gaussian classifier used in [15]; thus, we expect our classification scores to be a little
bit lower than in the article. But as we already mentioned before, we are more interested in the
relative differences between scalp EEG and CCD inverse model. Figures 38 to 42 show the results
of the cross-validation for the 5 subjects. Well classified correct and erroneous trials are shown for
the CCD inverse model for different number of selected vertices. In addition, superimposed dashed
lines represent the corresponding EEG classification scores for correct and erroneous trials, obtained
by selecting the 2 best electrodes in each fold. Results are summarized in the upper part of table 7
for the five subjects and the average of them; for each subject, the classification score for the opimal
number of selected channels is displayed. We can do the following observations:
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Figure 38: Results of 10-fold cross-validation for day I, subject 1. Results of CCD inverse model are
shown for different number of selected features; superimposed dashed lines represent the results of
EEG by taking the 2 best electrodes in each fold.

• By looking at figures 38 to 42, we see that the classification scores provided by the inverse
solution is better than the results provided by EEG in most cases. Here, it is important to
note that for the five subjects, the best classification scores are often obtained with a small
number of selected channels. Even if for subject 3 and 5, the maximal scores are obtained for a
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Figure 39: Same as figure 38 for subject 2.
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Figure 40: Same as figure 38 for subject 3.
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Figure 41: Same as figure 38 for subject 4.
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Figure 42: Same as figure 38 for subject 5.
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bigger number of selected channels, we see on the profiles that with a small number of features,
the scores are already in the same range as the maximal score. Moreover, for subject 2, the
classification scores of well-classified correct trials decrease drastically as the number of selected
vertices increases.

• Table 7 illustrates well the improvement due to the use of the CCD inverse solution. Indeed, for
all subjects, the classification scores are significantly higher for the CCD inverse solution than
for EEG, and the standard deviations of CCD inverse results are smaller in average.

• In order to assess the significance of this improvement, we performed a Wilcoxon test similarly
as we did in section 7.2.1 on the accuracy values of each subject for EEG and CCD inverse
model, and on the averaged accuracy values. The results are shown in table 8: only subjects 4
and 5 do not show significant improvement when we use the inverse model. More importantly,
the test on the grand average rejected the null hypothesis, proving that in average, applying an
inverse model provides significantly better results.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Average

10-fold cross-validation Day I: EEG
C 83.4 ± 7.3 61.1 ± 13.8 77.4 ± 7.5 88.0 ± 3.4 85.5 ± 7.3 79.1 ± 10.8

E 72.3 ± 14.0 64.3 ± 20.1 71.0 ± 15.7 82.9 ± 11.3 77.2 ± 13.1 73.5 ± 7.0

10-fold cross-validation Day I: CCD inverse model
C 87.0 ± 2.3 70.2 ± 13.8 85.8 ± 4.3 89.7 ± 3.5 87.3 ± 5.9 83.6 ± 7.7

E 79.3 ± 6.5 77.6 ± 19.5 81.2 ± 19.5 84.1 ± 10.7 78.9 ± 10.4 79.9 ± 2.8

Day II classified with Day I: EEG
C 77.8 ± 7.3 82.6 ± 3.9 75.7 ± 7.5 90.8 ± 3.1 77.8 ± 7.3 80.9 ± 6.1

E 73.8 ± 10.3 41.5 ± 17.9 65.3 ± 14.6 68.5 ± 13.9 73.8 ± 10.3 64.6 ± 13.4

Day II classified with Day I: CCD inverse model
C 88.0 ± 5.9 82.5 ± 4.1 86.9 ± 5.6 91.4 ± 4.1 88.5 ± 6.9 87.5 ± 3.2

E 79.3 ± 9.8 45.2 ± 17.5 74.9 ± 9.7 81.4 ± 10.1 77.6 ± 9.8 71.7 ± 15.0

Table 7: Percentages (mean and standard deviations) of correctly recognized correct trials (C) and
error trials (E) for the five subjects and the average of them, performing a 10-fold cross-validation on
day I, and using data of day I to classify day II. Results are shown for both EEG and CCD inverse
model.

10-fold cross-validation Day I
Subject 1 Subject 2 Subject 3

H0 rejected H0 rejected H0 rejected
p = 0.0101 p = 0.0191 p = 0.0065
Subject 4 Subject 5 Average

H0 not rejected H0 not rejected H0 rejected

p = 0.1974 p = 0.4723 p = 0.001

Table 8: Results of Wilcoxon tests applied on the 5 subjects and the average of them for the cross-
validation on day I, to assess significant differences between EEG and CCD inverse model. Tests are
performed at the 0.05 significance level; the null hypothesis H0 states that the means are equal.
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8.2 Generalization

The second objective of our analysis was to quantify the improvement due to the use of our CCD
inverse solution when generalizing over extended periods of time. We built a LDA classifier based
on the whole data set of the 1st day of recording, and we classified the 10 sessions of the 2nd day of
recording with this classifier. We remind that the delay between the two days of recordings was about
3 months. The results are shown in the lower part of table 7. Once again, the classification scores
increase significantly when using the inverse solution. Maximal improvements of more than 10% were
obtained for the classification of correct trial for subjects 1, 3 and 5, and for the classification of erro-
neous trials for subject 4. The average improvement was about +7% for both correct and erroneous
trial classification. In table 9, the results of Wilcoxon tests performed on each subject and on the
average of the subjects confirm the global significance of this improvement.

Day II classified with Day I
Subject 1 Subject 2 Subject 3

H0 rejected H0 not rejected H0 rejected
p = 0.0036 p = 0.79 p = 0.001
Subject 4 Subject 5 Average

H0 not rejected H0 rejected H0 rejected

p = 0.42 p = 0.0002 p = 0.0002

Table 9: Results of Wilcoxon tests applied on the 5 subjects and the average of them for the clas-
sification of Day II using a classifier built on data of Day I, to assess significant differences between
EEG and CCD inverse model. Tests are performed at the 0.05 significance level; the null hypothesis
H0 states that the means are equal.
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9 Discussions and Conclusions

In this last chapter, a synoptic view of this master thesis is provided as well as propositions of future
investigations. The different issues that we addressed during this study, namely feature selection
methods and inverse solutions, will be disscussed successively, in order to summarize the different
findings of this long-term work.

9.1 Discussions

9.1.1 Feature Selection Methods

During this work, we implemented three feature selection methods, namely ReliefF algorithm, a mod-
ified DP function and an LDA-based filter method, and we applied them in the context of a specific
BCI application, namely error-related potentials. We analyzed their respective performances both in
terms of localization of the features and classification accuracy. Our conclusions are the following:

• All our methods were able to select relevant scalp electrodes as well as relevant intracranial
channels in the context of an error-potential study conducted at IDIAP and extended in this
work.

• In terms of localization of the features, the modified DP method showed an impressive regularity
in the selection of its features. From one fold of the cross-validation to another, most of the
selected features were identical with the modified DP function, whereas the features changed
slightly from one fold to the other for the two other methods. However, the best classification
performance was obtained by the LDA-based method, which was the worst method in terms of
regularity in the selection. These results are not contradictory, since the features selected by
the LDA-based method were always located in the same physiologically meaningful area as the
modified DP function, namely pre-SMA and ACC. Thus, it seems that the strict regularity of
the selection is not very important in order to achieve good classification results, as long as the
configuration of the selected features is representative of the underlying physiological process.

• In terms of computational time, the ReliefF algorithm is by far the worst method. When
dealing with high dimensional input spaces, which is the case with inverse solutions, this iterative
algorithm takes a lot of time in order to converge and return its result. In addition, since the
number of iterations is not known for a given application, its choice is arbitrary and we cannot
always be sure that the algorithm converged correctly. On the contrary, the LDA-based feature
selection method is quite fast, even when we applied it on inverse solution data, and the modified
DP function is almost instantaneous. Thus, for future investigations, and in case of online
implementation, we suggest to keep the LDA-based method and the modified DP function only.

9.1.2 Inverse Solutions

This thesis was the opportunity to have a first contact with the captivating research field of inverse
models. It is clear that the goal of this work was not to go into the details of the complex theories of
inverse solutions, but rather to apply them in practical BCI applications, and assess their abilities to
provide new results for BCI research.

• It appeared that the so-called CCD inverse model provided impressive results, both in terms
of localization of cortical activity and classification of single trials in the context of BCI error-
related potentials. All the foci of activity observed with this model during our experiments were
in agreement with neurophysiological evidences in the field of error potentials. Further, it was
statistically proven that this inverse solution can improve the performances of an error detection
system for BCI with respect to a system based on EEG.
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• We encountered some problems in localizing correctly clusters of activity related to error detec-
tion with the ELECTRA-LAURA model. Since our work is only the beginning of a longer process
aiming at combining inverse solutions like ELECTRA-LAURA with standard BCI methods, we
can only conclude that further investigations are needed in order to understand the reasons of
these unexpected results. Indeed, estimated local field potentials have a crucial physiological
meaning, and integrating this model into BCI systems could be useful to better understand the
neuronal processes that we try to decode.

• During our experiments on inverse solutions, we found that in average, only a small number
of channels had to be selected in order to achieve very good results in terms of single trial
classification of error-related potentials signals. This finding is probably the most important of
this thesis, since the main problem with inverse solutions is the dramatic increase of the initial
input space. Thus, by selecting a small number of relevant intracranial channels by means
of appropriate feature selections, we can reduce the problem to the size of a standard EEG
problem, and benefit from the better spatial resolution of inverse solutions without being limited
by computational problems. Moreover, online implementations including inverse solutions can
be allowed if the number of channels is not too big. These results show great promise for future
investigations about inverse solutions and their integration into BCI systems.

• sLORETA inverse model has been used in this study as a visualization tool only. Its abilities
to describe neurophysiological processes over time are impressive, as well as its simplicity of
use. sLORETA allowed us to begin a pyschophysiological description of the underlying pro-
cess of BCI error-related potentials. An interesting study would consist in pointing out the
differences between ”standard” error potentials elicited by the subject himself, and BCI-driven
error-potentials. The first elements of such a study are provided in this work. Moreover, we
could even extend the investigations to the comparison of different experimental protocols re-
lated to BCI error-related potentials. In our study, commands are delivered manually by the
users; it would be interesting to see the differences in the psychophysiological process when the
subjects deliver the same commands, but mentally, by means of a brain-computer interface.

In this thesis, we considered the application of error-related potentials in order to apply our methods
and inverse models. The choice of this particular application was based on this simple idea: since error
potentials are temporally well defined and focused on precise areas of the brain, it would facilitate the
estimation of the quality of the methods and of the inverse solutions.
However, now that inverse solutions have proven to be useful for BCI, we have to define precisely which
applications of BCI research really need the contribution of inverse models. Especially, we think that
inverse solutions are really useful for decoding neuronal processes that are not clearly localized, such
as movement imagination for instance. Indeed, this kind of mental task involves different processes
synchronizing at different instants and different locations in the brain. Scalp EEG electrodes will have
difficulties in order to decode precisely such neuronal patterns, and the enhanced spatial resolution
provided by inverse solutions becomes crucial in such cases. Thus, future investigations will have to
be done in order to assess the potentialities of inverse solutions in the context of motor imagery.

9.2 Conclusion

MAIA Project The current study is related to an European project called MAIA14 (Mental Aug-
mentation through Determination of Intended Action – Non Invasive Brain Interaction with Robots).
The goal of this project is to develop non-invasive prosthesis driven by a BCI system. Particularly,
one of the major objectives is to perform recognition of the subject’s motor intent from the analysis
of high resolution brain maps, which estimates intracranial potentials from scalp EEG. In addition,
recognition of cognitive states such as error-related potentials detection will be integrated in the sys-
tem. Final applications will be an intelligent BCI-driven wheelchair, or the control of a robot arm.

14http://www.maia-project.org/
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Thanks to this project, I had the opportunity to attend the 2006 MAIA Workshop15, which took place
in Rome in November 2006.

Finally, the results of this study are satisfying, since the main goals of the thesis are achieved:
we developed and compared feature selection methods, and we assessed the potentiality of inverse
models in the context of BCI research. Of course, this master thesis is only the beginning of a much
harder and longer work, aiming at integrating inverse models in a real BCI system. However, the
results reported in this thesis give new insights into how such models can be processed, and future
investigations promise to be exciting.

15More infos on MAIA website.
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[32] J. del R. Millán, M. Franzé, J. Mouriño, F. Cincotti, and F. Babiloni. Relevant EEG features for
the classification of spontaneous motor-related tasks. Biological cybernetics, 86(2):89–95, 2002.

[33] J. del R. Millán, F. Renkens, J. Mouriño, and W. Gerstner. Non-invasive brain-actuated control
of a mobile robot by human EEG. IEEE Trans. on Biomedical Engineering, Special Issue on
Brain-Machine Interfaces, 2004.



60 IDIAP–Com 07-04

[34] S. Nieuwenhuis, K. R. Ridderrinkhof, J. Blom, G. P. H. Band, and A. Kok. Error-related brain
potentials are differentially related to awareness of response errors: Evidence from antisaccade
task. Psychophysiology, 38:752–760, 2001.

[35] L.C. Parra, C.D. Spence, A.D. Gerson, and P. Sajda. Response error correction - a demonstration
of improved human-machine performance using real-time EEG monitoring. IEEE Transactions
on Neural Systems and Rehabilitation Engineering, 11(2):173–177, 2003.

[36] R. D. Pascual-Marqui. Standardized low resolution brain electromagnetic tomography
(sLORETA): technical details. Methods & Findings in Experimental & Clinical Pharmacology,
24D:5–12, 2002.

[37] R. D. Pascual-Marqui, M. Esslen, K. Kochi, and D. Lehmann. Functional imaging with low
resolution brain electromagnetic tomography (LORETA): a review. Methods & Findings in Ex-
perimental & Clinical Pharmacology, 24C:91–95, 2002.

[38] R. D. Pascual-Marqui, C. M. Michel, and D. Lehmann. Low resolution electromagnetic tomog-
raphy: a new method for localizing electrical activity in the brain. International Journal of
Psychophysiology, 18:49–65, 1994.

[39] R. Plonsey. The nature of sources of bioelectric and biomagnetic fields. Biophys. J., 39:309–312,
1982.

[40] J. Rickert, S. C. de Oliveira, E. Vaadia, A. Aertsen, S. Rotter, and C. Mehring. Encoding of
movement direction in different frequency ranges of motor cortical local field potentials. The
Journal of Neuroscience, 25(39):8815–8824, 2005.

[41] M. Robnik-Sikonja and I. Kononenko. Theoretical and Empirical Analysis of ReliefF and RReli-
efF. Machine Learning, 53:23–69, 2003.

[42] G. Schalk, J.R. Wolpaw, D.J. McFarland, and G. Pfurtscheller. EEG-based communication:
presence of an error potential. Clinical Neurophysiology, 111:2138–2144, 2000.

[43] H. Scherberger and M. R. Jarvis. Cortical local field potential encodes movement intentions in
the posterior parietal cortex. Neuron, 46:347–354, 2005.

[44] M. Scherg. Fundamentals of dipole source potential analysis. Advances in audiology (Adv. audiol.),
6:40–69, 1990.

[45] L. Sörnmo and P. Laguna. Bioelectrical Signal Processing in Cardiac and Neurological Applica-
tions. Elsevier Academic Press, 2005.

[46] J. Talairach and P. Tournoux. Co-Planar Stereotaxic Atlas of the Human Brain. Thieme, 1988.

[47] H.T. van Schie, R.B. Mars, M.G.H. Coles, and H. Bekkering. Modulation of activity in medial
frontal and motor cortices during error observation. Nature Neuroscience, 7(5):549–554, 2004.

[48] V. van Veen and C. S. Carter. The timing of action-monitoring processes in the anterior cingulate
cortex. The Journal of Cognitive Neurosciences, 14(4):593–602, 2002.

[49] J. D. Victor, K. Purpura, E. Katz, and B. Mao. Population encoding of spatial frequency,
orientation, and color in macaque V1. Journal of Neurophysiology, 72:2151–2166, 1994.

[50] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan. Brain-
computer interfaces for communication and control. Clinical Neurophysiology, 113:767–791, 2002.


