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ABSTRACT

The standard approach to speaker verification is to extegustral

features from the speech spectrum and model them by gererati

or discriminative techniques. We propose a novel approduobrev
a set of client-specific binary features carrying maximatdimina-
tive information specific to the individual client are essited from
an ensemble of pair-wise comparisons of frequency compsrien
magnitude spectra, using Adaboost algorithm. The finalstfias
is a simple linear combination of these selected featurespel

iments on the XM2VTS database strictly according to a stahda

evaluation protocol have shown that although the proposmtd-
work yields comparatively lower performance on clean spedéc
significantly outperforms the state-of-the-art MFCC-GMpstem
in mismatched conditions with training on clean speech astirg
on speech corrupted by four types of additive noise fromtidyedard
Noisex-92 database.

Index Terms— Speaker verification, binary features, speaker-

specific features, noise robustness, Adaboost

1. INTRODUCTION

The standard approach to speaker verification is to paraizethe
short-term magnitude spectra extracted from speech fraypiesilly
by cepstral coefficients [1] and model these parameterg istan-
dard techniques like Gaussian Mixture Models (GMM) [1]. thist
work, we propose a novel approach that aims to extract spepke
cific information directly from the magnitude spectrum. histap-
proach, a small set of binary features, typically numbe#i@do 30,
are iteratively selected from a very large set of featuresmting to
their discriminative ability on the training data. Thesattees are
data-driven and optimized for each individual client. Theficlas-
sifier is a weighted linear combination of single stump dfaes
using the selected features.

The motivation for the proposed binary features is the resec:
cess of binary-valued features based on pixel comparigeribcal
Binary Patterns (LBP), Modified Census Transform and Haar fe
tures [2] in the vision research community particularly fast ob-
ject detection. These features are robust to illuminati@mations
since their value depends only on the comparison of two piakl
ues, not on the pixel values themselves. In this work, we majpipis
approach to extract features for speaker verification,gugie 1-D
spectral vectors as object instances to be classified as eigfong-
ing to the client or impostor classes, analogous to faoeon-face
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classification problem in vision. These binary featuresdiserimi-
natively selected for each client individually using Adabb [3], a
standard ensemble learning technique. While testing, thdehtan
be evaluated and a decision can be taken relatively fast iecclas-
sifier is a simple weighted linear combination of binary aut$peach
depending on a comparison operation on two frequency coenisn
of the spectrum. Experiments show that the intrinsic illnation-
robustness of such features in the vision domain possilalgsieo
their robustness against several additive noise typegisghech do-
main. We have compared the proposed framwork with the stenda
Mel Frequency Cepstral Coeffecient (MFCC)-GMM framewadtk [

The rest of the paper is organized as follows. In Sec.2, we de-
scribe the proposed speaker verification framework. Weriesour
experiments in Sec.3. In Sec.4, we discuss the results ghtighit
certain aspects of our method. Finally, Sec.5 outlines thim iron-
clusions of our work.

2. THE PROPOSED FRAMEWORK

2.1. Binary Features

In the first step, the input speech waveform is blocked inaonfes
and a spectral transforf is applied to it to yield a sequence of
spectral magnitude vectors. L& = [X (1), -, X(N)]” be an
instance of such a vector. The spectral transféroan be either g a
simple Ny-point Discrete Fourier Transform (DFT) (In this ca3e,
comprises of one half of the magnitude spectrum componémte s
they are symmetric, anly = % + 1.) or 2) DFT followed by Mel

filtering [1] (In this case,f represents the Mel filter outputs and
N =number of filters). The proposed binary features are cated|
on the vectorX as follows. A binary features; : RY — {0,1}

is defined completely by the following 3 parameters: two ¢egi
ki,1,k:,2 which can vary froml to N but cannot be equal and one
threshold parametefl;, selected according to a certain criterion (ref.
Sec. 2.2). For the DFT case, tfig; ; } represent frequency indices.
For the Mel filter case, they represent indices of Mel filtef$ie
featureg; is defined as,

6:(X) = {1 It X (ki) = X(ki2) 2 03,

0 if X(kiyl) — X(k)ig) < 0;. (1)

From the range of thé; values, the total number of such binary
features iV (N — 1). Let® = {¢;} ' =" represent the complete
set of such features.

2.2. Feature selection

Out of the complete set of binary featur®s a certain number of
features are iteratively selectfmt each clientaccording to their dis-
criminative ability with respect to that client. This sdiea is based



on the Discrete Adaboost algorithm [3] with weighted samgli
which is widely used for such binary feature selection tagqsand
is known for its robust performance [3]. The algorithm, whis to
be run once for each client, is as follows:

Algorithm: Feature selection by Discrete Adaboost

Inputs: N, training vectors{ij };V:tq, the corresponding class la-

bels,y; € {0,1} (0:iimpostor 1client), Ny, the number of features
to be selected)Vy,., the number of training vectors to be randomly
sampled at each iteratioV{, < N:,.).

e Initialize the weights{w.,;} +

1 __1
2N 7 an{D
respectively, whereV!”) and N,") are the number of impos-
tor and client training vectors respectively.

fory; =0,1

e Repeatfom = 1,2, - Ny:

Wn,j
=i
Randomly sampleVy;. training vectors, according to
the distribution{w., ; }

For eachg; in ®, choose; to minimize misclassifi-

— Normalize weightswy,,; <
wnyj/

i 1 Ve
cation error,e; = N > 1{%()—(»]_)#]_} over the
sampled set.
— Select the next best featuré;, = ¢; wherei* =
argmin; €;
- Setf, +

1 * Y=y
Update the weightsp,,1,; < wn,jﬁn{%(iﬂ) v}

Output: The sequence of selected best feat(mégnNil.

For the database and framing parameters used (ref. S&g,3)vas

around 80,000, anﬂft(rl), which varies for each client, was around
350. Ny, was set to 4000 and/; to 30. Figure 1 shows the dis-

tribution of the selected binary featuréﬁ}gil for the DFT case,
in terms of their frequency indice:x,1, k»,2) and the equivalent
value in Hz (atf; = 8kHz). It is observed that the client-specific
features are spread relatively uniformly throughout thecspim,

with slightly higher concentration below 1kHz and abovekPis.

2.3. Feature Modelling and Classifier structure

For each client, the selected features are combined lingadive a
strong classifiefF [3]:

F(X)

Ny

S andy(X).

n=1

@)

The weights{a,,} are calculated to minimize the exponential

loss [3] and normalized to sum to unity for each client, =
log(Bn)

soi 108,
level and not at the frame level, the responﬁéi) of each frame
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Fig. 1. Distribution of the selected binary featur¢$;}fji1 for
all clients in the database, in terms of their frequency desli
(kn,1, kn,2) and the equivalent value in Hz (At = 8kHz).

3. SPEAKER VERIFICATION EXPERIMENTS

3.1. Description of the database used

All experiments are performed on the standard XM2VTS audio
database [4], [5] having 200 clients and 95 impostors. ditees

of around 5secduration are recorded across 4 sessions, 2 utterances
per session. Sampling frequengy = 8 kHz. Speech is relatively
clean (SNR>30dB), there is a certain amount of session variability
between the 4 sessions. For all experiments undemikematched
condition (Sec.3.3), the noisy speech utterances werenebltdy
adding randomly selected segments from the standard NeBex
database [6] to the original speech from the XM2VTS databaise

7 different SNR levels. Four noise types were used, whitek,pi
babble and factory noise [6].

3.2. Description of the systems tested

In the proposed framework, the following 5 systems weretésthe
primary systenBBF uses a frame length of 20ms and’6@verlap,

a silence removal step based on frame energies, retalfffigf the
higher energy frames during training ah@’% while testing, a 256-
point DFT and a spectral subtraction step which subtraetsrtéan

of the 15% lowest energy frames from all the retained frames. The
binary features are calculated directly from Fourier sgecBince
the spectrum is symmetric, half of it is discarded, giviNg=129
frequency points and a total of 16512 binary features. Otuhisf
the number of selected featur®s is 30. A variant of this system
BBFais exactly the same but without the spectral subtractiop. ste
VariantBBFquses only a quarter of the full Fourier spectrum, i.e, till
1 kHz, instead of the full 4 kHz, motivated by the concentnatof

. Since a decision is only required at the utterancethe selected features (using the full spectrum) below 1kEi fig.

1). The other variantBBFmxxuse Mel spectra instead of Fourier
spectra, i.e. the spectral vect&represent Mel filter outputs. We

2 in an utterance are added and normalized by the number akport using 24 and 40 filter8 BFm24 BBFm40respectively).

frames, to obtain the final score for the utterance. This is com-
pared with a preset threshold to decide if the utterance wadem
by a client or an impostor. This preset thresh6lds calculated by
minimizing the Equal Error Rate [1] on a separate Develofrsen
(ref. Sec.3.)

For comparison, following 3 reference systems were tested.
MC33 A state-of-the-art system using 33 features [1] (16 MFCC
(from 24 filters), 16A-MFCC andA-energy), silence removal by bi-
Gaussian modelling [1] and Cepstral Mean Substraction(CM$
Frame length and overlap are same a8BF. Modelling is by 32



Systems Dev. set Test set Test set il pa—— Tl
tested (EER%) | apriori thr. | a post thr. ol | Y Cioad
Reference| MC33 1.8 1.4 1.5 N i ,2’{'(.“"'
systems | MC16 1.7 3.4 2.8 - m-ucis JPrie
MS24 6.5 5.9 5.8 St | _anaemaal_ 2= 7K
BBF 4.3 9.1 8.2 S
Proposed | BBFa 4.7 10.8 9.2 X,
systems [ BBFq 85 11.4 115 E
BBFmM24 55 9.8 9.3 »
BBFm40 5.0 8.6 8.3 "
Table 1 Verification performance (HTER) under matched condi- T
tion. sf

* SN\R (dB)
Gaussian UBM-GMM system [1]. 2MC16: It uses 16 MFCC fea-
tures modelled by 32 Gaussian UBM-GMM, silence removal thase

on frame energies as BBF, and no CMS. This second system using kg 2 verification performance (HTER) vs. SNR, mismatched

only static features was motivated by the fact that the pegdi-  ~ndition: test speech corrupted additively by white noise
nary features exploit information from a single frame o®yMS24

It uses log spectra from a Mel filterbank with 24 filters to miaaid2
Gaussian UBM-GMM system. It uses the same spectral sukisttac

T
—%— BBF

setup aBBF. This system was included in order to find whether the sl | —v—BBFa ,

. . —6— BBFq
noise-robustness of the proposed framework is due to uspeaf s —8— BBFmA0

. .. . . . . 40| = ¥ = MC33 b
tra instead of cepstra or is it an intrinsic property of thedoy fea- - |- vci
tures themselves, because spectral features have beaalyeokl- 5 227 narmd et 1
served to be more robust than cepstral features in noisyitiams ol ' |
for speech applications. s

& 25| B

3.3. Experimental conditions Tl |
Two different conditions were tested. 1) Matched-cleandgon: 151 .
The standard Lausanne Protocol variant 1 [5] associateful thvit ol |
XM2VTS database was followed. According to this protocastfi It
utterance from sessions 1, 2 and 3 (Training set) are uséioing. Sp e’ 1

For training a client model, the remaining speakers in tlentket
are treated as impostors. Second utterance from same 8rsessi
(Development set) are used to set the thresBodd Equal Error Rate
(EER) [1]. Itis a global threshold. For testing, the 2 utter@s from
the remaining session 4 and a dedicated impostor set diffénam

all clients are used (Test set). Performance is reportedring of
the Half Total Error Rate (HTER) %(False Acceptance Rate(FAR)
+ False Rejection Rate(FAR)) [1] on the Test set, usinggtpeiori
threshold®. 2) Mismatched-noisy condition: The same protocol
was followed. Training and development (setting the thokbhwas
done on original clean speech but the testing was carriedronbisy
speech [6] (ref. Sec.3.1).

5
SNR (dB)

Fig. 3. Verification performance (HTER) vs. SNR, mismatched
condition: test speech corrupted additively by pink noise.

session 4 (used for testing). A slightly different protoedhich
takes into account this variability (selective trainingnasall ses-
sions) lowered the test HTER f&BF from 9.1% to 5.4%.

In mismatched-noisy condition, the proposed framework out
performs the reference systems significantly for mediumigi h
o . levels of noise. In white noise case, improvement is visfbben
The ver_lflcat|on performance (HTER) under matched condition is gNR=15dB. For other types, it is visible from SNR around 10dB
shown in Table 1. We also report EERon the Development set, pjease note that systeBBFa s to be compared wittMC16 and
and HTERY on the Test set with the threshold aglosteriorionthe ot with MC33 because it uses a similar restricted framework.
Test set. The mismatched condition is reported in Figs. 2&8d 5 |t js noteworthy thatBBFq compares reasonably well with other
for white, pink, babble and factory noise types respegtisiowing  proposed systems even by using only a quarter of the spectrum
HTER % against SNR of the test speech. Results are discussed [Eurther, the proposed framework performs significantlyesehan
Sec.4. reference systermMS24indicating that the noise-robustness of the
proposed framework is more due to the intrinsic robustnésheo
binary features. A brief feature level analysis of the rabess of
the proposed features against the four noise types is showigi6
In matched-clean condition, the proposed framework is emtp where the variation in probability of the first selected eatvalue,
formed by the reference systems. A major reason can be due B(¢7(X) = 1) for a client from the database is plotted against
channel variability between sessions 1,2,3 (used forithgjnand  noise level, for both the client and all impostors. The satian

3.4. Results

4. DISCUSSIONS
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Fig. 4. Verification performance (HTER) vs. SNR, mismatched

condition: test speech corrupted additively by babbleaois

451 —de— BBF
—¥— BBFa
prys —e— BBFq
—8&— BBFM40
= %= MC33

- &- MCl6

- ©- MS24
—d— BBFmM24

HTER %
N
3]
T

5
SNR (dB)

Fig. 5. Verification performance (HTER) vs. SNR, mismatched

condition: test speech corrupted additively by factoryseoi

between client and impostor probabilities remain reldyivstable

over a wide SNR range, which can possibly lead to stable score

over the same range (ref. Eqn.2).

The proposed framework leads to significant reduction in-com
putation time compared to the reference MFCC-GMM systems.

While testing the client model, it involves only; = 30 comparison

and addition operations per frame, which can even be hatdeto [4

because the summation is over preset weidhts}. In contrast,
MC33requires33 x 32 subtractions33 x 32 multiplications and
32 exponentiations. This makes the proposed system maortgala
for real-time operations. Another interesting aspect efgloposed
framework is that the client models do not directly storecsfz
shape information. They only store discriminative freqrepoints

(kn,1,kn,2) and thresholds. Thus, the proposed models may b

more robust against efforts to reconstruct a syntheticevaiodel

from stolen model parameters than an equivalent MFCC-GMM

model, although such a claim remains to be validated.
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Fig. 6. Effect of 4 noise types on the proposed features, in terms
of P(¢7(X) = 1). The blue lines represent data from a particular

client, the boxplots represent data over all impostors.

5. CONCLUSIONS

We propose a new set of binary features for speaker vertitati
based on comparison of points in magnitude spectra. Tharé=at
are selected individually for each client using Adaboost, ample
and relatively fast to calculate and show robustness agséveral
additive noise types in mismatched conditions. As part ¢firi
work, the feature set could be augmented by joint modelinthe
spectro-temporal plane. The features could be generaizatbre
than 2 frequency points to capture more speaker-specifizns-
tion. Fusions between different proposed systems and betie

proposed systems and the MFCC-GMM system could result in im-

proved performance in both clean and noisy conditions.
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