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Abstract

Verifying a person’s identity claim by combining multipléonetric systems (fusion) is a promising so-
lution to identity theft and automatic access control. Thissis contributes to the state-of-the-art of mul-
timodal biometric fusion by improving the understandindugion and by enhancing fusion performance
using information specific to a user.

One problem to deal with at the score level fusion is to comBystem outputs of different types. Two
statistically sound representations of scores are prbtyadnd log-likelihood ratio (LLR). While they are
equivalent in theory, LLR is much more useful in practicesdhese its distribution can be approximated by
a Gaussian distribution, which makes it useful to analyseptoblem of fusion. Furthermore, its score
statistics (mean and covariance) conditioned on the clhinser identity can be better exploited.

Our first contribution is to estimate the fusion performagoeen the class-conditional score statis-
tics and given a particular fusion operator/classifier. nksato the score statistics, we can predict fusion
performance with reasonable accuracy, identify conditiwhich favor a particular fusion operator, study
the joint phenomenon of combining system outputs with diffié degrees of strength and correlation and
possibly correct the adverse effect of bias (due to the devsd mismatch between training and test sets)
on fusion. While in practice the class-conditional Gaussissumption is not always true, the estimated
performance is found to be acceptable.

Our second contribution is to exploit the user-specificidimwledge by limiting the class-conditional
Gaussian assumption to each user. We exploit this hypetivesivo strategies. In the first strategy, we
combine a user-specific fusion classifier with a user-inddpet fusion classifier by means of two LLR
scores, which are then weighted to obtain a single outputsivige that combining both user-specific and
user-independent LLR outputs always results in improvetbpmance than using the better of the two.

In the second strategy, we propose a statistic called thespseific F-ratio, which measures the dis-
criminative power of a given user based on the Gaussian gasmm Although similar class separability
measures exist, e.g., the Fisher-ratio for a two-classi@nolnd the d-prime statistic, F-ratio is more suit-
able because it is related to Equal Error Rate in a closed.fBrmatio is used in the following applications:
a user-specific score normalization procedure, a useffgperiterion to rank users and a user-specific fu-
sion operator that selectively considers a subset of systeniusion. The resultant fusion operator leads
to a statistically significantly increased performanceéhwiéspect to the state-of-the-art fusion approaches.
Even though the applications are different, the proposetiodls share the following common advantages.
Firstly, they are robust to deviation from the Gaussian@aggion. Secondly, they are robust to few training
data samples thanks to Bayesian adaptation. Finally, thesider both the client and impostor information
simultaneously.

Keywords: multiple classifier system, pattern recognition, usercgmeprocessing






Version Abregee

La vérification de l'identité d’'une personne en combinantsfurs systémes biométriques est une
solution prometteuse pour contrer le piratage d'identitéeecontréle d’'accés. Cette thése contribue a
I'état de l'art de la fusion multimodale biométrique. Ellméliore la compréhension du mécanisme de
fusion et augmente la performance de ces systemes en explditformation spécifique d’un utilisateur
donné.

Cette thése se concentre sur le probléeme de fusion au niveda sbrtie de plusieurs systemes de
vérification d’identité biométrique. En particulier deuiférentes représentations sont utilisées comme
valeur de sortie de ces sytémes : les probabilités et ledatiwaisemblances (Log-Likelihood Ratio, LLR).
Méme si en théorie, les deux représentations sont équtealeles LLRs sont plus facile & modeliser car
leur distribution est approximativement normale. En ples statistiques (moyenne et covariance) pour un
utilisateur donné peuvent étre mieux exploitées.

Les contributions de cette thése sont présentées en deiespar

Tout d'abord, nous proposons un modeéle pour prédire la pagfoce optimale de fusion étant donné
les statistiques dépendant des clients et des impost&ssga’'un opérateur de fusion. Grace a ce modéle,
nous pouvons prédire la performance avec une précisioptate, identifier les conditions qui favorisent
un opérateur de fusion donné, analyser la corrélation éesrelifférentes fonctions de classification et
analyser I'effet du biais engendré par la différence deribigion des données d’entrainement et de test.
Le nouveau modéle paramétrique est fondé sur I'hypothésdagdistribution des scores, étant donnée la
classe, suit une loi Gaussienne. Bien que cette hypothéseitneas toujours vraie en pratique, la valeur
estimée de l'erreur de performance est acceptable. Afin degiointroduire des connaissances a priori
pour chaque utilisateur, nous limitons I'hypothése Garss a chaque personne.

En deuxieme partie, nous avons exploité cette hypothéstlisant deux stratégies différentes. La pre-
miére consiste a combiner l'utilisation de connaissangasodi pour chaque utilisateur et celle commune
a tous, par le biais de deux scores LLRs. Ceux-ci sont enpaitdérés pour obtenir un seul score. Ce
cadre générique peut étre utilisé pour une ou plusieurditorscde classification. Nous montrons qu’en
exploitant ces deux sources d’informations, I'erreur és$ petite gu’en exploitant le meilleur des deux.

La deuxiéme stratégie consiste a utiliser une statistidgfuerdratio» qui indique le degré de discrimi-
nation pour un utilisateur donné en supposant I'hypothé&ses&enne. Bien que cette statistique ressemble
beaucoup au ratio de Fisher pour un probléme a deux clasked-ptime, seul le F-ratio est une fonction
directement liée au taux d’erreur égal (Equal Error Rat@usNavons exploité cette statistique dans dif-
férentes applications qui se montrent plus efficaces quedbmiques classiques, a savoir, une procédure
pour normaliser les scores pour chaque utilisateur, ugrerpour trier les utilisateurs selon leur indice
de discrimination et un nouvel opérateur qui sélectionnsaus-ensemble de systémes pour chaque uti-
lisateur. Bien que ces applications soient différentdesglartagent des avantages similaires : elles sont
robustes a la déviation de I'hypothése Gaussienne, ell@srebustes a la faible disponibilité des don-
nées grace a I'adaptation Bayesienne, enfin, elles exptaimultanément I'information du client et des
imposteurs.

Mots Clef : combinaison de plusiers fonctions de classification, rea@msance de forme, traitement
utilisateur-spécifique
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0,3 | standard deviation and covariance matrix
~v,w | model parameters to be tuned
P(-) | probability
p(+) | probability density function
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N(y\u, 3}) | anormal (Gaussian) distribution with mearand covarianc& evalu-
ated at the poiny. The distribution is written aﬁ/(u, Z))
a’ | the transpose of the vectar

Note that:

¢ No distinction is made between a variable and its realinagimthatp(Y” < A) = p(y < A) where
Y is avariable ofy € Y. Similarly, E,cy[Y] = E[y].

e Subscripts and superscripts are used for conditioningiablar The conditioning of class labklis
written as a superscript, i.e;* = y|k, and the user-specific conditioning (user index) is used as a
subscript, i.e.y; = y|J.
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Chapter 1

Multi-system Biometric Authentication

1.1 Problem Definition

Biometric authenticatiofis a process of verifying an identity claim using a persoekdvioral or physio-
logical characteristics [62]. Biometric authenticatidfecs many advantages over conventional authentica-
tion systems that rely on possessions or special knowledge,passwords. It is convenient and is widely
accepted in day-to-day applications. Typical scenariesaacess control and authentication transaction.
This field is evolving fast due to the desire of governmentgravide a better homeland security and due
to the market demand to protect privacy in various formsarfigactions.

Authentication versus Identification

This thesis is about biometrguthentication(also known as verification) and not about biometden-
tification. In the latter, there is no identity claim, but rather the lgefathe system is to output the most
probable identity. If there aré persons in the database, thematchings are needed. In a closed set iden-
tification, this task is to forcefully classify a biometriaraple as one of thé known persons. In an open
set identification, the task is to classify the sample aseitime of the/ persons or an unknown person.
In some applications, particular in access control withmatéd population size, biometric authentication
is operated in the open set identification mode. In this sé@ren authorized user simply presents his/her
biometric sample prior to accessing a secured resouitieput making any identity claim [86] Hence,

in terms of applications, there needs no clear distinctietwben authentication and identification, i.e.,
techniques developed in one application scenario can Hedpp another.

Error Rates

Upon presentation of a biometric sample, a system shoulut gecess (if the person is a client/user) or
reject the request (if the person is an impostor). In gerterahs, this decision is made by comparing
the system output with aaperating threshold In this process, two types of error can be committed:
falsely rejecting a genuine user or falsely accepting arostgr. The error rates are respectively called
False Rejection Rate (FRR) and False Acceptance Rate (HAREe two errors are important measures
to assess the system performance which is visualized udidegection Error Trade-off (DET) curve. A
special point called Equal Error Rate (EER), where FARR, is also commonly used for application
independent assessment.

Desired Operational Characteristics of Biometric Authenication

It is desirable that biometric authentication be perforraatbmatically, quickly, accurately and reliably
Using multimedia sensors and ever increasingly powerfomaters, the first two criteria can certainly be

1in this case, the original authentication system has to befraddo that the accept/reject decision is not made for eadiled
user. This is because there could be multiple accept desision

1
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fulfilled. However,accuracyandreliability are two issues not fully resolved. Due to sensor technodogie
and external manufacturing constraints, no single biamgit can achieve a 100% authentication perfor-
mance. Byaccuracy we mean that both FAR and FRR have to be reduced. Often,afegeone error
type by changing the operational threshold will only inGe#he other error type. Hence, in order to truly
improve the accuracy, there must béuadamental improvemenBy reliability, we mean that theame
result in terms of score should be expected each time a systarasses a biometric sample during testing.

The Challenges in Biometric Authentication
Person authentication is a difficult problem because ofdlieviing properties:

e Unbalanced classification task:At least in a typical experimental setting, the number ofujea
(client) attempts is much smaller than that of impostomapts’.

e Unbalanced risk: Depending on applications, tleestof falsely accepting an impostor and that of
falsely rejecting a client can differ by one or two orders @fgnitude.

e Scarce training data: At the initial (enrollment) phase, a biometric system iwakd to have very
few biometric samples (less than four or so; in order not taogrthe user). Building a statistical
model or a feature template is thus a challenging machimeriileg problem.

¢ Vulnerability to noise: It is known that biometric samples are vulnerable to “naigeXamples are,
but not limited to, (i) occlusion, e.g., glasses occludifg@e image; (i) environmental noise, e.g.,
view-based capturing devices are particularly susceptiblchange of illumination, and speech is
susceptible to external noise sources [118] as well asrti@mtoby the transmission channel; (iii)
user’s interaction with the device, e.g, non-frontal fat2g]; (iv) the deforming nature of biomet-
rics, as beneath physiological biometric traits are oftersetes or living tissues that are subject to
minor changes over both short and long time-span; (v) deteatgorithms, e.g., inaccurate face de-
tectors [147]; and (vi) the ageing effect [46] in the sensd the duration can span from days (e.qg.,
growth of beards and mustaches for face recognition) or wéely., hair) to years (e.g., appear-
ance of wrinkles). Increasing the system reliability inaglidecreasing the influence of these noise
sources.

Multi-System Biometric Authentication

The system accuracy and reliability can be increased by gongbtwo or more biometric authentication
systems. According to a yet-to-published standard rep®@ 4722) entitled “Technical Report on Multi-
Modal and other Biometric Fusion” [149], these approaclashz any of the following types:

e Multimodal: Different sensors capturing different body parts
e Multi-sensor: Different sensors capturing the same body part

e Multi-presentation: Several sensors capturing several similar body parts,tergfingerprint bio-
metric system

e Multi-instance: The same sensor capturing several instances of the sameaddy

e Multi-algorithmic: The same sensor is used but its output is proposed by diffirature extraction
and classifier algorithms

This thesis concerns fusion of any of these types, i.uki-systenbiometric authentication. For this rea-
son, the term “multi-system” was used in this thesis titletHe general pattern recognition problem, our
chosen approach can also be call@didtiple Classifier SystefMCS). As this thesis focuses on the above-
mentioned approaches, the classical ensemble algorithaisas bagging, boosting and error-correction
output-coding [31] which rely oeommon featurewill not be discussed. This issue was examined else-
where, e.g., [95].

2Such prior probabilities are unknown in real applicationd are often set to be equal.
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Fusion Techniques

In the literature, there are several methods to combineimadtal information. These methods are known
asfusion techniguesCommon fusion techniques include fusion at teature level(extracted or internal
representation of the data stream)soore leveloutput of a single system). Between the two, the latter is
more commonly used in the literature.

Some studies further categorize three levels of score fag@n [14], namely, fusion using the scores
directly, using aset of most probableategory labels (called abstract level) or usingdimg/le most probable
categorical label (called decision level). We will focus thie score level for two reasons: the last two
cases can be derived from the score and more importantlysibg only labels instead of scores, precious
information is lost, thus resulting in inferior performan@4].

Feature Level versus Score Level Fusion

Although information fusion at the feature level is certgimuch richer, exploiting such information by
concatenation, for instance, may result in thiese of dimensionalitjl1, Sec. 8.6]. In brief, it states that
combined information (feature) may have atoo high dimanthat the problem cannot be solved easily by
a given classifier. Furthermore, not all feature type<arapatibleat this level, i.e., of the same dimension,
type and sampling rate. The feature level fusion certaindyits a thorough investigation but will not be
addressed here.

On the other hand, working at the score level conceals betlptbblems of curse of dimensionality
and feature compatibility. Furthermore, the algorithmeeligped at the score level can be independent of
any biometric system. Being aware that the only informatetained is score, any additional information
desired to be tapped must be fed externally. It should bednibigt the feature level fusion converges
to the score level fusion by assuming independence amonpidneetric feature sets. This assumption
is perfectly acceptable in the context of multimodal biomiegfusion but does not hold when the feature
sets are derived from the same biometric sample, e.g., cingdihe coefficients of Principal Component
Analysis (PCA) and that of Linear Discriminant Analysis (AP Under such situation, the dependency at
the feature level will certainly occur at the score leveln€equently, such dependency can still be handled
at the score level.

1.2 Motivations

Combining several systems has been investigated elsewehgrein general pattern recognition [138]; in
applications related to audio-visual speech processifgChap. 10] [77, 19]; in speech recognition —
examples of methods are multi-band [17], multi-stream 58, front-end multi-feature [136] approaches
and the union model [85]; in the form of ensemble [13]; in audisual person authentication [127]; and,
in multi-biometrics [125, 88] (and references herein), amothers. In fact, one of the earliest works
addressing multimodal biometric fusion was reported in8L§8R]. Therefore, biometric fusion has a
history of nearly 30 years. Admittedly, the subject of ciisscombination is somewhat mature. However,
below are some motivations for yet another thesis on thetopi

e Justification of why fusion works: Although this topic has been discussed elsewhere [57, §7, 68
133], there is still a lack of theoretical understandingtipalarly with respect tacorrelation and
relative strengtramong systems in the context of fusion. While these two fachoe well known
in regression problems [13], they are not well-defined irssification problems [135]. As a re-
sult, many “diversity” measures exist while no one meassiig satisfactory predictor of the fusion
performance — they are too weakly correlated with the fupiariormance and are highly biased.

e User-induced variability: When biometric authentication was first used for biometrithantica-
tion [48], it was observed that scores from the output of aesgsare highly variable from one user
to another. 17 years later, this phenomenon was statigtipadntified [33]. As far as user-induced
variability is concerned, several issues need to be answavbether this phenomenon exists in
all biometric systems or it is limited to the speaker verificataystems; methods to mitigate this
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phenomenon; and to go one step further, methods to consideddimed user identity in order to
improve the overall performance.

¢ Different modes of fusion: Thede factoapproach to fusion is by considering the output of all sub-
systems [125] (and references herein). However, in a pacpplication, e.g., [86], one rarely uses
all the sub-systems simultaneously. This suggests thaffiaieet and accurate way of selecting
sub-systems to combine would be beneficial.

e On the use of chimeric users:Due to lack of real large multimodal biometric datasets amihpy
concerns, the biometric trait of a user from a database énafdmbined with another different bio-
metric trait of yet another user, thus creating a so-cattd@cheric user Using a chimeric database
can thus effectively generate a multimodal database wislngeeInumber of users, e.g., up to a thou-
sand [137]. While this practice is commonly used in the mudtial literature, e.g., [44, 124, 137]
among others, it was questioned whether this was a righg tbido or not during the 2003 Workshop
on Multimodal User Authentication [36]. While the privacyobtem is indeed solved using chimeric
users, it is still an open question of how such chimeric datalran be used effectively.

1.3 Objectives

The objective of this thesis is two-fold: to provide a betbederstanding of fusion and to exploit the
claimed identity in fusion.

Due to the first objective, proposing a new specialized fusi@assifier is not the main goal but a
consequence of a better understanding of fusion. To ersystematiémprovement, whenever possible,
we used a relatively large set of fusion experiments, imstdaone or two case studies as often reported
in the literature. For example in this thesis as few as 15 rax@aits are used. In our published paper,
e.g., [113], as many as 3380 were used. None of the expesnused are chimeric databases (unless
constructed specifically to study the effect of chimericraseOur second objective, on the other hand,
deals with how the information specific to a user can be etgdoiConsequently, novel strategies have to
be explored.

1.4 Original Contributions Resulting From Research

The original contributions resulting from the PhD researah be grouped in the following ways:

1. Fusion from a parametric perspective: Several studies [57, 67, 68, 133] show that combining
several system outputs improves over (the average pernfmenaf) the baseline systems. However,
the justifications are not directly related to the reductidrtiassification performance, e.g., EER,
FAR and FRR. Furthermore, one or more unrealistic and sfyipdj assumptions are often made,
e.g., independent system outputs, common class-condititistributions across system outputs and
common distribution across (client and impostor) claselabWe propose to model scores to be
combined using a class-conditional multivariate Gaus@ae for the client scores; the other for the
impostor scores). This model is referred to as a “paramitsion model” in this thesis. Although
being simple, this model does not make any of the three assamsgust stated above. A well
known Bayes error bound (or the upper bound of EER) basedismthdel is called the Chernoff
bound [35].

Our original idea is to derive thexactEER (instead of its bound) given the parametric fusion model
and given a particular fusion operator thanks to a derivatissic called the “F-ratio” [103]. Although

in practice the Gaussian assumption inherent in the paranfiesion model is not always true, the
error of the estimated EER is acceptable in practice. We tiseé-ratio to show the reduction of
classification error due to fusion in [103], to study the efffief correlation of system outputs in [109],
to predict fusion performance in [102] and to compare thégperance of commonly used fusion
operators (e.gnin, max, mean and weighted sum) in [107].
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2. On exploiting user-specific information: While assuming that class conditional scores are Gaussian
is somewhat naive, this approach is much more acceptable wiemakes such an assumption on
the user-specific scores, where the client (genuine) semeescarce. Two different approaches are
proposed to exploit user-specific information in fusion.

The first approach, calledwser-specific compensation framew@tR5], linearly combines the out-
puts of both user-specific and user-independent fusiosifilers. This framework also generalizes
to a user-specific score normalization procedure when oslggle system is involved. The advan-
tage of this framework is that it compensates for the pogsibteliable but still useful user-specific
fusion classifier.

The second approach makes use ofuber-specific F-ratipwhich is in the following techniques:

¢ A novel user-specific score normalization procedure catterm.
e A user-specific performance criterion to rank users acogrth their ease of recognition.

e A novel user-specific fusion operator called an “OR-Switthéhich works by selecting only
a subset of system to combine on a per person basis.

These technigues can be found in our publications [108, 113, respectively. Although the appli-
cations are different, they all are related to F-norm anctbeare the following properties:

¢ Robustness to the Gaussian assumption.

e Robustness to extremely few genuine accesses via Bayaaatasion, which is a unique ad-
vantage not shared by existing methods in user-specifieAboeshold normalization, e.g. [18,
48,52, 64, 75, 92, 126].

e Client-impostor centric — making use of both the genuineiamgbstor scores.

3. Exploring different modes of score-level fusions:We also propose several new paradigms to fu-
sion, namely:

e A novel multi-sample multi-source approach — whereby midtsamples of different biometric
modalities are considered.

e Fusion with virtual samples by random geometric transfdioneof face images — whereby the
novelty lies on applying virtual samples during test as gggloto during training.

e A robust multi-stream (multiple speech feature represemts) scheme. This scheme relies
on a fusion classifier that is implemented via a Multi-Layerdeptron and takes the outputs
of the speaker verification systems. While being trained witHicial white noise, the fusion
classifier is shown to be empirically robust to differentlistr additive noise types and levels.

These three subjects can be found in our publications [116l, 100], respectively.

4. On incorporating both user-specific and quality information sources: Several studies on fu-
sion [10, 44, 129, 141] as well as on other biometric modsdijtie.g., speech [49] and finger-
print [21, 134], iris [20] and face [70], have demonstratedttquality index, also known as con-
fidence, is an important information source. In the mentioagproaches, a quality index is derived
from the features or raw biometric data. We propose two ide@sprove the existing techniques.
The first one aims at directly deriving the quality inforneettifrom the score, based on the concept of
margin used in boosting [47] and Support Vector Machine (JYM6], [26]. The second one aims
at combining user-specific and quality information in fusigsing a discriminative approach. The
resultant techniques based on these two ideas were publisive[110] and [1113, respectively.

5. On the merit of chimeric users: To the best of our knowledge, no prior work is done on the raerit
of chimeric users in experimentation. We examined thisagsam two perspective: whether or not
the performance measured on a chimeric database is a gatidtpreof that measured on a real-user

3This paper is the winner the best student poster award inGotif. on Audio- and Video-Based Biometric Person Autheattan
(AVBPA2005) for contribution on “biometric fusion”.
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database; and whether or not a chimeric database can bétedptimprovethe generalization per-

formance of a fusion operator on a real-user database. Basadonsiderable amount of empirical
biometric person authentication experiments, we concthdethe answer is unfortunately “no” to
the first questiohand no statistical significant improvement or degradatiothé second question.

However, considering the lack of real large multimodal Hate, it is still useful to construct a train-
able fusion classifier using a chimeric database. Thesenwasiigations were published in [104]
and [113], respectively.

6. On performance prediction/extrapolation: Due to user-induced variability, the system perfor-
mance is often database-dependent, i.e., the system mparfoe differs from one database to the
other. Working towards this direction, we address two iss@stablishing confidence interval of a
DET curve such that the effect due to different compositibnsers is taken into account [117]; and
modeling the performance change (over time) on a per usé& ass to provide an explanation to
the trend of the system performance.

7. Release of a score-level fusion benchmark database and teoMotivated by the fact that multi
biometric fusion score-level is an important subject artdyeh a benchmark database does not exist,
the XM2VTS fusion benchmark dataset was released to tha@gdublTogether with this database
come the state-of-the-art evaluation tools such as DETe@en Error Trade-off), ROC (Receiver’s
Operating Characteristic) and EPC (Expected PerformanceeCcurves. The work was published
in [106].

The above contributions (except topic 7) can be divided into categories, i.e., user-independent pro-
cessing (topics 1, 3 and 5) and user-specific processing$t@p 4 and 6). User-specific processing, as
opposed to user-independent processing, takes into acttmitabel of the claimed identity for a given
access request, e.g., user-specific fusion classifierspseific threshold and user-specific performance
estimation. Topics 1 and 2 are theost representativand also thenost importansubject in its category.
We therefore give much more emphasis on these two topics.

1.5 Publications Resulting From Research

The publications resulting from this thesis are as follows:
1. Fusion from a parametric perspective.

e N. Pohand S. Bengio. Why Do Multi-Stream, Multi-Band and Ndibdal Approaches Work
on Biometric User Authentication Tasks? IBEE Int'l Conf. Acoustics, Speech, and Signal
Processing (ICASSPpages vol. V, 893—-896, Montreal, 2004.

e N. Poh and S. Bengio. How Do Correlation and Variance of Bdasdifiers Affect Fusion in
Biometric Authentication TasksEEEE Trans. Signal Processing3(11):4384—4396, 2005.

e N. Poh and S. Bengio. Towards Predicting Optimal SubsetsaskeBExperts in Biometric
Authentication Task. IhNCS 3361, 1st Joint AMI/PASCAL/IM2/M4 Workshop on Multaio
Interaction and Related Machine Learning Algorithms ML thges 159-172, Martigny, 2004.

e N. Poh and S. Bengio. EER of Fixed and Trainable Classifierd:hAoretical Study with
Application to Biometric Authentication Tasks. IINCS 3541, Multiple Classifiers System
(MCS) pages 74-85, Monterey Bay, 2005.

2. On exploiting user-specific information.

e N. Poh and S. Bengio. F-ratio Client-Dependent Normaliratin Biometric Authentication
Tasks. InIEEE Int'l Conf. Acoustics, Speech, and Signal ProcessiBESP) pages 721—
724, Philadelphia, 2005.

4This implies that if one fusion operator outperforms anothieidn operator on a chimeric database, caenot guarante¢hat
the same observation is repeatable in a true multimodal da&albdise same size.
5Accessible at http://www.idiap.ckhorman/fusion



1.5. PUBLICATIONS RESULTING FROM RESEARCH 7

e N. Poh, S. Bengio, and A. Ross. Revisiting Doddington’s Zb&ystematic Method to Assess
User-Dependent Variabilities. MWorkshop on Multimodal User Authentication (MMUA 2006)
Toulouse, 2006.

e N. Poh and S. Bengio. Compensating User-Specific Informatith User-Independent Infor-
mation in Biometric Authentication Tasks. Research Re@b+#4, IDIAP, Martigny, Switzer-
land, 2005.

3. On exploring different modes of score-level fusions.

e N. Poh and S. Bengio. Non-Linear Variance Reduction Tealegdn Biometric Authentica-
tion. In Workshop on Multimodal User Authentication (MMUA 20083ges 123-130, Santa
Barbara, 2003.

¢ N. Poh, S. Bengio, and J. Korczak. A Multi-Sample Multi-sseiModel for Biometric Authen-
tication. InlIEEE International Workshop on Neural Networks for Signaddessing (NNSPR)
pages 275-284, Martigny, 2002.

e N. Poh, S. Marcel, and S. Bengio. Improving Face Autheticatising Virtual Samples. In
IEEE Int'l Conf. Acoustics, Speech, and Signal Processpages 233-236 (Vol. 3), Hong
Kong, 2003.

e N. Poh and S. Bengio. Noise-Robust Multi-Stream Fusion fextTndependent Speaker
Authentication. InThe Speaker and Language Recognition Workshop (Odygsegs 199—
206, Toledo, 2004.

4. On incorporating both user-specific and quality information sources.

e N. Poh and S. Bengio. Improving Fusion with Margin-Deriveah@dence in Biometric Au-
thentication Tasks. IbBNCS 3546, 5th Int’l. Conf. Audio- and Video-Based Bioneg®érson
Authentication (AVBPAYages 474-483, New York, 2005.

e N. Poh and S. Bengio. A Novel Approach to Combining ClienpBrdent and Confidence
Information in Multimodal Biometric. ILNCS 3546, 5th Int'l. Conf. Audio- and Video-Based
Biometric Person Authentication (AVBPA 2008ages 1120-1129, New York, 2005 ((winner
of the Best Student Poster award)).

5. On the merit of chimeric users.

e N. Poh and S. Bengio. Can Chimeric Persons Be Used in Mul@nBimetric Authentica-
tion Experiments? ILNCS 3869, 2nd Joint AMI/PASCAL/IM2/M4 Workshop on Multaio
Interaction and Related Machine Learning Algorithms ML klges 87-100, Edinburgh, 2005.

e N. Poh and S. Bengio. Using Chimeric Users to Construct FuSiassifiers in Biometric
Authentication Tasks: An Investigation. IBEE Int'l Conf. Acoustics, Speech, and Signal
Processing (ICASSPJoulouse, 2006.

6. Other subjects.
e N. Poh, A. Martin, and S. Bengio. Performance GeneralinatioBiometric Authentication

Using Joint User-Specific and Sample Bootstraps. IDIAP-RRBIAP, Martigny, 2005.

e N. Poh and S. Bengio. Database, Protocol and Tools for Etiratu&core-Level Fusion Algo-
rithms in Biometric AuthenticationPattern Recognition39(2):223—-233, February 2005.

e N. Poh, C. Sanderson, and S. Bengio. An Investigation of tegdeBubband Centroids For
Speaker Authentication. IbNCS 3072, Int'l Conf. on Biometric Authentication (ICBpxges
631-639, Hong Kong, 2004.



8 CHAPTER 1. MULTI-SYSTEM BIOMETRIC AUTHENTICATION

1.6 Outline of Thesis

This thesis is divided into two parts which correspond to major contributions. Chapter 2 is devoted to
explaining the common databases and evaluation methddslaged in both parts of thesis.

Part | focuses on the score-level user-independent fui@ontains two chapters. Chapter 3 reviews
the state-of-the-art techniques in score-level fusiorr. @iginal contribution, to be presented in Chapter 4,
is on providing a better understanding based on the clasdittmnal Gaussian assumption of scores to be
combined — the so-callggarametric fusion model

Part Il focuses on user-specific fusion. All the discussiariart | can directly be extended to Part Il by
conditioning the parametric fusion model on a specific uBer.this reason, Part | and Il are complemen-
tary. Part Il contains three chapters. Chapter 5 is the firsey written on the subject afser-specific pro-
cessing The next two chapters are our original contributions. @a@ proposes a compensation scheme
that balances between user-specific and user-independgon f Chapter 7 presents a user-specific fusion
classifier as well as a user-specific normalization proatased on F-norm.

Finally, Chapter 8 summarizes the results obtained so fhoatlines promising future research direc-
tions.



Chapter 2

Database and Evaluation Methods

This chapter is divided into two sections: Section 2.1 dbssrthe databases used in this thesis and Sec-
tion 2.2 describes the adopted evaluation methodologié® sEcond section deals with issues such as
threshold selection, performance evaluation, visuatimadf pooled performance (from several experi-
ments) and significance test.

2.1

Database

There are currently many multimodal person authenticatadabases that are reported in the literature, for
examples (but not limited to):

BANCA [5] — face and speech modalities

XM2VTS [78] — face and speech modalitfes

VidTIMIT database [25] — contains face and speech modslitie

BIOMET [15] — contains face, speech, fingerprint, hand agdatiure modalities.
NIST Biometric Score Set — contains face and fingerprint rfiteist.

MYCT [90] — ten-print fingerprint and signature modalifies

UND - face, ear profile and hand modalities acquired usinigpleisinfrared-Red and range sensors
at different angles

FRGC - face modality captured using camera at differentesnghd range sensors in different con-
trolled or uncontrolled settings

However, not all these databases are true multi-biometddatities, i.e., from the same user. To the
best of our knowledge, BANCA, XM2VTS, VidTIMIT, FRGC and NTSare true multimodal databases
whereas the rest ashimericmultimodal databases. A chimeric user is composed of at teashiometric
modalities originated from two (or more) individuals. BARG@nd XM2VTS are preferred because:

They are publicly available.

Ihttp://iwww.ee.surrey.ac.uk/banca
2http://www.ee.surrey.ac.uk/Research/VSSP/xm2vtsdb
Shttp://users.rsise.anu.edu.aabnrad/vidtimit
“http://www.itl.nist.gov/iad/894.03/biometricscoresgbl _contents.html
Shttp://turing.ii.uam.es/bbdd_EN.html
Bhttp://www.nd.edutcvr/UNDBiometricsDatabase.html
http://www.frvt.org/FRGC
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Table 2.1: The Lausanne and fusion protocols of the XM2VT@ltzse. Numbers quoted below are the
number of samples.

Data sets Lausanne Protocols Fusion
LP1 LP2 Protocols

LP Train client accesses 3 4 NIL

LP Eval client accesses | 600 @ x 200) | 400 € x 200) || Fusion dev

LP Eval impostor accessgs 40,000 @5 x 8 x 200) Fusion dev

LP Test client accesses 400 @ x 200) Fusion eva

LP Test impostor accessgs 112,000 {0 x 8 x 200) Fusion eva

e They come with well defined experimental configurationdechtrotocols which define clearly the
training and test sets such that different algorithms cabemehmarked.

e They contain behavioral and physiological biometric ait

2.1.1 XM2VTS Database and Its Score-Level Fusion Benchmark Dasats

The XM2VTS database [83] contains synchronized video ameap data from 295 subjects, recorded
during four sessions taken at one month intervals. On eagticge two recordings were made, each
consisting of a speech shot and a head shot. The speech skisted of frontal face and speech recordings
of each subject during the recital of a sentence.

The Lausanne Protocols

The 295 subjects were divided into a set of 200 clients, 2%uatian impostors and 70 test impostors.
There exists two configurations or two different partitimpapproaches of the training and evaluation sets.
They are called Lausanne Protocol | and I, denoted as LP1 B&d One can distinguish three data sets,
namely train, evaluation and test sets (labeled as “TrdiEwal” and “Test”, respectively). For each user,
these three sets conta(8, 3,2) samples for LP1 an¢4, 2, 2) for LP2. The training set is usathiquely

to build a user-specific model. Any hyper-parameter of thelehaan be tuned on the Eval set. Thus
the Eval set igeserveduniquely as a validation set. Aa priori threshold has to be calculated on the
Eval set and this threshold is used when evaluating the myptgformance on the Test set in terms of
FAR and FRR (to be described in Section 2.2). Note that in pattocols, the test set remains the same.
Table 2.1 is the summary of the LP1 and LP2 protocols. Theckalsimn of Table 2.1 shows the fusion
protocol. Note that as long as fusion is concerned, only types of data sets are available, namely fusion
development and fusion evaluation $etShese two sets hav@, 2) samples for LP1 an(®, 2) samples
for LP2, respectively, on a per user basis. More details eih@uXM2VTS database can be found in [78].

The Score-Level Fusion Datasets

As for the score fusion datasets, we collected match scdises/en face systems and six speech systems.
This data set is known as the “XM2VTS score-level fusion henark dataset” [108] The label assigned

to each system (Table 2.2) has the format/R wheren denotes the protocol number (1 or 2) amd
denotes the order in which the respective system is invoked.MLP-based classifiers, their associated
class-conditional scores have a skewed distribution ddectaise of the logistic activation function in the
output layer. Note that LP1:6 and LP1:8 are MLP systems wjtbehbolic tangent output whereas LP1:7
and LP1:9 are the same systems but whose outputs are traesforto LLR by using an inverse hyperbolic

8Note that at the fusion level, only scores are available. fllkndevelopmenset is derived from the LP Eval set whereas the
fusion evaluationset is derived from the LP Test set. The term “developmentbissistently referred to as the training set; and
“evaluation” as the test set.

9Available at http://www.idiap.chtnorman/fusion. There are nearly 100 downloads at the timefhiesis publication.
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Table 2.2: The characteristics of 12 (+2 modified) systerkertdrom the XM2VTS benchmark fusion
database.

Labels | Modalities | Features| Classifiers
P1:1 face DCTs GMM
P1:2 face DCThb GMM
P1:3 speech LFCC GMM
P1:4 speech PAC GMM
P1:5 speech SSC GMM
P1:6 face DCTs MLP
P1:7 face DCTs MLPi
P1:8 face DCTb MLP
P1:9 face DCThb MLPi
P1:10 face FH MLP
P2:1 face DCTh GMM
P2:2 speech LFCC GMM
P2:3 speech PAC GMM
pP2:4 speech SSC GMM

MLPi denotes the output of MLP converted to LLR using invelngperbolic tangent function. P1:6 and
P1:7 (resp. P1:8 and P1:9) are 8@mesystems except that the scores of the latter are converted.

tangent function. This is done to ensure that the scoresran@ &gain linear. More explanation about the
motivation and the post-processing technique can be faueéction 3.3.2.

The Participating Systems in the Fusion Datasets

Note that each system in Table 2.2 can be characterized tatardéerepresentation and a classifier. All
the speech systems are based on the state-of-the-art @atdigiure Models (GMMs) [121]. They dif-
fer only by their feature representations, namely Lineagkency Cepstral Coefficients (LFCC) [119],
Phase-AutoCorrelation (PAC) [59] and Spectral SubbandrGiels (SSC) [91, 118]. These feature repre-
sentations are selected such that they exhibit differegtegeof tolerance to noise. Highly tolerant feature
representation performs worse in clean conditions. The $gstems are based on a downsized raw Face
images concatenated with color Histogram information (81 and Discrete Cosine Transform (DCT)
coefficients [131]. The DCT procedure operates with twossizeimage block, i.e., small (s) or big (b),
and are denoted by DCTs or DCTb, respectively. Hence, thehimat process is local as opposed to the
holistic matching approach. Both the face and speech sgsteenconsidered the-state-of-the-art systems
in this domain. Details of the systems can be found in [106].

2.1.2 BANCA Database and Score Datasets

The BANCA database [5] is the principal database used inghjger. It has a collection of face and
voice biometric traits of up to 260 persons in 5 differentgaages. We used only the English subset,
containing only a total of 52 persons; 26 females and 26 mdlas 52 persons are further divided into
two sets of users, which are called g1 and g2, respectivedgh Bet of users contains 13 males and 13
females. According to the experimental protocols, whengylised as a development set (to build the
user’s template/model), g2 is used as an evaluation sefr fibes are then switched. In this thesis, g1l is
used as a development set; and g2 an evaluation set.

101n some fusion experiments, especially in user-specific fusd.: 10 is excluded from study because for some reasonsitiine
scores more thah or less than-1 (which should not in theory!). When converting these bor@eras using the inversion process,
they result in overflow and underflow. While we tried differsvetys to handle this special case, using P1:10 only comptichie
analysis without bring additional knowledge.
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Table 2.3: Usage of the seven BANCA protocols (C: clientnpostor). The numbers refer to the ID of
each session.

Test Sessions < |Tra5|n fe;SITﬂf 55
|(:::1i-14 Mec

,(::g_ség ud | Md

e
f:lii’&&lo-lz = G

The BANCA Protocols

There are altogether 7 protocols, namely, Mc, Ma, Md, Ua,RJdnd G, each simulating matched control,
matched adverse, matched degraded, uncontrolled aduersentrolled degraded, pooled and grant test,
respectively. For protocols P and G, there are 312 clierdsses and 234 impostor accesses. For all other
protocols, there are 78 client accesses and 104 impostesses. Table 2.3 describes the usage of different
sessions in each configuration. Note that the data is achoirer 12 sessions and spanned over several
months.

The Score Files

For the BANCA score data sets, there are altogether 118@ sites containing single modality experi-
ments as well as fusion experiments, thanks to a study ceediic [8OFL. The classifiers involved are
Gaussian Mixture Models (GMMs) (514 experiments), Muléiyler Perceptrons (MLPSs) (490 experiments)
and Support Vector Machines (SVMs) (182 experiments).

Differences Between BANCA and XM2VTS
The BANCA database differs from the XM2VTS database in thiedong ways:

e BANCA contains more realistic test scenarios.

e The population on which the hyper-parameter of a baselistesyis tuned is different for the de-
velopment and evaluation sets, whereas in XM2VTS the genusers are the same (the impostor
populations are different in both cases). In both casese thee no “inter-template” match scores,
i.e., match scores resulting from comparing the biometia @f two genuine users, which are used
frequently in databases with identification setting.

e The number of client and impostor accesses are much monedealan BANCA than in XM2VTS.

Pre-defined BANCA Fusion Tasks

We selected a subset of BANCA systems to constitute a setsibritasks. These systems are from
University of Surrey (2 face systems), IDIAP (1 speakereygt UC3M (1 speaker system) and UCL (1
face systentf. The specific score files used are as follow:

e | DI AP_voi ce_gnmm aut o_scal e_33_200

e SURREY face svm auto

L available at “ftp://ftp.idiap.ch/pub/bengio/banca/lsan scores”
2pvailable at “ftp://ftp.idiap.ch/pub/bengio/banca/lsan scores”
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e SURREY face_svm nan
e UC3M voi ce_gnm auto_scal e_34_ 500
e UCL face |da_nan

for each of the 7 protocols. By combining each time two systénom the same protocol, one can obtain
10 fusion tasks, given BYC5 (5 “choose” 2). This results in a total of 70 experiments b7 grotocols.

These experiments can be divided into two types: multimbhdabn (fusion of two different modalities,
i.e, face and speech systems) and intramodal fusion (ofdee@dystemar two speech systems). We expect
multimodal fusion to be less correlated while intramodaldun to be more correlated. This is an important
aspect so that both sets of experiments will cover a larggerahcorrelation values.

2.1.3 NIST Speaker Database

The NIST yearly speaker evaluation plans [89] provide maaia dets for examining different issues that
can influence the performance of a speaker verification syst®tably with respect to handset types,
transmission channels and speech duration [148, Chaph8]2005 (score) datasets are obtained from 24
systems that participated in the evaluation plan. Thesese@e resulted from using testing the 24 systems
on the speech test data sets as defined by the NIST experimesttzcols. However, for the purpose of
fusion, there exists no fusion protocol so we define one thitg sur needs.

In compliance to the NIST’s policy, the identity of the paipiants are concealed, so are the systems
which the participants submitted. Most systems are bas&gbmssian Mixture Models (GMMs) but there
exists also Neural Network-based classifiers and Suppato¥@lachines. A few systems are actually
combined systems using different levels of speech infdomatSome systems combine different type of
classifiers but each classifier uses the same feature setasé\e subset of this database which contains
124 users.

2.2 Performance Evaluation

2.2.1 Types of Errors

A fully operational biometric system makes a decision usirgfollowingdecision function

decisiorn{x) = { accept i y(x) > A

reject otherwise (2.1)

whereA is a threshold ang(x) is the output of the underlying system supporting the hygsiththat
the extracted biometric feature of the query samglehelongs to theargetclient, i.e., whose identity is
being claimed. Note that in this case, the decisiondependentf any identity claim. A more thorough
discussion of user-specific decision making can be founceeti@n 5. For the sake of clarity, we write
instead ofy(x). The same convention applies to all variables derived fyoBecause of the accept-reject
outcomes, the system may make two types of errors, i.ee &septance (FA) and false rejection (FR).
The normalized versions of FA and FR are often used and cBlésk Acceptance Rate (FAR) and False
Rejection Rate (FRRY, respectively. They are defined as:

FAR(A) = F’?\EIA) , (2.2)
FRRA) = % . (2.3)

where FA and FR count the number of FA and FR accesses, resgcand N* are the total number of
accesses for clags= {C, I'} (client or impostor). To obtain the FAR and FRR curves, oneeps over
different A values.

13Als0 called False Match Rate (FMR) and False Non-Match REMR). In this thesis, we are interested in algorithmic eval-

uation (as opposed to scenario or application evaluati@r)ce other errors such as Failure to Enroll and Failure tpu#e do not
contribute to FAR and FRR. As a result, FAR and FRR are takéetihe same as FMR and FNMR, respectivd[y.reference?]
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2.2.2 Threshold Criterion

To choose an “optimal threshold, a threshold criterion is needed. This criterion has to béreped
on a development set. Two commonly used criteria are Waighteor Rate (WER) and Equal Error Rate
(EER). WER is defined as:

WER(a, A) = aFAR(A) + (1 — a) FRR(A), (2.4)

wherea € [0, 1] balances between FAR and FRR. The WER criterion discussedshameneralization of
the criterion used in the yearly NIST evaluation plans [1@Bap. 8] (known a€'pgr) and that used in
the BANCA protocols [5]. This is justified in Section B.
Let A}, be the optimal threshold thatinimizesWER on adevelopment setlt can be calculated as
follows:
A% = arg mAin |aFAR(A) — (1 — a) FRR(A)]. (2.5)

Note that one could have also used a second minimizatiogrionit
A? = arg mAin WER(q, A). (2.6)

In theory, these two minimization criteria should give itleal results. This is because FAR is a decreasing
function while FRR is an increasing function of threshold.practice, however, they do not, since FAR
and FRR are empirical functions and are not smooth. (2.5)reeghat the difference between weighted
FAR and weighted FRR is as small as possible while (2.6) esghat the sum of the two weighted terms
are minimized. By taking advantage of the shape of FAR and,KRRB) can estimate the threshold more
accurately and is used for evaluation in this study.

Note that a special case of WER where= 0.5 is known as the EER criterion. The EER criterion
makes the following two assumptions: the costs of FA and lERequal and the prior probabilities of client
and important class are equal.

2.2.3 Performance Evaluation

Having chosen an optimal threshold using the WER threshdlericem discussed in Section 2.2.2, the final
performance is measured using Half Total Error Rate (HTERJe that the threshold(}) is found with
respect to a given. The HTER is defined as:

HTER(A?) = PAR(A:) J; FRR(Aq) 2.7)

It is important to note that the FAR and FRR do not have the sa®@ution Because there are more
simulated impostor accesses than the client accesses inbershmark databases, FRR changes more
drastically than does FAR. Hence, when comparing the padace using HTER\AY ) from two systems

(at thesamecosta), the question of whether a given HTER difference is statfly significant or not has

to take into account the highly unbalanced numbers of chetimpostor accesses. This is discussed in
Section 2.2.4.

Note that the key idea advocated here is that the threshaldohlae fixeda priori using a threshold
criterion (optimized on a development set) before meaguha system performance (on an evaluation set).
The system performance obtained this way is cadlgdori. On the other hand, if ongptimizesa criterion
and quotes the performance on g@medata set, the performance is calkegosteriori Thea posteriori
performance is thus overly optimistic because one assulnagghte class-conditional score distributions
are completely known in advance. In an actual operatingesysthe class-conditional score distributions
as well as the class prior probabilities are unknown; yetdibeision threshold has to be fixedpriori.
Quotinga priori performance thus reflects better the application need. Sthigect is further discussed in
Section 2.2.6. Itis for this reason that the NIST yearly eatibn plans include two sets of performance for
Cpgr: onea priori and anothea posteriori(called minimumCpgr). In this thesis, onla priori HTER
is quoted.



2.2. PERFORMANCE EVALUATION 15

2.2.4 HTER Significance Test

Although there exists several statistical significancéstasthe literature, e.g., the McNemar’s Test [30],
it has been shown that the HTER significance test [9] betftats the unbalanced nature of precision in
FAR and FRR.

A two-sided significance test for HTER was proposed in [9].delnsome reasonable assumptions, it
has been shown [9] that the difference of HTER of two systesag4 and B) is normally distributed with
the following variance:

o FAR4(1—FAR,) +FARp(1 — FARg) ~ FRR4(1 — FRRys) 4+ FRRg(1 — FRRp)
THTER = 1. NI + 4. NC

(2.8)

where HTERy, FAR4 and FRRy are HTER, FAR and FRR of the first system labelednd these terms
are defined similarly for the second system labekedV* is the number of accesses for class {C, I}.
One can then compute the followingstatistic:
L HTER, — HTERp
OHTER

(2.9)

Let us define®(z) as the cumulative density of a normal distribution with zerean and unit variance.
The significance of is calculated a®~!(z). In a standard two-sided test, is used. In (2.9), the sign
of z is retained so that > 0 (resp.z < 0) implies that HTER, > HTERg (resp. HTERy < HTERp).
Consequentlyp~1(z) > 0.5 (resp.®~1(z) < 0.5).

Note that the HTER significance test [9] does not considefatigthat scores from the same user tem-
plate/model are correlated. As a result, the confidenceviitean be under-estimated. There exists a more
advanced technique that considers such dependency ancaitéd the bootstrap subset technique [12].
Note that the usage of the HTER significance test and thateafdotstrap subset technique are different.
If one is interested in comparing two algorithms evaluatedhe samedatabase (hence of the same pop-
ulation and size), the HTER significance test is adequateveder, if one is interested in comparing two
algorithms evaluated on two different databases (heiftarentsets of population) the bootstrap subset is
more appropriate.

2.2.5 Measuring Performance Gain And Relative Error Change

This section presents the “gain ratio”. This measure is diat@uantifying the performance gain obtained
due to fusion with respect to the baseline systems. Suppas¢here aré = 1,..., N baseline systems.
HTER; is the HTER evaluation criterion (measured oreaaluationset) associated to the output of system
i and HTERy o) is the HTER associated to the combined system. The “gaio’'rathas two definitions,
as follows:

meani(HTERi)
mean — T e~ 2.10
ﬁ HTERco M ( )
min; (HTER;)
in= e 211
Pm HTERcom (2.11)
whereg,,cqan @ands,,., are the proportion of the HTER of the combined (fused) systéimrespect to the
mean and the minimum HTER of the underlying systems 1,..., N. In order that3,,;, > 1, several

conditions have to be fulfilled (see Section C.3).
Another measure that we use often is the relative error ahdhgs defined as:

HTER™" — HTER”?  HTER™*"

relative HTER change- T = 7
0 — HTER® HTER®

i

where the zero in the denominator is made explicit to show ttierelative error change compares the
amount of error reduction with respect to the maximal reidacpossible, i.e., zero in this case. This
measure is useful because it takes into account the faoitteat an error rate is already very low, making
some more progress becomes very difficult.
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Figure 2.1: An Examples of two EPC curves and their corredipgrsignificance level of HTER difference.
(a): Expected Performance Curves (EPCs) of two experimemts is a face system (DCTs,GMM) and
the other is speech system (PAC,GMM). (b) HTER significarest of the two EPC curves. Confidence
more than 50% implies that the speech system is better apeveisa for confidence less than 50%. This
is a two-tailed test so two HTERS of a giveasta are considered significantly different when the level of
confidence is below 10% or above 90% (for a significance lev@0%, in this case for illustration).

2.2.6 Visualizing Performance

Perhaps the most commonly used performance visualizinigiriothe literature is the Detection Error
Trade-off (DET) curve [82], which is actually a Receiver @gqter Curve (ROC) curve plotted on a scale
defined by the inverse of a cumulative Gaussian density ifmmclt has been pointed out [8] that two DET
curves resulted from two systems are not comparable besagkecomparison does not take into account
how the thresholds are selected. It was argued [8] that stizteshold should be chosearpriori as well,
based on a given criterion such as WER in (2.5). As a resultEipected Performance Curve (EPC) [8]
was proposed. We will adopt this evaluation method, whi@ide in coherence with the original Lausanne
Protocols defined for the XM2VTS and the BANCA databases.

The EPC curve simply plots HTER (in (2.7)) versugas found in (2.4)), since different values ®f
give rise to different HTER values. The EPC curve can be méged in the same manner as the DET
curve, i.e., the lower the curve is, the better the perfocadiut for the EPC curve, the comparison is done
at a given cost (controlled hy). Examples of DET and EPC curves can be found in Figure 6.3.

We show in Figure 2.1 how the statistical significance testulsed in Section 2.2.4 can be used in
conjunction with an EPC curve. Figure 2.1(a) plots the EP@easiof two systems and Figure 2.1(b) plots
their degree of significance. In this case, (DCTs,GMM) igesysA whereas (PAC,GMM) is systerd.
Whenever the EPC curve of systdsris lower than that of system (B is better tham), the corresponding
significance curve is more than 50%. Below 10% of confidencalfove 90% of confidence) indicates
that systemB is statistically significantly worse thaA (or systemA is statistically significantly worse
thanB).
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2.2.7 Summarizing Performance From Several Experiments

It is often necessary to pool several DET/EPC curves togeHur instance, when two algorithms exhibit
very similar performance on an experiment, by usidatabases, one is interested to know if one system is
better than the other by using only a single visualizatiawewia DET or EPC. Two of these reasons are: (i)
to summarize the curves; (ii) to obtairs@gnificantstatistics. Often, due to fusion, FAR and FRR measures
can be very small and can reach 100% accuracy. By poolinguhes, this problem can be avoided. It
is due to this problem that aasymptotic performancgerocedure [42] was proposed. This procedure first
fits the conditional scores with a chosen distribution maahel then the smoothed FAR and FRR curves
can be generated. While such a model-based approach is wejtad in the medical fields (where the
data is not continuous but rank-ordered) [84], it is not camiy used in biometric authentication. This is
because the empirical FAR and FRR values in biometric atittsion can be linearly interpolated. The
composite FAR and FRR measures hence is a practical solttbout any model-fitting (whose model
and hyper-parameter tuning are subject to discussion).

The main idea in pooling several curves together is by dstd@bl a global coordinate such that the
pair of FAR and FRR values from different curves are comgardtxamples of such coordinates are DET
angle [2], LLR unique to each DET [54] and thevalue used in WER as shown in (2.5), among others.
We use thex parameter because it inherits the property that the carretipg threshold isinbiasedi.e.,
the threshold is set without the knowledge of the scoreibdigion of the test set. The pooled FAR and

FRR across = 1, ..., N experiments for a given € [0, 1] is defined as follow:
N *\ [~
pooled *\ Zi:l FA(AQ)M
FAR (A == (2.12)
and v
ooled *\ Zi:l FR(A:;)[Z]
FRRP (AL) = NN (2.13)

where FAA? )[i] counts the number of false acceptances of systéue to using the thresholN*, at the
costa, N© is the number of accesses for clagx”, I'}. FR(A?)[i] that counts the number of client is
defined similarly. The pooled HTER is defined similarly as2r7§ by using the pooled versions of FAR
and FRR.

2.3 Summary

In this chapter, we discussed the databases and the ewvalte¢hniques that will be used throughout this
thesis. In particular, we highlight the following issues:

e A priori performance : We quote onlya priori performance, where the decision threshold is fixed
after optimizing a criterion on a separate developmentsetfanction ofx. In contrast, quoting
posterioriperformance measured on an evaluation sbiasedbecause such performance assumes
that the class-conditional distribution of the test scareampletely known in advance. For this
reason, all DET/EPC curves in this thesis are plotted wighiori performance given (some equally
spaced and sampled values aff [0, 1],

e HTER significance test:We choose to employ the HTER significance test that consttlergnbal-
anced numbers of client and impostor accesses, therehinioigta more realistic confidence interval
around the performance difference involving two systems.

e Pooled performance evaluation:We adopt a strategy to visualize a composite EPC/DET cuwrte th
is summarized from several experiments.

In this chapter, we also made available a score-level fusechmark fusion benchmark dataset which
was published in [106].

14The DET curve plotted witta priori FAR and FRR values is hence a discrete version of the ori@&al curve. This is not a
weakness as a fine sampling@fvalues will compensate for the discontinuities. The adwgamtaowever, is that when “comparing
two DET curves”, we actually compare two HTERs given the samalue. In this sense, the value establishes an unambiguous
coordinate where points on two DET curves can be compared.
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Chapter 3

Score-Level Fusion

3.1 Introduction

Fusing information at the score level is interesting beeatusduces the problem complexity by allowing
different classifiers to be used independently of each otBarce different classifiers are used, a fusion
classifier will have to take into consideration the fact tiwgt scores to be combined are of different types,
e.g., a fingerprint which outputs scores in the rafige000], a correlation based face classifier which
outputs scores in the ranfel, 1], etc. In this respect, there exists two fusion strategiethd first strategy,
the system outputs are mapped into a comisamTe representation a process called score normalization
— before they are combined using (very often) simple rules, min, max, mean, etc. Learning takes
place at the score normalization stage. In the second gyradusion classifier is learnt from the scores
to be combined directly. Examples of fusion classifiers angp®rt Vector Machines, Logistic Regression,
etc. Both the fusion strategies are analyzed in this chapter

While there exists many score representations, only twoees@presentations are statistically sound:
probability and Log-Likelihood Ratio (LLR). While in thegrpoth representations are equivalent, using
LLR has the advantage that the corresponding scores cannvergently characterized by the first- and
second-order moments. Furthermore, these moments canditieoed on a particular user, thus providing
a means to introduce the statistics associated to a partigsér.

This chapter is presented with the goal to prepare the réadmtter understand our original contribu-
tions on better understanding the fusion problem (ChapiteiPart 1) and on user-specific processing (Part

1.

Chapter Organization

This chapter contains the following sections: Section Btebduces the notations to be used through out
this thesis and presents some of the basic concepts, gajs, ¢ information fusion and decision functions.
Section 3.3 emphasizes the importance of mapping the systigmats into a common domain since the
system outputs arbeterogeneousof different types). Section 3.4 includes a survey of éxgsfusion
techniques. Section 3.5 emphasizes the benefits of workirteLLR representation of system outputs
from the fusion perspective. These benefits will be contyrsteown in Chapter 4 using a parametric fusion
model, as well as in Chapters 6 and 7, where scarce useffispefrmation is exploited.

In order to support some of the claims in this chapter, séweqaeriments have been carried out.
However, in the interest to keep this chapter concise, nbtie@xperimental results (in terms of DET/EPC
curves) are included here. Most of these results can be fiold@1].

21
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3.2 Notations and Definitions

3.2.1 Levels of Fusion

According to [132] (and references herein), biometric eyst can be combined at several architectural
levels, as follow:

e sensor e.g., weighted sum and concatenation of raw data,
o feature, e.g., weighted sum and concatenation of features,

e score e.g., weighted sum, weighted product, and post-classifiee conventional machine-learning
algorithms such as SVMs, MLPs, GMMs and Decision Trees&tsypand

e decision e.g., majority vote, Borda count, Behavioral Knowledga&p[138], Bayes fusion [74],
AND and OR.

The first two levels are called pre-mapping whereas the Vestlévels are called post-mapping. Algo-
rithms working in-between the two mappings are called ramapping [132]. We are concerned with the
scorelevel fusion (hence post-mapping) in this thesis. Note thatdo not work on the decision level
fusion but the score level fusion because much richer inftion is available at the score level, e.g., user-
specific score statistics. In fact, an experimental study4hshows that the decision level fusion does not
generalize as well as the score level fusion (although thstive objective of the paper).

3.2.2 Decision Functions

Let us denoteC (for client) andI (for impostor) as the two class labels the variablean take, i.e.,
k € {C,I}. Note that clasg” is also referred to as thgenuineclass. We consider a “person” as a
composite of data for various biometric modalities, whielm ®e captured by biometric devices/sensors,
ie.,

person= {tface7 tspeech7 tfingerprint7 .. ‘}7

wheret; is the raw data, i.e., 1D, 2D and multi-dimensional signafishe i-th biometric modality.
To decide whether to accept or reject an access requesteg@drngan, one can evaluate thesterior
probability ratio in logarithmic domain (called log-posterior ratio, LPR):

LPR log (P(Opersor)) o (p(persomC)P(C)) 7

P(I|person p(persomnl ) P(I)
B p(personC) P(0C)
= % (persont) T P(D)
—_—— ——
_ p(personC) P(I) _
= log plpersons) log PC) = Yl — A, (3.1)

where we introduced the terpi’” — also called a Log-Likelihood Ratio (LLR) score — and a thodd
A = log % to handle the case of different priors. This constant alfleats the differentostsof false

acceptance and false rejection. In both cases, the thokghblas to be fixedx priori. The decision of
accepting or rejecting an access is then:

. _ | accept if LPR> 0
decision(LPR) = { reject otherwisg (32)
or
- e | accept ify!m > A
decisiom (y™) = { reject otherwisg (33)

where in (3.3), the adjustable threshold is made explicit.
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Let 477" be the probability of being a client, i.e/’™®* = P(C|person and using the definition of

LPR = log (%ﬁ?), the decision function of (3.2) can be written B§C|person > P(I|person

or P(C|person > 0.5, sinceP(C|person + P(I|person = 1. In terms ofy?"°%, this decision function is:

accept  ifyP™°* > 0.5

reject otherwisg (34)

decisiomn (yP™°?) = {

Note that the prior probability has already been absorbed?{C|person « p(personC)p(C).

We cally!"" an LLR score whereag’°® a probability. In theory, the decision functions of (3.3) and
(3.4) are equivalent because both can be derived from (H@)ever, in practice, the explicit presence of
a threshold in (3.3) isnore convenienbecause the prior probabilitie®(C) and P(I)) can be adjusted
separatelyfrom the LLR score. For this reason, (3.3nmre commonly used the literature. For the rest
of the discussion, we will writgg = ¢! so that we consistently use LLR in our discussion unlessdtat
otherwise.

3.2.3 Different Contexts of Fusion

From an architectural view point, the (LLR) scarean be explicitly written as:

y = fo(fe(s(t))), (3.5)

where,s is a sensor capturing a particular biometric tkaif. is a feature extractod, is a set of classifier
parameters associated to the classifierWe also denot& = f.(s(t)) when only the extracted features
are concerned.

When considering different fusion contexts, the sgpig associated to a subscriptwhich takes on a
different meaning. The score can be summarized as follows:

fo(fe(s(tld]

yi(person = J}o; ((J}ee s( it
o

f9,i(fe

) if multi-sample
))) !f mult!-modal (3.6)
(t))) if multi-feature
s(t))) if multi-classifier,
wheret denotes any given one of thie biometric traits fori € { face, speech, ...}, t[i] denotes the-th
instance (in time) of the biometric trait andt,; denotes thé-th biometric trait. As in common biometric
applications, we assume that a dedicated sensor is designepture a specific biometric trait, i.e;(t;).

Note that the index takes on a different meaning in any of the four contexts if)(3For example;
denotes the-th instance in the multi-sample case, tiH& biometric modality in the multi-modal case, the
i-th feature set in the multi-feature case, andittie classifier in the multi-classifier case.

To simplify the notation, we writey; instead ofy; (person, while bearing in mind thay; is always
dependent on the “person” (in the sense of composite 1D oli@ials as captured by biometric devices)
who makes an access request. Without loss of generalitysswerge that for each access request, there are

yili € {1,..., N} scores available. We further writeto refer to the output of any of the arbitrary systems
ie{l,...,N}.
Lety = [y1,...,yn]|" be the vector of system outputs to be combined. To decide dicarss should

be granted or not, a fusion classifigror : RY — R must be defined. This can be expressed by
ycom = fecom(y). Note that the decision function in (3.3) can still be usedtifie scoreycons. The
different types of fusion classifiers of the forfao ;s will be discussed in Section 3.4. In the next Section
we will examine different score types commonly used in ttexditure.

1There is an increase use@™°® = P(C|y) in fusion, e.g., [60], wherg is an output score anB(C|y) is considered acore-
normalization procedurintended to approximate the ideal probabilii °® = P(C|t) andt is a biometric trait. Whilg/?°? is a
true probabilityyP"°? can, at best, be thecore-level approximatioaf y?7°. No distinction is made betweg/®"°? andy?" "’ in
this thesis.
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3.3 Score Types and Conversion

3.3.1 Existing Score Types

In biometric authentication, there are several types gbuatidepending on the underlying system, which
are listed as follows:

¢ Distance metric: y € R™ (a positive number). This is often an output of a templatechiayg system
usingy = dist(x, Xempit), Wheredist is a distance function comparing a stored tempkatg,;; and
a query biometric sampte. Some fingerprint recognition system outputs an index betw®and
1000 using the function IN(ly x 1000) where INT converts any real number to its nearest integer
value.

e Probability y € [0,1]. This is a typical output of a Multi-Layer Perceptron (MLPitkwa sigmoid
activation output.

e Similarity index: y € [—1,1]. This is a typical output of a Multi-Layer Perceptron (MLPjthva
hyperbolic tangent activation function.

e Correlation index: y € [0, 1]. Similar to a distance, the correlation index measuresldseness of
two biometric samples.

e LLR score: y € R (a real number). This type of output is typical for systemging on LLR test,
i.e., Bayes classifier. The state-of-the-art speaker gatifin system based on the Gaussian Mixture
Models (GMMs) output an LLR.

¢ Direction from the decision plane: The classical Linear Discriminant Analysis and the mooeng
Support Vector Machines (SVMs) for instance output a sdoag ¢an be interpreted as a geometric
perpendicular direction from the decision hyper plane i fisature (or kernel) space. Based on
the direction (positive or negative), a decision functitassifies a sample as either one class or the
other. The distance (magnitude) of this direction can be@ated with the level of confidence in
classifying a given query sample.

Although there are many types of scores, they can be careglndughly by their types of class-conditional
distribution, i.e., approximately normally (Gaussiangtdbuted or not. Byapproximately normally dis-
tributed we mean that the scores can be summarized by the first ordanjrand second order (covariance)
statistics. Obviously probability and similarity index(1, 1]) have extremely skewed class-conditional
distributions. The rest of the scores are approximatelynadly distributed [109] (see also Section C.1).
Fortunately, by converting the probability scores (andilsirty the similarity scores) to LLR scores, the
process that causes such a skewed class conditional (sistrf)ution can be reversed. This subject is
discussed in Section 3.3.2.

3.3.2 Score Conversion Prior to Fusion

Given the heterogeneous system outputs listed in Sectdoh, 3he first challenge is to convert them into a
common representation. We survey here a family of scoreralization procedures here, namely, conver-
sion to probability and to LLR, non-linear score conversilimear score conversion with tHe, 1] range
constraint and linear score conversion without fthd ] range constraint While these score normalization
procedures are not new, e.g., [60], our somewhat originatritution here is to propose algorithms to
systematically convert any score types into probabilitgt BhR.

Conversion Between Probability and LLR

According to the decision functions discussed in Sectiéh23.there are only two types of score, i.e.,
probability and LLR. We will discuss the conversion betwéeith types of scores here.
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Algorithm 1 Conversion to probabilityf,;.,(y)

e If yisan LLR scoref,,.(y) = sigmoid(y).
o If Yy is P(O|X); fprob(y) =Y.
o If yistanh, foon(y) = 122,

e If y is a distance metric, a similarity index, a correlation oy ather score type not considered, two
solutions can be used:

L. fprob(y) = sigmoid(fror(y) — A) whereA = £ See Algorithm 2 forf, . r (y).

2. forob(y) = sigmoid(%) where A and B have to be empirically adjusted using algorithms
such as logistic regression [56]. This is a mackhocform and was reported in [60, 127] for
instance.

Algorithm 2 Conversion to LLR:f1..r(v)

e If yisan LLR scoref;r(y) = y.
o If yis P(C|x), fLrr(y) = sigmoid ' (y).
o If yistanh, frrr(y) = tanh ().

e If y is a distance metric, a similarity index, a correlation oy ather score type not considered,

C C
frrr(y) = log Z((Zlu)) —log 1;((1))'

Let y = P(C|t). By using the definition of LPR appeared in (3.2), LLR and pdabty can be
converted into one another by:

LPR=1 —log A=) =1 3.7
og PI0) 0g T ; or sigmoid(z) 08T (3.7)
1 1
S iomoid(z) = —— 3.8
YT Iy exp (LPR) or  sigmoid(z) 1+exp(z)’ (3:8)

where we explicitly show that a probability can be convettedn LPR using an inverse sigmoid function
and the process can be reversed using a sigmoid functionsimikar fashion, an MLP outpuj with a

hyperbolic tangent activation functiotunh(z) = i;ﬁ((?) can be mapped into LLR by its inverse, i.e.,
_ 1 1+y
hl(y) = =1 — . .
tanh™ (y) = 5 log (1 — y) (3.9)

The algorithms that convert froamy score typéincluding those not considered in Section 3.3.1) to prob-
ability and LLR are shown in Algorithm 1 and 2, respectively.

An Example to lllustrate the Differences Between Probabiliy and LLR

To motivate why converting from one score type to anothanjzdrtant, we consider a fusion task consist-
ing of two systems in the XM2VTS database (see Section 2.THse two systems are based on outputs
of two MLP classifiers with non-linear activation functiorihe scorebeforeandafter transformation into
LLR are plotted in Figure 3.1. Because these two systemshgssame face image as input (but different
feature representations), their system outputs are eeghéxrbe somewhat correlated. Their corresponding
correlations before and after LLR transformation are messto be 0.382 and 0.471, respectively. As can
be seen, the supposedly observed correlationderestimatedsing the original scores (due to hyperbolic



26 CHAPTER 3. SCORE-LEVEL FUSION

corr=0.471

corr = 0.382

+

0.5 =+

(DCTs,MLP)
(DCTs,MLP)

15

0 . 5 0
(FH,MLP) (FH,MLP)

(a) similarity index or probability (b) LLR

Figure 3.1: Conversion between probability and LLR. Scadtets of two systems (a) before and (b) after
probabilistic inversion. The X-axis is a face system basedhistogram features and an MLP classifier,
labeled as (FH,MLP). The Y-axis is also a face system bas&iFMod?2 features and an MLP classifier,
labeled as (DCTs,MLP).

tangent transformation) than using the transformed sdaré&R. Furthermore, the transformed scores
can better be characterized by the first and second-orderemsrthe second order moment, variance, is
proportional to correlation). More about the merits of wingkin probability and LLR will be discussed in
Section 3.5.

Non-Linear Score Conversion

In [60], several variants of sigmoid-like functions are posed, namely double-sigmoid and tanh-estimator.
While the techniques mentioned thus far are parametric appes that convert any score type to proba-
bility, in [101], we proposed a hon-parametric approacls ttefined as:

foron(y) = FRR(y) — FAR(y). (3.10)

where FRR and FAR are estimated curves from the scores.

Linear Score Conversion with [0,1] Output Range Constraint
There exists also a family of linear transformation funetipall of the form

fiinly) = L0, (3.11)

such that
frin : R —[0,1]. (3.12)

The terms{ A, B} are called scaling factor and bias, respectively. Exampfesormalization proce-
dures [60] are:

e decimal-scaling, i.e{(10'g0 maxy ) Loy
e min-max, i.e.{(max(y) — min(y)) ", min(y},

e median, i.e.{median(|y — median(y)|) ", median(y)}
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(a) original (b) Z-norm (c) F-norm

Figure 3.2: Effects of some linear score transformatiorsttsr plots of one of the fusion data sets using
(a) the original score, (b) Z-norm and (c) F-norm. The X- ardxés are the outputs of two systems. For
each sub-figure and each class of scores, a bi-variate @aufiss also depicted whose mean is marked
by a big plus sign and whose width is displayed with an ovak @lient cluster of scores (small plus signs)
are on the upper right corner and the those of impostor (sihotd)) are on the lower left corner. Note that
for (b), the impostor centers are always zero for the twoesystwhereas the client centers could take on
any value. In (c), not only the impostor centers are always, zbe client centers are also fixed to 2 in this
case (or any number desired). Due to being linear transfiwnms both Z- and F-normgreservethe score
distribution linearly.

Note that imposing the range to fie 1] does not guarantee that the normalized scores are prdpabor
instance,f,-o5(y) > 0.5 can be a sensible decision rule wherefas(y) > 0.5 is not guaranteed to be
optimal.

Linear Score Conversion without [0,1] Output Range Constrant

Another commonly used normalization also having the fornBof2) is called z-score normalization (or
Z-norm), except thaf, : R — R. The following choice of paramete{si, B} can be used:

(1) Unconditioned Z-norm: i.e., {u, o}, wherey = E[y] ande = y/Var[y]. These parameters are
motivated by the assumption that the unconditional scpree® normally distributed. In reality, this
assumption is violated (even if tlibass-conditionascores are normally distributed!) but practically
it still works.

(2) Impostor-conditioned Z-norm: i.e., {u!, o'}, wherep! = E ¢y ;[y] ando! = |/Varyey [yl
In doing so, one applies the parameters conditioned onlheimpostor distribution. The rationale
is that the parameters of the client distribution are legwrinative (due to the relatively less data
points on which the parameters are estimated) comparedtofthe impostor distribution.

(3) F-norm: i.e.,{u!, u®—pu!} whichrelaxesthe conditional Gaussian assumption because the second-
order statistier®|V,, are not used. Note that in this case, both the client and itapparameters are
used, i.e., F-norm is considered “client-impostor cefhtric

Unless stated otherwise, the term “Z-norm” refers to thedstpr-conditioned Z-norm in this thesis, es-
pecially Chapter 7. While Z-norm is commonly used in the &tare, F-norm is our original idea and is
presented here for convenience. The rationale for its patennis justified in Section 4.4.3.

Figure 3.2 shows the effect of impostor-conditioned Z-n@nd F-norm. Preliminary experiments
using both these normalization procedures show that theio performance, using the mean operator,
are not statistically significantly different [101]. Howey as will be illustrated in Chapter 7, a modified
version of F-norm that limits the hypothesis to each useujgsor over Z-norm. This is because F-norm
is client-impostor centric, whereas (the impostor-cdondiéd) Z-norm is (necessarily) impostor centric.
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3.4 Fusion Classifiers

This section contains a brief survey of the commonly usetfutechniques in pattern recognition. Sec-
tion 3.4.1 discusses the various ways fusion classifierbea@ategorized. We then identify three distinctive
types of fusion classifiers each adopting a different pbipy. They are discussed in Sections 3.4.2-3.4.4.

3.4.1 Categorization of Fusion Classifiers

In the literature, there are several ways one can categese level fusion classifiers:

e In probability or in LLR: To the best of our knowledge, the majority of literature cents scores
to probabilities before combining them using sum or produtds [60, 72, 66, 123, 138, 58]. The
use of LLR as a score normalization, although equally imgrdrtespecially in predicting the fusion
performance, e.g., [54, 1], is somewhat downplayed. Thasighfocuses on LLR.

e Trainable or non-trainable (classification or combination) [37]: A fusion classifier needs train-
ing if it contains free parameters that have to be optimiziedrgsome training data. A trainable
fusion classifier can be viewed as a second-level classia@rthis reason, it is also called a stack-
generalizer[150] or a supervisor [10]. Examples are anyhingelearning based classifier, i.e.,
SVMs, MLPs, GMMs, etc. On the other hand, since a non-tramalsion classifier does not have
any free parameter, it does not need training. Insteadraireng takes place at the score normaliza-
tion stage, which is an essential part of a non-trainablefuslassifier. Non-trainable classifiers are
known as fixed fusion operators here. Examplesaten, max, min, median, majority vote, etc.

e Dependent or independent [65]:— Whether one assumes the system outputs to be dependent or
not. When they are their probabilities are jointly estimatetherwise, their probabilities can be
separately estimated and combined using a product rule.

e Adaptive or non-adaptive [132]: A fusion classifier is considered adaptive if it changestitategy
for each observed sample based on the sample quality. Ealpsétudies in [127, 10] show that
by exploiting the quality information appropriately, thdagtive methods can be superior over the
conventional non-adaptive methods.

e User-specific or user-independent:In the former, a fusion classifier (or its weight parameters)
differs from one user to another. In the latter, all usersesttze same fusion classifier.

¢ Discriminative or generative [145]: In the former, one introduces a parametric model for thegsost
rior probabilities and infers the values of the parametennfa set of labelled data. In the latter, one
models the joint label and feature distributions. This in&lby learning the class prior probabilities
and the class-conditional densities, separately for elasis.c

o Parallel or serial combination [65]: In the parallel case, each participating system perforras th
same classification task hence each of them alan be used independently. In the serial case,
the systems work together in a collaborative manner. Onmpbais a hierarchical classification
scheme. Under such a scheme, when a top-level classifieotcerake a decision, it passes the
decision making process to the next available level of diassnd so on. A hierarchical approach
was reported in [152] to combine multiple feature represtions of palmprint. It was shown that
the first level of classifier can already achieve 80% of aagyiaaving the 20% to be fine-tuned by
other more computationally demanding classifiers. Notedbaiding when to delegate the decision
making process to another level of classifier is still an ommearch problem. We consider only the
parallel case in this thesis.

Figure 3.4.1 shows one way to categorize score level fudamssifiers and sections in which they are
discussed.
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score-level fusion

T

non-adaptive adaptive

user-independent user-specific
Chap. 6-7

combination  generative discriminative
Section 3.4.2 Section 3.4.3 Section 3.4.4

Figure 3.3: Categorization of score-level fusion classsfie

3.4.2 Fusion by the Combination Approach

Having mapped the system outputs to an appropriate spacerobability, LLR 010, 1] space, combining
scores assuming that system outputs are independent beEbnfig.o, (v:) and) ", frrr(y:), respectively
for probability and LLR. In the linear space, the theordtjaatification for combining scores using sim-
ple rules such as sum {, ( fiin(y:))) and product [T, (fiin(v:))) is unclear. In fact, combining scores
using simple rules witlf;;,, often results in sub-optimal performance compared to toamséng them into
probability and LLR [101].

Simple Fusion Operators (Fixed Rules)

Several operators are commonly used in the literature, lyamé, max, median, weighted sum and
weighted product, defined as follow:

Ymin = min(y;), (3.13)
Ymae = max(y;), (3.14)
Ymea = median,(y;), (3.15)
N
Ywsum = Z W;Yi, (316)
=1
N
Ywprod = H yfha (317)
i=1

respectively, wherev;|V; are parameters that need to be estimated. i operator is a special case
of weighted sum withw; = % Similarly, the product operator is a special case of weidhiroduct
with w; = 1. Themin, max andmedian operators are sometimes collectively knownCxsler Statis-
tics (OS) combiners because they consider the ordering of scdites order statisticspean, sum and
product combiners are collectively knownsmple fixed ruledecause they do not contain any adjustable
parameter.

Kittler et al [66] provided an explanation on how these fusion rules ceaea&s approximations to the
product and sum rules in a Bayesian framework. In particutési estimates product andax estimates
sum. In the case the estimate of probabiljtgor y;, for anyi) is biased(inaccurate due to mismatch
between training and test sets), they showed that the swwmoutperforms the product rule. Note that the
so-called “biased” estimate of probability is due to theemying mismatch between training and test sets.
Extending Kittleret al's work, Lucey [76, Chap. 10] provided an interesting noissmatch framework in
probability for independent fusion classifiers. Working/éwds this direction, we will provide a parametric
view in LLR in Section 4.6. Note that in reality, the weightprbduct rule is more commonly found in
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adaptivefusion where each weight is a function of a quality index [[L2¥e will thus not discuss further
the weighted product rule here.

Specialized Fusion Classifiers Based On the Combination Appach

Two other specialized fusion classifiers should be mentd@ee, namely Bayesian expert conciliation [44]
and Decision Template (DT) [72]. The expert conciliatiotvésed on the assumption that the conditional
scores are normally distributed and is more appropriatetoaoried out in LLR. One can implement DT
using many types of distance measures such as Dempstar8hlat, fuzzy rules and geometric distances.
Among them, the most common one is the Euclidean distandehvlas the following form:

yoor = — (lly — €I = lly — »'|]) (3.18)

where||z|| is \/_,(22), z; is an element of the vectar, u* is the mean vector of system outputs (or a
“class prototype”). A negative sign is introduced here s the measure is interpreted as similarity (the
larger it is, the closey is to the client prototype). Our empirical studies [101] whibat this classifier

works best using probability scores. We conjecture that ithidue to the unimodal nature of scores in
this space. However, its generalization, in most fusioneexpents, is worse than the general purpose

classifiers that will be discussed in Sections 3.4.3 and!3.4.

3.4.3 Fusion by the Generative Approach (in LLR)

Let us define thgoint system output in the LLR domain by = [y{",... v} andy!" = fror(v:).
Then, the classical approach to establish an LLR test bﬂt\mzechent and impostor classes, i.k.=
{C, I}, is defined as:

lr
yfilerp log p((y”rll%) or yllilerp log p(( I\ ] (3.19)
for the dependent assumptfoand
T p
yﬁndep = IOg H Z fLLR y; (320)

[Lip

for the independent assumption. The approximations t®j&mhd (3.20) using GMM [11, Chap. 2], for
anyy!"" andy!'"|v; (or y andy;|V;, i.e., in the original score domain), can be written as fello

NE
plylk) = Y wiN(ylut,=0), (3.21)
c=1
N
plylk) = D wiN (ylue, (o8)?) (3:22)
c=1
foranyy € {y;|i = 1,..., N}, respectively, where, theth component of the class conditional (denoted
by k) mean vector igi* = [, ..., uk ], its covariance matrix of dimensiaN x N is ¥ and there are

N, components for each = {C, I}. The mean and variance in the mixtyrgy|%), i.e., 1} and(c¥)?
are defined similarly except that they are single dimensidrtee GMM parameters can be optimized using
the Expectation-Maximization algorithm [11] for instarexed the number of components can be tuned by
validation or optimization of a criterion, e.g., minimumsgeiption length [45].

There are two remarks regarding the generative classifistagsked here:

2We make no distinction between the first form of (3.19) (on &f8 land the second form (on the right) as GMM is a general
purpose algorithm. However, by converting scores to LLR fifs¢ form) can ensure that the data is in linear scale. As dtreba
LLR scores can be more appropriately summarized by a mixture eé&an distributions. In practice, we observe that usieditkt
or second form has no significant influence on the generalizgerformance.
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e Special cases of generative classifieNote that when the number of Gaussian componmj% =
1 for k = {C, I'}, the resultant classifier is a Quadratic Discriminant Assly{QDA) classifier. The
Linear Discriminant Analysis (LDA) (also called Fisherdiar discriminant) classifier is obtained
by further imposing theommoncovarianceX. This can be done by taking the linear interpolation
of the two covariance matrices, i.&, = v=¢ + (1 — 7)2!, where~ is parameter to be tuned.
We also used two preset values pfthat give acceptable generalization performance. They are
~v = P(C) (the prior probability of the client clasB(C')) andy = 0 (making the contribution of the
client covariance matrix to be zero). The rationale for theond versiony = 0, is that the client
covariance matrix cannot be estimated reliably. Our emgliniesults on XM2VTS (not reported
here) show that the second version=£ 0) generalizes well, especially in the user-specific context
(see Section 6). This phenomenon is further confirmed in@ect2.

e Robustness of naive Bayes classifierdOur preliminary fusion experiments (carried out on the
XM2VTS database) show that the generalization performémeteeen the fusion classifiers based
on (3.19) and that based on (3.20) (also called Naive Bayass(ier) isnot statistically significantly
different (figure not shown here), even though the systemuisiare known to be correlated (e.g., in
the context of intra-modal fusion). This is because theeenar“outliers” — samples that are found
extremely far from the rest. This is not entirely surprisfofjowing the observation from [34],
which confirms that Naive Bayes classifiers (as in (3.20))ealbest to the underlying system outputs
dependency.

3.4.4 Fusion by the Discriminative (Classification) Approah

There exists a handful of discriminative algorithms forreckevel fusion. However, one must be careful to
take into account the fact that the amount of training sasifdleeach class can be highly unbalanced. We
will pay particular attention to linear classifiers as naredr classifiers such as QDA and reduced polyno-
mial classifier [140] are not known to perforstatistically significantlyoetter than its linear counterpart
Before doing so, it is important to point out that the biashie inear classifier, even though is available, is
not used directly to make the accept/reject. The extermgdtimized threshold\ replaces the actual bias
used (see (2.1)). All linear classifiers, in our context,ehthe following form:

N
yoom = Y _wiyi —A=w'y—A (3.23)
=1
where, A is a bias. For convenience, we introduced the vector reptasenw = [w;,...,wy] and
y = [y, ...,yn]. The discussion that follows will consider three classsfigr this category: Support

Vector Machine, Logistic Regression and Linear (Fishegddiminant Analysis.

e Support Vector Machine: Among the existing classifiers, SVM [146] is undoubtedly thest
popular for two reasons: (i) it relies on minimizing the engal risk (or maximizing the margin)
and (ii) it does not make any assumption about the data (sdiibution. Suppose that) and
() € {—1,1} (positive or negative class) are the input and target owtpekamplej andw'?) is its
associate@mbedding strengtbbtained after SVM training. Large) implies that the associated
example is difficult to classify, and vice-versa for smalll). Examples withu?) > 0 are known as
support vectors. The linear solution proposed by an SVM wilinear kernel is:

fly) = Zw(j)t(j)<y(j),y>= S0y |y = wly, (3.24)
J J

where(., ) is the linear kernel and the underbraced term forms is theisalto the weight vector

w'.

3As no statistical significance test was reported in [140].
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e Logistic Regression: In [56], another algorithm called Logistic Regression (LR)xompared to
SVM. According to [56], LR shares many similar charactésstwith SVM. Our past empirical
experiments show that LR and SVM perform equally well in bétric fusion tasks [113]. LR is
defined as:

v = PO = (o))
where

M
9(y) = _ Bivi +o-

=1
One should recognize thaty) is LPR, the underbraced term is LLR and the higss replaced by
A. The weight parameter$; are optimized using gradient ascent to maximize the likelthof the
data given the LR model [32]. Note that the LR classifier usetlis more general than the one
used in [94]. The former is thstandardapproach as described in [56] whereas the latter assumes
class-conditional Gaussian assumption as well as comnxariaace of both client and impostor
distributions.

SVM and the standard LR classifier are attractive becausedib@ot make any assumption about
the distribution of the system outputs and thus are goodrgéperpose algorithms for classification.
In practice, using any transformede.g., f1in(y), fLLr(vy), OF foron(y), foranyy € {y1,...,yn}
cannot affect the generalization performance of SVM and &&e([101]). For the case ¢f;,(y),
we illustrate this property theoretically in Section D.1.

e LDA as a discriminative classifier: The classical LDA as well as QDA classifier which was dis-
cussed in Section 3.4.3 can also be considered a discriv@mdassifier. This is because LDA can be
written as a linear function as in (3.23). Similarly, QDA damwritten as a quadratic discriminative
function. We will consider the LDA case here because we fdatmdse in user-specific processing
(to be used in Chapter 6). Using the class-conditional madrtavariance (i.e* andX* for each
k = {C,I}) as described in Section 3.4.3, let us define the withinsatasariance matrix as:

Sy = Z >k

k={C,I}
The Fisher linear discriminant solution of the weight vestofor a two-class problem (see [11]) is:
w =S5, (p° - ph) (3.25)

Note that the solutiom; can take on any value and their sum is not necessarily equal As can
be seen, LDA turns out to be both generative and discrinvieati

Note that LDA and QDA both rely on the Gaussian assumptiora Asult, they are inferior in performance
compared to SVM and LR which do not make such an assumptiois ileonfirmed by our empirical
studies in [101]. While this assumption seems to be a linoitatconverting scores into LLR scores prior
to applying LDA canimprovethe generalization performance of LDA.

3.4.5 Fusion of Scores Resulting from Multiple Samples

This section describes two trainable methods to combineesa@sulting from multiple samples. This
fusion problem is more commonly solved using fixed fusioeswds discussed in Section 3.4.2. Trainable
approaches are proposed here because we conjecture #nagive better results since the parameters of
the fusion classifier can further be adjusted to suite tha. dat

Although trainable fusion classifiers as discussed in 8estB.4.3 and 3.4.4 can be used, they are not
suitable for combining scores resulting from multiple sésgdor two reasons: the ordering in which the
samples are presented is not important and the number ofesupgr access can be different for different
accesses.

We choose here two fusion strategies for combining scoms fnultiple samples. Below are two
intuitive rationales for each of the two strategies:
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¢ If one considers the fact that the scores are drawn from aldisibn that can be estimated, then,
matching can be done by comparing two distributions. Thépiies us to use a distribution-based
matcher via theelative entropywhich is also known as th€ullback-Leibler distanceThe “relative
entropy” method evaluates the difference of two relativieapies: the relative entropy between dis-
tribution of the sample scores and that of client scoresthadelative entropy between distribution
of the sample scores and that of impostor scores.

e If one treats the scores like a sequence, then classifieredhgpare sequence can be used. This
inspires us to use GMM, in a similar way that the state-ofdhespeaker verification system [121] is
used. The “GMM” method calculates the average log-likeditheatio of the sample samples between
a GMM modeling the client scores and another one modelingrpestor scores.

Both these methods are further described below (for readeosvant to probe further):

e Combining Sample Scores by Relative Entropy:Relative entropy is used to compare two prob-
abilistic density functionspdfs). In our case, onpdfis derived from a global model (client or
impostor), denoted as; (y), for k = {C, I'} and the othepdfis derived from scores resulting from
multiple samples, denoted a§y). Bothpdfs can be estimated using any density estimator discussed
in [11, Chap. 2], e.g., GMM (as in (3.22)) or the Parzen winddwe relative entropy of a given
access distribution(y) with respect tey(y) can then be defined as:

Lo = - [ pk(y)m;féjy)) dy. (3.26)

In practice, we sample the distribution f andq in fine steps ofy so that the integral is approxi-
mated by a sum operator over the sampjespace. Relative entropy can be regarded as a distance
as to how mucly(y) is from p,(y) but not the other way round, i.e., this distance is not symmet
This alone does not give discriminative information. To do the relative entropy of a client and
impostor models should be used together, as follows:

ycom = —(L(pc,q) — L(p1,q)) (3.27)

Note that the negative sign is introduced so #tco|C] > Elyconm|I]. Inthis way, the decision
function as in (2.1) can be used.

e Combining Sample Scores by GMM:This is an extension of GMM (discussed in Section 3.4.3)
used in the general context of fusion. In the context of carnigi multiple samples, one can safely
assume that the samples (scores) are drawn from the samileutish p(y|k) estimated using (3.22)

for eachk. The LLR test can thus be constructed usfagz(y;) = log p(y”‘% for each sample.

By naivelyassuming that the scores are independent given thé, tisefoint score is:

yoom = Y fLrr(yi)- (3.28)

In generalmean is used in place 0}  so thatycoas is not biased towards the access characterized
by a larger number of samples. In this way, we consider ther&ye LLR".

3.5 On the Practical Advantage of LLR over Probability in Fusion
Analysis

While working in probability and LLR are theoretically eqalent, we have shown intuitively that the
statistics of the LLR scores follow approximately a normigtribution. In [23], the logit transform, i.e.,

4These scores are expected to be dependent because thespeniding biometric samples are closely related in time.
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Figure 3.4: (a) The distribution of LLR scores and its apfiration using a Gaussian distribution. The
mean of both distributions are zero. (b) The distributiopmibability scores for several shifB) and scale
(A) values using 10,000 sample data generated by the LLR disbib

r = log 1=, was used to post-process randomly generated numbersbtain another set of numbers (
having the following form of distribution:

1

M) = @) + exp(—e/2) (329)
One can recognize thatcorresponds to an LLR score. We drew 10,000 random sampescieg top(x)
and re-approximated the sample distribution using a Gans3ihe distributiop(z) and its approximation
using a Gaussian distribution are shown in Figure 3.4(a)casbe observed, both the distributions are
similar. In this case, both the distributions have zero meHme approximated Gaussian has a variance
fixed to 10°. Using the same generated samples, we applied the sigmutidn with some chosen scale
(4) and shift (8) values. The distributions of the resultant transformeabpbility scores are shown in
Figure 3.4(b). Note that the scale value determines thetwiictiriance) of the distribution whereas the
shift value determines the center (location) of the distiin. Only whenB = 0, the score distribution
become central since the generated samples have zero mihough Figures 3.4(a) and (b) are drawn
from the same distribution as shown in (3.29), the LLR sca@as be moreonvenientlyapproximated
using a normal distribution whereas the transformed pritibakcores may have to be described using
a non-central distribution, e.g., a gamma distributionm8arizing the LLR scores using a Gaussian is
convenient because a Gaussian distributiaridsedunder a linear transformation. For instance, if a score
vectory follows a multivariate normal distribution ans is a weight vectorw’y will also follow a one-
dimensional normal distribution [120]. For this reasonMayking on LLR scores, we deviate from the
mainstream literature in terms of analysis (where proltghg a popular choice), e.g. [135, 67, 57, 76],
and fusion methodology (where scores are transformed notagbility prior to combination), e.g., [60, 72,
66, 123, 138, 58]. It should be noted that the use of LLR fofgrarance prediction was reported in [54, 1]
whereas its use in fusion is more common, e.g., [27, 65].

3.6 Summary

This chapter discussed the following issues:

5We drew the samples several times and found that the expediade@was about 10.
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e Fusion modes:Several ways of combining scores are discussed, i.e., usitgple samples, bio-
metric modalities, features and classifiers.

e Score types: Some commonly used score types in biometric systems arasdisd: probability,
LLR, distance, correlation, similarity index, directiomin the decision plan, etc.

e Score normalization: This issue aims at mapping scores into a common domain sedbeds can
be combined using simple combination rules. The two siedity sound representations of score
are discussed: probability and LLR. Another family of fuoogl transformation of scores having
the formR — [0, 1] is also discussed. However, this family of functional apgtees does not have
a sound justification and in practice do not perform as wetd@awerting scores into the probability
or the LLR space.

e Types of score-level fusion classifiersThree categories of fusion classifiers are identified: fusio
by combination (using simple rules), by the generative apghn (using the LLR test) and by the
discriminative approach.

While none of the materials presented here is novel, we cdadlbat between the two statistical repre-
sentations of score, i.e., LLR and probability, LLR is greferredchoice because scores in this domain
can be summarized by using the first- and second-order memdiitis deviates from the mainstream
whereby scores are almost always systematically convantedprobability scores prior to fusion using
simple rules [60, 72, 66, 123, 138]. The choice of using LLR mmaportant consequences to this thesis.
In fact, almost all the contributions in this thesis, as foum Chapters 4—7, essentially demonstrate the
usefulness of LLR.
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Chapter 4

Towards a Better Understanding of
Score-Level Fusion

4.1 Introduction

There have been a growing number of works that empiricatiyaihat combining multiple system outputs
is beneficial, e.g., [125] (and many references herein). é¥ew admittedly, relatively much less works
were reported on the theoretical understanding of fusian, §6, 73, 57, 143, 123, 76]. Such an un-
derstanding is important because the empirical approastuttying fusioncannotexplain why or when
a combined system fails to achieve the desired performafiis is because there are simply too many
factors to be considered, e.g., the type of system outpaitjependency among system outputs, the relative
performance of systems, the choice of decision threshioédptesence of noise and the choice of fusion
classifier.

Previous studies on the understanding of fusion rely on emease of the following simplifying (and
unfortunately unrealistic) assumptions:

e Independence of system outputsthat the system outputs are independent of each other. In in-
tramodal fusion, where several biometric systems rely ensdme biometric capturing device, the
system outputs are likely to be correlated. In this casse,aisumption is violated.

e Common class-conditional distributions:that the client and impostor distributions are the same.

e Common output distributions: that the scores of all the system outputs follow a commomildist
tion.

We will consider LLR scores in this chapter so that it is adgquo summarize the LLR scores to be
combined using a class-conditional multivariate Gaussidre resultant client and impostor multivariate
Gaussian models are referred to as a “parametric fusion lihsidee the model essentially summarizes
the fusion problem. Although relying on the class-conditibscore Gaussian assumption seems to be
restrictive, the model is powerful because it does not makeofiany of the three simplifying assumptions.
Furthermore, we will show that in the context of classifioafi deviation from this assumption cannot
severely influence the precision of the estimated EqualrRate (EER).

We will revisit in this chapter a well known upper bound of tménimal classification (Bayes) error,
i.e., the Chernoff bound [35], given the parametric fusiordel. Although this bound is useful for classi-
fication, it does not estimate EER, a measure thirisnore importanias long as performance evaluation
is concerned. Our original contribution in this chapteniptopose an exact EER solution given any linear
fusion classifier (with mean as a special case) or any ottdéstic fusion operators (e.gynin, max and
median). Thanks to the parametric fusion model, we can justify gguction of classification error due
to fusion, study the effect of correlation of system outpptedict fusion performance and compare the
performance of commonly used fusion operators.

37
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Chapter Organization

This chapter is organized as follows: Section 4.2 is puralgm@pirical study to show that “the combined
system isneverworse than the average performance of its underlying syste8ection 4.4, as opposed
to Section 4.2, is a theoretical study that explains the alghenomenon using the parametric fusion
model. Section 4.5 demonstrates the real potential of thenpetric fusion model by applying the proposed
parametric model to determine an optimal subset of systenfagion.

The next two sections are extended studies based on the gtaiamodel presented in Section 4.4,
These are advanced topics and can be skipped for readersrevimoae interested in user-specific pro-
cessing (treated in Chapter 6 and 7). Section 4.6 analyzethetor not correlation is a necessary and
sufficient factor to predict the fusion performance (thensrsurns out to be necessary Imatt sufficient),
the effect of unbalanced system performance and the effeatise (or bias) to the fusion performance.
Section 4.7 then extends the proposed parametric modeié¢o fatsion operators based on order-statistics.
Thanks to the extended parametric model, one can now igiethéif conditions which favomin, max,
mean or weighted sum. As a summary, Section 4.8 highlights thgimal contributions of this chapter
with respect to the state-of-the-art in fusion.

Because this chapter is theoretical in nature, most exgeisrthat are designed to support our claims
are put in Section C. Readers who are more concerned withrétotigal applicability of the proposed
parametric fusion model are strongly encouraged to reférdanentioned Section. Finally, a collection of
proves, all needed to support the proposed model, can bd fouBection D.

4.2 An Empirical Comparison of Different Modes of Fusion

From (3.6), we know that there are different ways one cantedigerse systems, i.e, using different modal-
ities, different classifiers, different feature repreaginhs and different samples. We design a set of ex-
periments containing these four scenarios, based on theVXi8Xcore-level fusion benchmark database.
In each fusion tasks, only two systems are involved. In tiet firee scenarios, the system outputs are
combined using MLP, SVM and the mean operator asiéan;(f.(y;)) (using Z-norm). For the last sce-
nario, we did not have multiple samples per access but welgrnerate “virtual samples” by randomly
introducing geometric transformation to the images (fistion, rotation, scaling). In order to combine the
scores due to virtual samples, apart from using non-trééniaision operators, e.g., mean and median, we
also used two trainable order-insensitive fusion clagsifitherelative entropyand GMM approaches as
discussed in Section 3.4.5.

From the available 13 systems, we combined each time twersgsaccording to the following modes
of fusion:

e multi-modal (21 fusion tasks)
e multi-feature (9 fusion tasks)
e multi-classifier (2 fusion tasks)
e virtual samples (2 fusion tasks)

Details of these experiments can be found in our publicd88h The results are shown in Figure 4.1. The
performance is measured by the gairagiriori HTER (as discussed in Section 2.2.5) whose threshold is
optimized using WER witle = 0.5 (see Section 2.2). As can be observed, all systems achigyg > 1,
without exception. On the other hand, not all systems aehiky,, > 1 — suggesting than fusion may
not be always useful. By comparing all four ways of genetptiversity, the performance gain is most
evident using multimodal fusion. This is expected becaitker and more complementary information is
available than the other fusion modes. It is interestinga®eove that fusion with virtual samples can help
improve the performance, albeit statistically insignifitg. Note that higher diversity (as in multimodal
case) incurs higher computation/hardware costs. Ideailywishes to keep the cost low. This suggests that
selecting a subset of systems may be more beneficial, ading off statistically insignificant performance
gain for lower computation. This will be discussed in Sat#db.
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Figure 4.1: An empirical study of relative performance dfatient modes of fusion. Boxplot of (8).can
andg,,:,. Each bar shows the relative improvement in terms @efined in (2.10) and (2.11)) within 95%
of confidence. The vertical line around the middle of eachidotire median of3,,,..... Dotted lines at each
end of a bar are extreme values found outside the 95% conédeterval. For fusion with virtual samples,
Brear 1S USed in place 0f,,..,. The x-axis of all the boxplots are aligned so that..., across different
techniques of generating diversity are comparable. Foualisamples, the classifier “Entropy” refers to
the relative entropy strategy whereas “GMM” refers to the I@klassifier discussed in Section 3.4.5.

4.3 Estimation of Fusion Performance

4.3.1 Motivations
The study of fusion is very often complicated by variousdast Some of these factors are:
1. The type of output of classifier of the base-systems
. The dependency among features of base-systems

. The relative performance of base-systems

2

3

4. The choice of fusion operator

5. The choice of decision threshold
6

. The presence of noise

An empirical approach to understanding fusion is to studyfaator by varying its parameters while fixing
the rest of the factors. Unfortunately, such an approactoisappropriate since these factors may be
dependent on a particular experimental setting and thusotdoe controlled.

We propose to study these factors by first modeling the s¢ofgs combined. To give an intuition, one
can summarize the class-conditional scores to be combgirg a multivariate Gaussian whose dimension
corresponds to the number of systems to combine. This isrshokigure 4.2. Factor 1, i.e., different types
of classifier output, can be considered by mapping scoresidbmain where the scores can be more easily
summarized by the first- and second-order moments. For dgarhpcores are probabilities, they can be
transformed into LLR using Algorithm 2. Factor 2, i.e., thepéndency among system outputs, can be
captured by measuring the class-conditional pair-wiseetation among the system outputs. Note that
this information has already been captured by the covaziamatrix of the class-conditional multivariate
Gaussian (since a correlation matrix can be derived fronvar@nce matrix in a close form). By modeling
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Figure 4.2: A geometric interpretation of a parametric madéusion. A real fusion task whose samples
are fitted by two class-conditional bi-variate Gaussiatrithstion. System 1 is IDIAP’s voice system and
system 2 is Surrey’s automatic face authentication sysagplied on the Ud-g1 BANCA data set.

the scores, factor 3, i.e., the relative performance amgsigmis, will be captured. This point will become
clear later. By summarizing the scores using two class-tiondl multivariate Gaussians, we will show
that it is possible to estimate analytically the distribatof the combined score, for a given fusion operator.
Factor 4 is thus considered by repeating the estimate ofdhbined score distributiofor each fusion
operator. Since the distribution of the combined score can be estidhdtls corresponding FAR and FRR
curves which are functions of a decision threshold can adsestimated analytically. Therefore, Factor 5 is
taken into consideration. Finally, Factor 6 can be considéy assuming that the noise has a known effect
on the multivariate class-conditional distributions,.gigtroducing a bias to the mean vector. Therefore,
we justify that in order to analyze the problem of fusion, sigeres to be combined must be summarized.
For a tractable analysis, the use of a multivariate Gaush&nbution is a practical choice.

Section Organization

In Section 4.3.2, we will explain how the scores to be comtbiimea more formal way, using a so-called
“parametric fusion model”. Section 4.3.3 then presentsra well known approach — the Chernoff bound
— to estimate theninimal classification (Bayes) errgiven the parametric fusion model. In contrast to the
Bayes error, Section 4.3.4 explains how the EER of a linemsifier can be estimated given the parametric
fusion model. Note that EER plays a somewimatre important rolén biometric performance evaluation
than the minimal Bayes error. Section 4.3.5 then outlineslifierences between the minimal Bayes error
and EER. Because the proposed parametric model relies @utingsian assumption, Section 4.3.6 verifies
the adequacy of the model when applied to the real (scora) dat doing so, we examine how well the
estimate of EER is when the Gaussian assumption is vidlated

4.3.2 A Parametric Fusion Model

Let us assume that theth system output (out oV participating systems) is composed of a deterministic
componeni:¥, and a noise component, and that their relation is additive, i.e.,

yt = b +nf, (4.1)

1Section 4.3.6 essentially summarizes the experimental sagglorted in Section C.1 and Section C.2. These two sediensot
required to understand the proposed parametric fusion madelrbimportantto illustrate empirically that the fusion model is still
useful even if the Gaussian assumption is violated. Sectibre@pirically examines the effect of violating the Gaussssuaption.
Section C.2 not only relaxes the Gaussian assumption buirafsoves the experimental design of Section C.1 so that filzestsdn
errors other than EER, e.g., low FAR and low FRR, are alsoidersd.
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for k € {C,I}. The deterministic component is due to the discrete binkgsdication task whereas the
noise component is due to some random processes during thiomequisition (e.g. degraded situation
due to light change, miss-alignment, etc) which in turnetftee quality of extracted features. Indeed, it
has a distribution governed by the extracted featurexsgider some unknown conditiomse C such as

geometric distortion. The unconditioned noise variantex) is related to the conditioned noise variance

17; (x]c) by:

En?(x)] = /e]RN /ec n?(x|c)p(x) de dx
[ eneo ax
x€RN

We generally writey); instead ofy;(x) since the noise component is always dependent on the biometr
featurex. This is also true for its class-conditioned counterpgit,Note that the same convention applies
toy; andy; (so asy® andpk).

By ignoring the source of distortion in the (extracted) béairic feature space, we actually assume that
the noise component is random (while in fact they may be natifwere able to systematically control
the conditions:). As before, we writey instead ofy; when referring to any of the participating systems.
The noise component is drawn from an unknown distributiéiwith zero mean ando*)? variance, i.e.,
n® ~ W (0,(c%)?). It follows thaty? ~= W (u*, (c*)?). Due to the noise model in (4.1), one can
characterize the system by the first- and second-order misyriem, ;.* ando”. While it is unnecessary
to assume that the noise is normally distributed at thistpafiirdiscussion, we will assume so when the
integral of the distribution (cumulative density funct)ag involved. If the system output is not in the LLR
domain, one can convert the output to LLR usifig.z(y) (Algorithm 2) in order to ensure that (4.1) is
adequate.

Extending from a single system &y systems, the system output vector can be writtery’as=
[y¥,...,y%] whose class-conditional distribution is a multi-variataugsian\V/ (y| ", ). The parame-
tersu®, =F) for k = {C, I'} are the so-called parametric fusion model. Itis a model beeit summarizes
the problem of fusion. The next two Sections, 4.3.3 and 4Bild rely uniquely on these parameters
as input in order to predict the fusion performance. Noté 8ection 4.3.3 aims to predict the minimal
classification error whereas Section 4.3.4 predicts EERirTifference will be presented in Section 4.3.5.

4.3.3 The Chernoff Bound (for Quadratic Discriminant Function)

Analytically estimating the Bayes error is a classical peabin machine-learning [35]. In a two class
problem, following the decision function of (3.4), the padlility of making an error given the observation

yis:

_ P(Ily) if decision isaccept
Plerrorly) = {P(C|y) if decision isreject
= min[p(I[y), p(Cly)]- (4.2)

Note that this is theninimalpossible error, ominimal Bayes errosince the decision function

P(Cly) > P(Ily)
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(for an accept decision) is optimal. The probability of efisothus:
P(error) = /P(error, y)
= /P(er7‘07‘|y)P(y)

- /min[p(ﬂy),p(cly)}P(Y)

_ /min {p(yII)P(I) p(y|I)P(C)
P(y) '~ Ply)

— [ minlp(y 1P, plyIDP(C)) dy. (4.3)

p(y)dy

The probability of error can be expressed in terms of rislodewis:

WER = [ min[p(ylDa. p(y|C)(1 - )]dy, (4.4)
where we explicitly introduce WER as defined in (2.4). Notet thancludes the dual factor of prior

probability (between client and impostor classes) anthmalized costgbetween FRR and FAR) which
sum to one. By making use afin[a, b] < a’b*~F for a,b > 0 andg € [0, 1], P(error) can be written as:

Plerrorlf) < PP(I)P*#(C) / p(yIT)*p(y|C) ~Pdy, (4.5)

or in terms of risk:

WER < aﬁ(l—a)l‘ﬁ/p(.VII)Bp(yIC)l‘[”dy- (4.6)

If the class-conditional probabilities are normal, the enmlaced term can be evaluated analytically,
i.e., [ p(y|C)°p(y|I)!~Pdy = exp(—k(3)), where

ALy (597 4 (1 9)2C) 0 — i)

1o 1=+ (- p)3C
28 TR

k(B)

+

4.7

This quantity is called the Chernoff bound. The minimal Bageor is given byning P(error|3). On the
other hand, the minimal Bayes error, assuming equal priccdst), i.e.. = 0.5, is given byming k().
The advantage of introducing an upper bound ¥i&s that the search is not dependent on ¥elimen-
sional spaces of but on a single dimension spanned By A special case of error bound, called the
Bhattarcharyya bound is given I#§0.5). This quantity ioractical because it does not involve any numer-
ical search but suffers from a looser estimate of the mini&ales error [35, Chap. 2]. Note that these
statistics give ampperbound of the minimal Bayes error a QDA fusion classifier.

4.3.4 EER of A Linear Classifier

However, in reality, QDA is not used as a fusion classifiere itost commonly used one is perhapsan
or weighted sum, i.e., a linear discriminant function omeér opinion pool.

To quickly give an intuitive picture, we consider a fusioskaonsisting of two system outputs after
transforming them into the LLR space. The scatter plot ofes@re shown in Figure 4.3(a) using the
XM2VTS data of one of the fusion tasks described in Sectidrnl2 By summarizing the class-conditional
scores (for each class) using a multivariate Gaussian, @alrigto predict the fusion performance. There
are two sub-problems to solve. Firstly, one needs to deteritiie fusion classifier to be used (including
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Figure 4.3: A geometric interpretation of a parametric madefusion. (a) A real fusion task whose
samples are fitted by two class-conditional bi-variate Gaumsdistribution. System 1 is IDIAP’s voice
system and system 2 is Surrey’s automatic face authemticayistem, applied on the Ud-g1 BANCA data
set. (b) A schematic interpretation of projecting from asskgonditional multivariate Gaussian to a single
Gaussian.

its parameters). Having chosen a fusion operator, the gepmblem consists of calculating the EER
analytically. Because of the class-conditional Gausssanmption, obviously the optimal fusion classifier,
according to the LLR test, is to use Quadratic Discriminanékxsis (QDA). We consider the less fortunate
(but realistic!) case whereby the parameters of the digidh may not be estimated correctly due to the
lack of genuine data and hence QDA is not necessary optimal.

For the case of a linear classifier, Figure 4.3(b) shows tligpbssible to project each class-conditional
multivariate Gaussian to a single Gaussian. This singles§an represents the class-conditional distribu-
tion of thecombinedscores.

We will propose a procedure that finds teeactsolution in terms of EER analyticallwithout any
numerical searchHowever, calculating the operational errors other thaR Effjuires a single dimensional
numerical search in the combined score space (threshaldhid case, the solution is stidkactcontrary
to the Chernoff bound. Then, we will extend such an analysisther fusion operators, e.guin, max,
etc. An application of such analytical technique will baigiirated in Section 4.5 in the user-independent
context and its full potential in the user-specific conteitt be developed in Chapter 7.

To begin, we suppose that a system output may be pre-pracbgselinear transformatioffy;,, as in
(3.11) so that

Y™ = (y —B)./ A,

where “ /" is an element-by-element division and the resultant comtbiscore is

ycom = W'y, (4.8)

This generalizes the case where there is no such pre-piogegs., the normalizing terms afach
system take on the valud;, = 0 and4; = 1 forall B = [By,...,Bx] andA = [A4,...,Ay]) and
ie{l,...,N}.

The class-conditional distribution of the combined sagfe ; using a linear opinion pool as appeared
in (4.8) can be written a&/ (uf.; s, (08 oar)?) Where,

N
péom = Z % (uf — Bi) (4.9)

i=1 0
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and

Kk 2 Al Wy Wn k k
m=1n=1 m n

respectively, for any; € {C, I}, whereE [nk nk] is them-th andn-th element of the class-conditional
covariance matri®=". The derivations can be found in Section D.2.

If the class-conditionay ™™™ follows a multivariate Gaussian distribution, then thesskgonditional
ycom Must be 1D Gaussian distribution [120]. It follows that tleeresponding FRR and FAR are inte-
grals of Gaussian. We will writg instead ofycos to emphasize the fact that this equation is generally
applicable tanysystem output. The derived statistics frgne.qg.,..* ands”, follow the same convention.
The resultant FRR and FAR can be written as:

A
P(A > 4|C) = / p(y|C)dy

—00

- /—i Jcl %exp[_(g(;C/;:)Q] W

_,C
= —+—erf(A o ),and (4.11)

FRR(A)

FAR(A) = 1- P(A>yll)= /OO P(y|I)dy

I
-
|
L—|
[\
_"_
DO |
D
=i
/_\ ~—
ST
S
Si=
N———
| I

1 1 A—p
5 §erf(7gl\/§ ) : (4.12)
where
2 z
erf(z) = —/ exp[—t?] dt,
(2) 77 Jo (]

which is known as the “error function” in statistics.
The minimal error happens when FARY = FRR() = EER, i.e., the Equal Error Rate. Making these
two terms equal — (4.11) and (4.12) — and using the propeatyetti —>) = —erf(z), we can deduce that:

B /LIUC—‘y-/J,CJI

A 4.13
ol +0¢ (4.13)
By introducing (4.13) into (4.12) (or equivalently into {4)), we obtain:
1 1 F-ratio .
EER = 3~ §erf( 7 ) = eer(F-ratio), (4.14)
where we introduced F-ratio, defined as:
c I
S el
F-ratio= ———. 4.15
0T Tt ol (4-13)

Note that the use of an error function similar to F-ratio wagarted in [22], but with differences in the
definition of the error function. In another similar work {kin the context of combining multiple sam-
ples) [67], EER was not calculated explicitly.
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Other Class-Separability Measures

It should be noted that the term “F"-ratio is used here beg#his value is somewhaimilar tothe standard
Fisher ratio, but not defined exactly in the same way. In adi@ss problem, the Fisher ratio [11, pg. 107]

is defined as:
C

I

B
_ 4.16

O + (02 (419
F-ratio is used here just to underpin the idea that the degfrseparability of the class distribution af-
fects the authentication performance measured by EEReThsts similar measures such asdhgrime
metric proposed by Daugman [29]. It measures how separaélelient distribution is from its impostor
counterpart. It is defined as:
ne — |

/%(JC)2 4 %(01)2'

Besides the abovementioned quantities, in [71], threerainglar quantities used in texture classification
were also considered for biometric authentication, i.e.,:

d = (4.17)

P G
1= 1’2_ C, I
2 nep

(u€ — pl)?

h T e T

F-ratio will be used throughout this thesis because it isdly related to EER by (4.14).

Summary of Results

We gather here several important results presented saéan (2.9) and (4.10), one knows how to calculate
the first- and second-order moments of the combined sgesg,, i-€., uf.p,, and(ok.,,)?. Based on
these four Gaussian parametérg.,,,, oo, } for bothk = {C, I}, the F-ratio of the combined score
ycou, according to (4.15) is:

MgOM - ,uéOM (4.18)
\/Vdgag + Vn%iag + \/VdIiag + VrLIdiag

F-ratioCOM =

where

k W; Wy k. k
Vdiag = HE [m- J
ie[1,N] U

and
k WmWn kK
Vndiag = Z A A E [nmnn]
i €[Nz~

are respectively the diagonal and non-diagonal sum of tharznce matrix2"® whosei-th andj-th ele-
ment is denoted a& [n¥,nk]. The corresponding theoretical EER will ber(F-ratiacoas) as defined in
(4.14).

From (4.18), three factors can be identified to influence #réopmance of the fusion performance.
They are:

1. The mean difference (18, — b0 ar) : Higher mean difference improves the system performance.

2. The diagonal component (/d’jag): This term measures, on average, how good the base-systems ar
when acting alone. Note that by definitidrj;, . > 0. Lower variance is desirable.

iag

3. The non-diagonal component fdmg): This term is influenced by the pair-wise correlatiqzﬁ,gn

form,n € {1,..., N} and therefore can be positive or negative sinde< p’fmn < 1 for any pair
of systemsn, n. Lower covariance or even negatilg,. . - is desirable.



46 CHAPTER 4. TOWARDS A BETTER UNDERSTANDING OF SCORE-LEVEL BION

Note that the second and third factors cannot be separaiggltbiey are tied by a common square-root. The
reason we separated the weighted sum of the covariancexrimatril/;;, - andV,¥,. . is to show explicitly

thatV,¥,. ., is directly dependent on the pair-wise correlation. Thenefcorrelation is a required but not
sufficient condition to predict the fusion performance. sThiaim is verified in Section C.3 using real

datasets.

4.3.5 Differences Between the Minimal Bayes Error and EER

Itis important to distinguish between the Chernoff bounespnted in Section 4.3.3 and our proposed EER
calculated based on the F-ratio in Section 4.3.4. Theyrdiiféhe following ways:

e Definition: Figure 4.4 illustrates the difference between the minineajlds error and EER from their
definitions. From (4.5), the minimal Bayes error is:

/ win [p(y|1)P(1). p(y|C) P(C)] dy.

Therefore, this expression minimizes theerlapof the two posterior distributions, i.eR(k|y) o
P(y|k)P(k), for k = {C, I'}. On the other hand, EER by definition is FAR) = FRR(A) or

/p(y\f)dy =1- /p(.VIC)dy-

The constraint ensures that the overlap between the twe-ctawditional distributions are equal.
Note that EER does not take the class prior probability ires@deration whereas the Bayes error
does. For the example in Figure 4.4, equal class prior pibtiadare assumed, i.eR(C) = P(I).

In this case, the Bayes error at EERIs EER.

e Bound or exact error: The Chernoff bound is, at best, only an upper bound of therétieally
minimal classification error. On the other hand, the EER is)att estimate.

e Quadratic or linear classifier: The Chernoff bound is only indicative of the Bayes error of a
guadratic classifier (which includes LDA as a special ca€#g).the other hand, the proposed EER
applies toany linear classifier, e.g., SVM with a linear kernel, logistegression, the Perceptron
algorithm, the LDA classifier (based on the Fisher ratiog, €fhis is thank to the property that a
multivariate Gaussian is closed under a linear transfosndjscussed in Section 3.5.

To the best of our knowledge, this is the first time in the #itare where an analytical expression of EER
for fusion is proposed.

4.3.6 Validation of the Proposed Parametric Fusion Model

Since F-ratio is based on the class-conditional Gausssumgsion — an assumption that is likely to be
violated —, it is thus important to verify if the EER calcuddtbased on F-ratio is acceptable or not. The
“level of acceptability” can be quantified by the differeruetween theheoreticalEER (due to applying
(4.15)) and thempirical EER (that is measured directly on the observed data). Tlpisrerent is reported

in Section C using 1186 BANCA score sets. We summarize thafjschere:

e Despite deviation from the Gaussian assumption, the thieat&€ER (derived from F-ratio) corre-
lates well with the empirical EER, i.e., 0.957 for all the Bldatasets.

e The error estimates at the extreme ends (low FAR or high FAfsgare less accurate than EER.

¢ Relaxing the class-conditional Gaussian assumption ingsrthe error estimates.
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Figure 4.4: The difference between minimal Bayes error aB& .B-or this example, equal class prior
probabilities are assumed, i.€2(C) = P(I). For all the figures, the Y-axis is the score combined score
and the X-axis is likelihood or probability. The top figureosls the minimal Bayes error. The middle
figure shows the Bayes error due to EER. The bottom figure showshe EER criterion, i.e., FAR=FRR,

is fulfilled. Due to equal prior probabilities, in this casiee Bayes error at EER is2 EER.

4.4 Why Does Fusion Work?

4.4.1 Section Organization

This section aims to explain theoretically the phenomenmseored in Section 4.2, i.e., the combined sys-
tem works better than the average performance of systenmiéngdndividually. Section 4.4.2 summarizes
the literature that attempts to explain theoretically trentioned phenomenon and explains why the cur-
rent literature is not adequate. In the justification, aritaalthl step is required to align the system outputs.
This step is explained in Section 4.4.3 and has importargexurences on Chapter 7. Section 4.4.4 then
demonstrates the reduction of classification error duertbioing several systems using the mean operator
and a brief explanation of how this can be done for the wedhten case.

4.4.2 Prior Work And Motivation

Although fusion in the context of biometric authenticatioss been discussed elsewhere, there is still a
lack of theoretical understanding, particularly with resfto correlation. Theorrelationhere refers to the
pairwise class-conditional correlatiohetween the outputs of any two participating systems. Wewnev
several theoretical studies here:

e In [57], it was demonstrated that combining several multiaicsystem scores using AND and OR
will result in improved performance. The underlying asstiopis that multimodal system scores
are independent. As we understood, the issue of relatiferpence among systems and the strategy
of choosing the decision threshgddor to fusionwere not thoroughly considered.

e In [73], the theoretical classification error of six clas=ifi are thoroughly studied for a two-class
problem. This study assumes that the underlying classifigguts are probabilities, i.eR(y|C)
using our notation (see Chapter 3.2). Therefore, regavditthe cost of FAR or FRR, the optimal
threshold is always set t5. The study also assumes that all the participating systeputasfollow
a common distribution. Gaussian and uniform distributimese used in this study. This assumption
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is unfortunately unrealistic in most situations, partaaly in multimodal fusion. This is because the
(class-dependent) score distributions are oftifierentacross different systems.

e In[143], order statistics (OS) combiners, ixin, max andmedian, are examined both theoretically
and empirically. The authors introduced the concept ofddlaand unbiased classifier, which is the
same as mismatch between training and test sets as obsgrtbd bystem outputs. While the
analysis in [143] is certainly interesting, there is no direray of inferring the overall classification
performance given a data set. It is also unclear how coivelaffects the OS operators.

e In [66], sum and product rules were discussed in a Bayes&mnedwork. According to this study,
several fixed rules such asin, max, median and majority vote can be seen as approximations to
the aforementioned rules. In particular, it was shown thaisum rule (omean in our context) out-
performs the rest of the fixed rules and even better than tigesbest underlying system. A further
investigation showed that the sum rule is most resilientstingtion error of individual classifier
than the product rule. Similar to [73] this study, too, asesaommon probability distributiowhich
is likely violated in reality.

e In [76, Chap.10], product and sum rules were studied by tpkito condieration of the mismatch
between training and test sets. The conclusion is similtrdbof [66]. Again, the analysis assumes
that the underlying classifier/system outputs are indepetdThis assumption is acceptable for
multimodal fusion but inadequate for intramodal fusion.

e A more recent study, [123], considers correlation, unbadrperformance among participating sys-
tems and biased system outputs.

Note that these prior works, except [123], make simplifyagsumptions in one way or another, e.g.,
common distribution for all the underlying systems and pefedence assumption of system outputs.

The goal of the following Section is to provide a very simplrgmetric fusion model that precisely
takes the mentioned factors into consideration. This iedorLLR, instead of probability as in [57, 73,
143, 66, 76, 123].

4.4.3 From F-ratio to F-Norm

We now introduce a useful normalization derived from Ferdliat we call F-norm It is used to simplify
the proof of EER reduction in Section 4.4.4. It is also usa@rsively in user-specific processing. F-norm
is introduced here because of its frequent usage.

Motivation to Align Scores using Z-norm as An Example

Because different system types are used, the determinimtiponent.t foralli = 1,..., N andk =
{C, I'} are not necessarily the same. As a result, the combinechsystiout using simple fusion rules will
be biased toward the system with large output values. THiause a sub-optimal fusion performance.
One way to align them using a linear function suchfas appeared in (3.11). For Z-norm, the scaling
factor and bias arel = o/ and B = !, respectively for each (see Section 3.3.2). By doing so, one
obtains:

yZ = Yi — 1)

(3 O_i[ N

Becausey’ is (or assumed to be) approximately normally distributeébliows thatyf”C is the case too,
with the class-conditional mean and variance:

Elyilk] — pf _ pf —pf
Z,k v 1 7 7
u " = Elyf] = ===

I
%
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Note that while the resultant impostor distributiorstandardnormal (uiZ’I =0, (04,;)* = 1) forall i, the

e} I CH\2
resultant client distribution varies from one system totaap(;”¢ = B, (6292 = ((Z'I))Q ). As a
result, such a normalization procedure is not satisfactory ' '

Derivation of F-norm

A reasonably good procedure should align the system ouudis that the expected means (the deter-
ministic components) of the client and impostor distribos are the same. One way to achieve this is by
imposing the following constraint, based on F-ratio:

pe — i 1-0

e g (4.19)

where the numerator of the RHS term is thesireddifference in mean and the denominator is the sum of
standard deviations as a result of the desired transfasmagiolving this constraint yields:

¥ = aot (4.20)
wherea = (u$ — pf)~1. Using the definition of variance and taking the square &Q}.we obtain:
2
(@) = E|(aly—ub)’] (4.21)

Note that the factory is not dependent op;. This implies that the desired transformation due to the
constraint of (4.19) should take the fo%. However, this constraint does not guarantee zero impostor

mean. To do so, we introduce a subtraction ternto obtain F-norm:

I
F Y —
JF = . (4.22)
us — pf

Characteristics of F-norm

We verify that the following constraints are fulfilled (bysign):

E[y|C,i] — uf
u*C = ElyF|C,i] = W =1, foralli (4.23)
Ky — My
and

p = BlyF |16 = =0, foralli (4.24)

pe =

The corresponding class-conditional standard devias'omﬁ*’“ = uc"—_kul as implied by (4.20).

[

Differences Between Z-norm and F-norm

It is not immediately obvious why F-norm tsetterthan Z-norm. Following our empirical experiments
reported in [101], the generalization performance of Zamand F-norm are not statistically significantly
different between the two procedures. However, the adgantdll become apparent in the user-specific
context (Chapter 7). One reason is that the alignment duentaria is client-impostor centric, i.e., making
use of both the genuine and impostor distributions, wheZeagrm is only impostor centric, i.e., making
use of only the impostor distribution.

We introduce F-norm here so that after applying such praegdune needs only to focus mf’k for
all 4 without worrying about the alignment problem.
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Figure 4.5: A sketch of EER reduction due to the mean openattwo-class problem

4.4.4 Proof of EER Reduction with Respect to Average Performare

We have demonstrated that making the class-conditionab$au assumption is somewhat acceptable
on real biometric authentication problems, thanks to thmistness of Gaussian assumption. To the best
of our knowledge, such a demonstration (using EER) has ret beported elsewhere in the literature
for classification problemsut is well known forregression problemse.g., [11, Chap. 9]. It should be
mentioned that in [123], a proof along similar line was repdrfor classification problems but the error
term used in the demonstration is not EER but the so-callddéd error?.

A Sketch of the proof

A sketch of the approach is shown in Figure 4.5. Suppose tiatrfn is first applied to all system outputs
so that their expected values are the same, ie.= 1 andu! = 0 for anyi € [1,..., N]. Then, we
show that due to fusion, the class-conditional variancedticed — which is the first part of the proof.
Consequently, the resultant EER is reduced — which is thenskgart of the proof. For the proof, we will
first consider the special case of mean operator and theidprawsketch for the general case of weighted
sum.

Variance Reduction

Let us consider two cases here. In the first case, for eacls@déesystem outputs are available and are
used independently of each other. Eherage of variancef y* overalli = 1,..., N, denoted ao’,,)?
is, according to [103]:

N

2 1 E n. 1 o 2
oh) - L L (%) (4.25)

i=1

whered; = uf — ul.

2This term is due to bias between the approximated class fmséed the actual posterior not available during trainihgthis
sense, the bias is due to mismatch between training and tesT&éd subject of noise mismatch is treated in Section 4.6.5.
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In the second case, alW responses are used together and are combined using the p&@hoo so
that one obtaingcon,. Note that becausgl = pb for anyi,j € [1,..., N, p&op = pf for anyi.
The variance of)%,,,, denoted ago’.,,,)?, is called thevariance of average Based on (4.10) (with
w; = ), its value is:

N EN 2 N k k
k 2 1 o} 2 Pm.nOm0
(ccom)” = N2 ; (E) TNz > TAA

i=1

1, .2 2 L koo
——

m=1m<n

= Vi + Vi (4.26)

ndiag?

where we separated the matrix sum involvifg(whose element i€ [ , n%]) into a diagonal termi(’:, )

1ag
and a non-diagonal ternvfdmg). Note thatVd’“mg is always positive Whereals’fdwg can be a negative
value. Note also that®, ,, is the correlation coefficient betweefy, andy for k € {C, I} and itis defined
by:
Prnnm 0 = Elngmy), (4.27)

with the property thapy; , = 1 for k € {C, I}. Becausd/;, > 0, it follows that(o¢,,)* > Vi, OF

(cEom)? = + (a@v)2. We can also show that ., ,,)? < (c%,,)? (see Section D.3). As a result, we
have:

1
N (Uﬁiv)g < (UéOM)2 < (U,]ZV)Q- (4.28)

Hence, by combiningV responses using the mean operator, the resulting variarssiured to be smaller
than the average (not the minimum) variance.

EER Reduction

In order to show that the EER of the combined scores is lowaar the average EER ovaf outputs, i.e.,
EER-om < EERav, (4.29)

we first need to calculate® ando” for k = {C,I} andp = {COM,AV}. ok|p = {COM, AV} have
been defined by (4.25) and (4.26), respectivgly,, is the average alV responses when used separately.
Itis defined as:

N
1 Z puF — B;
k = z i

where A; and B; are the parameters due to F-normt,,,, is the mean of the combined scores/éf
responses (used simultaneously). It is defined as:

E[yé'OM] = M]é'OM =N § A
i=1 ¢
N
1 ,uf - Bi .
= = 2 : yy = /Jﬁw- (4.31)

Henceuk.o,, = 1k, Since F-ratio is non-linearly and inversely proportiotteEER as shown in (4.14),
the inequality of (4.29) can be rewritten as:

F-ratioccoys > F-ratiosy, (4.32)
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Replacing the two F-ratio terms using (4.31) and (4.30) {(4t82) and using the relatiqm@OM = pky,
we obtain:

c I e} I
Kcom — HPocom > Hay — Hay

c T Z = i
Ocom T Ocom  Tav T 0ay
c I c I
ocom T 0com < 0ay +0oay

D cbonw < Y oy (4.33)

{C,I} {C,I}

Hence, the inequality of (4.29) is true, i.e., fusing scar@s reduce variance which results in reduction of
EER (with respect to the case where scores are used separates formed the argument for why fusion

using multiple modalities, features, and classifiers wéokbiometric authentication tasks. Note that this
observation is in perfect agreement with the empirical rpents in Section 4.2, especially Figure 4.1(a).

Extending the Proof to Weighted Sum

Note that a similar proof for fusion using weighted sum iastefmean can be demonstrated as well. Such
a proof will lead to the form:

Z o—fusum < Z Jé’OIVI < Z O-IIZV

{c.1} {c.1} {c.ry
whereck . is the class-conditional variance due to weighted sum fusimte that such a proof requires
that the weight parameters to be estimated correctly, airmgant that is quite restricted to have any
practical value. An involved discussion can be found in [@hap. 9]. Instead, we will demonstrate that
weighted sum is better thanean by simulation in Section 4.6.2.

4.5 On Predicting Fusion Performance

In order to demonstrate the potential of the parametricofusnodel discussed so far, in this section, we
outline an approach @nalyticallyselect a subset of systems for fusion. The weighted sumrfetissifier
will be used as it is somewhat optimal for the data sets dvail® us, i.e., the same datasets as those used
in Section 2.1.2. The task is to choose out of ¥e= 5 systems, a combination of them that will give an
optimal result, without degrading the performance sigaifity compared to usingll the sub-systems. In
other words, we want to trade-dfisignificant performance gaiwith lower computation cost. Note that
this is a combinatory problem wit¥ — 1 possibilities (minus one for the case where not choosing any
system is not a valid option).

The brute-force approach to the solution, typically adépsfollowing procedure:

1. For each of the possible combinations:

e Estimate the best (weight) parameters from the developswtraccording to a criterion (such
as Mean Squared Error)

e Use the weights to evaluate the performance on the develusae
2. Choose the best fusion candidate based on the evaluafechpence.
Our proposed analytical solution works as follow:
1. Estimateu®, =*, for eachk € {C, I}.
2. For each of the possible combinations:

e Estimate the weightss given {u*, =¥} for k € {C,I}. The weights can be found using the
Fisher linear discriminant solution as appeared in (3.25).
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Figure 4.6: Comparison of empirical EER and F-ratio of thenbmed scores with respect to robustness to
population mismatch between training and test data sebthfigure, the X-axis are EER or F-ratio of the
development set whereas the Y-axis are the same measuseondhe evaluation set. Each point is one of
the 31 possible combinations per protocol and there are tbqwls, hence, there aBd x 7 = 217 data
points. Note the improved correlation from (a) to (b).

e Evaluate the F-ratio givew and the model parameters
3. Choose the best fusion candidate that maximizes F-ratio.

In the brute-force approach, to choose one best fusion datedfrom all possibléV base-systems, one
would have to carry out the experimaff — 1 times (or2V). In each experiment, one has to loop through
[ examples. The complexity is thus:

O (1 x(2M)). (4.34)

In the proposed approach, one only has to loop through tleesddtonce to derive all model parameters
and then to evaluate the F-ratio criterioM — 1 times on the evaluation set. Hence, the complexity is thus:

O(l+2V). (4.35)

To understand why such an analytical procedure can work, aesored the F-ratio of the combined
scores of the development set versus its evaluation seteqamt. For comparison, we also performed the
same experiments but this time empirically and the perfogador both the development and evaluation
sets are measured usiagoosterioriEER. Because there abesystems per experimental protocol (hence
2% —1 = 31 combinations) and there are altogether 7 BANCA protochksd are altogethél x 7 = 217
F-ratio pairs. The results are plotted in Figure 4.6. As canliiserved, compared to the empirical EER, F-
ratio has a higher correlation than EER. Note that in the BAMN@tabase, the development and evaluation
datasets are from tweompletely differensets of population. Therefore, an additional advantageratib
is its robustness to the population mismatch.

In [102], we showed that the quality of prediction is satisfsy. Taking the evaluation set as the
ground-truth, the top three proposed combination of fusiandidatesalwayscontain the ground truth
combination, for all the seven BANCA protocols. It shouldrhentioned that the top three fusion candi-
dates contain rather similar EER values. Hence, choosiyngfdhe top three solutions cannot significantly
influence the generalization performance.
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4.6 An Extensive Analysis of Mean Fusion Operator

4.6.1 Motivations and Section Organization

The demonstration in Section 4.4 can only show that a cordisgstem is better than the average perfor-
mance of its underlying systems. Ideally, a more desiradsalt is to know when the combined system is
better than théestsystem. To the best of our knowledge, such a more desiradlét teas not been found
in the literature. While a general result is not possible, viltagnsider the special case of combining two
system outputs using the mean fusion operator here. Thigislly not a limitation as generalizing to
more than two fusion operators is straightforward. Sectié? is our attempt to work towards identifying
the necessary conditions.

We are also motivated by the improved understanding of namisenatch in regression problems,
e.g., [69, 144]. However, until now, the consequence ofenaisclassification, also known as bias, is
not well known. Although this subject has been treated irB[lthere is ho way one can make use of the
findings in regression to classification directly. By wougiim the LLR space, we will show that the noise
mismatch model in regression, as proposed by [69, 144], eamsbd in binary classification problems.
Working towards this direction, Sections 4.6.3 and 4.6véexe the works of [69] on the ambiguity decom-
position and of [144] on the bias-variance-covariance dgmusition, respectively. Finally, Section 4.6.5
extends the noise mismatch model to binary classificatiomsliyg the already proposed parametric fusion
model in Section 4.3.2. A useful finding from our study is tthegt bias introduced by the noise can possibly
be rectified.

4.6.2 Effects of Correlation and Unbalanced System Performace on Fusion

Suppose that theean operator is used to combine scores under the following swena
1. Combining 2 uncorrelated system outputs with very défféperformance
2. Combining 2 highly correlated system outputs with veiffedént performance
3. Combining 2 uncorrelated system outputs with very singikxformance
4. Combining 2 highly correlated system outputs with vergikir performance

The first and third cases are often encountered in multimiodan while the second and fourth cases are
encountered in intra-modal (multi-feature) fusion. Fgsgstems of similar and different performances are
encountered in almost all biometric authentication protsielt should be noted that empirical evidences of
these scenarios have been examined in [133] but unfortyrthere was a lack of theoretical explanation.
To make analysis simple, let us assume that (i) the two bgsteras have the same numerator of F-ratio
and that (ii) for each base-system, the variance and coxaiaf client and impostor distributions are
proportional. The first assumption can be taken care of hygusinorm (see Section 4.4.3). The second
assumption implies that" « o! for systemi € {1,2} as well as their covariance

pcalcag x pIU{aé.
This simplifies the analysis so that one considers only omgscht a time. An empirical justification of the
second assumption can be found in Figure C.5(c). Hencelake labek can be dropped. Without loss of
generality, we assumeg < o (i.e., system 1 is better than system 2).
For the first casey ~ 0. Hence, for the combination to lietter than the best systene., system 1, it
is required that:

2 2
ocom < 01

O'% + og + 2po109 < o2
1 1

(4.36)

02, is calculated using (4.26) with N=2.
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Figure 4.7: Comparison between the mean operator and veeigiim using synthetic data. Performance
gain of in terms of EER with respect to the best underlyingsifier, 5,,.:,, (Z-axis), across different
variance ratios (of two system outputs; X-axis) and différeorrelation values (Y-axis), as a result of
fusing synthetic scores of two systems. The scores are caaihising (anean and (b) weighted sum.
(c): the weight of thaveakersystem found in the weighted sum after training. This carhbegdht of as
the degree of “reliance on the weaker system”.

We see that:
03 < 307 — 2poi0s.

Note that in generalp > 0. For instance, in multimodal fusiomp,is around zero while in multi-feature
fusion, p is positive. Hence, the combined system will benefit fromftiston whens3 is at mostless than
3 times ofo? sincep ~ 0.

Furthermore, correlation (or equivalently covariances §27)) between the two systems penalizes
this margin of3c?. This is particularly true for the second case sipce 0. Also, it should be noted that
p < 0 (which implies negative correlation) could allow for large}. As a result, adding another system
that is negatively correlated, but with large variance (fediarge EERWill improve fusion. Unfortunately,
in biometric authentication, 2 systems are either poditiverrelated or not correlated, unless these systems
arejointly trainedtogether by algorithms such as negative correlation lagrfi3].

For the third and fourth cases, we have~ 2. Hence, (4.36) becomes

pos < o (4.37)

Note that for the third cases ~ 0 which will satisfy the constraint of (4.37). Therefore, ifus will
definitelylead to better performance. On the other hand, for the fozatie where ~ 1, according to
(4.37), fusion may not necessarily lead to statisticalgn#icantly better performance — suggesting that
using only the better system may be appropriate.

Experimental Simulation

In order to support the theoretical analysis here, we perora simulationo; = 0.5 whereasr, varies
from 0.5 to 2. The correlation value varies frotto 1 by a step of).1. While o; andp vary, the determin-
istic components are held constait = 1 andu! = 0 (the system outputs are aligned). This simulation
produces a set of fusion tasks completely specified by theixr(egl%, p) (variance ratio and correlation).
The first system has HTER between 5.3% and 6.2%, with a mearB&§ &nd the second system has
HTER between 5.4% and 22% of HTER with a mean of 15% at the EER.p&e then employ two fusion
classifiers, mean and weighted sum whose weights are tumaihimize EER empirically.

We plot the result (see Figure 4.7) 6, p, 3min) Where the Z-axis is the gain with respect to the
single best system (see (2.11)). Note that,, <= 1 implies that fusion results in worse performance.
For the mean rule, we observe thatt0) (in the variance ratio and correlation spagg),,, = 0. When
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(3,p > 0), Bimin < 0. On the other hand, the weighted sum operator does not $tdfarsuch situation as
the weight parameters can be adjusted accordingly. As #,résuhe weighted sum operata$,,,;, > 1
in all possible values c(g—f, p, Bmin). Of course, this is an overly optimistic result because vse@e that
the weight parameters can be estimated correctly.

4.6.3 Relation to Ambiguity Decomposition

We would like to link our findings with those of Krogh and Vesley [69] (see also [11, pages 368]). Note
that the authors’ findingppliesonly to the regression problem and does not directly offeexgianation

to the same phenomenon in classification because in clasiific the statistics of client and impostor

distributions have to be considersinultaneously Nevertheless, the authors’ finding is an important
precursor to the EER we proposed in Section 4.3.4. Using atations, the authors showed that:

E[yéOM' - :ulé'OM’]Q = ZwiE (yf - M’E*OM/)Q - ZwiE (yf - yéozw)2
i i

(ckor)? = acd —divF, (4.38)

wherew; are the weights in weighted sum combinatigh,, ,,, is the output of the unnormalized combined
system andif,,,, is its expected value. Note that = 1/N because we are using the mean operator
instead of weighted sum. The first term, denoted as acc (oufacy”), measures how accurate each base-
system is with respect to the mean score of the combined mistha It depends only on the individual
base-systems. The second term, denoted as div (or “divegtjemeasures the spread of prediction of the
base-systems relative to the score of combined mechanism.

Based on the definition of accuracy in (4.38), the accuraaylef,, (after taking into account of the
linear transformatiom; and B; for all ) as defined by the fusion rule (4.8) is:

. 1 yk — Bi
= — E 2
acd N Z,: [ Y

r 2

1 yF—Bi 11— B
= — E 2 Z__ ji
N e DT

- Nlé’OM]Q

r 2

1 1 Nyt — 1§ .
= — Y E|= )Y ——21| (changeindex from to )

_ 1 L Emff]\ _ x
- N 21: (N (A;)? = Vdiag' (4.39)
From (4.38) and (4.26), it is obvious that divergence is $imp
divF = V... (4.40)

The negative sign in this term shows that divergence is ithchegatively proportional to the covariance

component. Hence, conclusions drawn in Section C.3 alsky &gpe: divergence (negative covariance) is
not a sufficient metric for measuring classification erreedsity. This explains why a number of heuristics

to define classification error diversity have been proposélé literature [135], all based on zero-one loss
function where a threshold has already been applied. Whaealyy want to do is in fact to measure the

diversity without fixing the thresholéth advance. For a specific case in biometric authenticatiog,can

be done via F-ratio as proposed in Section 4.3.4. By doing@se,assumes that the client and impostor
scores can be modeled by Gaussian distributions, and thatitr class distributions and cost of two types
of errors are equal.

4.6.4 Relation To Bias-Variance-Covariance Decomposition

Ueda and Nakano [144] presented the bias-variance-coearidgecomposition while Brown [13] provided
the link between this concept and the ambiguity decompmusitiowever, both discussions were limited to
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the context of regression, as clearly pointed out by Brov#) Bec. 3.1.2]. So far, we have not discussed
the effect of mismatch between the training and the testitiond. We will show that the concept of bias
introduced in [144, 13] is useful but unfortunately not valet for the classification problem. Section 4.6.5
then a noise mismatch model that is relevant of classifinatiderms of HTER.

Suppose that the noise model in (4.1) can only be calculated & training set. During testing, the
noise model deviates from the one observed during trainieg there is anismatchbetween training and
testing. Suppose that the new noise model now is:

yi =+ b+l (4.42)
whereh? is a bias. By using the new noise model, we also assume thabtse term;*|v; do not change

in both training and test sessions. Note that (4.41) is ailfﬂ)fbrngM as defined in (4.8). Therefore, it
is also valid to write:

' 1 pi + i +nf) — Bi
yé’OM = Nz( )

ti&on + héon Hnéo (4.42)
—_—————

= p&om +nEou (4.43)
whose mean is the underbraced terms resultim@i@M. Using (4.43), the class-dependent Mean-Squared
Error (MSE) due to this mismatch can be calculated as follows

’ !’ 2 7 2
E {(yéOM - /‘Ié’OM]) ] = FE [(yé’OM — u&on — héozvz) }
2 2
= (h’é'OM) +FE [(yé’OM - Nlé*OM) }
2
= (h]é‘OM) + Vd]?iag + ‘/'fdiag . (444)

where the first underbraced term is Biamd the second underbraced term is variance of the fused scor
(found in the training set). As defined in (4.26), the secardhtcan be further decomposed ingjmg

(i.e., the average variance of all systems when used seperandvjdiag (i.e., the spread of prediction;
negative divergence as found in (4.40)). (4.44) is the dledhias-variance-covariancdecomposition.
Note that this is a decomposition of MSE. In the context ofsification, MSE is not relevant; HTER is
and it is defined in (2.7) with the optimalposteriorithresholdA,,.s: (hence giving EER on the test set).
The variance of/%,,,, is:

/ , , 2
(UéOM)2 = b [(LUE*OM —-F [ngMD ]
2
= b [((ngM +héon) — (uEonr + héonr)) }
2
= kK [(YgOM - MIE‘OM) }
= (oCom)* (4.45)
Under the new noise model, it is interesting to note that theseconditional variance of the fused score is
indeed not affected by the bias, whereas the MSE is. How8eation 4.6.5 will show that the presence
of bias can adversely affect the classification error meashy HTER.
4.6.5 A Parametric Score Mismatch Model

Note that a noise mismatch model has been proposed in [76).Ch@], but for fusion classifiers in
probability using the combination approach discussed ittiG@e 3.4.2. Here, we propose a parametric
noise model that is adequate for the fusion classifiers ik space.
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When one knows the amount of mismatch (i.e, one has access testidata), tha posterioriF-ratio
is:
C/ I/
- 1% — U
F'ratIOCOM,apost = M
ocom T %com

I,
((MgOM +h&on) — (éom + hICOM))
= e - . (4.46)
9com tTcom
Note that at the posterioriF-ratio and its correspondiragposterioriEER, their corresponding threshold
is at:

((H&on + hbor)oEon + (Eon + hGor)oEou)

Agpost = . (4.47)
! Gom + 0Gom
The corresponding HTER will be:
HTERCO]\Lapost = EEF?C'OM,apost
1 1 F'ratiOCOJ\la ost
= — —erf | ———=20P0%0 ) 4.48
g~ gert (e ) (4.49)

When one does not know the amount of mismatchatpeori threshold that will be used is the one that is
estimated from the training set, i.e.,

A Hoom®Som + BEomTéom 4.49

aprit — T C . ( . )
9com T 9%¢om

This threshold is then applied to the mismatched test seta #esult, thea priori HTER (on the test set)

will be:

HTERCOJ\I,apri = HTERCOM(A(L[)T"L) (450)
where, in a general context, for any givAn the corresponding HTER is:
1
HTERcoMm (A) = 3 (FARconm (A) + FRRoowm (A)) (4.51)
where
I RN
FARCon(A) = - — Lerf (A el hCOM> , (4.52)
2 2 UCOM‘/§
and
_,C  _C
FRRoowm (A) = 1 + Lert (A “CCOM hCOM) . (4.53)
22 OCOM\/E

It is possible to show that
HTERCOM,apost < HTERCOM,apM"
This can be done by showing that HTER apos: IS theglobal minimum, i.e.,

Agpost = arg mAin HTERcoMm(A). (4.54)

Hence anyA # Ag,poq: Will not be optimalincludingA ;. In fact this global minimum happens at EER
where FAR=FRR because FRR is an increasing function of the threshaldAR is a decreasing function
of the threshold.

In summary, this section shows that the bias-variancef@wee decomposition (of MSE) is not rele-
vant for classification problems. Specifically, in a twossgroblem such as biometric authentication, the
concepts ofa priori anda posteriorithresholds play an important role in decision-making beeahese
thresholds directly affect the classification error.

Of course in reality, the mismatch is unknown in advance. gbssible solution will be testimatehe
biash¥, for all i. This estimated bias can then be used to calculate a nevitdassing (4.47). This bias-
correction at the threshold level is practical, for insgrio a multimodal systems where the participating
systems exhibit different degree of bias in different aggtlion scenarios.
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4.7 Extension of F-ratio to Other Fusion Operators

4.7.1 Motivations and Section Organization

The proposed parametric fusion model discussed until ndwapplies to the weighted sum fusion clas-
sifier/operators (with mean as a special case). The firstafdhis section is to generalize the proposed
fusion model to other fusion operators. Its second goal isl¢atify conditions under which a fusion
operator is superior or more appropriate for a given fusaskt Prior to our study, several theoretical
fusion models have already been proposed, e.g., [66] orutheasd product rules (witmax andmin as
special cases), [142] on OS combiners, [73] on several fiudimssifiers and the most recent study [123]
which takes into consideration correlation and unbalasystem performance. All these studies share the
common characteristic that they consider system outpyisobability. Our proposed model is somewhat
different because we consider system outputs in the LLRespalbere scores can be summarized using
first- and second-order statistics. This advantage, natdHay the previous studies [66, 142, 73, 123],
allows us tocomparethe performance of different fusion operators using thetioead statistics.

This Section is divided into four sub-sections. Sectionlists the Bayes error of some commonly
used fusion operators in the literature. Section 4.7.3 @xasithe Order Statistics (OS) operators in details,
e.g.,min, max andmedian. Section 4.7.4 compares the performance of different fusjgerators with
respect to two factors: correlation among system outpudsiabalanced system performance. Lacking the
necessary data, the comparison is performed using sirdulate according to the class-conditional score
Gaussian assumption. The experimental setting in Sectibd does not allow us to distinguish between
min andmax fusion operators. Section 4.7.5 then explicitly introdsie@other experimental setting that
highlights the differences. This leads to a rarely congideesult in previous studies, e.g., [66, 142, 73,
123].

4.7.2 Theoretical EER of Commonly Used Fusion Classifiers

There are more than one ways to extend the proposed parafiusion model to other fusion operators.
One can begin with the Chernoff bound formulation as appkaré4.6). Note that it is an upper bound
of the Bayes error or EER as appeared in (4.14), which is aotesaution. With the Chernoff bound

formulation, one can replaggY |k) in (4.6) byp(ycon|k, the conditional distribution of the combined
score. Because any fusion operatep s : RV — R maps fromV dimensions to a single dimension, one
no longer needs the upper bound parameterize@ drythat a direct optimization of WER is possible, i.e.,:

WER = / min[ap(yeon| D), (1 — a)plyeorr|C) dyconr, (4.55)
— oFAR+ (1-a)FRR (4.56)

recalling that FAR and FRR are integralsdfycoas|I) andp(ycon|C), respectively. When FAR and

FRR are assumed to be integrals of Gaussianand 0.5, the minimal WER value is EER. As a re-
sult, we see that while the Chernoff bound provides an uppent to the Bayes error, EER provides
anexactsolution. This section will develop the EER of several otb@mbination operators discussed in
Section 3.4.2.

Thanks to F-ratio, the analysis of EER can be summarized byfdliowing four parameters:
{uk, akm:{c,,}}. Theaverage baselinperformance of classifiers, considering that each of thenksvo
independently of the other, is shown in the first row of Tahle 4 he (class-dependent) average variance,
ok, is defined as the average over all the variances of clasdifie is in fact not a fusion classifier but the
average performancef classifiers measured in EER. The single-best classifigrersecond row chooses
the baseline classifier that maximizes the F-ratio. Thisésseme as choosing the one with minimum EER
because F-ratio is inversely proportional to EER, as inahig the left part of (4.14).

The derivation of EER of weighted sum (as wellrasan) fusion can be found in Section D.2.

For the product operator, it is necessary to boytambe within the rangf, 1], otherwise multiplication
is not applicable. Consider the following case: two inseanaf classifier score can take on any real value.
The decision function (3.3) is used with optimal threshodinly zero. With an impostor access, both
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Table 4.1: Summary of theoretical EER based on the assumipiéb class-independent scores are normally
distributed.

Fusion methods EER where
Way = § 2 H;
average baselirié EER4y = eer (“AV+Z‘AV) X AY e
TAvTIav (UAV) =N (Uz)

single-best classifief EERy..; = eer (maxz (‘ K ﬁ))

C+O’
E T 3
mean rule EERcan = eer (7‘%8@"#7“““) e 2t K
mean mean (O’mean) = m ZL] 2
. Mipsum = 223 Wikly
Welghted SumZ EER, sum = eer (%) wsym i
Coum T sum ( wsum) Z”wzu)j
3
. 1Hg = pF 4+ 0
OS combinerg? EERos = eer (M) Q5 2 S 2
05st0bs (UOS) =2 (0’ )

+1: This is not a classifier but the average performance of lmeeseivhen used independently of each other.
By its defintion, scores are assumed independent as clas$ifietion independently of each oth¢t: the
weighted product (respectively product) takes the sanma 8 weighted sum (respectively sum), except
that log-normal distribution is assumed inste&itl. OS classifiers assume that scoaesoss classifierare
i.i.d. The reduction factoy is listed in Table 4.2. The mean and weighted sum classifiensotassume
that scores are i.i.d.

classifier scores will be negative if correctly classifiedheif product, on the other hand, will be positive.
This is clearly undesirable.

The weighted product (and hence product) at first seemslgliglimbersome to obtain. However, one
can apply the following logarithmic transform insteads (%, ,.,,) = >, wilog(y}), for anyyF sampled
from p(y¥). This turns out to take the same form as weighted sum. Asguthity? is log-normally
distributed, we can proceed the analysis in a similar wahasveighted sum case (and hencethen
rule).

4.7.3 On Order Statistic Combiners

To implement fixed ruleorder statistics(OS) such as the maximum, minimum and median combiners,
scores must be comparable. This can be done by using F-nontikelhe previous section, we further
assume here that the scores are i.i.d. (independently entlgdlly distributed). Hencey(y;|k) = p(y;|k)
for anyi,j € [1,...,N]. Although this assumption seems too constraining, it iast applicable to
fusion with multiple samples which are indeed identicailstigbuted but not independently sampled.

All OS combiners will be collectively studied here. The stigst OS can be replaced byin, max and
median. Supposing thag® ~ Y is an instance of-th response knowing that the associated access claim
belongs to clask. y* has the following model:

yr = pl + ok,

wherey! is a deterministic component and is a noise component. Note that in the previous section
is assumed to be normally distributed with zero mean. Thedgsores by OS can be written as:

vos = 0S(yf) = u" + 08 (wy),

wherei denotes thé-th sample (and not thith classifier output as done in the previous section). Note
that u* is constant acrossand it isnot affectecby the OS combiner. The expectation:gf as well as

its variance are shown in the last row of Table 4.1, whgrés a reduction factor angl, is a shift factor,
such thatyy(c*)? is the variance 00S(w¥) and~y,o* is the expected value @¥S(w¥). Both~'’s can be
found in tabulated form for various noise distributions [B]similar line of analysis can be found in [143]
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Table 4.2: Reduction factor of order statistics.

N ~2 values ~1 values
OS combiners mean || OS combiners
min, max, | median (%) min max

1.000 1.000 | 1.000|| 0.00 | 0.00
0.682 0.682 | 0.500|| -0.56 | 0.56
0.560 0.449 | 0.333|| -0.85| 0.85
0.492 0.361 | 0.250|| -1.03| 1.03
0.448 0.287 | 0.200 || -1.16 | 1.16

gl W N

Reduction factory, of variance (2 for the second moment) with respect to thedstahnormal distribution
due to fusion withmin, max (the second column) andedian (third column) OS combiners for the first
five samples according to [3]. The fourth column is thaximumreduction factor due tmean (at zero
correlation), with minimum reduction factor being 1 (atfeet correlation). The fifth and sixth columns
show the shift factoty; (for the first moment) as a result of applyingn andmax for the first five samples.
These values also exist in tabulated forms but here theylasned by simulation. Famedian, v, is
relatively small (in the order of0—*) beyond 2 samples and hence not shown here. It approacheaser
N is large.

except that class-unconditional noise is assumed,sie.= o!. The reduction factors of combining the
first five samples, assuming Gaussian distribution, are shiowable 4.2. The smalley, is, the smaller
the associated EER. The fourth column of Table 4.2 showsstthection factor due tmean (as compared
to the second and third columns). It can be seenithat is overall superior.

4.7.4 Experimental Simulations

Lacking of the necessary data, we performed a set of simuksimilar to those mentioned in Section 4.6.2
and following exactly the same assumptions: (i) the two fstems have the same numerator of F-ratio
and that (ii) for each base-system, the variance and cowiaf client and impostor distributions are
proportional. By doing so, the experimental task can berids=t by the matri>(%, p) (variance ratio and
correlation) and the corresponding outcomedy;,,. The only difference from Section 4.6.2 is that we
usedmin andmax and[] as fusion operators. The results are shown in Figure 4.8.

Comparing Figure 4.7 with Figure 4.8, it can be observedtti@amean operator is better tharin or
max. For all cases except the product operator, low correlatiahlow variance ratio (unbalanced system
performance ) are important to guarantee a positive gaie.praduct rule only has performance as good
as the single-best classifier at variance ratio=1 while da¢snatch the rest of the fusion classifiers. Its
performance does not evolve with correlation. One plagsplanation of such suboptimal performance
comes from [66], which states that the the product rule isens@nsitive to error as compared to the sum
(or mean) rule.

4.7.5 Conditions Favoring A Fusion Operator

In this Section, we would like to investigate conditions elhfavor a given fusion operator, e.thin, max,
etc. Due to the assumption$’ = ¢! and;© = !, the simulations in Figure 4.8 could not distinguish
between the two operators. The F-raticdff combiners can be written as:

uC —p! + 31 (0% — of)

c I
. Hos — Hos ———
F-ratiops = = ) 4.57
° 065 + b V2(0© + o) (*.57)

for bothOS € {min, max}. The underbraced termis critical in that it is differentfiein andmax whereas
the rest of the terms remain the same for both operators.der dhat this quantity is positive (to ensure
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min prod

4 0 corrr 4 0 corrr
var ratio var ratio

(a8) min or max (b) product

Figure 4.8: Comparison betweetin or max and the product operator using synthetic data. Performance
gain G,n, (the Z-axis) across different variance ratios (of two egst) from 1 to 4 (the X-axis) and
different correlation values from 0 to 1 (the Y-axis), as sufeof fusing synthetic scores of two system
outputs using (ain or max (both produce identical results) and (b) product fusiorrajes.

gain B,.:» > 1), there are two possibilities:
e v > 0ando® > ¢! —in which casenax is better.
e v < 0ando® < of —in which casenin is better.

As can be observed, the magnitudeddf for k& = {C, I} determines largely which operator is more
suitable. We performed a simulation using the experimesgttiings as before but this time, we varied the
variance ratid;—f whereag = 0. The results are shown in Figure 4.9. As can be observed, when o/,

so that the ratio i, min andmax are equivalent. However, as dictated by the constraint.67max is
better wherr® > ¢! and vice versa fomin. It is interesting to observe that Whé}ﬁ > 1.6, max is even
better thanmean or weighted sum. This shows that contrary to what one mayaxpesome situations,
max may be better than weighted sum.

Finally, we also carried out some empirical evaluationseify the findings so far using the XM2VTS
score-level fusion benchmark datasets with 32 two-systesiof tasks. Each system output is first pre-
processing such that = fz(frrr(y:)) for any system. The empirical results [107] show that (EPC
curves not shown):

e max; Yy, is better thanmin; y;. An analysis shows thatar[y;|C] > Var[y}|I] is true for most
system outputg;, for anyi in this data set.

e Weighted sum fusion operataxr,'y (whose weights are optimized by minimizing EER on the devel-
opment set), is better thanin, max or mean rule. This indicates that trainable fusion classifiers are
optimal for the 32 fusion tasks.

4.8 Summary of Contributions

While estimating Bayes error is a classical problem in mazhéarning, e.g., the Chernoff bound, we
demonstrate that the Bayes error in our fusion setting, wisiequivalent to EER in our case, can be esti-
matedexactly(hencetighter estimate). The underlying assumption is that the classliional scores are
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Figure 4.9: Performance gaih,;,, (with respect to the best underlying system) versus cantditivariance
ratio ‘;—f of different fusion operators.

normally distributed. Even though this assumption seentetestrictive, by using more than a thousand
biometric experiments, we show that the estimated EER ieable in practice. Thanks to the fusion
model, we can:

1. Justify why fusion is better than the average performance ofts sub-systems empirically and

theoretically: Although this subject has been investigated elsewhere, [8:g 67, 68, 133], our
justification is unique in the sense that itdigectly related to the reduction of classification error in
terms of EER. The empirical justification shown in Sectichwas summarized from our paper [97]
whereas the theoretical justification shown in Section 44 extended from our paper [103].

. Predict fusion performance: To the best of our knowledge, prior studies on classifier domb

tion, e.g., [67, 68, 123], have not dealt with the subject effgrmance prediction since they deal

with system outputs in probability. However, by working twe @lternative LLR space, we show that

performance prediction is not only feasible, but also thatdredicted performance is sufficiently ac-

curate to be used in classifier selection. This study thatigzsissed in Section 4.5 was summarized
from our work [102].

. Understand the effects of unbalanced classifier performareand correlation: These two fac-

tors have been studied in [123] by considering weighted susiofi in probability. Our parametric
approach models these two factors in the LLR space. Althdnggh studies lead to theamecon-
clusion, the approach based on LLR is undoubtexdiych simplercompared to [123] thanks to the
ability to summarize data in the LLR space (using the firsd aacond-order moments). For in-
stance, the pairwise correlation can naturally be desgiilyethe covariance matrix in LLR but this
is not obvious in probability. Therefore, our proposed mquievides aralternative understanding
of fusion with respect to the two effects mentioned. Ourgtasldescribed in Section 4.6) was taken
from our published work [109].

. Study the adverse effect of bias on fusionThe study of score-level mismatch between training and

test sets was examined in [76, Chap. 10] for the case of fusiorg simple operator in probability.
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It further makes the system output independence assumpiidferent from [76, Chap. 10], our
study uses weighted sum as a fusion classifier and considesystem output dependerexplicitly

in the LLR space. Due to using LLR, our approach is more adgmuus because it allows one to
correct the bias while such remedial procedure is non-alsweaith probability. This study was also
taken from our published paper [109].

. ldentify conditions which favor a particular fusion operator: Thanks to the parametric model,

these conditions, described using class conditional Gaupsrameters, can be identified. By using
many experimental simulations, we found two observationsrésting and somewhat surprising.
Firstly, contrary to popular beliefs, there exists cormtii under whichnax andmin operators are
better than weighted sum (or mean as a special case). Irigaralsbwever, these conditions occur
rarely. Secondly, there exists conditions under whidh is better thanmax, and vice-versa, in
the context of fusion. Prior to our study, e.g., [67, 68, 128], these conditions were not well
understood. This study as described in Section 4.7 has eatfngblished yet.

In brief, we have shown that working in LLR is more advantagethan in probability since we can sum-
marize and analyze treamefusion problem (in both cases) more easily thanks to the Saislistribution.
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Chapter 5

A Survey on User-Specific Processing

5.1 Introduction

While Part | of this thesis is about user-independent fudfam Il is about user-specific fusion. In theory,
extending the user-independent parametric fusion modal user-specific one is straightforward, e.g.,
replacing the statisticg* and =* by user-specific statisticpf and 2? for a given user indey. In
practice, however, due to limited amount of user-specifta,daie reliability of user-specific statistics are
greatly reduced. We will survey in this chapter all techeigjthat rely on using data specific to a user.
We call this family of techniquesgser-specific processingexamples of user-specific processing are user-
specific feature extraction, user-specific model/templaer-specific fusion classifier, user-specific score
normalization and user-specific threshold.

There are at least two motivations to apply user-specificggsing in biometric authentication. Firstly,
it has been observed that in a database acquired in simif@it@ms, a fraction of users are more difficult
to recognize than the rest [33]. Itis, in fact, possible tokrasers in a database according to an index of
ease of recognition (Section 7.4). Secondly, it is commam#tedge that human beings recognize people
by their salient traits. These traits are best seen in huradoature characters where remarkable traits of
a person are exaggerated.

User-specific processing is a challenging problem becagrgeoften, extremely few samples are avail-
able per user. This is even more so for newly enrolled useos.irfstance, it has been shown in [40]
that at least six genuine samples are needed before its ggdpser-specific procedure can outperform
the baseline system. Ten samples were reported in [139] @emdhf{50]. Such a large number of sam-
ples can be inconvenient if one considers that conventiooredautomatic biometric applications use only
one sample, e.g., a single mug-shot photo for traveling ehecits. Therefore, an important challenge to
overcome in user-specific processing is to reduce the mdjmumber of genuine training samples, i.e.,
learning with small sample size. This is a non-trivial maehiearning problem. Chapters 6 and 7 provide
two alternatives of applying user-specific processing taatwork with a single genuine training sample.

To the best of our knowledge, one of the earliest applicatafruser-specific processing is user-specific
score normalization [48]. Since then, such family of methég extended to user-specific threshold,
e.g., [92], and user-specific fusion, e.g., [61, 139, 40]esehstudies show that exploiting user-specific
information can effectively improve the system accuradyisThapter provides a survey as well as a thor-
ough analysis of this subject. To the best of our knowledgspite its importance, this is the first survey
written on the subject.

Chapter Organization

This chapter is organized as follows: Section 5.2 introdube terminology in user-specific processing
and motivates user-specific decision making. Section SI13jive an overview of user-specific processing
techniques from an architectural perspective. Sectiofs56 present user-specific fusion, user-specific
score normalization and user-specific threshold. Sectibakalyzes the relationship between user-specific
normalization and threshold. Finally, Section 5.8 conekithe chapter.

67
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5.2 Terminology and Notations

5.2.1 Terminology Referring to User-specific Information

Due to the evolving nature of this field, several terms hawnhbetroduced by different authors, e.g. [43,
139]. To avoid confusion, in this thesis, we will adopt thédwing terms:

e User-specifiéclient-dependent/local: (adjective) on a per client basi

User-independenfclient-independent/global/common: (adjective) ingliéint to each client.

User-adapted (adjective) that makes use bbthuser-specific and user-independent statistics..
e Client-centric/target-centric: (adjective) that makes use of user-$§ipegient accesses only.
e Impostor-centric: (adjective) that makes use of user-specific impostor aesesnly.

e Client-impostor centric/target-impostor centric: (adjective) that makes use dhhser-specific
client and impostor accesses.

Note that the bold terms are used in this thesis whereas shefrthe terms separated by “/” are synonyms.

5.2.2 Towards User-Specific Decision

Letj € {1,...,J} be the identity being claimed when making an access reqondshare are/ users. The
user-specific decision will necessary take the ingléxto consideration. In contrast to user-independent
decision based on Log-Posterior Ratio (LPR) as defined 1) (e user-specific decision function, which
considers the identity clain, using LPR, can be written as:

o P(C, j|person
PR = bg(f%ijemoo
P(persoiC,j) . P(Ij)
= %8 Biersotr, ) 8 P(0,) 1)

Instead of considering at the “person” level (the compasitdigitized biometric signals), the LPR test is
also valid at the feature level (by replacing “person” witle feature vectox) or at the system level (by
replacing “person” with a vector of system outpwts= [y1,...,yn]’ with N elements). By considering
N systems, our framework generalizes to a single system pwipere N = 1.
To illustrate the usefulness of user-specific decision, vilecus on LPR at the system output level.
Therefore, (5.1) can be written as:
P(y|C,j) P(1,j)

LPR;, = log —"2—1lo -
d S PylLj) 2 P(C,j)

=;(y) - A, (5.2)

where one can recognize thlj : RY — R is a user-specific fusion function auyj, is its corresponding
user-specific threshold. Whes = 1, the function¥; : R — R is called a user-specifiscore normal-

ization Following a similar discussion as in Section 3.2.2, theslen function of (5.2) can be written
as:

accept if ¥;(y) > A

reject otherwise (5.3)

decisionly) = {
This decision function is impractical for two reasons. ftsghe user-specific thresholti; is difficult to
estimate due to lack of genuine samples associated totiggnsecondly, the user-specific fusion function
(or score normalization faV = 1) is also difficult to estimate for the same reason. Despéaifficulties,
this form of solution was examined in [139], where as manyassamples were used — demonstrating the
drawback of this approach.
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In order to be robust to few user-specific training samp&s8)(can be approximated by the following
ways:

1. Using only user-specific function:This results in the following decision function:

accept if ¥;(y) > A

reject otherwise (5.4)

decisionly) = {
In this case, the thresholl is common to all users. The functidrn; in (5.4) is auser-specific fusion
for N > 1 and is called aiser-specific score normalization procedétwe N = 1.

2. Using only user-specific threshold:

accept if y > Wi(A)

reject otherwise (5.5)

decisionly) = {

whereV’ : R — R is auser-specific threshol@V; with /). In this case, the fusion function is
common to all users. This form was examined by [43] for ins¢an

3. Using neither one: In this case, no user-specific information is used. Thislteso the user-
independent decision function shown in (3.3) whér&\) = A. This is thede factoapproach.

Note that (5.4) and (5.5) are closely related. Their refeiop will be shown in Section 5.7. This section
is original because to the best of our knowledge, such celshiip has not been shown in the literature.
The dual relationship is useful because it indicates that #lways possible to find an equivalence of
user-specific threshold from user-specific score normadizdout not necessarily the other way round (de-
pending on whether the common threshdlds considered or not). In other words, user-specific score
normalization generalizes over user-specific threshaddils reason, we choose to focus on user-specific
score normalization.

Our contributions to be discussed in Chapters 6 and 7 willdse=d on (5.4) in the context of fusion
(for N > 1) and that of score normalization (fof = 1).

5.3 Levels of User-Specific Processing

User-specific processing can be applied at the followingelarchitectural levels:

1. Feature level — User-specific feature setAt this level, different feature representations are used
for different user or group of users. For instance, for usdrese fingerprint minutiae cannot be
extracted reliably, the textual information may be morefuisdn [22], it was shown that the per-
formance of a speaker verification task can be enhanced by assubset of features for each user.
These features are chosen using a feature selection teehniq

2. Model level — User-specific modelThis is a standard approach whereby a biometric autheiotica
system builds a model onger userbasis. For instance, it is common to train an MLP classifier to
separate the face of a user from the rest of the users [81%. stidtegy is called the one-against-all
classification strategy. The-state-of-the-art approacpéeaker verification, which is based on a user-
adapted model [122] from a general speaker independentinipdéso based on the same strategy.
Recent techniques in face verification also follow the saraed, e.g., [16] using local features
(which are classified with a user-adapted model) and [15hpusser-specific Fisher’s projection.

3. Score level- which can be further divided into:

e User-specific score normalization. The most representative example is called Z-norm and
first proposed by [48], which relies on user-specific impostmres to carry out the normal-
ization. In [126], a similar version of Z-Norm but using onlger-specific genuine scores was
reported. However, this technique requires much more gfgecific genuine accesses. The
authors’ experiments were based on 5 accesses per uses.tiéniirst work by [48], the form
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of normalization has not been changed much although theexbat application is extended

beyond that of mitigating user-induced score variationshsas T-Norm [4], (aiming at exten-

uating the mismatch during test), H-norm [53], (aiming aeexiating the mismatch due to the
use of different handsets) or and D-Norm [6] (aiming at reédigienodel-induced variations and
is specific to GMMSs). Other normalization techniques emipigypoth user-specific client and
impostor information (i.e., client-impostor centric) inde EER-norm [43] and the proposed
F-norm in Chapter 7.

e User-specific fusion This technique was proposed by [61] using a linear weiglsiclieme
to weigh the outputs of several multimodal systems while @lireear version, achieved via
Multi-Layer Perceptron (MLP) was reported in [71]. In [48]Support Vector Machine (SVM)
classifier was used to construct a user-specific fusion fumethile in [41], a Bayesian classi-
fier was used.

e User-specific threshold This class of techniques is commonly applied to speakéficeagion
tasks for instance [48, 126, 75, 93, 18].

The literature cited here is certainly not exhaustive buefiresents the state-of-the-art in user-specific
processing.

Often, the score-level techniques are used together witHdhture-level techniques. For instance,
the state-of-the-art speaker verification technique baseatiapted Gaussian Mixture Model [122, 4] uses
both user-specific model and user-specific score normalizathe same adapted GMM architecture was
employed successfully to signature verification [43] anfhte verification [130]. In [79], another possible
combination was proposed, i.e., between user-specifie semmalization (based on Z-norm) and user-
independent fusion.

A recent study [139] proposed a new paradigm consisting of dichotomies: user-specific/user-
independent fusion (called “local/global learning” by thehor) and user-specific/user-independent thresh-
old (called “local/global decision”). These two dichotasithus give four categories of methods to incor-
porate user-specific information, at the score level. Ratien just looking at these dichotomies, one
should investigate the possibility of applying user-spesirategies atll possible levels listed here.

A detailed discussion on user-specific fusion can be four8eiction 5.4, score normalization in Sec-
tion 5.5 and threshold in Section 5.6. Section 5.7 shows tladitgt between user-specific score normaliza-
tion and threshold normalization.

5.4 User-Specific Fusion

The user-specific fusion; ;, can be constructed based on the following methodologies:
1. Aclassifier withN inputs but one for each user.
2. A classifier receivingV + 1 inputs, i.e.,N system outputs to be combined and an identity label.

3. A classifier withNV inputs, based on a common model, but its parameters changedaty to the
score statistics of each user.

In the first case, one does not make use of the data of the ré®t ofsers. Therefore, it is inefficient in
terms of data usage. In the second case, due to parametimgsiiae use of data is more efficient. In the
third case, the possible sets of solution is restricted it thve right model, its generalization performance
may be superior over the first two cases. The following fiveetypf user-specific fusion classifiers are
found to be relevant:

e Brute-Force User-Specific Weight Sum:The first work that exploited user-specific fusion can be
attributed to [61], whereby a linear combination of the fopm} w; ; fprob(vi) IS used, with the
constraint that the weights sum up to one and that the salutith equal weights is preferred. The
function f,,,..;, converts the output to probability (see Algorithm 1). Thegi¢w; ; for a given user
j and systeni is tuned directly to minimize the population EER criterioarh the data. A potential
problem with this technique is that if there afeisers andV systems, then there are a totaldfx .J
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weight parameters to solve. Given the high degree of freetloersolution is unlikely to generalize
well.

e D-prime Based User Specific Weighted Sum:An improved version of user-specific weighting
scheme over [61] was proposed in [137]. The improved schesasut) ; o d;fl whered;; is user-
specific d-prime as defined in (4.17) except that the stegistie derived uniquely from user-specific
data (scores). Although this solution is expected to be nmairest than the direct weight estimation
approach, the user-specific statistics inherent in d-pdarebe very unreliable. As a result, such
strategy may not generalize well (see Section 7.2).

e User-Specific SVM:In [40], a standard SVM was used in a somewhat novel wayareSVM was
constructed using a user-independent set of scores plusrapscific set of scores. Each of these
sets of scores contain both client and impostor classesooésc This strategy was called “adapted
user-dependent fusion” by the author. This is to be diststged from “user-independent fusion”
whereby no user-specific data is used, or “user-dependsionfuwhereby only user-specific (client
and impostor) scores are used (while ignoring the existehaser-independent client and impostor
scores). The mentioned novelty in the said study is the usieedf’ parameter in SVM [146]. This
parameter rates thelative influenceof each example. When included in the support vectors (i.e.,
examples falling in the margin), the relatively highparameters of these examples can change the
decision boundary drastically. In [40], two values are assigned to two sets of scores, i.e., one for
the user-specific scores and one for the user-independmessdn order for the adapted fusion to be
effective agreaterC' value has to be associated to the precious user-specifiessasrcompared to
theC value of the user-independent scores. It was demonstratgiieally that wherC' was tuned
posteriorion the test set (due to lack of available data for tuningthmarameter), the adapted fusion
was potentially beneficial as compared to either user-iadeéent or user-specific fusion. Since the
additional free parameté&r was tunedx posteriorj hence providing an additional degree of freedom
to fit the data, the experimental results are thiasedtowards the adapted fusion strategy.

e User-Specific Gaussian ClassifierAnother similar idea using Bayesian adaptation (insteaasef
ing SVM) was reported by the same author in [41], also usiegsdme multimodal database. The
architecture employed is similar to the Gaussian MixturedMldGMM) with MaximumA Poste-
riori (MAP) adaptation, the current state-of-the-art systenpiager verification [122]. However,
a single Gaussian component with a diagonal covariancexweas used. According to our un-
derstanding, the justification for using a single Gauss@mmponent is that there are just too few
user-specific client scores to adapt (from two to three, déing on bootstrap samples). Similar to
the C' parameter in SVM, the GMM-MAP algorithm also has a free pat@mncalled a “relevance
factor” (to be discussed in Section 6.3.2). This factor isc@l in that it balances the right mix
between the user-specific and user-independent informalioother words, botlt’ and relevance
factor play the same role in this context. Again, the releeafactor was tuned posterioriand
thus inevitably reportingpiasedperformance towards the GMM-MAP algorithm. Ideally, anger
parameter should be tuned on a separate validation set.

e |dentity-based MLP Fusion: In [71], an MLP was employed to combine the vector of systetr ou
putsy together with the user-identity index Hence, the MLP had’ + 1 inputs. It was shown that
employing the identity claim as an additional feature caprione the performance, albeit insignifi-
cantly.

These user-specific classifiers shows that it is importaetfiil to:
e Use explicitly user-specific score statistics, e.g., [137]

e Share parameters and/or training data among differemsyemific classifiers, e.g., [41, 40].

1in the context of speaker verification, the use of GMM with agdinal matrix per Gaussian component is fine since a full
covariance matrix does not necessarily provide better paefoce. On the other hand, in the context of score-level fusisingle
Gaussian component with a full covariance matrix may be moreogpipte, if the covariance informationlielieved to bevaluable.
Unfortunately, no comparative study was reported in thisreg
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e Restrict the possible solution space by choosing a modg|,[@37, 41].

However, none of the above studies possess all these abwgstics. We will propose in Chapters 6 and 7
two designs of user-specific classifiers that consadidhese characteristics which are extremely important
in order to reduce the size of user-specific training santplese. This is a significant savings considering
that the studies presented here rely on at least five trasangples before the classifier outperfornea
factofusion classifier which does not consider the user label.

5.5 User-Specific Score Normalization

User-specific score normalization can be categorized inbdamilies:

e Z-norm Based Normalization: The desired effect is that the distribution of normalizeghastor
score is aligned. These methods are impostor-centric.

e EER-norm Based Normalization: Thesignof the normalized score is indicative of the class label.
These methods are client-impostor centric.

We will introduce another class of methods based on F-nor@hiapter 7. F-norm belongs to a different
family because the expected values of the normalized digthimpostor scores asemultaneouslgligned.

The Ideal User-specific Normalization Procedure

If one considers user-specific LLR score as in (5.2) and asstine class-conditional Gaussian distribution,
U, (y) can be written as:

1 27 (o

Q(O-JI_)Q ((y - NJI')Q) —log TUJI.)Q’ (5.6)

Ui(y) = —2(01_0)2 ((y—u§)?) +

wherey ando¥ are the class conditional mean and standard deviationseofjtier k& = {C, I}. We call
these statisticaser-specific statistics

Being an LLR, such a user-specific normalization proceduioptimal (i.e., results in the lowest Bayes
error) when

1. The parameter@’;, o;? for k € {C, I} and for allj are estimated correctly.
2. The class-conditional scores can be described by theficssecond order statistics.

The second condition can be fulfilled by converting any s¢gpe to LLR using Algorithm 2). The first
condition is unlikely to be fulfilled in practice because asalways lack of user-specific training data. As
a result, in its original form, (5.6) is not a practical sadut

Z-norm Based Normalization
Sincen§ ando§’ cannot be reliably estimated, the following constrainty i@ applied to (5.6)0¢ = o
andugj = y (the score itself). As a result, (5.6) becomes:

(y — ni)?

\Ifj(y) = 2(0_1_)2 )

which is proportional to the square of Z-norm [48] having ttwen.:

y;y = - (5.7)
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A more involved discussion of score normalization of thisican be found in [63]. If one further imposes
the constraintrj = a constanbecause it is non-informative, one obtains:

y? = y—pl. (5.8)

We call this expressio-shift Note that the constant can be discarded as the common tkdestihe
decision function of (5.4) can be adjusted accordingly.

EER-norm Based Normalization

Note that Z-norm ismpostorcentric because it relies only on the impostor distributidrClient-impostor
centric normalization was also studied in [43] and has twaawas:

Tt = y—A; (5.9
y'2 = y—A; (5.10)

whereA': is a threshold found by assuming that the class-conditidisafibution is Gaussian andl; is
found empirically.A; takes the form of (4.13) with the difference that all the tiselependent terms are
I_C c I
o +/Lj g

replaced by the user-specific terms, iﬂw In reality, the empirical version (5.10) cannot be used

when only one or two user-specific genuine]scores are alailab

Another study conducted in [139] used a rather heuristicaggh to estimate the user-specific thresh-
old. This normalization is defined as (the rest of the apgreacan be seen as an approximation to this
one):

I C
ymid = y— = (5.11)
N—_——

The under-braced term is consistent with the tekgn'n (5.9) when one assumes thét' = a;’ =1.

Common characteristics of User-Specific Score Normalizath Procedures

All the procedures presented here are linear with respetietgcore, i.ey™ = y;—fgj where the scaling
J

factor and bias(4,, B,) are dependent on the statistics of user-specific distdbutThis characteristic
also generalizes to the F-norm to be discussed in Chapter 7.

5.6 User-Specific Threshold

Considering the vast amount of works on user-specific tlldgtrocedures, we will provide a brief survey
here. They are summarized in Table 5.1. These procedureatagorized by their type (i.e., client, impos-
tor or client-impostor centric), the biometric modalitypdipd to and whether they use a global threshold
or not. The inclusion of a global threshold (e.g., rows 3, 8 &rof Table 5.1) is important for association
with user-specific score normalization (see Section 5.d)fanproviding an added degree of flexible or
refinement to the local threshold.

Admittedly, most works are reported in the speaker verificatommunity and few come from other
biometric domains. This is because there are conditionmfhothe fact that the client and impostor sets
of scores each follows approximately a normal distribytibiat make threshold normalization procedures
more effectivén the state-of-the-art systems used in speaker verifitdtrmstly based on Gaussian Mix-
ture Models or the like) than other systeins

20ur experimental outcome to be presented in Section 7.3.&(iitplar Figure 7.5(b)) suggests that score normalizgiioce-
dures are more effective when applied to GMM-based systemsithan applied to other systems.
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Table 5.1: A survey of user-specific threshold methods afdpb biometric authentication tasks.

No. | Equations authors type modality | use global
(-centric) applied | threshold
1] V(A)=a ((W'G) +o1() +8 Furui [48] impostor speech not
V(D) = apl (j)o”(5) + Bu! () + 107 () Pierrot [92] impostor speech not
vi(A)=A- (aul(j)al(j) + 8ut (5) + 'yaf(j)> Genoud [52] impostor speech yest
b
4 | W(A) =pl(j) +a (o1(j))? impostor speech not
Vi(A) = ap’ () + (1 = )u® () Lindburget al[75] | client-impostor | speech not
6| V(A =A+a (uc(j) - M(j)) client-impostor |  speech yesi
—
b
7 V(A = a(pl () + Bal(G) + (1 — )u®(H) Chen [18] client-impostor | speech not
8 | vi(A) = wC () — ac® () Saeteet al[126] client speech not
9| v(A)=p'(H+o'(A Jonssoret al [64] impostor face yess
N N~
b a

Parameters andb correspond to those found in (5.14).For these equations (which use a global thresh-
old), theb term corresponds to the right hand-side of the respectivatemm ande = 0. i: For these
equationsg = 1. x: Although went unnoticed by the author, thiseisactlythe dual form of Z-norm and
was applied to a correlation-based matcher.

5.7 Relationship Between User-Specific Threshold and Score Nor-
malization

The user-specific score normalization in Section 5.5 and-gsecific threshold normalization in Sec-
tion 5.6 are strongly related. Taking the right-hand sidgs @) and (5.5), we have:

i(y) > A, (5.12)
y > Wi(A). (5.13)

Note that the threshold\ refers to the threshold founafter applying a respective user-specific score
normalization procedure amebt before(i.e., not directly on the scores prior to normalization).

To show that they are dual, we will re-express (5.13) intofthi of (5.12). To do so, it is necessary
to assume that’; (A) takes the following form, as a function af:

U/(A) = aA +b. (5.14)

Note that all equations in Table 5.1 can be expressed by)(bsidg differenta andb. In particular, for
those which do not contain a global threshdldorresponds to the right hand-sides of the equations. For
those using a global threshold, any multiplicative factothtte global threshold will be represented by
and the rest of the terms are represented.bRReplacing (5.14) into (5.13), and after rearrangement, we
obtain:

y=b_ A (5.15)

From (5.12) and (5.15), we see that:

) =L (5.16)
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For equations whose = 0, we have:
Vi(y) =y -0, (5.17)

As a result, manipulating the threshold or the scpteasexactly the sameffect. Hence, the threshold
refinement procedure (row thee of Table 5.1) is just anott@nesnormalization technique. The additional
advantage of score normalization over threshold norntadizds the additional flexibility provided by
the global threshold which can still be adjusted to différ@perating costs of false acceptance and false
rejection.

5.8 Summary

In this chapter, we survey user-specific processing, i.éanaly of techniques that considers the user
claimed user index. These techniques can be categorizedhirge types, according to the level of in-
formation dealt with, i.e., feature level, model level, @utre level. User-specific score-level processing
can further be divided into three types: user-specific fusiser-specific score normalization and user-
specific threshold procedure. Although user-specific msiog is extremely useful and has been shown by
numerous authors, this is the first survey written on theesbj

There are two somewhat original ideas in this chapter. Iiifsy analyzing the decision function using
LLR, we unify the three types of user-specific score-levektpssing in a single framework. Thanks to the
framework, user-specific score normalization can be seensagcial case of user-specific fusion having
only a single system. This observation has a significantenfte in our work because user-specific fusion
techniques can suddenly be used as user-specific scorelizatina techniques, e.g., Chapter 6, and vice-
versa, e.g., Chapter 7.

Secondly, we show that, in theory, user-specific score nlizatn and user-specific threshold pro-
cedure are equivalent. In practice, however, one may naiobkactly the same result depending on the
optimization criterion used and on whether or not the gldbadshold is considered for decision making.
Between these two, user-specific score normalization igradvantageous due to an added degree of flex-
ibility — the global threshold which can still be tuned aftee normalization. We will therefore focus only
on user-specific score normalization. This survey has nen pablished yet.

Thanks to the survey, we identify our contributions in usgecific processing as follows:

¢ An original compensation scheme that combines both ussifipand user-independent fusion clas-
sifiers consisting ofV participating systems (Chapter 6). This framework geim¥alto the case of
N = 1 which can be considered as a novel user-specific score riaatiah.

e A user-specific score normalization called the “F-norm” analser-specific fusion classifier called
the “OR-switcher”. (Chapter 7).
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Chapter 6

Compensating User-Specific with
User-Independent Information

6.1 Introduction

While prior works on user-specific fusion require many ugeresfic genuine samples (apart from those
used to train the base-systems) in order to outperform theectional fusion classifiers, e.g., as many
as ten in [139] and six in [41], our goal in this chapter is tduee the number of required user-specific
genuine training samples to one or two.

This chapter contains two original ideas. The firstidea itherdesign of a user-specific fusion classifier
that is in fact a Gaussian classifier with highly constraiBegesian adaptation. Our novelty lies on the
introduction of a set of useful constraints representimgdbmain knowledge. The second idea is referred
to as acompensation schemséce one combines both the outputs of a user-specific futdasifier (based
on the first idea) and a user-independent (conventionabriudassifier. The scheme is advantageous for
three reasons. Firstly, it compensates for the possiblgliatnie (due to lack of training data) but useful
user-specific fusion classifier. Secondly, both the undeglfusion classifiers can be trained independently
of each other. Thirdly, both the fusion classifiers are likiel be independent of each other thanks to the
“phenomenon of large number of users”. This phenomenonsdsdan our observation that when the
number of users is large, the class-conditional scoreiti@getl of a population is independent of that of a
given user (who can be a member of the population). The scieeiméact very general because it extends
to the case where only a single system is involved; hencdtiregsin a compensated user-specific score
normalization procedure.

Chapter Organization

Section 6.2 analyzes the effect of large number of usersiwbe@riginal ideas — a compensation scheme
and a user-specific classifier — are discussed in SectionT®&.scheme is then empirically evaluated in
Section 6.4. Finally, Section 6.5 draws the conclusions.

6.2 The Phenomenon of Large Number of Users

The idea of user-specific versus user-independent infiomas deeply related to the phenomenon of
large number of usersTo show this property, let the class-conditional scorerithistion bep(y|k) for

k = {C,I}, wherey = [y1,...,yn] is the vector ofN system outputs to be combined. Note that the
vectory generalizes to the case of a single system, Ne= 1. The likelihood of the user-independent

77
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is thus a result ohccumulatediser-specific likelihood@ of all identities;j € 7, i.e.,

1

PR = B > ply, k1D = j)
JjeET
- % S ply|k, 1D = j)P(k, D = ), (6.2)
JjET

whereP(k,ID = j) denotes the prior probability of an impostor claiming idgnj, i.e., P(1,1D = j),
or the prior probability of usef making an identity claim, i.e P(C,ID = j).1. We will now single out a
particular useyfj,. € J from the rest of the users.

pYIE) = i (POIRID = ) P(ID = ) + pYIEID # )P(RID # 1) (62)

Assuming the independend¥k, ID) = P(k)P(ID) and equal priors, i.eP(ID = j) = % forall j € 7,
P(ID = j,) = 4 andP(ID # j.) = 1 — %. As aresult, (6.2) can be written as:

pYIE) = g (POIRID = ) P(R) S + (Y1 1D £ 3. P11 - )
= Dyl ID = o) 4wy ID £ )1 - )
~ p(ylk,ID # j.) whenJ — oc. (6.3)

We observe that when the number of usdiss large, the user-specific likelihoogliy |k, ID = j.), cannot
contribute significantly to the overall population likedibd, p(y|%). Because of this phenomenon, one can
modelp(y|k) by a mixture of user-independent (and hidden) componergsthen-th user-independent
component be denoted hy, and there aremep components for each clags The user-independent
likelihood can be estimated by:

J

pylk) = > P(D=j)p(ylk,ID = j) (6.4)
j=1
NE

~ Y Plea)p(ylk, cn) (6.5)
n=1

where bothp(y |k, ¢,,) andp(y|k, D) are each modeled by a Gaussian distribution. The differdrome-
ever, is that the number of Gaussian components is much teaeithe number of users available, i.e.,
NE. < J. (6.6)

cmp

An lllustration

This phenomenon is illustrated in Figure 6.1. We randomlgsehl10 users out of 200 for one of the
XM2VTS fusion tasks. In Figure 6.1(a), the user-specificsglaonditional score density(y|k, j) is
represented by a single Gaussian, for dagfi, I} and eacly = {1, ...,10}. In Figure 6.1(b), by ignoring
the claimed identity, the densipfy|C) requires only two mixture of Gaussian components whepégald )
requires only three. The number of Gaussian componentsunad by cross-validation. In both cases, the
number of Gaussians in the mixture is always smaller thantneber of users. Therefore, (6.6) is always
true.

1in real application, the user with high probability of beimgposed will have highP(I,1D = j) and the user who uses more
frequently the system than the rest will also have WR{iC”, ID = j).
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Figure 6.1: An illustrative example of the independencevieen user-specific and user-independent in-
formation. For both figures, the X- and Y-axes are the outpatesspace of a face and speech systems,
respectively. The upper right clusters are client accesbeseas the lower left clusters are impostor ac-
cesses. In (a), the user-specific class conditional scatdhiition is represented by a single Gaussian
distribution. Note that these distributions are very d#fg from each other, especially for the client class.
In (b), by not using the claimed identity, the user-indeparidclass-conditional distribution requires a
significantly lesser number of Gaussian mixtures.

6.3 An LLR Compensation Scheme

Section 6.3.1 proposes the compensation framework betusssrspecific and user-independent classifiers
and two of its possible forms of realization, i.e., a fusiod a score normalization procedure. Section 6.3.2
discusses the design issue related to the user-speciféifidag/hich requires a special attention due to few
training samples.

6.3.1 Fusion of User-Specific and User-Independent Classifs
In Chapter 5, we have motivated the use of the following fofraser-specific decision:
U;(y) > A,

whereby a user-specific fusion classifir,(y) is used in conjunction with a common (user-independent)
thresholdA wherey = [yi,...,y"V])" is a vector of system scores to be combined (see (5.4)). Hawev
considering the fact thak ;(y) is potentially unreliable, we could consider the followiiagm instead:

Y (y) + (1 =7)¥(y) > A,

where ¥(y) is a user-independent fusion classifier ands [0, 1] adjusts the contribution of the two
classifier outputs. We will consider the user-specific arat-iredependent fusion classifier below:

_ .. pylC,ID =)
U;(y) = log Sy [LID=J) (6.7)
and
T(y) = log 10) (6.8)
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respectively. There are three advantages using the abowebfecause of:

e Mutual compensation: The solution compensates for the potentially unreliabbr-specific classi-
fier but at the same time, enhances the user-independesifiglawith a user-specific one.

e Hybrid learning algorithms: Both classifiers can be trained independent of each othem$tance,
in practice,¥;(y) is restricted to Gaussian classifier due to the lack of tngimiata wherea¥ (y)
can be implemented using any general purpose fusion ctasddscribed in Section 3.4. This is
perfectly logical since there is no reason to restfi¢y) to be a Gaussian classifier.

¢ Independence of information: Following the justification in Section 6.1 thaty|% is independent
of p(y|k,ID = j whenJ is large, it is reasonable to expect thigty) and ¥ ;(y) are also likely to be
independent. This is highly desirable because combinidggandent outputs will lead to improved
generalization performance.

An Overview of Compensation Scheme

Consistent with our discussion in Part |, we will now redttiee classifiersl and¥; to those that output
LLR scores. We will also consider two specific cases in whighgroposed compensation scheme can be
realized: a single-modal system whéYe= 1 and a multimodal system whefé > 1. The realization for
both cases are:

Yeom = fadjust (\IJ] (y)a \I/(y)) (69)

and
Yecom = fadjust (\117 (y)7 \I’(y))a (610)
respectively, where:

L. fodjust : R? — R is a linear combination function of two LLRs. In theory, amgihable linear
classifier discussed in Sections 3.4.2 and 3.4.4 can be uskdchoose two techniques: one is
trainable via SVM and the other one is a fixed rule using themuogeerator such that = %

2. U : RY — R is a fusion classifier that outputs LLR scores. While we cha&MM classifier
for this purpose, any classifier discussed in Sections 34dd33.4.4 can be used. In the case where
N =1, ¥ reduces to a user-independent/system-level score naatiah procedure, i.efi.rr as
described using Algorithm 2 in Section 3.3.

3. ¥, : RY — R is a user-specific fusion classifier. Due to lacking useciipedata, a careful
treatment is required. This is discussed in Section 6.3d2e khat in the cas®&/ = 1, ¥; reduces to
a user-specific score normalization procedure. In thebeyideal form of solution is given by (5.6).
In practice, however, approximated solutions using Z-riet BER-norms are simpler to implement
(see Section 5.5). We will deal withi; in the context of fusion and generalizes the result to the cas
N = 1. The approximated solutions will not be dealt with here.

As will be shown, Step 1 is crucial to guarantee the succetiseacheme, especially when relying bn
alone can fail. Step 3 is particularly difficult to design hese the problem i&-dimensional (correspond-
ing to combiningN system outputs). Consider the solution using a multivar@aussian. In this case,
the covariance matrix must be estimated from at |8ast 1 samples in order to ensure a non-singular co-
variance matrix. In most cases, this condition cannot Héléd unless one assumes a diagonal covariance
matrix (in which case one cannot model the correlation amsysgem outputs). Furthermore, due to the
small training size, the obtained statistics may not babédi. Section 6.3.2 deals with the design issue of
user-specific fusion classifier.

6.3.2 User-Specific Fusion Procedure Using LLR Test

Approximating user-specific LLR is more difficult than appiroating user-independent LLR since few
user-specific data points are available, especially thaigerscores. The same difficulty does not apply to
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Figure 6.2: An illustration user-specific versus user-petelent fusion of two system outputgy |k, ID =

j) is thej-th user’s (hence user-specific) distribution wheng@agk) is a user-independent distribution, for
k = {C,I}. The user-independent (global) decision boundary is dmaitim a continuous line whereas
the user-specific (local) decision boundary, for ugeis drawn with a dashed line. Each oval shape, as
illustrated here, is a bivariate Gaussian.

the user-specific impostor scores because these scoree gandrated by using an external database. We
tackle the lack of training data using the following rules:

1. Use simple classifier model (with low degree of freedom)
2. Estimate parameters using reliable data only

3. Rely on some prior knowledge such as user-independeribdison.

Because of few user-specific data points, the best one camtdassume that each class of user-specific
scores is normally distributed. The first rule implies thaing more than one Gaussian components as
in the user-specific case will probably result in overfittinge present here two classifiers based on the
concept of MaximurA posteriori(MAP) adaptation.

User-Specific Gaussian Classifier

The idea of user-specific fusion classifier, implemented@auwssian classifier, is illustrated in Figure 6.2.
There are essentially two decision boundaries, one isindependent (the classical solution) and the other
is user-specific. Although using only user-specific infotioraseems to be the best approach, in practice,
one has extremely few samples to estimate the user-speaifiengeters reliably. The optimal solution is
therefore found somewhere between the two decision boigsdaf good and proven solution is to use
Bayesian adaptation which has been successfully deploysgeaker verification [122]. A simplified
framework using a single multivariate Gaussian (with a diead covariance matrix) was used in [41]. The
user-specific classifier, in its most general form, is shaw(6i7). The solution proposed in the literature on
speaker verification is the so-called Maximénposteriori(MAP) adaptation. In our context, this classifier
can be written as:

N(Y“"'acdapt,j? Ecacdapt,j)

I
N(y“‘l’édapt,j’ Eaalapt,j)

da
Wi (y) = log (6.11)

wherep} .., ; and E’;dapm are theadaptedclass-conditional mean and covariance as respectively, fo
k = {C, I} and for userj. The adapted parameters are defined by

B gapt; = AT+ pF (1 —AF) (6.12)
and

S dapt = Sk + ZF(1— %), (6.13)
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respectively. Both parametet§ and~5 (for the first and second moments) are within the rajige].
This form of adaptation can be found in [51] and is called Maxin A Posteriori (MAP) adaptation by
the authors. They balance between the user-specific estandtthe user-independent estimate of the two
Gaussian parameters.

One can recognize that the Gaussian classifieshown in (6.11) is a Quadratic Discriminant Anal-
ysis (QDA) classifier WherEaCdapt,j # Zidam and as a special case, a Linear Discriminant Analysis

(LDA) classifier whenS$,, . - = 3 4.,.;. The only difference between the usual MAP adaptation as
implemented in speaker verification is that only a single $3&n component is used here as opposed to a
mixture of Gaussians.

Due to few genuine samples, the determination of thef¢uarameters fok € {C, I} andi = {1,2}
is unfortunately problematic in practice since one canrset ecross-validation. This subject is somewhat

involved and will be discussed in Section 6.3.3.

User-Specific GMM Classifier

Note that (6.11) imposes the constraint that the user-ieaggnt distributiony((y|%)) is also a Gaussian
distribution. In reality, it must be a mixture of Gaussiastdbutions since it contains many different users.
To take this fact into consideration, we use the followingrespecific classifier:

Y9p(y|C,ID = j) + (1 —7“)p(y|C,ID # j)
YIp(y|I,1D = j) 4+ (1 = +D)p(y|I,1D # j)

wherep(y|k, ID = j) is a Gaussian distribution of the forvi(y|p”, 2?) andp(y|k, ID # j) is a mixture
of Gaussian distributions of the rest of the users, i.e.,:

pylk, 1D #j) = > p(ylk,ID =) (6.15)
j'eg—j

() = log

(6.14)

Note thaty* can be interpreted as a prior probabill(k,ID = j) and1 — ~* as the prior probability
of P(k,ID # j). We usey = v¢ = ~!. The use ofy* again in reminiscent of MAP adpatation in the
user-specific Gaussian classifier. The difference is tha{6il4),7* weighs LLRs instead of Gaussian
parameters. (6.14) is different from the standard GMM useshieaker verification because in our case,
the Gaussian component is not hidden but is conditioned ®nlikerveddentity claim. For this reason,
(6.14) is called a user-specific GMM classifier.

Similar to the user-specific Gaussian classifier, detergini® is again problematic because one is
always lack of user-specific genuine training scores. Inexyeriments, a non-informative prior of these
values are used, i.ey¢ =~/ = 0.5.

6.3.3 Determining the Hyper-Parameters of a User-Specific &issian Classifier

This Section deals with setting the hyper-parametérsys for k € {C, I}, as appeared in (6.12) and
(6.13), respectively. At first sight, having the four freegraetersy” to tune is too many if one consid-
ers that there are about a hundred user-specific impostoessaad about two user-specific client scores.
One strategy is to parameterizg via a relevance factor. This solution was reported in speedefica-
tion [122]. We will propose another solution by pre-fixingr®® of the parameters, which is better suited
to the problem of fusion. Both approaches are describedwelo

e Relevance Factor:A “relevance factor’y, parameterizes? for all i € {1,2} andk € {C,I} as a
function of the number of available user-specific classd@omal sampleg\fj’-“. The resultant/* is:

k
= N
7 _Nf—‘—’r”

(6.16)

Note that therelevance factarr, takes only positive values. In biometric authenticatiaere
NJI > NJC, r will give more weight to the user-specific impostor Gausgiarameters than their
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Table 6.1: Proposed pre-fixed values fr

classk
) C |1
1|tune| 1
2 0 1

client counterparts. The use of relevance factor in a yseciic Gaussian classifier for fusion was
reported in [41].

o Pre-fixed Parameter: Based on the observation thal > N, whereby a very large set of sim-
ulated impostors is available, we propose toffx= 44 = 1, hence putting full confidence on the
user-specific impostor estimates. Furthermore, we cansaisgy = 0, hence, putting zero con-
fidence on the user-specific client covariance estimatedtris likely to be unreliable due to the
small size of training samples. These constraints effelgtiimit the degree of freedom tighter than
the relevance factor. The result is that we are left with glsiparameterC < [0, 1] to tune. The
pre-determined parameters will be justified by experimen&ection 7.2.

Differences with the User-Specific Gaussian Classifier Prased in [41]

The proposed user-specific classifier here is undoubtedsienijar to that proposed in [41]. There are,
however, two differences:

e The relevance factor was used in [41] while we use pre-defirdaes~*, which are shown in
Table 6.1.

¢ Adiagonal covariance matrix was used in [41] while we usdla@variance matrix which is capable
of capturing the possible correlation among the systemutsitp

It should be recognized that relevance factor is also a fdrooostraint. Otherwise, a differentfor
eachk or for eachi would have meant that one has still to tune the four parasebeour case, we fixed
these parameteespriori to further constrain the model fitting.

6.4 Experimental Validation of the Compensation Scheme

Choice of Database

For the purpose of experimental validation, we could nottheeBANCA database because the BANCA
protocols are defined as such that the development and &wealsats consist of two different population
sets of genuine of users. The XM2VTS database, on the otinet; satisfies our neédnd will be used.
The fusion tasks can be found in Section 2.1.1.

Section 6.4.1 first examines the compensation scheme irimadal fusion whereas Section 6.4.2
reports a more detailed analysis on the experiments done.

6.4.1 Pooled Fusion Experiments

For the multimodal fusion experiments, the following cliess are used:
1. gmm — a user-independent GMM

2. US-gmm — a user-specific GMM as shown in (6.14)

2To be precise, the genuine users are found in both the develapand evaluation sets but not the impostors.
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Figure 6.3: Experimental results validating the effeci®®s the proposed compensation scheme between
user-specific and user-independent fusion classifier o15hEM2VTS multimodal fusion tasks shown
using (a) pooled DET curves and (b) EPC curves. “gmm” is usgependent fusion classifier, “US-qda” is

a user-specific Gaussian-based fusion classifier, “US-gimmuser-specific GMM-based fusion classifier
and the last two are two compensated classifiers combinatyb classifiers using the mean operator.

3. US-qda — a user-specific Gaussian (QDA) classifier as shown in (6. Th¢ defaulty parameters
used are shown in Table 6.1 witf’ = 0.5.

4. mean(gmm, US-gda) — a combination ofmm andUS-qda using the mean operator
5. mean(gmm, US-gmm) — a combination o§mm andUS-gmm using the mean operator

The results are shown in Figure 6.3. As can be observed thpermgation scheme, particulmean(gmm,
US-qda), results in the best generalization performance. The ifilers§/S-gmm did not achieve the
expected result because the classifier overfits the traohtg Since thikiasedtraining data is used to
tune thea priori chosen threshold, the resultant performance on the test #aiis sub-optimadl This
shows that using a full mixture of Gaussians, where each &ausepresents the score density of a user,
is not a suitable model since its capacity or degree-ofdiveeis more than necessary. On the contrary,
US-gda which highly restricts the model is an adequate choice.

6.4.2 Experimental Analysis

In this Section, we examine several factors that could infleehe performance of the proposed compen-
sation scheme, i.e.,:

e Sensitivity to they parameter: One of the difficulties related to constructing a user-dpeftision
classifier is its instability and sensitivity to any hypexrameters, i.e., parameters than control other
parameters. In our case, these parametergaggeWhile a pre-determined setof values have been

3When we plot a pool DET curve, the WER criterion was used so thett ®ET curve is aligned thanks to theparameter of
the WER criterion. To evaluate the WER criterion, two sets ofr{bined) scores are needed: one from the development and the
other from the evaluation sets. The so-called developménf sembined scores fddS-gmm in this case is the output &fS-gmm
itself. Although a procedure such as cross-validation asrileed in Section A could have been used, for the purposkgofitnmic
comparison, it was not used in all algorithms considered here.
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Figure 6.4: Multimodal fusion experimental results showimg (a) a DET and (b) EPC curve verifying the
sensitivity of the compensation scheme with respect to th@ameter of the user-specific fusion classifier.
“US-qda” is the Gaussian classifier with the defaulk= 0.5 and “US-gqda-fix” is the same classifier with
~ = 1. In both cases, the same user-independent fusion classifi@pensation scheme and the fusion
between the user-specific and user-independent classifienean operator. SVM was used in place of the
mean operator and this resulted in slightly degraded pmdace because it relies on thimsedtraining
which are outputs associated to the data its two base ctasgified to train on.

proposed in Table 6.1, it is still unclear he' should be tuned. In the previous experiments, a non-
informative prior (since it can be seen as a probability).6fwas used throughout the experiments.
We repeated the experiments witlf = 1 and measured the generalization performance of the
resultant compensated classifier. The results are showigume=6.4. As can be observed, although
settingy{ = 1 degrades the performance of the user-specific Gaussiaat-fiasion classifier, its
influence on the compensated classifier is insignificant emehultant compensated classifier.

On the use of trainable fusion classifier in place of the meanperator to combine user-specific

and user-independent classifierWe replaced the mean operator with a logistic regression &
found that the generalization performance degrades. Adthan theory LR is better than the mean
operator, in this case, the training dathigsedsince the data was used to construct the user-specific
and user-independent fusion classifiers.

Correlation between the output of a user-specific and a usdnrdependent fusion classifier:
Since our justification in Section 6.2 shows that the estoéathe class-conditional likelihood of the
user-specific classifier and that of the user-independassifier will be different when the number
of users is large, it is natural to verify to what extent twoR-based fusion classifiers carry comple-
mentary information. For this purpose, we measured thestadion between the class-conditional
outputs of the two fusion classifiers. An example of the LLBres are shown in Figure 6.5(a). In
this case, two correlation values can be measured, eaclitiooed the client and impostor classes.
We measured the correlation across all the 15 fusion expetsrand their distributions are shown
in Figure 6.5(b) as boxplots. As can be observed, the cli&R kcores has lower correlation —
indicating that the two classifiers amsore complementargn the client accesses than on the im-
postor accesses. From Chapter 4, we know that lower camelabntributes to higher F-ratio of
the combined scores. Hence, this shows that the compemsatieme is largely responsible for the
statistically significantmprovement of generalization performance.
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Figure 6.5: Correlation between user-independent andgyemific fusion classifier output. Figure (a) is
an example of the scatter plot of the LLR scores. In this dagecorrelation values can be calculated for
each of the client and impostor sets of scores. Figure (byé&rtical boxplot that shows the extent of the
correlation values over the 15 fusion experiments.

6.5 Conclusions

This chapter proposes aiternativescheme to implement user-specific processing at the sceek ke
subject which has been investigated in [40, 41, 122, 139761137]. The proposed scheme capitalizes
on the use of user-specific and user-independent informatarces. By representing both information
sources as two Log-Likelihood Ratios (LLRs), e.g., one dua user-specific fusion classifier and the
other due to a user-independent one, the scheme proposiesddy combine the output of these two
fusion classifiers. Therefore, we call this scheme “fusibfusion”.

This proposed scheme has the following benefits:

e Mutual compensation: The solution compensates for the potentially unreliabkr-specific classi-
fier but at the same time, enhances the user-independesifielawith a user-specific one.

e Hybrid learning algorithms: Both classifiers can be trained independently of each oflinés.is an
advantage since the user-specific classifier is limited t@asSian classifier, the user-independent
one is not. The compensation scheme therefgexesthe Gaussian assumption.

¢ Independence of information: Following the justification in Section 6.1, both classifiars likely
to complement each other when the number of users is large.

The compensation scheme compares favorably with [40, 49, 1B, 61] principally because it is
the only one that can learn fromery fewuser-specific genuine samples, which is a non-trivial meeshi
learning problem. A second advantage is thatdbmain knowledgen the form of pre-fixed adaptation
parameters (as in Table 6.1), is exploited in the user-8petassifier that we proposed. The class of
solutions is therefore so highly constrained that the oreg foarametery{’, has no strong influence on
the overall system performance. This is the main differdseteveen our proposed user-specific classifier
and that reported in [41]. Our proposed scheme also comfaresbly with [139] whereby due to the
same problem, noise is injected to increase the number ofspeeific client scores. Due to the Bayesian
scheme, our approach handles such an uncertainty in a haya

Apart from those experiments reported here, in [105], we atmnsidered the compensation scheme
with a single system wher® = 1, i.e., a user-specific score hormalization procedure. cbigih the data
sets and experimental settings are somewhat differentaheusions remain the same.



Chapter 7

Incorporating User-Specific
Information via F-norm

7.1 Introduction

This chapter offers amlternative approachto applying user-specific processing at the score level. In
particular, four distinctive but related topics are analyz Firstly, we evaluate the robustness of class-
conditional user-specific score statistics, i.e., the ge@f invariance with respect to different train/test
conditions ofuf and of for k = {C, I} for each userj. Secondly, we investigate a new user-specific
score normalization procedure that aimseduce the user-induced variabilignd that possesses a list of
desired characteristics, e.g., robustness to deviation the class-conditional Gaussian assumption, to few
user-specific genuine samples and to mismatch betweeftéstioonditions. Thirdly, we design a criterion
that is robust and that can rank users according to their@aseognition after reducing the user-induced
variability. Finally, we design a fusion classifier thatesetively combines a subset of systems on a per
person basis. This fusion classifier is a proof-of-concéph® effectiveness of the first three ideas since
we literally put all the above findings into a single workirlg@ithm.

Motivations

We describe below the motivations of investigating the fmentioned topics:

e Onthe robustness of class-conditional user-specific scastatistics: Although user-specific statis-
tics have been used extensively in user-specific score tiaatian (Section 5.5) and user-specific
threshold (Section 5.6) procedures, to the best of our kedgé, nesystematistudy has been con-
ducted to examine thmbustnesof these statistics. A user-specific score statistic is idened
robustif it is invariantto different biometric samples, possibly separated ovetedl filuration, of the
same person for the client class, andldferentpersons for the impostor class. We expect the user-
specific impostor statistics to be more robust than theéntlcounterparts because there are simply
more simulated impostor datéhan client data. We are also motivated by the empirical figslioy
Doddingtonet al [33], which suggest that the user-specific statistics dferdnt from one user to
another. An important difference between our approachtaleee and that of Doddingtaat als is
that the authors did not consider the concept of robustrfedatestics (to mismatch between training
and test conditions). By considering the robustness dasta, our aim is to devise algorithms that
exploit only robust statistics for user-specific procegsifhe next three topics are examples of such
processing.

e On reducing user-induced variability: Given that the user-specific score statistics are predectab
to some extent, our next investigation is to design a usecip score normalization procedure of

INote that in reality, professional impostors should be uskdortunately, few databases today have such a data.

87
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the foomW¥; : R — R — taking a score as input and outputting a normalized scotet-Have

reduceduser variability. Two categories of score normalizatiomehbeen surveyed in Section 5.5;
y—

they are Z-norm based metho@jz((y) = ’;5 ) and EER-norm based methodB{(" (y) = y —

s
J

I _C C I
A; whereA; = %) These two categories of techniques have their own shonirgs.
For instance, Z-norm does not consider client statistics EBER-norm relies heavily on the class-
conditional Gaussian assumption due to its extensive useaoind-order statistics. These two short-

comings motivate us to investigate a new category of nomatdin that we call “F-norm”.

e On ranking users according to their ease of recognitionin [33], Doddingtonet al showed that
a minority of users are particularly difficult to be recogeiz the so-called goats, some are easy to
imitate — the lambs, and some are particularly successfoiitdting others — the wolves. Although
identifying these groups of users is important, there isinectiway to rank users according to their
ease of recognition. In order to rank users, one hasirnmltaneouslconsider the user-specific
client and impostor scores. A natural candidate to ranksuisethe F-ratio proposed in Chapter 4
except that it is applied on a per user basis. Directly applyiser-specific F-ratio may fail because
not all the user-specific statistics are equally robust.r&foee, this motivates us to design a robust
equivalent of F-ratio with the possibility of reducing theew-induced variability.

e On designing a selective user-specific fusion classifieklotivated by the fact that we have at our
disposal a criterion to rank users given a system, we attémptodify the criterion so that it can
rank a subset of systems to combine, on a per person basis.aSuiterion can be used in a multi-
modal biometric fusion whereby based on the criterion, @fueperator decides an optimal subset
of systems to combine, based on a validation data set. Téigrfielassifier is unique in its category
because it is botluser-specificand selective It has at least two advantages. Firstly, the selec-
tive strategy means hardware cost saving for personal éggicice an under-performing biometric
system does not have to be built in the first place. Secoruyatithentication can be performed
faster since not all biometric modalities are considerduk fiovel fusion technique is called the OR-
switcher. Our experimental results suggest that, witheingithe selective strategy, the OR-switcher
alwaysoutperforms the state-of-the-art fusion techniques. Wherselective strategy is used, the
performance of the OR-switcher can still outperform theestd-the-art fusion techniques in some
experimental settings. The added advantage, howevertisith all the participating systems need
to be operational. Such a flexibility mimics our human apiithere a person can still be recognized
with only some partial evidences.

Chapter Organization

This chapter is organized as follows: Section 7.2 reportsesperiments that objectively quantify the
robustness of user-specific statistics. Section 7.3 pegpasd evaluates the new user-specific F-norm.
Section 7.4 designs a criterion to rank user. Section 7.5epits the OR-switcher. Finally, Section 7.6
summarizes the original contributions presented in thégptér.

7.2 An Empirical Study of User-Specific Statistics

We have motivated the use of class-conditional Gaussiamgsn when surveying user-specific score
normalization in Section 5.4. One important concern is Waebr not the user-specific statistipﬁ,or ak,
are robust to the unseen data which may be different fronr#iitig conditions.

Choice of Data Set and Preparation

In order to answer this question, we analyzed the scoregdf3tsystems in XM2VTS (Section 2.1). First,
the score sets are divided into two subsets: a developmeanhdean evaluation set, such that the same
clients must be found in both sets of scores. The impostamseter, may be from two different sets of
populations. The XM2VTS score data sets satisfy the remére but not the BANCA score data sets.
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Figure 7.1: An initial study on the robustness of the usee#jr mean statistic. User-specific conditional
score mean of development set (Y-axis) versus that of etrafuaet (X-axis), i.e.u’;\dev versus,u’;\eva,
for k = {C, I'}, of the 13 XM2VTS systems. There are 200 data points for e@tistic which correspond
to 200 users. Blue circles are genuine means whereas redighssare impostor mean.

This is because the g1 and g2 data sets in BANCA contain diffgpopulation of clients. Note that the
XM2VTS fusion protocols (see Section 2.1.1) have alreadindd both the development and evaluation
sets. Whenever a system output is an MLP with sigmoid or hygiertangent activation function, we
convert the scores into LLR using Algorithm 2 (Section 3@8ghsure that the scores follow a hormal dis-
tribution. Both the original and the converted score data@ee used in the experiments. The original data
set is labelled “MLP” whereas the converted one is labellddPi” (‘i’ for probabilistic inversion). We
kept these two data sets in order to study the effect of narfiecmity of scores to the Gaussian assumption
—a fundamental assumption of our proposed techniques.

Experimental Results

For each set of scores (development or evaluation), easB kle&e {C,I} and each usef € J, we
computed the class-conditional (genuine and impostot)ditd second-order momenys?(anda;?). The
statistics are then compared as follows:

o 1¥|dev versusu¥|eva (see Figure 7.1)
e o¥|dev versuso¥ |eva (see Figure 7.2)

for both classe € {C, I} and all.J = 200 users (hence 200 data points for eath o, u! ando§).

One way to measure the degree of generalization or “agreiiséoy computing correlationp? be-
tween the statisti¢c € {u, o} estimated on the development set and the one estimated evaheation
set, for each clase = {C,I}. We summarizeo} of the 13 systems in Figure 7.3 as a box plot. Each
box indicates the bounds of the upper and the lower quaniiles two horizontal lines at the top and the
bottom of a box covers the 95% confidence bound. Any data safopirelation in this case) beyond this
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Figure 7.2: As per Figure 7.1, except thgt ando| are used in place off’ andy}. The X-axis iso¥ |eva
and the Y-axis ig¥|eva

bound is denoted with a plus sign and is considered an aufiach bar contains 13 data samples. The
higher the correlation, the more robust the statistic isc@tsbe observed and as expected, the user-specific
impostor statistics are likely to be more robust than thagesfuine, independent of the underlying systems.
Note that there are two or three samples (depending on LPP®mplotocol) to estimate the user-specific
genuine statistics. Despite this fa,aﬁ is still informative. On the other handyc is not at all informative,
judging from its relatively low correlation (whose mediai.2).

Note that the outliers (with very low correlation valuesglitated by plus signs) are due to the MLP
systems prior to converting the scores into LLR using Algoni 2 (as discussed in Chapter 3). This is
expected since the MLP user-specific class-conditiongdudigcores are not normally distributed but are
known to have a skewed distribution due to the nature of thelimear activation function. As a result,
their associated user-specific statistics generalizelypoompared to the rest of the systems. This shows
that Algorithm 2 iseffectivein mitigating this systematic and undesirable effect.

7.3 User-Specific F-norm

This Section is divided into five sub-sections. SectionI7@Boposes the user-specific F-norm. The user-
specific F-norm is then compared to other user-specific stonmalization procedures in Section 7.3.2
theoretically and in Section 7.3.3 empirically. SectioB.Z.improves the way F-norm is parameterized
so that the number of user-specific genuine samples can atitaffy be taken into account. Finally,
Section 7.3.5 illustrates the usefulness of F-norm in threeod of fusion.
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Figure 7.3: A summary of the robustness of user-specificstitat. Box plot of the conditional correlation
p¥, V), of the four parameters!, 1., o1 ando§’ of the 13 face and speech systems XM2VTS.

Each correlation value is measured on 200 users. The twesufwith plus signs) inr;’ are due to
(MLP,F) of P1:6 and P1:8, respectively. Similarly the artiin M§ is due to (MLP,F) of P1:6.

7.3.1 Construction of User-Specific F-norm

The user-independent F-norm was derived in Section 4.43sgiven by (4.22). In the user specific
context, one can simply replace the system output iridBxthe user-specific indek hence giving:

oo U
Loy

(7.1)

Directly using (7.1) can lead to a complete failure siw.j% cannot be estimated reliably. To account
for such unreliability, a Bayesian solution is to compeadate user-specific statisth]C with the user-
independent statistige” via an adjustable parameterc [0, 1], i.e.,

§ + (1= 7).

We have seen this solution in Chapter 6. Although this Bayesolution is classical (and therefore not a
heuristic), e.g., [56, Chap. 4], surprisingly, it has no¢iéntroduced to the user-specific score normaliza-
tion or user-specific threshold procedures surveyed in h&p Thanks to the Bayesian solution, (7.1)



92 CHAPTER 7. INCORPORATING USER-SPECIFIC INFORMATION VIA RORM

can be rewritten &s

_ vy
v + (1= )uC —

vy (7.2)

wherey has to be tuned. Two sensible default valuesﬂan@enujc cannot be estimated because no data
exists and at lea$t5 when there is only a single user-specific samplehus accounts for the degree of
reliability of uf and should be close tbowhen abundant genuine samples are available.

7.3.2 Theoretical Comparison of F-norm with Z-norm and EER-norm
In Section 5.5, two groups of user-specific score normadingirocedures were surveyed, i.e.,

e Z-norm based methods:Two examples are Z-norm itself and Z-shift. For Z-norm, teeruspecific
statisticsafter transformatiorhave the following characteristiCﬁ:J’- =0 ando—;’ =1forallj e J.
For Z-shift, only the constraim§ = 0 is satisfied. The advantage of these methods areughand
a;’ are robust statistics and can generalize across differgrdstor sets. Their weakness, however,
is that they do not consider the user-specific client stesist

e EER-norm based methods: These methods are based on EER-norm and its variants. The use
specific threshold) ;, after applying these methods, becomes common to all usefg); = A, =
0 for all j,s € J. These methods, as represented by (5.9)—(5.11), diffgrinriheir assumptions.
The least assumption made among the three, (5.9), requiaeg more user-specific client data
and hence is impractical. (5.10) makes the class-conditiGaussian assumption but is unlikely
robust due to the inclusion @ijc which is uninformative when few user-specific genuine saspl
are available. Finally, the mid-point solution of (5.11Flides thQujC statistic which may not be
robust.

In comparison with these two families of score normalizatiechniques, the user-specific F-norm is an-
other family of techniques. This is because the user-spetétisticafter applying F-nornsatisfy another
set of constraintS/:LjC =uf andojf. = ol forall j,s € J for the general case as proposed in our published
paper [108] oru§’ = 1 ando] = 0, for all j € 7, for the F-norm proposed in (72) The advantage of
(user-specific) F-norm over Z-norm is that F-norm consideesuser-specific client statistipf). Hence,
F-norm is client-impostor centric. F-norm’s advantagerdg&R-norm is that it does not consider the
non-robust second ordetjc statistic. Although F-norm uses the possibly non-rol‘,uﬁl its v parame-
ter compensates for its unreliability. Figure 7.4 illugtsathe differences among Z-, F- and EER-norms
with respect to a list of characteristics just discussedlel@.1 summarizes the differences of Z-, F- and
EER-norms.

Z-norm and F-norm share the common denominator but havereliff numerators. In Z-norm, the
numerator iss] = | /E[(y — p1)?]; and in F-norm, this term is$’ — u/ by settingy to 1. Both terms
guantify some kinds of “score difference” in different ways are in the same unit scale (domain). While
Z-norm is impostor centric, F-norm can be seen as its imgteeesion by incorporating the user-specific
client information, making F-norm client-impostor centriAs a result, if F-norm can make use of the
client informationreliably, it can be superior over Z-norm.

In summary, F-norm possesses many interesting chardieris

2The original form of F-norm was proposed in [108] and has tiledving form:

I
g — vl .
Ty =)+ =) (u€ =)

(S — ——

This version is superseded by (7.2) due to our finding in 8edti2. Note that by setting = 1, both F-norm and its variant converge
to the same solution. Their difference is thus rather suBtleliminary experiments on the XM2VTS fusion benchmark datstsaw
their generalization performance is not significantly dife.

3The general case of user-specific F-norm and the specialpcapesed here are both theoretically and empirically edgita
i.e., they result in exactly the same generalization perfagea For this reason, we opted to present only the speciah{bo the
simpler) case.
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Figure 7.4: Comparison of the effects of Z-, F- and EER-nor@sThe original distributions containing 2
user models (each represented by continuous and dottex] Tihe genuine score distributions are plotted
with thick lines and impostor score distributions with thimes). A global threshold may not be optimal.
(b) After applying Z-norm, the impostor distributions bew® normal whereas the client distributions vary.
(c) After applying F-norm, all the client and impostor dilstitions are aligned so that a global threshold
can be found easily. (d) After applying EER-norm, all thesotiand impostor distributions are aligned at
their corresponding EER.

e It is more robust to departure from the Gaussian assumpitize & does not rely on second-order
statistics (an observation also remarked by Lindlerlin [75]) in comparison with EER-norm.

e Itis client-impostor centric as opposed to Z-norm whichng/ompostor-centric.

e Itis more robust to few user-specific genuine training saspi comparison with EER-norm, since
F-norm relies on user-independent information.

As a result, F-norm can be expected to perform better thaar@yor EER-norm. Having compared the
proceduregjualitatively, the next Section will compare them quantitatively.

Table 7.1: Qualitative comparison between different wgeeific normalization procedures.

Characteristics Z-norm F-norm EER-norm
y—pl o' (y — ul) where ploC4puSol

Formula T | e =yt €l | YT

Use second-order yes no yes

user-specific statistic

centric type impostor client-impostor client-impostor

Rely on global infor- no yes no

mation

Robustness to few moderate high W'.thﬁ =05 low

o low with g =1
user-specific acH
cesses
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7.3.3 Empirical Comparison of F-norm with Z-norm and EER-norm

In this section, we designed several experiments to valitha following hypotheses in comparison with
Z- and EER-norms:

(1) F-norm works witifewersamples.
(2) F-norm improvegasterwith increasing training genuine samples.
(3) F-norm ismore robusto deviation from the class-conditional Gaussian asswmnpti

The NIST2005 database is used to test these hypothesessbdatdias abundant user-specific genuine
accessés To test hypotheses (1) and (2), we chose a subset of usdravatly at least 7 accesses. The
experiment is conducted for each user until all the usergppereessed. For each user, 7 partitions of
equal size are created such that each partition contaimterae genuine score (but can have many more
impostor scores). One of the partitions is reserved as a&tsthereas the other 6 partitions are used as
training sets. 6 training sets are created by adding onéipardf data at a time, such that the first training
set is a subset of the second training set, the second is etsflike third, and so on. These 6 training sets
simulate the scenario where more data is available in aenmental manner. Although having 6 training
sets, there is only one armbmmontest set. All 6 normalization procedures, i.e., the baseluithout
normalization, EER-norm, Z-norm, Z-shift, F-norm with= 1 and F-norm withy = 0.5, are tested on all
the 24 systems and all the 6 training sets. This experimeattihg results in

6 training sets< 6 normalization procedures 24 systems= 864 EPC/DET curves

Due to the large amount of data, we chose to evaluate onlydimt @ = 0.5 on the EPC. The results are
shown in Figure 7.5(a). Note that each curve is calculatu hepooledHTER of all 24 systems. Based
on the experiments, we conclude that:

e Increasing training samples can improve the generalizgg@formance of user-specific score nor-
malization;

¢ Client-impostor centric procedures i.e., F-norm and EBR are generally better than the classical
impostor centric procedures, i.e., Z-norm and Z-shift.

e Large~ value of F-norm is favorable with increasing training saengilze.

e F-norm with~ = 0.5 can improve over the baseline systems (without normatinqteven with a
single genuine sample.

As for hypothesis (3), it is necessary to measure the dedréeviation from Gaussian. We used the
KS-statistic for this purpose and it is calculated on theresgrior to applying any user-specific score
normalization procedure. It is calculated as

max |\if(y|f) — Uyl (")),

where ¥ (y|I) is the estimateddf of the impostor scores andl(y|u”, (¢7)?) is the cdf of the impostor
scores assuming that the scores are normally distributete tiat the same statistic but for the genuine
scores are not used because the statistic is less robust dueh fewer samples. We then plotted the rela-
tive change of HTER, i.e(HTER,, o, — HTER,,;4)/HTER,,;,, due to different normalization schemes.
Negative change implies better performance. For a reakstnario, we considered the normalization
procedures trained with two partitions of data. The resaiésplotted as relative change of HTER versus
KS-statistic as in Figure 7.5(b). As can be observed, F-mmrforms almost always the best across differ-
ent KS-statistics. When the KS-statistic is more thah) Z-norm almost always degrades in performance
(with respect to the original system).

4The XM2VTS has also been used and the results are somewhasteonsvith the results reported here [99]. We will therefor
not report the results carried out on XM2VTS here.
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Figure 7.5: Comparison of the effects of different normetiian techniques. The comparison is done with
respect to (a) the sample size and (b) deviation from classglittonal Gaussian distribution of scores. For
(b), larger KS-statistic implies larger deviation from Gaian.

7.3.4 Improvement of Estimation ofy

As a final note, given the observation thiascales with the number of examples, it is possible to define a
function which fulfills the following constraints:

e ~ = 0 when the number of user-specific client accesses is zer,d,\/'fe: 0 (for client 5).
e v=0.5whenN{ = 1.
e 0.5 <y <1lwhenN{ >1.

This function is:

C T
= ( (M) (7.3)

NE) +1
wherer > 1 parameterizes according to the available training data. This functiorhievgn in Figure 7.6.
Note that (7.3) is somewhat similar to the “relevance fdgiooposed in [122] having the form
k
le_c +r

’Yk

(also appeared in (6.16)) with representing the number of user-specific accesses fok any{C, I'}.
Note that the role of relevance factoiin both cases are different in that (7.3) is exponential evltile
relevance factor of (6.16) is additive.

7.3.5 The Role of F-norm in Fusion

This Section examines the effectiveness of F-norm in mizimgi the effect of user-variability in the con-
text of fusion. For this purpose, we used the 15 XM2VTS face speech fusion tasks described in
Section 2.1.1. We randomly chose ten users from one of theigibrf tasks. The scores of each user as
well as the class-conditional Gaussian fit (whose mean iesepted by a plus signh and whose covariance
is represented by an ellipse) are shown in Figure 7.7(a) fwiapplying F-norm and in Figure 7.7(b) after
applying F-norm. Since there are ten users and two cladsar® are 20 ellipses in each figure. As can
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Figure 7.6: Parameterizing in F-norm with different relevance factefs after taking into account the
number of user-specific client accesses available.

be observed, the user-specific impostor distributions lhoeatered at the origin whereas the user-specific
client distributions are scattered very close to the p6int). This is expected due to the two F-norm’s
properties:; ' = 0 andp* = 1 wherep"* = E[yT|k, j], i.e., the expectation of the user-specific
class-conditional F-normalized scores. Note that therpaters of the F-norm were learned from the de-
velopment score set and the figures shown here are plotted ths evaluation score set. For the example
shown here, the F-nornmg parameter was set to the defauli so that the user-specific Gaussians cannot
be perfectly aligned as in the impostor case. This choiceasanable becau;ujg cannot be estimated
reliably due to too few user-specific genuine scores (twhimd¢ase). Forcing = 1 will result in overfit-
ting.

We then used GMM to combine the 2D scores for both the datdeétse and after applying F-norm.
Their corresponding DET curves plotted using the evaluaditore set are shown in Figure 7.7(a). In this
case, we obtained a reductiarposteriorierror from 0.57% EER to 0.25% EER, orelative reduction
of EER of 56%. Considering the already highly accurate systehis error reduction is thus important.
In order to ensure that this improvement is systematic, wepaoed thea posterioriEER before and after
applying F-norm across all the 15 fusion tasks. These patEd®s are plotted in Figure 7.7(b). As can be
observed, the EER due to F-norm is systematically smaléar the EER prior to applying F-norm.

We then repeated the experiments but this time wiftriori evaluation where the thresholds are op-
timized on the development set. The results depicted usiagpboled DET curves calculated on the
evaluation set are shown in Figure 7.9. The following obsgons can be made:

e Applying F-norm to the output of the speech systems can imgthe baseline system (without
normalization) significantly.

e Applying F-norm to the output of the face systems, on thereont does not improve the baseline
system significantly.

e The combined systems due to F-norm is statistically sicanifiy better than the baseline combined
systems.

The degree of user-induced variability is obviously difietr for different biometric modalities. As a result,
the effectiveness of F-norm is also different. In this cabe, speech systems contain more variability
than the face systems. Given that only the scores are almgikaid that the user-induced variability is an
observed phenomenon, the reason why the face systems areuser-induced variability is not exactly
known. One possible reason is that, from the system poiniesf,\face is much more homogeneous than
speech. Measuring the degree of user-induced variabditysa different biometric modalities and systems
will be a future subject of research.
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(a) Before F-norm (b) After F-norm

Figure 7.7: An example of the effect of F-norm For both figutas X- and Y-axes are the output score-
space of a face and speech systems, respectively. The uglpeclusters are client accesses whereas the
lower left clusters are impostor accesses. In (a), befaadbre normalization the user-induced variability
is high. In (b), after applying F-norm, the user-specifidriisitions are better aligned and separated as
well.

7.4 In Search of a Robust User-Specific Criterion

Since the user-specific statistics are variable, the pedoce associated to each user must be different.
The goal of this Section is to rank users given their assediaser-specific statistics. To the best of our
knowledge, this is the first study that attempts to rank uaec®rding to their performance. Having a
criterion to rank users is useful in practical biometric laggiions. For example, Immediately after a new
user has just been introduced to the system, it is importakhow if the reference data (template) just
registered is of reasonable quality. The quality in thisscastaken as the estimated user-specific perfor-
mance in terms of EER. If the EER is too high, remedial proceslaan then be taken, e.g., acquiring more
registration data to ensure a better modeling of the biomfgatures, using a different feature extraction
algorithm or classifier, using different biometric traisc.
A good user-specific criterion should:

e Be robust to mismatch between the training and test data sets
e Be estimated based on as few samples as possible

e Necessarily contain the four (or less) user-specific $imtsu§?, o—ﬂk = {C, I} for each usey.
From Section 7.2, we know thaf can be ignored since it is not informative.

Because the criterion must be related to performance, #respecific F-ratio (from (4.15)) can be a good
candidate, i.e.,
u§ —

. T 7.4
UJC—FU]I- (74)

F-ratio; =
Other similar measures are the d-prime statistic used ihd28 the two-class Fisher-ratio [11]. However,
the user-specific F-ratio is preferred because it is funelly related to EER by (4.14) in a closed form.
Using the same datasets as those in Section 7.2, we comperagser-specific F-ratio of the 13
XM2VTS systems given the development set versus its evaluaet counterpart and the results are shown
in Figure 7.10. In this case, 13 correlation values can besared. As can be seen, using the original
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Figure 7.8: Improvement of class-separability due to apgly-norm prior to fusion. (a) An example of
improvement due to F-norm visualized using a DET curve.AlposterioriEER of the baseline systems
versus that due to F-norm for all the 15 fusion tasks.

form as given, this quantity is very noisy and does not gdizeravell. Therefore, the user-specific F-ratio
(similarly d-prime and two-class Fisher ratio) is not a gooiterion because it is not robust.

Ideally, we would like to maximize the user-specific F-ratitowever, in this study, the user-specific
model (which constitutes the baseline biometric clas3ifias already been built and therefore its parame-
ters cannot be modified. Our primary goal here is to make thegecific F-ratio moreobust especially
to mismatch between the training and test sets. One way to @®ls/ dropping the termf since fol-
lowing the findings in Section 7.2;¢ is not robust. The resultagbnstraineduser-specific F-ratio thus
becomes: . ,

. By — [
F-ratio; = > JI .

One important assumption when using (7.4) and (7.5) is thatoptimal user-specific threshold is
known. In this case, one implicitly assumes that the degifimction as in (5.3) can be used. In prac-
tice, however, a user-independent threshold is more apptep In this case, the more practical decision
function as appeared in (5.4) is used. The choice of useifgpscore normalization procedute; (where
N = 1) can be F-norm or Z-norm. The advantage of applying usecifipscore normalization prior to
ranking the users is that the user-induced variability fsatively reduced even before the ranking takes
place. The resultant F-ratio and its constrained countefpaboth the original, F-normalized and Z-
normalized scores are summarized in Table 7.2. A figure airntl Figure 7.10 is not shown here for the
rest of the five versions of user-specific F-ratios. Howewgthout loss of generality, the goodness of
prediction can still be objectively quantified by the folliog two measures:

(7.5)

e The correlation between F-ratidev and F-ratig|eva over all observed € J

e The arithmetic difference between a given criterion estédan a development set and its counter-
part estimated on an evaluation set over all ugezs7, i.e,:

bias= E;[F-ratio;|dev — F-ratio;|eva].
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Figure 7.9: An empirical comparison of F-norm-based fudiom conventional fusion classifiers. The
fusion performance. Each DET is pooled over the 15 fusioregments. orig; contains face systems,
origs contains speech systenas;g..,, are combinedrig; andorigs systems using GMMfnorm, and
fnormeo and the normalizedrig, andorig, systems after applying F-nornfnormecoas are combined
fnormy and fnorms systems using GMM.

Figure 7.11 summarizes the robustness of the original gsetific F-ratio and its five variants using two
box-plots which correspond to the two measures just exgthirAs can be observed, the constrained F-

norm ratio, i.e., .
CFNR; = —— (7.6)

F1°®
ag

<.

has the highest correlation while having an acceptablé tégas whose median is centered at zero.
Before concluding this section, we evaluated the goodnEsedConstrained F-norm Ratio (CFNR)

as shown in Table 7.2, i.e, by filtering away tNeworst performing users wher€ = {200, 180, ...,20}.

The data sets used are the same 13 XM2VTS systems used inethieysr sections. In order to ensure

unbiased user ranks, the users were ranked according tevkeéogment set and this same user rank was

applied to the evaluation set. The results of 8 of the 13 éitesystem performances are shown in Fig-

Table 7.2: User-specific F-ratio and its constrained copate

Score normalizationn  F-ratio constrained| Remarks
procedure F-ratio
C T C T
None e e % is not robust
a].c-&-gjf. O'JI- J
Z-norm o ue p2t =0ando?’ =1
J
N 1 1 F,C _ FT _
F-norm _Uf,c+gf,1 Uf“,[ /”Lj =1 and,uj =0

Note: In the second and third rowst’C and af’c are omitted for computation in the corresponding
constrained~-ratio because they are functionally dependentj%rwhich is not robust. The superscrigts

andZ denotes statistics derived from F- and Z-norms, .@fg{f = var[y] |k] anduf”“ = Ely] |k]. The
statistics for Z-norm is calculated in a similar manner.
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P1:1 GMM,F P1:2 GMM,F P1:3 GMM,S P1:4 GMM,S P1:5 GMM,S

P1:9 MLPI,F P2:1 GMM,F

Figure 7.10: User-specific F-ratio as in (4.15) of developtrset versus that of evaluation set of the 13
face and speech based XM2VTS systems .

ure 7.12. As can be observed, by removing the under-penfigrogers, the system performance gradually
improves. While the trend is more obvious in theosterioriDET curves on which CFNR was calculated
(see Figures 7.12(a-h)), this trend is somewhat reasooaltiee evaluation set (see Figures 7.12(c—d)).
The other five systems which were not shown behavior sirgilarl

Discussions

User-ranking is a difficult problem for two reasons. Firstiype is always lack of user-specific genuine
data. Secondly, for this particular database, the simailiatgostors are totally different from those used
in the development set. This is a realistic scenario. Weetbez conclude that user-ranking based on
the proposed CFNR criterion is feasible, although theredafmitely rooms for improvements. We will
consider below some practical examples of how CFNR can b use

e As a diagnostic tool: Immediately after a new user has just been introduced toytsters, CFNR
can be used to determine the quality of the reference dateplge) just registered. To proceed, we
can acquire one or two trial access requests. This givesaisramo genuine scores. The biometric
samples of an arbitrary large set of simulated impostorsbeansed to generate some impostor
scores. The CFNR criterion can then be evaluated given tinaseets of scores. Two indications
can be used to decide if the reference data is of poor quélitstly, the absolute CFNR is not high
enough (say, by comparing to arpriori minimal CFNR value). Secondly, one can determine the
rank of the newly registered user. When the CFNR value or thésusank according to CFNR is
too low, a warning will be issued. To the best of our knowledgech a mechanism has not been
previously proposed in the literature.

e As a criterion for selective fusion: While the existing combined system usaissystems by default,
the CFNR criterion can be used to determine if fusion is iddeeeded at all if the user is not
among the worst performing users. For biometric applicatiwhere convenience are more important
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Figure 7.11: Comparison of the proposed six user-specifatib-as listed in Table 7.2, i.e., F-ratio, con-
strained F-ratio, Z-norm’s F-ratio, constrained Z-norfyeatio, F-norm’s F-ratio and constrained F-norm’s
F-ratio (or the constrained F-norm ratio) using (a) cotretaand (b) bias between a given criterion of the
development and that of the evaluation sets of the 13 XM2Vace fand speech systems. Each bar thus
contains 13 (correlation or bias) statistics. Higher datien and bias around zero are desirable properties.
Note that the bias values of the constrained Z-norm’s fer@kiird column in (b)) were divided by 100
since they are originally in the range [af), —60].

than security, having the option of not using all the biorneesiystems but tailored to a particular
user’s need can be important. Furthermore, in an applicatieolving personal devices, the low-

performing biometric sensor associated to a particular dees not need to be built into the device.
Consequently, the hardware and software costs can be ifuetheced. Of course, it is expected that
the systems may degrade in performance with respect to teevelaere all the available biometric

systems are used. This subjecsefective fusiomill be investigated in Section 7.5.

7.5 A Novel OR-Switcher

7.5.1 Motivation

As far as fusion in the context of biometric authenticatisrmoncerned, the usual approach is to combine
all the available system outputs. While this is certainly easietesign, all the participating biometric
systems have to be operational. Despite the fact that thiersys designed with the redundancy of having
multiple biometric systems (devices), the verificationroatrproceed if one of the sub-systems (devices)
fail. For this reason, we investigate the possibilityselectivefusion, where a multimodal (and multi-
algorithmic) system will be capable of giving an output gceven when one of the sub-systems fails or
determines that its acquired sample is unreliable. Thictigk fusion strategy in a way mimics biological
perception in the nature. For instance, human is capablecognizing a person by just having a partial
evidence, e.g., speech, gait or occluded face. Very oftey,salient features are needed. One prominent
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example is human caricatdreOur preliminary findings here suggest that the user-speaifi selective
fusion strategy can indeed be better than the state-odutthfersion techniques to some extent.

Our Proposal

The fusion operator to be proposed here is different fromsthge-of-the-art fusion techniques in two
aspects:

e User-specific it must take the user specific performance into considaratirfhe CFNR criterion
can readily be used for this purpose because from the preexperiments, it has been shown to be
robust and can be computed using only a few user-specifidgesamples.

e Selective: It must be able to handle “missing values”, where some uwpithgrlbiometric systems
cannot output scores. If the classifier is based on LLR, fetaimce using GMM to estimate the
class-conditional score distribution, handling missirmdues becomes integrating the distribution
with respect to the missing values. This subject will beHartdiscussed in Section 7.5.4.

We call the novel fusion operator the “OR-switcher”. To thestbof our knowledge, because of the two
properties just mentioned, the OR-switcher is a uniquefusperator.

Section Organization

Note that while CFNR can indicate a user’s performance,ésdwt indicate which combination of system
subset will give a theoretically optimal fusion performan@his subject will be dealt with in Section 7.5.2.
Section 7.5.3 then gives an overview of the OR-switcherti@e@.5.4 deals with the problem of conciliat-
ing the output due to missing scores. Section 7.5.5 proposametrics to evaluate the OR-switcher. These
metrics do not deal with the generalization performancenlitht the adequecy of the choice of the system
subset and computational saving. Finally, Section 7.5n8p@ares the performance of the OR-switcher with
two other baseline classifiers

7.5.2 Extension to the Constrained F-norm Ratio Criterion

This section aims to extend CFNRo take into account the performance due to a system subset,
CFNR; . If there are3 systems (henc& = 3), p will be one of the possible power set 6f, 2, 3},
excluding the empty set. In our notation, we write:

p€P({1,2,3}) — 0= {{1}’ {23, {3}, {1,2},{1,3},{2,3}, {1, 2, 3}}

We also denote the default fusion mode that uses all thersgstecom = {1, 2, 3}.
In order to calculate CFNJ,, we first need to prepare the combined score set due to usrgystem
subsep, i.e.,{yﬂj}. A good candidate to use is the mean operator:

y‘fp = mean;cy yf; (7.7)

Sinceyfj can be interpreted as an LLR, taking the sum (or mean in tlsig)a@rresponds to making the

independence assumption of the system outputsp. Using the labeled development s{gﬂj, k} for
k € {C, I}, we can effectively assess CFNRas in (7.6).

7.5.3 An Overview of the OR-Switcher

We will consider here the case of combining two biometri¢esys. The extension t§¥ systems is straight-
forward. We will discuss here an overview of the proposeatsgy. It should be noted that there are two
data sets: development and evaluation sets. The develtogetdaa served to derive all the training param-
eters, e.g., F-norm’s parameters, the user-specific CFR&ion and the optimal decision threshold. The
evaluation set is served uniquely as a test set.

5Test your skill at http://www.magixl.com
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1. Apply F-norm to each participating biometric system jpeledently. Note that the F-norm parame-
ters must be derived from the development set.

2. Train a GMM fusion classifier of the formy,,, = log ’;(g;‘l%) by estimating the class-conditional

score distribution(y ' |k) for eachk = {C, I'} separately (see Section 3.4.3).

3. For each user € J and each possible subset combinatipassess the CFNR criterion given the
labeled combined scordg/”|, j} based on the development set.

4. Sort the users in descending order based on CENRhe default mode where all the systems are
considered). For the x 100% top portion of users, we determine that fusion is not necgssa
this case, we decide the next best alternative of systermespbgn the case ofV = 2 systems,

p € {{1,},{2}}, we choose the better of the two systems, i.e.,

p; = argmax CFNR; ..
2

p(¥"IC.p})
p(yF[1,p})
p(yF|k,p;) is a marginalized distribution of(y ' |k) with respect to the systemm®t in p.

5. During the operational phase, the combined LLR scoreltuzed agjpor = log where

There are two points to note regarding the strategy preddmwtes. Firstly, the fusion classifier of the form

yF = log ’I’)((’}',i"%) is the F-norm based classifier presented in Section 7.3rtofde afnormeym). In
this case, steps 3 and 4 can be omitted and in stgpiS,replaced by the defaylt°™ (which uses all the
systems). By setting the fraction= 0, fnorm,m, converges to the OR-switcher. We expect that when
increases, the performance will degrade since less anihfesshation is considered. In other words, the
OR-switcher will be inferior tdnormg,m. However, the question we are interested in is, to what exten
can take such that the performance of the OR-switcher is @@ gothe standard fusion classifier based on
GMM, i.e., Ycom = log ’;(”?. In our experience, other standard fusion classifiers, 8\gM and logistic
regression, give similar results [101]. This is expecteteithey all rely on the same training data and
none exploit special knowledge, e.g., the user-specifarinétion.

Secondly, there is an elegant way to convert from the delfiaalthood p(y ' |k) — where all the systems
are used — t(p(yﬂk,p}‘) — where only the system subggtis used whemn(y¥'|k) is approximated using

a mixture of Gaussian components. This is discussed in@®e¢tb.4.

7.5.4 Conciliating Different Modes of Fusion

Let y©k = [yl ... y5*)" be a vector of the class-conditional scores to be combédtet applying
F-norm. Let us approximate the joint conditional distribatof y©**, p(y ) by a mixture of Gaussian
components of the form:

N,
p(y™F) = weN (y|pl*, =), (7.8)
c=1

whereuw.. is the prior of the-th Gaussian component whose parametergéreandx’*, for k = {C, I}.
Note that this classification is user-independent but veseinput from user-specific normalized scores
obtained via F-norm.

Given thejoint distribution described by the mixture of Gaussian pararséte.., u/>*, %}, our
goal is to find the marginal distribution spanned only by thbset (or subspace) C {1,...,N}. One
way is to marginalize the conditional joint distributigily ©*) with respect to the output of the systems
not considered. Using a mixture of Gaussian parameterscdn be done in a rather straight-forward
manner. First, let us drop the parametErs: andc from pfF, Ef’k since the discussion that follows will
always be dealing witlx. andX in the F-norm domain, applying to eaktand each: Gaussian component
individually. Then, the marginalized parameters due togishe subsep can be written ag,, andX,,.
The matrices before and after marginalization are relayed b

= (g, pp)



104 CHAPTER 7. INCORPORATING USER-SPECIFIC INFORMATION VIA RORM

_ Ep Eq
E{E; EJ

wherep; is the mean vector whose elements are systeohén the setp and 3|t € {g,r} are the rest
of the sub-covariance matrices which contains the elenmarts p. The above marginalization procedure
for GMM can be found in [87], for instance, and is used for gdiand-limited speech recognition. Let us
take an example oV = 3 systems. Suppose the optimal subsetis {1, 2} and the excluded system set
isp = {3}. Consequently,

o / — 1.1 _ €1,1 €1,2 _ €1,3 I A
Mp — [/1417/1'2] 7/*1/1‘; - [IU/S] 7217 |: 6271 6272 :| aEq |: 6273 :| aE’r‘ [63’3]3

wheree,, ,, is them-th row andn-th column element of the covariance matkixande,, ,, = e, (Since
a covariance matrix is reflexive).

7.5.5 Evaluating the Quality of Selective Fusion

Two types of evaluation are considered here, i.e., by ageaeand by computational saving.

Evaluation by Agreement

Note thatp* contains the subset of systems that are considered optmthk F-norm domain, for a user
4 according to thalevelopmenset. One could equally evaluate the same parameter favididaationset.
A useful way to evaluate ip?|dev is optimal or not is by comparing the same parameter derined the
evaluation sep’|eva — which is considered the ground truth. LEtn, n) be an indicator function that
outputs 1 if the setsn andn are identical and zero otherwise. The probability of chogshe “right”
mode of fusion, within the population of users consideradhe OR-switcher, can be defined as:

g > I(p}f |dev, p} eva)
J

Higherd is thus clearly desired.

Evaluation by Computational Saving

One can also evaluate the computational savings by not seimg of the biometric systems. It can be
quantified by:

N
Sies Yieq I(system ;)

2% J )

where!(system ;) is an indicator function that gives 1 if theth biometric system of useris used and
zero otherwise and there aveusers. In the case of a conventional fusion classifier whetbeasystems
are used, the computational saving is simply zero. In ou,ceken two systems are considered using the
OR-switcher, the fraction as presented in Section 7.5.3 is directly related to the ctatiponal saving in
the following way:

computational saving- 1 —

computational saving- (1 — r)/2 x 100%.

7.5.6 Experimental Validation
Fusion Experiments

We set up a fusion protocol in the following ways: (i) for LRde combined exhaustively the face systems
{ P1:1, P1:2, P1:7, P1:9 with the speech systemsP1:3, P1:4, P1:3; (ii) for LP2, we combined
exhaustively the face systefrP2:1} with the speech systen{sP2:2, P2:3, P2:4. LP1 (resp. LP2) has
12 (resp. 3) multimodal fusion tasks.
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Table 7.3: Comparison of the OR-switcher and the conveatifusion classifier using posterioriEER
evaluated on the evaluation set of 15 face and speech XM2\u3i8rf benchmark database.

a posterioriEER on the eva. set (%)
No OR-Switcher’sr values baseline
06| 07| 08| 09| 10

1]0.87|057]046]| 0.34| 0.32 0.62
2| 207|200 187 | 173|151 1.58
3| 136|0.82| 0.72| 0.52| 0.48 1.33
41046| 0.39| 0.34] 0.29 | 0.24 0.58
51096 | 1.00| 0.94| 0.88| 0.80 1.02
6| 0.74|0.72| 0.69 | 0.63| 0.57 0.91
7] 115| 0.93| 0.79| 0.64 | 0.34 0.48
8| 146|1.49|1.39| 1.11| 0.84 0.85
9] 133|1.02| 0.78| 0.73| 0.46 1.03
10| 1.64| 1.39| 1.05| 0.83 | 0.42 0.69
11| 416 | 4.08 | 3.74| 294 | 2.38 2.46
12| 340 | 3.14| 259 | 2.02 | 1.44 1.68
13| 0.43| 0.39| 0.35| 0.05| 0.01 0.19
14| 0.50 | 0.47 | 0.28 | 0.03 | 0.03 0.23
15| 0.21| 0.19| 0.05| 0.03 | 0.02 0.24

Note: The EER values in bold indicate that the respectives@iReher has an EER lower than that of
the baseline classifier. The data in the last two columns wetted in Figure 7.8(b). When = 1, the

OR-switcher is equivalent to combining F-normalized ssorll the classifiers evaluated here are GMM
classifiers. The DET curves of experiments 15, 3 14 and 10igrotder) are shown in Figures 7.13(a)—(d).

Using our proposed criterion, the percentage of correstitésmeasured to be 88.5% with minimum
and maximum being 80% and 97.5%, respectively, across dillsién tasks.
We then compared the OR-switcher with two baseline systasigllows:

¢ The de factofusion classifier based on GMM:In this case, the scoregy; are used®

e The user-specific GMM based on F-normalized scoreslin this case, the GMM classifier was
trained with F-normalized scores, i.g{f Y,

The OR-switcher behaves different for a given set of thetifsacvaluesr = {0.6,0.7,0.8,0.9}. The
system performances are plotted using only DET curves amdleown in Figures 7.13. Since we could
not plot all the DET curves which behave very differentlyrfreach other, we listed treposterioriEER
performance evaluation in Table 7.3. We can identified fgpes of experimental outcomes:

Ideal: where no lost is observed at= 0.6.

Potential: where no lost is observed at= 0.7

Satisfactory: where no lost is observed at= 0.9

No gain: where no lost is observed at= 1.0

According to this categorization, at EER, 4 systems areidensd ideal, 3 are potential, 2 are satisfactory
and 5 has no gain. The DET curves of an example in each categsingwn in Figure 7.13.

8From our previous study [101], the GMM fusion classifier peris as well as the logistic regression and Support VectohMas
with a linear kernel. Since all these classifiers rely on #raestraining sets with carefully tuned hyper-parameterg, ge@eralization
performances cannot lsggnificantlydifferent.
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Discussion

The experimental outcomes suggest that it is still possthieake decisions based omtompletanforma-
tion. The proposed OR-switcher is really a proof of this @ptc While having less information (depending
on the pruning rate), the OR-switcher is at least as good as the conventionafutassifier, if not better.
However, by using lower (higher pruning), the system is expected to degrade syeiadiiccuracy. How-
ever, at least, the OR-switcher does not fail completely @slavthe conventional fusion classifier because
the OR-switcher can capitalize on the inherent system ey, Furthermore, one of its advantage over
the conventional fusion classifier is that the OR-switchakes use of the user-specific information.

7.6  Summary of Contributions

This Chapter contains the following novelties:

e Empirical investigation of the robustness of user-specifistatistics: Although the user-specific
statistics, i.e.,u? and aé?, have been used in user-specific score normalization aedhbld pro-
cedures (Chapter 5), no systematic study has been madaliregéine robustness (the ability to
generalize to unseen data) of the mentioned statisticseghariments in Section 7.2 show t
is not robust and hence should not be considered. This hasicggt influence on the design of
user-specific procedures. This Section appears in ourgheaipaper [115].

e User-specific score normalization based on F-ratio (F-north Our study in Section 7.3 shows that
F-norm belongs to a new family of user-specific score nomatitin besides Z-norm and EER-norm.
Our empirical and theoretical analysis show that in congoaxito Z- and EER-norms, F-norm has
the following advantages:

— F-norm is more robust to deviation from Gaussian since isdwe use the second-order user-
specific statistics.

— F-norm can work with fewer training samples since it does ug# the second-order user-
specific statistics and it relies on Bayesian adaptation.

— Empirically, its generalization performance increasesteiain proportion to the number of
genuine samples since it is client-impostor centric.

This Section appears in our published paper [108].

e Criterion to rank users: Although Doddingtoret al [33] were the first to develop techniques to
categorize different types of users in a biometric datals@serding to their score statistics, they
did not provide a technique to rank users according to treseef recognition. Furthermore, the
statistical techniques developed by Dodding&tral were not designed with statistical robustness
as a primary concern. In Section 7.4, we found out that sudifiterion is best evaluated using a
constrained F-ratio with scores transformed into F-norhis Triterion is called Constrained F-norm
Ratio (CFNR). Due to working in the F-norm domain, user-icellivariability is effectively reduced
before the ranking takes place. This is an advantage bedhisseariability can adversely affect
the user ranking. Again, CFNR is designed with maximal rtfesss and this property was verified
using 13 face and speech biometric systems on XM2VTS. Thisideappears in our published
paper [115].

e User-specific fusion via the OR-switcherThe ability to rank users based on CFNR has a practical
application in the context of multimodal biometric fusiowe illustrated the usefulness of CFNR
to selectively combine systems on a per user basis. We ddliedhovel fusion operator the OR-
switcher. The performance of the OR-switcher is as goodafufion system that combinafi the
system outputs with user-specific F-normalized scores.ddew because the OR-switcher does not
use all the biometric systems, it can reduce the computtamst. For instance, in our experimental
setting with 15 fusion tasken averagethe OR-switcher can reduce the computational resources
up to a quarter of that with a conventional fusion classifiraf uses all the sub-systems). This is
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achievedwithoutsignificant reduction in performance with respect to the witk full-fledged sys-
tems which is also based on F-norm. We also compared therpenfize of the OR-switcher with the
state-of-the-art technique which uses trainable usexgaddent fusion classifiers. We used GMM
in this case but SVM gave also similar performance as regong101]. Since the OR-switcher
exploits the user-specific information, its performancetetistically significantlybetter than the
state-of-the-art fusion classifiers; and this is achiewedelducing the overall software/hardware re-
sources. This advantage becomes more apparent for muéiirmaothentication using a personalized
device because an under-performing biometric hardwaltenegipect to a given user can be removed
from the device. This Section appears in [112] and is under-peview.
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Figure 7.12: Results of filtering away under-performingrader each of the first 8 XM2VTS systems
shown using DET curves. The users were ranked accordingetodhstrained F-norm ratio (CFNR, or
(o;"")~1) based on the data of the development set. Whe {200, 180,... ., 20} lowest performing users
are filtered at each stage. Figures (a) and (b) show fiesteriorifiltered DET curves of the development
score set on which CFNR was calculated and Figures (c) ansh(@ly thea priori filtered DET curves
evaluated on thevaluationscore set. Some DET curves cannot be plotted because navasabserved.



7.6. SUMMARY OF CONTRIBUTIONS 109

DET DET
: ; ) :
—0.6
---07
5, _08

--- 09
orIgCOm
fnormCom

0.1r
0.5 1 2 5 0.1 0.2 0.5 1 2 5
FA [%)] FA [%)]
(a) Ideal situation (b) Potential
DET DET
: ; ) : : : :
—0.6
---07
5t —0.38

--- 09
orlgcom
fnormcom

5 0.1 0.2 0.5 1 2 5

FA [%)]
(c) Satisfactory (d) No gain

Figure 7.13: An empirical comparison of user-specific ¢fass OR-switcher and the conventional fusion
classifier. The fusion performance depicted by DET curves. edample of each of the four types of
experimental outcomes were observed: (a) ideal, where Rew@tcher achieves 20% computational
savings (whose cutting rate is 0.6) without remarkabledbperformance compared to the baseline system
(4 fusion experiments in this category); (b) potential, vent5% computational savings (cutting rate).7
was achieved (3 experiments); (c) satisfactory, where 1086peitational savings (cutting rate 0.8)
was achieved; and (d) no gain, where 5% computational ss\jogfting rate= 0.9) was achieved (6
experiments).
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Benefits of Using LLR in Fusion

In the literature, fusion is dominated by techniques thawved participating system outputs to probability
prior to combining them using simple fixed rules [66]. Scooaversion is important because different
systems output different score types. We proposed a ugifyamework that converts different score types
to probability or LLR (see Section 3.3.2). Deviating fronetmainstream, we showed that converting
scores into the LLR space sore usefuthan into probability because the underlying statistias loetter
be described using the first- and second-order moments k$harthis advantage, we could:

e Analyze fusion via a parametric fusion model (Part I)
e Better exploit the user-specific information (Part Il).

These two parts are closely related in that the parametsiofiumodel can be extended to user-specific
processing by conditioning the model to a particular user, using user-specific statistigs; and %
instead of user-independentandX.

Parametric Fusion Model

With a parametric fusion model (Chapter 3), we could:

e Explain why fusion works

e Predict fusion performance

¢ |dentify conditions which favor fusion with a particularsion operator

¢ Study the joint phenomena of combining classifiers withedéht degree of strength and correlation

e Reduce the adverse effect of bias (or score-level mismatthden training and test sets) on fusion

An interesting statistic from the proposed parametricdasnodel is called the F-ratio. It characterizes
the separability between the genuine scores and the imsugites. Although relying on class-conditional
score distribution, we showed that the F-ratio (as well hsiotelated performance measures such as FAR,
FRR and EER) is robust to deviation from the assumption irctimtext of classification (see Sections C.1—
C.2).

An application of performance prediction using the F-ragido select an optimal subset of (possibly
correlated) systems to combine (see Section 4.5). In thtegtg one is ready to trade-off insignificant
performance gain with less computation. F-ratio is morduighan the empirically calculated EER be-
cause F-ratio is more robust to different population coritfmrs Furthermore, the system selection using
F-ratio has a complexity that is independent of the datdatai since only the F-ratio criterion has to be
evaluated for each possible combination.
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User-Specific Processing

There are three original contributions to the state-ofghen user-specific processing.

1. Survey on user-specific processingWe analyzed some of the desired characteristics from exist-
ing literature in order to exploit user-specific processilmparticular, we generalized user-specific
fusion and user-specific score-normalization techniqonesé following form for making the ac-
cept/reject decision:

Ui(y) > A

fory = [y1,...,y~n]’. WhenN > 1, ¥; is a user-specific fusion classifier. whéh= 1, ¥, is a
user-specific score normalization procedure. We also sthdlaag the user-specific threshold tech-
nigue is a special case of the user-specific score normalizegtchnique. The survey was reported
in Chapter 5.

2. A compensation schemeln Chapter 6, we proposed the following alternative framewior deci-
sion making:
Y(y) + (1 =7)¥(y) > A,

whereV is a user-independent function (fusion classifier or scamenalization procedure) ang
adjusts the contribution between the user-specific andindependent functions. This form has the
following benefits:

e Mutual compensation: The solution compensates for the unlikely robust useripetassi-
fier but at the same time, enhances the user-independesifielawith a user-specific one.

e Hybrid learning algorithms: Both classifiers can be trained independently of each other.

¢ Independence of information: Following the justification in Section 6.1, both classifiare
likely to produce independent outputs when the number aftisdarge.

The compensation framework compares favorably with [40,18D, 71, 61] principally because it
is the only one that can learn from very few user-specific gengamples, which is a non-trivial
machine-learning problem.

3. User-Specific F-ratio based techniqguesiWe extended the system level F-ratio used in the paramet-
ric fusion model to the user-specific F-ratio (Chapter 7)e Tkefulness of the user-specific F-ratio
is shown in the following applications:

e F-norm: F-norm is a user-specific score normalization techniquieatinas to reduce the user-
induced variability. F-norm is superior to existing noripation techniques, e.g., Z-norm,
EER-norm and their variants, due to its following propestie

— Robustness to the Gaussian assumption

— Robustness to extremely few genuine training samples thenRayesian adaptation — an
advantage not shared by existing methods in user-specdie/siareshold normalization,
e.g. [18, 48, 52, 64, 75, 92, 126]

— Client-impostor centric — making use of both the genuineiamabstor scores

e Criterion to rank users: Although the user-induced variability has been studieq, [8%re
exists no criterion that ranks users according to their edsecognition. Such a criterion is
important to decide the usability and suitability of a bidrieesystem on a per person basis. We
proposed a criterion based on F-ratio, called constrairedrf ratio (CFNR), which isobust
(able to generalize to unseen data)ibiasedo mismatch between training and test sets and
can bereliably estimatedrom few samples.

e The OR-switcher: The OR-switcher is a user-specific selective fusion whermeily a subset
of systems are used. It strongly relies on the CFNR criteafter taking into account all pos-
sible combinations of system subsets. The OR-switchertteran the conventional fusion
classifiers proposed in the literature because it makesethdtant multimodal system faster
(less processing), cheaper (less hardware componentlinajms with personal devices) and
better (more accurate by exploiting user-specific inforamgt
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Other Contributions in User-Specific Processing

We summarize here the results of two related topics whichodggnal contributions but could not fit
exactly in the two major themes chosen in this thesis.

1. A discriminative framework to combine user-specific and quéity information: While studies
have been conducted on incorporating user-specific andtyurdbrmation separately we consid-
ered fusion of these two information sours@®ultaneouslyThe discriminative framework is useful
for two reasons:

e Ease of implementation: The framework can be implemented using any existing disneam
tive classifier whose properties are well studied rather thsing specialized classifiers for this
purpose, e.g., support vector machines, multi-layer P#rmoes, etc, linear or non-linear.

e Ease of integration with user-specific information: User-specific information can be inte-
grated into the framework by meansanfy user-specific score normalization whose effective-
ness can be evaluated independently from the framework.

We showed that combining both information sources is béltin using either one, or using none
of them. This paper was published in [111] and was the winhé&rebest student poster award in
the 5th Int’l. Conf. Audio- and Video-Based Biometric Parsduthentication (AVBPA 2005) for
contribution on “biometric fusion”.

2. User-specific performance trend analysis:The goal of this study was to assess whether or not
the performance ahdividual usersas well as that of theverall system changes when a biometric
authentication system is operational on a regular basisleVetpilot study in [46] attempted to as-
sess the overall system performance, there was no studyntiags the assessment at the individual
level. The trend is useful to decide when a user’s templat@adel should be updated. We pro-
posed to model the user-specific trend in two steps. Fimstlg, models the user-specific client and
impostor sequences of scores over time using a regresgjoritam. The output of regression is
a series otime-dependent user-specific statisiicgerms of mean and variance, i.afj,yt and a}it
over time index for a given usey and class = {C, I'}. By assuming the class-conditional Gaus-
sian assumption, the instantaneous user-specific penaen@.g., user-specific F-ratio, EER) can
be traced. The conventional approach uses a sliding wingbigh defines the set of scores inside a
limited period, to calculate a time dependent performatd&].

There are two disadvantages with the conventional approatipared to our proposed one:

e The trade-off between time precision and reliability of peformance estimate: A large
window reduces the time precision but increases the rétiabf performance estimate whereas
a small window increases the time precision but decreaseeettability of the performance
estimate.

e Limitation to user-independence analysis:The sliding window approach cannot be used to
estimate the user-specific trend because user-specifitngestores are extremely limited.

Because of this trade-off, deciding on the window size is adifficult problem. Our proposed
algorithm uses standard regression tools whose parancatefse tuned elegantly. Furthermore, the
model can estimate the trend to ambitrarily smoothed precision

The devised algorithm to estimate both the user-specificused-independent (system level) trend esti-
mation is an important proof of concept that user-specifacessing is extremely powerful in biometric
authentication as well as identification. Our finding suggésat only a quarter of users degrade signifi-
cantly in performance over time. Furthermore, the inihplate, and not the user identity, is responsible
for the trend. This study can be found in [96].

To the best our our knowledge, at the time of writing, thissteepresents the state-of-the-artieér-
specific processinon biometric authentication.
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Future Work

This Section provides a non-exhaustive list of future wetlted to biometric person authentication. Some
of these issues were encountered during the research $ahtsis but could not be fully addressed.

8.3

Composite DET/EPC curve. Visualizing a composite DET/EPC curve becomes a necessity f
algorithmic evaluation when several data sets are involvEus is done by establishing a global
coordinate among different DET curves. To the best of oumitedge, three types of coordinate
exist, namely, DET angle [2], LLR unique to each DET [54] ahd & value used in the WER
criterion (see (2.5)). The merits of each approach shoulekbenined.

User-specific processing at feature or score levelChapters 6 and 7 show that user-specific pro-
cessing at the score-level can improve the system perfaendrhis suggests that the processing at
the score-level can be potentially extended to the featwuel.l While the information is richer at
the feature level, the dimensionality is also much higheer@oming this possible drawback is thus
very challenging but if successfudignificant improvemerdould be obtained.

Template-updating. When a biometric system is operational, the user-speciffopeance changes
over time. If the performance degrades, then the algoritias to update the underlying tem-
plate/model. There are two important questions to ansviewhenand (ii) howthe update should
proceed. For a completely automatic system, this can beidenesl a semi-supervised learning.
There are certainly many more issues to examine, for instamgat if the wrong template is updated
and how the remedial procedure should proceed.

Mismatch due to different sensors.When a system is operational, its sensor may be replaced but
not the user’s template. In speaker verification, usingfemint microphone type than the one used
during enrollment is a common problem. As a result, the sygterformance degrades when a differ-
ent sensor is used. Algorithms developed in speaker vdiditaan certainly be adapted to different
biometric modalities. Ultimately, a common noise mismdtaimework has to be addressed.

User-specific and population assessmenturrent evaluation techniques using standard EPC/DET
curve cannot generalize to a different population, sizesefsiand of course the mismatch conditions.
This is a drawback because one cannot conclude that if gigor is better than B in a database
with population X, the result is consistent with anotherattaise with population Y. One even has
the least idea if algorithm A is better than B for a given u3éais issue is particularly important for
applications involving personalized biometric deviceg,,anobile phones and PDAs.

User-specific criterion for joint training. The current fusion systems combine system outputs
after the base-systems are trained. A joint training gisatecluding the fusion classifier can be
potentially useful. It is yet to find out to what extent thigiting can be beneficial, considering that
limited genuine training samples are available per usercdgecture that joint training is useful in
the case where the underlying data streams correlate in(érge audio-visual speech) or in space
(e.g., common facial image but different facial features).

An Open Question

Finally, it should be noted that despite many research wanksiometric fusion and its promise of achiev-
ing lower verification error rates, it is still an open questivhy the deployment of multimodal biometric

fusion is not widespread after 30 years of research. We adedhis thesis by leaving the reader with the
following reflection quoted in [149]:

“Although multi-modal biometric approaches are theowdljcfascinating, the practical path forward
in multi-system biometrics is in first fully exploiting thénte, cost, and complexity economies of
multi-presentation/ instance/sensor/algorithmic data.



Appendix A

Cross-Validation for Score-Level Fusion
Algorithms

Algorithm 3 [7] shows how K-fold cross-validation can be dde estimate the correct value of the hyper-
parameters of our fusion model, as well as the decisionibtdsised in the case of authentication. The
basic framework of the algorithm is as follows: first perfoftafold cross-validation on the training set by
varying the value of the hyper-parameter, and for each hgpeameter, select the corresponding decision
threshold that minimises Half Total Error Rate (HTER); tlvbwose the best hyper-parameter according to
this criterion and perform normal training with the best égparameter on the whole training set; finally
test the resultant classifier on the test set with HTER etatlian the previously found decision threshold.

There are several points to note concerning Algorithn£3s a set of labeled examples of the form
(X,Y), where the first term is a set of patterns and the second teansiét of corresponding labels.
The “train” function receives a hyper-parameteand a training set, and outputs an optimal classifier
F' by minimising the HTER on the training set. The “test” functireceives a classifigf and a set of
examples, and outputs a set of scores for each associaterplexaThe “thrd;rgr” function returns a
decision thresholthat minimises HTER by minimisinFAR(A) — FRR(A)| with respect to the threshold
A (FAR(A) and FRRA) are false acceptance and false rejection rates, as a fomdtiv) while Lyrer
returns the HTERaluefor a particular decision threshold. What makes this cr@dglation different from
classical cross-validation is that there is only one simlgleision threshold and the corresponding HTER
value for all the held-out folds and for a given hyper-parsane. This is because it is logical to union
scores of all held-out folds into one single set of scoresetecs the decision threshold (and obtain the
corresponding HTER).
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Algorithm 3 Risk Estimation©, K, Ztrein  ztest)
REM: Risk Estimation with K-fold Validation. See [7].
O : a set of values for a given hyper-parameter
Z':atuple(X?, V), fori € {train,test} where
X : a set of patterns. Each pattern contains scores/hypstfiesi base experts
Y : asetof labels {client, impostor}
LetUK | Zk = Ztrain gndZi 0 29 = (v, ;
for each hyper-parametére © do
for eachk =1,..., K do
Fy = train@, UL, ., 27)
Y =test(y, X*)
end for R
Ag =thrdgrpr ({yg}ﬁip {yk}kK:1>
end for
9* = arg ming (LHTER (Ag, {J}éc}szl, {yk}szl))
Fy. = train@*, Ztrain)
j}tizst = teSt@g*, Xtest)
returnLHTER(Ag* s j}éESt, tCSt)




Appendix B

The WER criterion and Others

The WER criterion of (2.4) (see Section 2.2.2) is similar ® ¢hiterion used in the yearly NIST evaluation
plans [148, Chap. 8] and also the WER criterion used in the BAlg&tocols [5].
The NIST evaluation plans use th&, g point which is defined as:

CDET(CFR>CFA) = CFppgr X P(C) XFRR(A) + Cpa X P(I) XFAR(A), (Bl)
—_——— —_——

whereCr4 andCrp are respectively the costs of FA and FR, dngk) is the prior probability of class
ke {C, I}.
The BANCA protocols uses a criterion also called “the WEReei@in” but is different from (2.4). Itis

defined as:
FRR+ R FAR

1+R 7
whereR > 0 balances between the costs of FAR and FRR.

The two underbraced terms @, g1 as well ask of WERy,.... play the same role asin (2.5): they
adjust for the different costs between FA and FR. Note thatttijustment parameter is not normalized for
Cpgr. Let us explicitly write the grouped underbraced term€'ifp as

WERbanca(Ra A) = (BZ)

Cper = aFRRFRR(A) + OZFARFAR(A).

Sincemina Cpgr is equivalent tomina ISD# the normalized and non-normalized versions of
Cpgr are equivalent. As a result, (2.5) as well as (2.6) generslia both the NIST and BANCA criteria.
In the NIST evaluation, the following constants are used:

Crr=10,Cpa =1, P(C) = 0.01 andP(I) = 0.99.

As aresult,Cper = 0.1 x FRR+ 0.99 x FAR. By enforcing that the two costs sum to one, it can be
observed thaty = 0.91. For the BANCA protocols, thre® values are used, namelyl, 1 and10. They
correspond tex values 0f0.09, 0.5 and0.91, respectively.
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Appendix C

Experimental Evaluation of the
Proposed Parametric Fusion Model

C.1 \Validation of F-ratio

This section investigates whether or not the EER derivenh filve F-ratio is acceptable. This is done by
comparing thetheoretical EER derived using (4.14)) with itsmpirical counterpart, i.e., the minimum
HTER as appeared in (2.7). Note that the minimum HTER is fdmdhinimizing WER with respect to
the threshold as appeared in (2.6) with= 0.5.

We conducted 1186 experiments on the BANCA database aslamsan Section 2.1.2 and [80] There
are 490 experiments from the output of MLPs; 182 from SVMg &h4 from GMMs. Two approaches
are adopted here. The first approach is to test whether fér @faihe 1186 experiments, the respective
client and impostor scores are normally distributed or ridie second approach is to directly compare
the empirical EER against its theoretical counterpartu@ésg that client and impostor distributions are
normally distributed).

For the first approach, we applied the Lillie-test [24], whévaluates the hypothesis that a set of (client
or impostor) scores has a normal distribution with unspattifnean and variance against the alternative
that the set of scores does not have a normal distributions fést is similar to Kolmogorov-Smirnov
(KS) test, but it adjusts for the fact that the parameterdfiefrtormal distribution are estimated from the
set of scores rather than specified in advance. Using thisvtesfound that 22.85% of impostor scores
and 25.89% of client scores (out of 1186 experiments) supgdhe hypothesis that they are Gaussian
distributed. Hence, only approximately a quarter of therifigtions are Gaussian according to the Lillie
test.

The results of the second approach are shown in Figure Goiin Figure C.1(a), it can be seen that both
the theoretical and empirical EERs are non-linearly andris®ly proportional to their F-ratio. Removing
the F-ratio, we compared the theoretical EER directly wiglempirical counterpart in Figure C.1(b). Here
the output of different classifiers are plotted with difiereymbols. If the theoretical EER matches exactly
its empirical EER, the points (each one corresponding tmgleiexperiment) should be on the diagonal
line. One measure of agreement is to use correlation. lteevalevaluated to be 0.9573, indicating the the
variables arestrongly correlated In other words, knowing theoretical EER, one can use theetaifon to
approximatelyestimate the empirical EER.

One way to understand the effect of deviation from Gausssgnraption on the quality of estimated
EER, we plotted the absolute EER difference (between thiealdEER and empirical EER) versus the
average KS-statistic of their respective client and impodistributions in Figure C.1(c). Note that from
each experiment, we will have two KS-statistics, one forhedistribution. KS-statistic quantifies the
degree of divergence from normal distribution. It is aniimediate calculation used in the Lillie test to
accept or reject the Gaussian hypothesis. Note that K&t#tdtself is not used to accept or reject the

1The NIST2001 and XM2VTS databases have also been used anotaee similar results and conclusions in [103].
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Figure C.1: Results of experiments carried out using allabeilable 1186 experiments on the BANCA
score database. (a) Theoretical EER and empirical EER (HVERuUs their common F-ratio (b) Theoret-
ical EER versus empirical EER (HTER) using output of diffgrelassifiers — 490 MLPs, 182 SVMs and
514 GMMs; the correlation coefficient between the two vdgatis 0.9573. (c) Absolute EER difference
between theoretical EER and empirical EER versus the agdf&gstatistic between the corresponding
client and impostor distributions. KS-statistic meastihesdegree of deviation from Gaussian assumption.
Note that “mlp-inv” denotes the experiments involving MLEtputs that are converted to the logit space
where the conditional scores are once again more normatyililited. Their corresponding KS-statistic
after such post-processing is much smaller.

Gaussian hypothesis. As can be seen, the output of MLPa€dttaising sigmoid output function) gives
high KS-statistic whereas the outputs of SVMs and GMMs caonfbetter to the Gaussian assumption.

Prior to this experiment, we thought that deviation from &aan would mean large absolute EER
difference. If this was the case, absolute EER differenceldvbave been increasing proportionally with
respect to the KS-statistic. It turns out that this is notahse. In Figure C.1(c), despite high KS-statistic
of MLP outputs, their corresponding absolute EER diffeesnare spread below 0.06; some are even near
0! Hence, deviation from Gaussian does not mean large absBER difference. In other words, the
theoretical EER is fairly robust to deviation from the Gaassassumption.

It should be noted that a more interesting issue to investigatherelative values of EER, i.e., if the
empirical EER of experiment is more than the empirical EER of experiméntoes the theoretical EER
of these experiments also follow the same trend? Using ttee atehand, we calculated all the possible
combinations of two EER experiments. This turns out to'5&C, = 702, 705 combinations. The number
of “disagreements’q, can be calculated as follows:

d = |(EER™ > EER™") — (EER/"** > EER*")| (C.1)
for (a,b) € {(1,2),(1,3),...,(1185,1186)} and

1 if true
(21> 22) = { 0  otherwise (C.2)

The percentage of disagreement turns out to be 11%. If thé ét8eriments are representative of bio-
metric authentication tasks, we can conclude that to coenpay two experiments, the theoretical EER
(calculated from the F-ratio) can give a correct answer 89#etime as compared to using the empirical
EER as the ground-truth.
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Figure C.2: Empirical WERs vs. approximated WERs. Comparé ea@, b and c with d, e and f.
The approximated WERs refer to those calculated using thes-danditional Gaussian assumption for
a—c and those using the assumption by GMM d—f. For each of a€efp the followinga values are
used{0.1,0.5,0.9}. Each point represents one of the 1186 BANCA datasets. Bsethomputed with
the Gaussian assumption, we converted the scores into dgitesfgace usingf;,.r(y). This is the one
shown here. We also omitted this pre-processing step bughwtn here to avoid cluttering the figures.

The distribution of the error deviates of GMM, Gaussian vatid without pre-processing are shown in
Figure C.3.

C.2 Beyond EER and Beyond Gaussian Assumption

In the last section, although only the EER point is studiaty can extend the present finding to a more
general case, whereby the EER constraint by its definitienEERA) = FAR(A) = FRR(A), does not
hold anymore. In this case, one is interested in WER with waryi values. We choose the following
values:{0.1,0.5,0.9} which approximate the scenarios in the BANCA protocols.

We also propose here an improvement over the Gaussian asaryp using a mixture of Gaussians
(GMM) as appeared in (3.22). Of course, a non-parametrizePawindow with Gaussian kernel could
have been used. In either case, any hyper-parameter (nwhlBussian component for GMM; kernel
width for Parzen window) are tuned using two-fold crossdadiion in our case. The results are shown in
Figure C.2 and the distribution of their error deviates &@ in Figure C.3. The error deviate is defined
as the difference between the empirical WER and the theat&ti&R. Recall that the empirical WER is
based on empirical FAR and FRR obtained from the data wheheatheoretical WER is based on FAR
and FRR with Gaussian assumption, as appeared in (4.123drd.(As can be observed and expected, the
GMM solution fits better the distribution (smallest bias} the Gaussian solution is still robust to different
WER values. In both cases, the WER estimates are less acauwatels boundary values (near 0 or 1). In
any case, the robustness of Gaussian assumption, as inaticakapplication, is confirmed.
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Figure C.3: The distribution of WER error deviates betweandmmpirical and the theoretical counterpart
for differenta values.

C.3 The Effectiveness of F-ratio as a Performance Predictor

The goal of this section is to test the effectiveness of lotas a performance predictor compared to the
commonly used correlation. We used the BANCA fusion dasaastoutlined in Section 2.1.2. For this
study, the mean fusion operator is used.

C.3.1 Experimental Results Using Correlation

A naive approach to analyse fusion is to empirically find tektionship between minimum posteri-

ori HTER and the sum of correlation of client and impostor disttions. Let the client and impostor-
dependent correlations between two baseline systems {tsbd) be the scalags: andp;, respectively.

The results are shown in Figure. C.4. From this figure, it caoliserved that multimodal fusion experi-
ments have less correlated scores while multi-featurefuskperiments have high correlated scores. One
would have expected that the minimwarposterioriHTER is somewhat proportional 9> + p;. This is
actually partially true because the variance of partigijgpsystems are not taken into account. As a result,
there is no clear trend in this graph and one cannot conchateHTER is proportional to correlation.

C.3.2 Experimental Results Using F-ratio

We distinguish here two concepts: empirical F-ratio andhi&oretical counterpart. For each of the pa-
rameters to be testedmpirical means that the respective parameter is directly estimatéideocombined
system outpuycoar; andtheoreticalmeans that no fusion experiment is performed — only the ctispe
parameters need to be estimated.

Figure C.5(a) shows empirical F-ratio versus its theoattiounterpart (based on (4.18)) calculated
uniquely on the development set. As can be seen both enlparcatheoretical F-ratios amxactlythe
same. Their equivalence can be shown mathematically (sg®&®.5). Figure C.5(b) plots the F-ratio
found on the development set versus the F-ratio found onvlleaion set. They are not exactly the same
this time because there is a mismatch between these twoetataNevertheless, their correlation is 0.90,
indicating that knowing F-ratio from the development sigis possible to predict reasonably F-ratio of the
evaluation set. This property will be exploited in Sectiob.4

As a by-product of these set of experiments, Figure C.5@tsphe following two variables: correlation
of client and that of impostor scores. The overall correlatbetween these two variables is 0.83. This
indicates that knowing the covariance (or correlationcsione is proportional to the other as shown in
(4.27)) of the impostor scores, one can approximate therieowze of the client scores. Note that all

2In general, the correlation of scores f responses are a matrix & by N with elementsp,, ». It has the property that
pm,m = 1 andpm n = pn,m. In the case of two responses, we simply wyit& place ofp1 2.
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Figure C.4: Empirical EER of combining two baseline systeersuspc + p; using the BANCA database.
The crosses represent experiments combining 2 modalitie e circles represent those combining 2
features of thesamemodality. The correlation between the two variables is 0.38

intramodal fusion experiments have high correlation valu€igure C.5(c) thus has two clusters. The
cluster in the upper right corner belongs to intramodaldasixperiments whereas the cluster in the lower
left corner belongs to multimodal fusion experiments.

Summary

Comparing Figure C.4 with Figure C.5(a) (or Figure C.5(ljg,conclude that F-ratio is an adequate fusion
performance predictor.
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Appendix D

Miscellaneous Proves

D.1 On the Redundancy of Linear Score Normalization with Train-
able Fusion

Suppose that a linear classifier is used. Then, the fused searbe written as:

Yycom = szyim -A= ZwiAi(yi -B)-A

z;wyz - ;wiAiBi - A (D.1)

Comparing (D.1) with the linear combination without norieation, as in (3.23), we see that the first
underbraced term is the new weight whereas the second uadedbterm is the new decision threshold.
This shows that ify;|V; are unevenly scaled, their scaling factdy may not be necessary as it will be
automatically absorbed by the weight. This implies thatdres are not evenly scaled, the weights in the
linear combination should be allowed to take on any valué$out the constrain} , w; = 1. This shows
that linear score normalisation is no¢cessary O

D.2 Deriving it and (o%_ )2

The central idea consists of projecting tNedimensional score onto a one dimensional (combined) score.
Suppose that the class conditional scores (prior to fusio@)modeled by a multivariate Gaussian with
meanu® = [u¥, ..., uk] and covarianc&" of N-by-N dimensions. Lelzﬁj be thei-th row andj-th
column of covariance matri” for k = {C, I}. The linear projection fromiV dimensions of score to
one dimension of score has the same effect on the Gaussiaibudien: from N multivariate Gaussian
distribution to a single Gaussian distribution with medn,,,, and variancéc.,s...)* defined in the fourth
row of Table 4.1 for each clags Themean operator is derived similarly witkv; = %Vi. Note that the
weightw; affects both the mean and variance of fused scores.

The expected value af* fork = {C, I},is:

wsum?

N

=1

N
= >3 -8y (D.2)
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The variance of/* is:

wsum

k )2

k k
(Gwsuvn = Cov(ywsumv ywsum)

- E [(yfvsum - E[yfusum}ﬂ

(D.3)

ol wmk ’
- =2

To expand (D.3), one should take care of possible correldtgween different®, andn®, as follows:

k\2 Al wmnk wnnk
e = B ( PP )]
S (D.4)
AmAn m'in *
m=1n=1
foranyk € {C,I}. O

D.3  Proof of (o, )% < (cf;)?

For simplicity, we will omit the conditioning. For the case,, ,, # 0, the inequality can be written as:

1 & 2 U 1 &
ﬁ Z 0'32' + m Z Pm,nOm0n < N Z 0'32' (D5)
j=1 m=1,m<n J=1

By multiplying both sides byV? and rearranging them, we obtain:

N N
2
N-1) g o; —2 E Pm,nOm0n.
j=1 m=1m<n

Given that( N —1) va (07 = Zi]\;LK] (07 +07) (the proof can be found in the appendix), this inequality

can further be simplified to:
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N N
2 2
0 < Z (Um + Un) -2 Z PmnOm0n
m=1m<n m=1,m<n

N
0 < Z (crfn — 2Pm nOm0n + U?L)
N
0 < Z ((Jzn 2pm,nOm0on + pm nOn+ (11— pgn,n)o-?l)>

N
0 < Z ((Um - pm,nan)2 +(1- P?n,n)o'rgl) : (D.6)

Hence, regardless of the value®f ., the inequality is always true. O

N 2 N 2 2
D.4 Proofof (N —1)>75 07 = > ;0 ,;(0i +07)
Let o; be a random variable anid=1,..., N. The term
ZiLKj(aera ) can be mterpreted agl 1 Zj i+1(07+07). The problem now is to count how many
o there are in the term, for ary=1,..., N.

There are two cases here. The flrst case is whenk, the termy Y | S

Zjv ys1(07 +07). There arg N — k) terms ofay.

In the second case, whgn= k, the term>_ "~ | ZJ i11(07 4+ 07) then becomesy ¥ (62 + o2).
There arg(k — 1) terms ofo?.
The total number of? is just the sum of these two cases, whichs— k) + (k—1) = (N —1), for any
k drawn froml,..., N. The sum of N — 1) o7 over all possiblé; = 1,..., N then giveg N — 1) z;j:l
2
Jk'
Therefore(N — 1) Y 02 = S0, (0% +02). O

i—ir1(0F +0%) becomes:

D.5 Proof of Equivalence between Empirical F-ratio and Theoretical
F-ratio

The estimated theoretical and empirical parameters cahdwersto be exactly the same mathematically.
Suppose there ak/* accesses, whe/ ¢ are the number of client accesses add are the number of
impostor accesses. Suppose also ﬂj’gtis the output of the-system and:-th access given that the class

label isk = {C,I},andi =1,...,N andu = 1,..., M*. u¥ can be estimated by:

J\
Z = (D.7)

For theu-th access, the combined score is:
1 N

The empirical estimate off v/, fi:0ar,emp 1S giVen by:

Z vE =Yk (D.9)



128 APPENDIX D. MISCELLANEOUS PROVES

Note that:

3

S
=~
®

~k
MCOJ\I,emp

e
Il
_

I
2| =
M-

N
Il
i

;.. (interchange the andu summation$

RS

it

I
2=
'MZ

~
Il
—

= ugOM theo* (DlO)

Hence, they are the same. The empirical variance can bdat@das follows:

(6é’OM,emp)2 = % Z (Y,u - }7) (Dll)

u=1

The theoretical variance is obtained by estimating the sef)? and p”U of in the expression of
(o oar)?%, as shown in (4.26). The estimate(ef*)? is given by:

1 < Sy 2
a7 O (Yl =Y (b.12)

The estimate op” k is given by:

0,7 z T
MZ kYR (Y, - YR (D.13)

Plugging in these two estimates into the expressior(d¢r,,,)?, we get the theoretical estimate of the
variance of the fused scores as:

(UCOM theo

}—‘\—/

- M u=1 <Y’u - Y7)

A 2
= UéO]V[,emp) : (D14)

Because the empirical and theoretiggl, ,, andot,,,, are thesame the empirical and theoretical F-ratios
will be exactly the same. Using the definition of F-ratio in1{8), the theoretical F-ratio of the combined
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score can be defined as:

/\C /\I
+
Foratiocon meo = KEoM, theo /j‘CO]W,theo. (D.15)

~C T
TCEOM, theo T 0COM theo

The empirical F-ratio is:

~nC ~I
MCOI\Lemp + MCOIM.,emp

F-ratiocons,emp = o
UCOM,emp + UCOM,emp

~C T
HeoM, theo T HCOM, theo

~C T
OcoM,theo T TCOM theo
= Fratiacconr theo (D.16)

Hence, the theoretical F-ratio is exactly the same as thérigad--ratio. This applies also for normalised
version ofY’. O
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