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Abstract

Verifying a person’s identity claim by combining multiple biometric systems (fusion) is a promising so-
lution to identity theft and automatic access control. Thisthesis contributes to the state-of-the-art of mul-
timodal biometric fusion by improving the understanding offusion and by enhancing fusion performance
using information specific to a user.

One problem to deal with at the score level fusion is to combine system outputs of different types. Two
statistically sound representations of scores are probability and log-likelihood ratio (LLR). While they are
equivalent in theory, LLR is much more useful in practice because its distribution can be approximated by
a Gaussian distribution, which makes it useful to analyze the problem of fusion. Furthermore, its score
statistics (mean and covariance) conditioned on the claimed user identity can be better exploited.

Our first contribution is to estimate the fusion performancegiven the class-conditional score statis-
tics and given a particular fusion operator/classifier. Thanks to the score statistics, we can predict fusion
performance with reasonable accuracy, identify conditions which favor a particular fusion operator, study
the joint phenomenon of combining system outputs with different degrees of strength and correlation and
possibly correct the adverse effect of bias (due to the score-level mismatch between training and test sets)
on fusion. While in practice the class-conditional Gaussianassumption is not always true, the estimated
performance is found to be acceptable.

Our second contribution is to exploit the user-specific prior knowledge by limiting the class-conditional
Gaussian assumption to each user. We exploit this hypothesis in two strategies. In the first strategy, we
combine a user-specific fusion classifier with a user-independent fusion classifier by means of two LLR
scores, which are then weighted to obtain a single output. Weshow that combining both user-specific and
user-independent LLR outputs always results in improved performance than using the better of the two.

In the second strategy, we propose a statistic called the user-specific F-ratio, which measures the dis-
criminative power of a given user based on the Gaussian assumption. Although similar class separability
measures exist, e.g., the Fisher-ratio for a two-class problem and the d-prime statistic, F-ratio is more suit-
able because it is related to Equal Error Rate in a closed form. F-ratio is used in the following applications:
a user-specific score normalization procedure, a user-specific criterion to rank users and a user-specific fu-
sion operator that selectively considers a subset of systems for fusion. The resultant fusion operator leads
to a statistically significantly increased performance with respect to the state-of-the-art fusion approaches.
Even though the applications are different, the proposed methods share the following common advantages.
Firstly, they are robust to deviation from the Gaussian assumption. Secondly, they are robust to few training
data samples thanks to Bayesian adaptation. Finally, they consider both the client and impostor information
simultaneously.

Keywords: multiple classifier system, pattern recognition, user-specific processing
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Version Abrégée

La vérification de l’identité d’une personne en combinant plusieurs systèmes biométriques est une
solution prometteuse pour contrer le piratage d’identité et de contrôle d’accès. Cette thèse contribue à
l’état de l’art de la fusion multimodale biométrique. Elle améliore la compréhension du mécanisme de
fusion et augmente la performance de ces systèmes en exploitant l’information spécifique d’un utilisateur
donné.

Cette thèse se concentre sur le problème de fusion au niveau de la sortie de plusieurs systèmes de
vérification d’identité biométrique. En particulier deux différentes représentations sont utilisées comme
valeur de sortie de ces sytèmes : les probabilités et le ratiode vraisemblances (Log-Likelihood Ratio, LLR).
Même si en théorie, les deux représentations sont équivalentes, les LLRs sont plus facile à modèliser car
leur distribution est approximativement normale. En plus,les statistiques (moyenne et covariance) pour un
utilisateur donné peuvent être mieux exploitées.

Les contributions de cette thèse sont présentées en deux parties.
Tout d’abord, nous proposons un modèle pour prédire la performance optimale de fusion étant donné

les statistiques dépendant des clients et des imposteurs, ainsi qu’un opérateur de fusion. Grâce à ce modèle,
nous pouvons prédire la performance avec une précision acceptable, identifier les conditions qui favorisent
un opérateur de fusion donné, analyser la corrélation entreles différentes fonctions de classification et
analyser l’effet du biais engendré par la différence de distribution des données d’entraînement et de test.
Le nouveau modèle paramétrique est fondé sur l’hypothèse que la distribution des scores, étant donnée la
classe, suit une loi Gaussienne. Bien que cette hypothèse nesoit pas toujours vraie en pratique, la valeur
estimée de l’erreur de performance est acceptable. Afin de pouvoir introduire des connaissances à priori
pour chaque utilisateur, nous limitons l’hypothèse Gaussienne à chaque personne.

En deuxième partie, nous avons exploité cette hypothèse en utilisant deux stratégies différentes. La pre-
mière consiste à combiner l’utilisation de connaissances àpriori pour chaque utilisateur et celle commune
à tous, par le biais de deux scores LLRs. Ceux-ci sont ensuitepondérés pour obtenir un seul score. Ce
cadre générique peut être utilisé pour une ou plusieurs fonctions de classification. Nous montrons qu’en
exploitant ces deux sources d’informations, l’erreur est plus petite qu’en exploitant le meilleur des deux.

La deuxième stratégie consiste à utiliser une statistique dit «F-ratio» qui indique le degré de discrimi-
nation pour un utilisateur donné en supposant l’hypothèse Gaussienne. Bien que cette statistique ressemble
beaucoup au ratio de Fisher pour un problème à deux classes etle d-prime, seul le F-ratio est une fonction
directement liée au taux d’erreur égal (Equal Error Rate). Nous avons exploité cette statistique dans dif-
férentes applications qui se montrent plus efficaces que lestechniques classiques, à savoir, une procédure
pour normaliser les scores pour chaque utilisateur, un critère pour trier les utilisateurs selon leur indice
de discrimination et un nouvel opérateur qui sélectionne unsous-ensemble de systèmes pour chaque uti-
lisateur. Bien que ces applications soient différentes, elles partagent des avantages similaires : elles sont
robustes à la déviation de l’hypothèse Gaussienne, elles sont robustes à la faible disponibilité des don-
nées grâce à l’adaptation Bayesienne, enfin, elles exploitent simultanément l’information du client et des
imposteurs.

Mots Clef : combinaison de plusiers fonctions de classification, reconnaissance de forme, traitement
utilisateur-spécifique
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Notation

Notations Descriptions
i ∈ {1, . . . , N} index of systems from 1 to a total ofN systems
j ∈ {1, . . . , J} user index from 1 to a total ofJ users

y ∈ Y a realization of score from a system andY is a set of scores
∆ threshold in the decision function

k = {C, I} client or impostor class
µ,µ mean and mean vector
σ,Σ standard deviation and covariance matrix
γ, ω model parameters to be tuned
P (·) probability
p(·) probability density function
E[·] expectation of a random variable

V ar[·], σ variance of a random variable
N

(
y|µ,Σ

)
a normal (Gaussian) distribution with meanµ and covarianceΣ evalu-
ated at the pointy. The distribution is written asN

(
µ,Σ

)

a′ the transpose of the vectora

Note that:

• No distinction is made between a variable and its realization so thatp(Y < ∆) ≡ p(y < ∆) where
Y is a variable ofy ∈ Y. Similarly,Ey∈Y [Y ] ≡ E[y].

• Subscripts and superscripts are used for conditioning a variable. The conditioning of class labelk is
written as a superscript, i.e.,yk ≡ y|k, and the user-specific conditioning (user index) is used as a
subscript, i.e.,yj ≡ y|j.
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MAP MaximumA Posterriori
MLP Multi-Layer Perceptron
PCA Principal Component Analysis
QDA Quadratic Discriminant Analysis
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Chapter 1

Multi-system Biometric Authentication

1.1 Problem Definition

Biometric authenticationis a process of verifying an identity claim using a person’s behavioral or physio-
logical characteristics [62]. Biometric authentication offers many advantages over conventional authentica-
tion systems that rely on possessions or special knowledge,e.g., passwords. It is convenient and is widely
accepted in day-to-day applications. Typical scenarios are access control and authentication transaction.
This field is evolving fast due to the desire of governments toprovide a better homeland security and due
to the market demand to protect privacy in various forms of transactions.

Authentication versus Identification

This thesis is about biometricauthentication(also known as verification) and not about biometriciden-
tification. In the latter, there is no identity claim, but rather the goal of the system is to output the most
probable identity. If there areJ persons in the database, thenJ matchings are needed. In a closed set iden-
tification, this task is to forcefully classify a biometric sample as one of theJ known persons. In an open
set identification, the task is to classify the sample as either one of theJ persons or an unknown person.
In some applications, particular in access control with a limited population size, biometric authentication
is operated in the open set identification mode. In this scenario, an authorized user simply presents his/her
biometric sample prior to accessing a secured resource,without making any identity claim [86]1. Hence,
in terms of applications, there needs no clear distinction between authentication and identification, i.e.,
techniques developed in one application scenario can be applied to another.

Error Rates

Upon presentation of a biometric sample, a system should grant access (if the person is a client/user) or
reject the request (if the person is an impostor). In generalterms, this decision is made by comparing
the system output with anoperating threshold. In this process, two types of error can be committed:
falsely rejecting a genuine user or falsely accepting an impostor. The error rates are respectively called
False Rejection Rate (FRR) and False Acceptance Rate (FAR).These two errors are important measures
to assess the system performance which is visualized using aDetection Error Trade-off (DET) curve. A
special point called Equal Error Rate (EER), where FAR=FRR, is also commonly used for application
independent assessment.

Desired Operational Characteristics of Biometric Authentication

It is desirable that biometric authentication be performedautomatically, quickly, accurately and reliably.
Using multimedia sensors and ever increasingly powerful computers, the first two criteria can certainly be

1In this case, the original authentication system has to be modified so that the accept/reject decision is not made for each enrolled
user. This is because there could be multiple accept decisions.

1
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fulfilled. However,accuracyandreliability are two issues not fully resolved. Due to sensor technologies
and external manufacturing constraints, no single biometric trait can achieve a 100% authentication perfor-
mance. Byaccuracy, we mean that both FAR and FRR have to be reduced. Often, decreasing one error
type by changing the operational threshold will only increase the other error type. Hence, in order to truly
improve the accuracy, there must be afundamental improvement. By reliability, we mean that thesame
result in terms of score should be expected each time a systemprocesses a biometric sample during testing.

The Challenges in Biometric Authentication

Person authentication is a difficult problem because of the following properties:

• Unbalanced classification task:At least in a typical experimental setting, the number of genuine
(client) attempts is much smaller than that of impostor attempts2.

• Unbalanced risk: Depending on applications, thecostof falsely accepting an impostor and that of
falsely rejecting a client can differ by one or two orders of magnitude.

• Scarce training data: At the initial (enrollment) phase, a biometric system is allowed to have very
few biometric samples (less than four or so; in order not to annoy the user). Building a statistical
model or a feature template is thus a challenging machine-learning problem.

• Vulnerability to noise: It is known that biometric samples are vulnerable to “noise”. Examples are,
but not limited to, (i) occlusion, e.g., glasses occluding aface image; (ii) environmental noise, e.g.,
view-based capturing devices are particularly susceptible to change of illumination, and speech is
susceptible to external noise sources [118] as well as distortion by the transmission channel; (iii)
user’s interaction with the device, e.g, non-frontal face [128]; (iv) the deforming nature of biomet-
rics, as beneath physiological biometric traits are often muscles or living tissues that are subject to
minor changes over both short and long time-span; (v) detection algorithms, e.g., inaccurate face de-
tectors [147]; and (vi) the ageing effect [46] in the sense that the duration can span from days (e.g.,
growth of beards and mustaches for face recognition) or weeks (e.g., hair) to years (e.g., appear-
ance of wrinkles). Increasing the system reliability implies decreasing the influence of these noise
sources.

Multi-System Biometric Authentication

The system accuracy and reliability can be increased by combining two or more biometric authentication
systems. According to a yet-to-published standard report (ISO 24722) entitled “Technical Report on Multi-
Modal and other Biometric Fusion” [149], these approaches can be any of the following types:

• Multimodal: Different sensors capturing different body parts

• Multi-sensor: Different sensors capturing the same body part

• Multi-presentation: Several sensors capturing several similar body parts, e.g., ten-fingerprint bio-
metric system

• Multi-instance: The same sensor capturing several instances of the same bodypart

• Multi-algorithmic: The same sensor is used but its output is proposed by different feature extraction
and classifier algorithms

This thesis concerns fusion of any of these types, i.e., amulti-systembiometric authentication. For this rea-
son, the term “multi-system” was used in this thesis title. In the general pattern recognition problem, our
chosen approach can also be called aMultiple Classifier System(MCS). As this thesis focuses on the above-
mentioned approaches, the classical ensemble algorithms such as bagging, boosting and error-correction
output-coding [31] which rely oncommon featureswill not be discussed. This issue was examined else-
where, e.g., [95].

2Such prior probabilities are unknown in real applications and are often set to be equal.
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Fusion Techniques

In the literature, there are several methods to combine multimodal information. These methods are known
asfusion techniques. Common fusion techniques include fusion at thefeature level(extracted or internal
representation of the data stream) orscore level(output of a single system). Between the two, the latter is
more commonly used in the literature.

Some studies further categorize three levels of score levelfusion [14], namely, fusion using the scores
directly, using aset of most probablecategory labels (called abstract level) or using thesingle most probable
categorical label (called decision level). We will focus onthe score level for two reasons: the last two
cases can be derived from the score and more importantly, by using only labels instead of scores, precious
information is lost, thus resulting in inferior performance [74].

Feature Level versus Score Level Fusion

Although information fusion at the feature level is certainly much richer, exploiting such information by
concatenation, for instance, may result in thecurse of dimensionality[11, Sec. 8.6]. In brief, it states that
combined information (feature) may have a too high dimension that the problem cannot be solved easily by
a given classifier. Furthermore, not all feature types arecompatibleat this level, i.e., of the same dimension,
type and sampling rate. The feature level fusion certainly merits a thorough investigation but will not be
addressed here.

On the other hand, working at the score level conceals both the problems of curse of dimensionality
and feature compatibility. Furthermore, the algorithms developed at the score level can be independent of
any biometric system. Being aware that the only informationretained is score, any additional information
desired to be tapped must be fed externally. It should be noted that the feature level fusion converges
to the score level fusion by assuming independence among thebiometric feature sets. This assumption
is perfectly acceptable in the context of multimodal biometric fusion but does not hold when the feature
sets are derived from the same biometric sample, e.g., combining the coefficients of Principal Component
Analysis (PCA) and that of Linear Discriminant Analysis (LDA). Under such situation, the dependency at
the feature level will certainly occur at the score level. Consequently, such dependency can still be handled
at the score level.

1.2 Motivations

Combining several systems has been investigated elsewhere, e.g., in general pattern recognition [138]; in
applications related to audio-visual speech processing [76, Chap. 10] [77, 19]; in speech recognition –
examples of methods are multi-band [17], multi-stream [38,55], front-end multi-feature [136] approaches
and the union model [85]; in the form of ensemble [13]; in audio-visual person authentication [127]; and,
in multi-biometrics [125, 88] (and references herein), among others. In fact, one of the earliest works
addressing multimodal biometric fusion was reported in 1978 [39]. Therefore, biometric fusion has a
history of nearly 30 years. Admittedly, the subject of classifier combination is somewhat mature. However,
below are some motivations for yet another thesis on the topic:

• Justification of why fusion works: Although this topic has been discussed elsewhere [57, 67, 68,
133], there is still a lack of theoretical understanding, particularly with respect tocorrelation and
relative strengthamong systems in the context of fusion. While these two factors are well known
in regression problems [13], they are not well-defined in classification problems [135]. As a re-
sult, many “diversity” measures exist while no one measure is a satisfactory predictor of the fusion
performance – they are too weakly correlated with the fusionperformance and are highly biased.

• User-induced variability: When biometric authentication was first used for biometric authentica-
tion [48], it was observed that scores from the output of a system are highly variable from one user
to another. 17 years later, this phenomenon was statistically quantified [33]. As far as user-induced
variability is concerned, several issues need to be answered: whether this phenomenon exists in
all biometric systems or it is limited to the speaker verification systems; methods to mitigate this
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phenomenon; and to go one step further, methods to consider the claimed user identity in order to
improve the overall performance.

• Different modes of fusion: Thede factoapproach to fusion is by considering the output of all sub-
systems [125] (and references herein). However, in a practical application, e.g., [86], one rarely uses
all the sub-systems simultaneously. This suggests that an efficient and accurate way of selecting
sub-systems to combine would be beneficial.

• On the use of chimeric users:Due to lack of real large multimodal biometric datasets and privacy
concerns, the biometric trait of a user from a database is often combined with another different bio-
metric trait of yet another user, thus creating a so-calledchimeric user. Using a chimeric database
can thus effectively generate a multimodal database with a large number of users, e.g., up to a thou-
sand [137]. While this practice is commonly used in the multimodal literature, e.g., [44, 124, 137]
among others, it was questioned whether this was a right thing to do or not during the 2003 Workshop
on Multimodal User Authentication [36]. While the privacy problem is indeed solved using chimeric
users, it is still an open question of how such chimeric database can be used effectively.

1.3 Objectives

The objective of this thesis is two-fold: to provide a betterunderstanding of fusion and to exploit the
claimed identity in fusion.

Due to the first objective, proposing a new specialized fusion classifier is not the main goal but a
consequence of a better understanding of fusion. To ensuresystematicimprovement, whenever possible,
we used a relatively large set of fusion experiments, instead of one or two case studies as often reported
in the literature. For example in this thesis as few as 15 experiments are used. In our published paper,
e.g., [113], as many as 3380 were used. None of the experiments used are chimeric databases (unless
constructed specifically to study the effect of chimeric users). Our second objective, on the other hand,
deals with how the information specific to a user can be exploited. Consequently, novel strategies have to
be explored.

1.4 Original Contributions Resulting From Research

The original contributions resulting from the PhD researchcan be grouped in the following ways:

1. Fusion from a parametric perspective: Several studies [57, 67, 68, 133] show that combining
several system outputs improves over (the average performance of) the baseline systems. However,
the justifications are not directly related to the reductionof classification performance, e.g., EER,
FAR and FRR. Furthermore, one or more unrealistic and simplifying assumptions are often made,
e.g., independent system outputs, common class-conditional distributions across system outputs and
common distribution across (client and impostor) class labels. We propose to model scores to be
combined using a class-conditional multivariate Gaussian(one for the client scores; the other for the
impostor scores). This model is referred to as a “parametricfusion model” in this thesis. Although
being simple, this model does not make any of the three assumptions just stated above. A well
known Bayes error bound (or the upper bound of EER) based on this model is called the Chernoff
bound [35].

Our original idea is to derive theexactEER (instead of its bound) given the parametric fusion model
and given a particular fusion operator thanks to a derived statistic called the “F-ratio” [103]. Although
in practice the Gaussian assumption inherent in the parametric fusion model is not always true, the
error of the estimated EER is acceptable in practice. We usedthe F-ratio to show the reduction of
classification error due to fusion in [103], to study the effect of correlation of system outputs in [109],
to predict fusion performance in [102] and to compare the performance of commonly used fusion
operators (e.g,min, max, mean and weighted sum) in [107].
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2. On exploiting user-specific information: While assuming that class conditional scores are Gaussian
is somewhat naive, this approach is much more acceptable when one makes such an assumption on
the user-specific scores, where the client (genuine) scoresare scarce. Two different approaches are
proposed to exploit user-specific information in fusion.

The first approach, called auser-specific compensation framework[105], linearly combines the out-
puts of both user-specific and user-independent fusion classifiers. This framework also generalizes
to a user-specific score normalization procedure when only asingle system is involved. The advan-
tage of this framework is that it compensates for the possibly unreliable but still useful user-specific
fusion classifier.

The second approach makes use of theuser-specific F-ratio, which is in the following techniques:

• A novel user-specific score normalization procedure calledF-norm.

• A user-specific performance criterion to rank users according to their ease of recognition.

• A novel user-specific fusion operator called an “OR-Switcher” which works by selecting only
a subset of system to combine on a per person basis.

These techniques can be found in our publications [108, 115,112], respectively. Although the appli-
cations are different, they all are related to F-norm and hence share the following properties:

• Robustness to the Gaussian assumption.

• Robustness to extremely few genuine accesses via Bayesian adaptation, which is a unique ad-
vantage not shared by existing methods in user-specific score/threshold normalization, e.g. [18,
48, 52, 64, 75, 92, 126].

• Client-impostor centric – making use of both the genuine andimpostor scores.

3. Exploring different modes of score-level fusions:We also propose several new paradigms to fu-
sion, namely:

• A novel multi-sample multi-source approach – whereby multiple samples of different biometric
modalities are considered.

• Fusion with virtual samples by random geometric transformation of face images – whereby the
novelty lies on applying virtual samples during test as opposed to during training.

• A robust multi-stream (multiple speech feature representations) scheme. This scheme relies
on a fusion classifier that is implemented via a Multi-Layer Perceptron and takes the outputs
of the speaker verification systems. While being trained withartificial white noise, the fusion
classifier is shown to be empirically robust to different realistic additive noise types and levels.

These three subjects can be found in our publications [114, 116, 100], respectively.

4. On incorporating both user-specific and quality information sources: Several studies on fu-
sion [10, 44, 129, 141] as well as on other biometric modalities, e.g., speech [49] and finger-
print [21, 134], iris [20] and face [70], have demonstrated that quality index, also known as con-
fidence, is an important information source. In the mentioned approaches, a quality index is derived
from the features or raw biometric data. We propose two ideasto improve the existing techniques.
The first one aims at directly deriving the quality information from the score, based on the concept of
margin used in boosting [47] and Support Vector Machine (SVM) [146], [26]. The second one aims
at combining user-specific and quality information in fusion using a discriminative approach. The
resultant techniques based on these two ideas were published in in [110] and [111]3, respectively.

5. On the merit of chimeric users: To the best of our knowledge, no prior work is done on the merits
of chimeric users in experimentation. We examined this issue from two perspective: whether or not
the performance measured on a chimeric database is a good predictor of that measured on a real-user

3This paper is the winner the best student poster award in Int’l Conf. on Audio- and Video-Based Biometric Person Authentication
(AVBPA2005) for contribution on “biometric fusion”.
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database; and whether or not a chimeric database can be exploited to improvethe generalization per-
formance of a fusion operator on a real-user database. Basedon a considerable amount of empirical
biometric person authentication experiments, we concludethat the answer is unfortunately “no” to
the first question4 and no statistical significant improvement or degradation to the second question.
However, considering the lack of real large multimodal database, it is still useful to construct a train-
able fusion classifier using a chimeric database. These two investigations were published in [104]
and [113], respectively.

6. On performance prediction/extrapolation: Due to user-induced variability, the system perfor-
mance is often database-dependent, i.e., the system performance differs from one database to the
other. Working towards this direction, we address two issues: establishing confidence interval of a
DET curve such that the effect due to different composition of users is taken into account [117]; and
modeling the performance change (over time) on a per user basis so as to provide an explanation to
the trend of the system performance.

7. Release of a score-level fusion benchmark database and tools: Motivated by the fact that multi
biometric fusion score-level is an important subject and yet such a benchmark database does not exist,
the XM2VTS fusion benchmark dataset was released to the public5. Together with this database
come the state-of-the-art evaluation tools such as DET (Detection Error Trade-off), ROC (Receiver’s
Operating Characteristic) and EPC (Expected Performance Curve) curves. The work was published
in [106].

The above contributions (except topic 7) can be divided intotwo categories, i.e., user-independent pro-
cessing (topics 1, 3 and 5) and user-specific processing (topics 2, 4 and 6). User-specific processing, as
opposed to user-independent processing, takes into account the label of the claimed identity for a given
access request, e.g., user-specific fusion classifier, user-specific threshold and user-specific performance
estimation. Topics 1 and 2 are themost representativeand also themost importantsubject in its category.
We therefore give much more emphasis on these two topics.

1.5 Publications Resulting From Research

The publications resulting from this thesis are as follows:

1. Fusion from a parametric perspective.

• N. Poh and S. Bengio. Why Do Multi-Stream, Multi-Band and Multi-Modal Approaches Work
on Biometric User Authentication Tasks? InIEEE Int’l Conf. Acoustics, Speech, and Signal
Processing (ICASSP), pages vol. V, 893–896, Montreal, 2004.

• N. Poh and S. Bengio. How Do Correlation and Variance of Base Classifiers Affect Fusion in
Biometric Authentication Tasks?IEEE Trans. Signal Processing, 53(11):4384–4396, 2005.

• N. Poh and S. Bengio. Towards Predicting Optimal Subsets of Base-Experts in Biometric
Authentication Task. InLNCS 3361, 1st Joint AMI/PASCAL/IM2/M4 Workshop on Multimodal
Interaction and Related Machine Learning Algorithms MLMI, pages 159–172, Martigny, 2004.

• N. Poh and S. Bengio. EER of Fixed and Trainable Classifiers: ATheoretical Study with
Application to Biometric Authentication Tasks. InLNCS 3541, Multiple Classifiers System
(MCS), pages 74–85, Monterey Bay, 2005.

2. On exploiting user-specific information.

• N. Poh and S. Bengio. F-ratio Client-Dependent Normalization on Biometric Authentication
Tasks. InIEEE Int’l Conf. Acoustics, Speech, and Signal Processing (ICASSP), pages 721–
724, Philadelphia, 2005.

4This implies that if one fusion operator outperforms another fusion operator on a chimeric database, onecannot guaranteethat
the same observation is repeatable in a true multimodal database of the same size.

5Accessible at http://www.idiap.ch/∼norman/fusion
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• N. Poh, S. Bengio, and A. Ross. Revisiting Doddington’s Zoo:A Systematic Method to Assess
User-Dependent Variabilities. InWorkshop on Multimodal User Authentication (MMUA 2006),
Toulouse, 2006.

• N. Poh and S. Bengio. Compensating User-Specific Information with User-Independent Infor-
mation in Biometric Authentication Tasks. Research Report05-44, IDIAP, Martigny, Switzer-
land, 2005.

3. On exploring different modes of score-level fusions.

• N. Poh and S. Bengio. Non-Linear Variance Reduction Techniques in Biometric Authentica-
tion. In Workshop on Multimodal User Authentication (MMUA 2003), pages 123–130, Santa
Barbara, 2003.

• N. Poh, S. Bengio, and J. Korczak. A Multi-Sample Multi-source Model for Biometric Authen-
tication. InIEEE International Workshop on Neural Networks for Signal Processing (NNSP),
pages 275–284, Martigny, 2002.

• N. Poh, S. Marcel, and S. Bengio. Improving Face Authetication Using Virtual Samples. In
IEEE Int’l Conf. Acoustics, Speech, and Signal Processing, pages 233–236 (Vol. 3), Hong
Kong, 2003.

• N. Poh and S. Bengio. Noise-Robust Multi-Stream Fusion for Text-Independent Speaker
Authentication. InThe Speaker and Language Recognition Workshop (Odyssey), pages 199–
206, Toledo, 2004.

4. On incorporating both user-specific and quality information sources.

• N. Poh and S. Bengio. Improving Fusion with Margin-Derived Confidence in Biometric Au-
thentication Tasks. InLNCS 3546, 5th Int’l. Conf. Audio- and Video-Based Biometric Person
Authentication (AVBPA), pages 474–483, New York, 2005.

• N. Poh and S. Bengio. A Novel Approach to Combining Client-Dependent and Confidence
Information in Multimodal Biometric. InLNCS 3546, 5th Int’l. Conf. Audio- and Video-Based
Biometric Person Authentication (AVBPA 2003), pages 1120–1129, New York, 2005 ((winner
of the Best Student Poster award)).

5. On the merit of chimeric users.

• N. Poh and S. Bengio. Can Chimeric Persons Be Used in Multimodal Biometric Authentica-
tion Experiments? InLNCS 3869, 2nd Joint AMI/PASCAL/IM2/M4 Workshop on Multimodal
Interaction and Related Machine Learning Algorithms MLMI, pages 87–100, Edinburgh, 2005.

• N. Poh and S. Bengio. Using Chimeric Users to Construct Fusion Classifiers in Biometric
Authentication Tasks: An Investigation. InIEEE Int’l Conf. Acoustics, Speech, and Signal
Processing (ICASSP), Toulouse, 2006.

6. Other subjects.

• N. Poh, A. Martin, and S. Bengio. Performance Generalization in Biometric Authentication
Using Joint User-Specific and Sample Bootstraps. IDIAP-RR 60, IDIAP, Martigny, 2005.
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1.6 Outline of Thesis

This thesis is divided into two parts which correspond to twomajor contributions. Chapter 2 is devoted to
explaining the common databases and evaluation methodologies used in both parts of thesis.

Part I focuses on the score-level user-independent fusion.It contains two chapters. Chapter 3 reviews
the state-of-the-art techniques in score-level fusion. Our original contribution, to be presented in Chapter 4,
is on providing a better understanding based on the class-conditional Gaussian assumption of scores to be
combined – the so-calledparametric fusion model.

Part II focuses on user-specific fusion. All the discussionsin Part I can directly be extended to Part II by
conditioning the parametric fusion model on a specific user.For this reason, Part I and II are complemen-
tary. Part II contains three chapters. Chapter 5 is the first survey written on the subject ofuser-specific pro-
cessing. The next two chapters are our original contributions. Chapter 6 proposes a compensation scheme
that balances between user-specific and user-independent fusion. Chapter 7 presents a user-specific fusion
classifier as well as a user-specific normalization procedure based on F-norm.

Finally, Chapter 8 summarizes the results obtained so far and outlines promising future research direc-
tions.



Chapter 2

Database and Evaluation Methods

This chapter is divided into two sections: Section 2.1 describes the databases used in this thesis and Sec-
tion 2.2 describes the adopted evaluation methodologies. The second section deals with issues such as
threshold selection, performance evaluation, visualization of pooled performance (from several experi-
ments) and significance test.

2.1 Database

There are currently many multimodal person authenticationdatabases that are reported in the literature, for
examples (but not limited to):

• BANCA [5] – face and speech modalities1.

• XM2VTS [78] – face and speech modalities2.

• VidTIMIT database [25] – contains face and speech modalities3.

• BIOMET [15] – contains face, speech, fingerprint, hand and signature modalities.

• NIST Biometric Score Set – contains face and fingerprint modalities4.

• MYCT [90] – ten-print fingerprint and signature modalities5.

• UND – face, ear profile and hand modalities acquired using visible, Infrared-Red and range sensors
at different angles6.

• FRGC – face modality captured using camera at different angles and range sensors in different con-
trolled or uncontrolled settings7.

However, not all these databases are true multi-biometric modalities, i.e., from the same user. To the
best of our knowledge, BANCA, XM2VTS, VidTIMIT, FRGC and NIST are true multimodal databases
whereas the rest arechimericmultimodal databases. A chimeric user is composed of at least two biometric
modalities originated from two (or more) individuals. BANCA and XM2VTS are preferred because:

• They are publicly available.

1http://www.ee.surrey.ac.uk/banca
2http://www.ee.surrey.ac.uk/Research/VSSP/xm2vtsdb
3http://users.rsise.anu.edu.au/∼conrad/vidtimit
4http://www.itl.nist.gov/iad/894.03/biometricscores/bssr1_contents.html
5http://turing.ii.uam.es/bbdd_EN.html
6http://www.nd.edu/∼cvrl/UNDBiometricsDatabase.html
7http://www.frvt.org/FRGC

9
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Table 2.1: The Lausanne and fusion protocols of the XM2VTS database. Numbers quoted below are the
number of samples.

Data sets Lausanne Protocols Fusion
LP1 LP2 Protocols

LP Train client accesses 3 4 NIL
LP Eval client accesses 600 (3 × 200) 400 (2 × 200) Fusion dev
LP Eval impostor accesses 40,000 (25 × 8 × 200) Fusion dev
LP Test client accesses 400 (2 × 200) Fusion eva
LP Test impostor accesses 112,000 (70 × 8 × 200) Fusion eva

• They come with well defined experimental configurations, calledprotocols, which define clearly the
training and test sets such that different algorithms can bebenchmarked.

• They contain behavioral and physiological biometric traits.

2.1.1 XM2VTS Database and Its Score-Level Fusion Benchmark Datasets

The XM2VTS database [83] contains synchronized video and speech data from 295 subjects, recorded
during four sessions taken at one month intervals. On each session, two recordings were made, each
consisting of a speech shot and a head shot. The speech shot consisted of frontal face and speech recordings
of each subject during the recital of a sentence.

The Lausanne Protocols

The 295 subjects were divided into a set of 200 clients, 25 evaluation impostors and 70 test impostors.
There exists two configurations or two different partitioning approaches of the training and evaluation sets.
They are called Lausanne Protocol I and II, denoted as LP1 andLP2. One can distinguish three data sets,
namely train, evaluation and test sets (labeled as “Train”,“Eval” and “Test”, respectively). For each user,
these three sets contain(3, 3, 2) samples for LP1 and(4, 2, 2) for LP2. The training set is useduniquely
to build a user-specific model. Any hyper-parameter of the model can be tuned on the Eval set. Thus
the Eval set isreserveduniquely as a validation set. Ana priori threshold has to be calculated on the
Eval set and this threshold is used when evaluating the system performance on the Test set in terms of
FAR and FRR (to be described in Section 2.2). Note that in bothprotocols, the test set remains the same.
Table 2.1 is the summary of the LP1 and LP2 protocols. The lastcolumn of Table 2.1 shows the fusion
protocol. Note that as long as fusion is concerned, only two types of data sets are available, namely fusion
development and fusion evaluation sets8. These two sets have(3, 2) samples for LP1 and(2, 2) samples
for LP2, respectively, on a per user basis. More details about the XM2VTS database can be found in [78].

The Score-Level Fusion Datasets

As for the score fusion datasets, we collected match scores of seven face systems and six speech systems.
This data set is known as the “XM2VTS score-level fusion benchmark dataset” [106]9. The label assigned
to each system (Table 2.2) has the format Pn:m wheren denotes the protocol number (1 or 2) andm
denotes the order in which the respective system is invoked.For MLP-based classifiers, their associated
class-conditional scores have a skewed distribution due tothe use of the logistic activation function in the
output layer. Note that LP1:6 and LP1:8 are MLP systems with hyperbolic tangent output whereas LP1:7
and LP1:9 are the same systems but whose outputs are transformed into LLR by using an inverse hyperbolic

8Note that at the fusion level, only scores are available. Thefusiondevelopmentset is derived from the LP Eval set whereas the
fusion evaluationset is derived from the LP Test set. The term “development” is consistently referred to as the training set; and
“evaluation” as the test set.

9Available at http://www.idiap.ch/∼norman/fusion. There are nearly 100 downloads at the time of this thesis publication.
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Table 2.2: The characteristics of 12 (+2 modified) systems taken from the XM2VTS benchmark fusion
database.

Labels Modalities Features Classifiers
P1:1 face DCTs GMM
P1:2 face DCTb GMM
P1:3 speech LFCC GMM
P1:4 speech PAC GMM
P1:5 speech SSC GMM
P1:6 face DCTs MLP
P1:7 face DCTs MLPi
P1:8 face DCTb MLP
P1:9 face DCTb MLPi
P1:10 face FH MLP
P2:1 face DCTb GMM
P2:2 speech LFCC GMM
P2:3 speech PAC GMM
P2:4 speech SSC GMM

MLPi denotes the output of MLP converted to LLR using inversehyperbolic tangent function. P1:6 and
P1:7 (resp. P1:8 and P1:9) are thesamesystems except that the scores of the latter are converted.

tangent function. This is done to ensure that the scores are once again linear. More explanation about the
motivation and the post-processing technique can be found in Section 3.3.210.

The Participating Systems in the Fusion Datasets

Note that each system in Table 2.2 can be characterized by a feature representation and a classifier. All
the speech systems are based on the state-of-the-art Gaussian Mixture Models (GMMs) [121]. They dif-
fer only by their feature representations, namely Linear Frequency Cepstral Coefficients (LFCC) [119],
Phase-AutoCorrelation (PAC) [59] and Spectral Subband Centroids (SSC) [91, 118]. These feature repre-
sentations are selected such that they exhibit different degree of tolerance to noise. Highly tolerant feature
representation performs worse in clean conditions. The face systems are based on a downsized raw Face
images concatenated with color Histogram information (FH)[81] and Discrete Cosine Transform (DCT)
coefficients [131]. The DCT procedure operates with two sizes of image block, i.e., small (s) or big (b),
and are denoted by DCTs or DCTb, respectively. Hence, the matching process is local as opposed to the
holistic matching approach. Both the face and speech systems are considered the-state-of-the-art systems
in this domain. Details of the systems can be found in [106].

2.1.2 BANCA Database and Score Datasets

The BANCA database [5] is the principal database used in thispaper. It has a collection of face and
voice biometric traits of up to 260 persons in 5 different languages. We used only the English subset,
containing only a total of 52 persons; 26 females and 26 males. The 52 persons are further divided into
two sets of users, which are called g1 and g2, respectively. Each set of users contains 13 males and 13
females. According to the experimental protocols, when g1 is used as a development set (to build the
user’s template/model), g2 is used as an evaluation set. Their roles are then switched. In this thesis, g1 is
used as a development set; and g2 an evaluation set.

10In some fusion experiments, especially in user-specific fusion, P1:10 is excluded from study because for some reasons, it contains
scores more than1 or less than−1 (which should not in theory!). When converting these border scores using the inversion process,
they result in overflow and underflow. While we tried differentways to handle this special case, using P1:10 only complicates the
analysis without bring additional knowledge.
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Table 2.3: Usage of the seven BANCA protocols (C: client, I: impostor). The numbers refer to the ID of
each session.

Train SessionsTest Sessions
1 5 9 1,5,9

C: 2-4
I: 1-4

Mc

C: 6-8
I: 5-8

Ud Md

C: 10-12
I: 9-12

Ua Ma

C: 2-4,6-8,10-12
I: 1-12

P G

The BANCA Protocols

There are altogether 7 protocols, namely, Mc, Ma, Md, Ua, Ud,P and G, each simulating matched control,
matched adverse, matched degraded, uncontrolled adverse,uncontrolled degraded, pooled and grant test,
respectively. For protocols P and G, there are 312 client accesses and 234 impostor accesses. For all other
protocols, there are 78 client accesses and 104 impostor accesses. Table 2.3 describes the usage of different
sessions in each configuration. Note that the data is acquired over 12 sessions and spanned over several
months.

The Score Files

For the BANCA score data sets, there are altogether 1186 score files containing single modality experi-
ments as well as fusion experiments, thanks to a study conducted in [80]11. The classifiers involved are
Gaussian Mixture Models (GMMs) (514 experiments), Multi-Layer Perceptrons (MLPs) (490 experiments)
and Support Vector Machines (SVMs) (182 experiments).

Differences Between BANCA and XM2VTS

The BANCA database differs from the XM2VTS database in the following ways:

• BANCA contains more realistic test scenarios.

• The population on which the hyper-parameter of a baseline system is tuned is different for the de-
velopment and evaluation sets, whereas in XM2VTS the genuine users are the same (the impostor
populations are different in both cases). In both cases, there are no “inter-template” match scores,
i.e., match scores resulting from comparing the biometric data of two genuine users, which are used
frequently in databases with identification setting.

• The number of client and impostor accesses are much more balanced in BANCA than in XM2VTS.

Pre-defined BANCA Fusion Tasks

We selected a subset of BANCA systems to constitute a set of fusion tasks. These systems are from
University of Surrey (2 face systems), IDIAP (1 speaker system), UC3M (1 speaker system) and UCL (1
face system)12. The specific score files used are as follow:

• IDIAP_voice_gmm_auto_scale_33_200

• SURREY_face_svm_auto

11Available at “ftp://ftp.idiap.ch/pub/bengio/banca/banca_scores”
12Available at “ftp://ftp.idiap.ch/pub/bengio/banca/banca_scores”
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• SURREY_face_svm_man

• UC3M_voice_gmm_auto_scale_34_500

• UCL_face_lda_man

for each of the 7 protocols. By combining each time two systems from the same protocol, one can obtain
10 fusion tasks, given by5C2 (5 “choose” 2). This results in a total of 70 experiments for all 7 protocols.

These experiments can be divided into two types: multimodalfusion (fusion of two different modalities,
i.e, face and speech systems) and intramodal fusion (of two face systemsor two speech systems). We expect
multimodal fusion to be less correlated while intramodal fusion to be more correlated. This is an important
aspect so that both sets of experiments will cover a large range of correlation values.

2.1.3 NIST Speaker Database

The NIST yearly speaker evaluation plans [89] provide many data sets for examining different issues that
can influence the performance of a speaker verification system, notably with respect to handset types,
transmission channels and speech duration [148, Chap. 8]. The 2005 (score) datasets are obtained from 24
systems that participated in the evaluation plan. These scores are resulted from using testing the 24 systems
on the speech test data sets as defined by the NIST experimental protocols. However, for the purpose of
fusion, there exists no fusion protocol so we define one that suits our needs.

In compliance to the NIST’s policy, the identity of the participants are concealed, so are the systems
which the participants submitted. Most systems are based onGaussian Mixture Models (GMMs) but there
exists also Neural Network-based classifiers and Support Vector Machines. A few systems are actually
combined systems using different levels of speech information. Some systems combine different type of
classifiers but each classifier uses the same feature sets. Weuse a subset of this database which contains
124 users.

2.2 Performance Evaluation

2.2.1 Types of Errors

A fully operational biometric system makes a decision usingthe followingdecision function:

decision(x) =

{
accept if y(x) > ∆
reject otherwise,

(2.1)

where∆ is a threshold andy(x) is the output of the underlying system supporting the hypothesis that
the extracted biometric feature of the query sample,x, belongs to thetarget client, i.e., whose identity is
being claimed. Note that in this case, the decision isindependentof any identity claim. A more thorough
discussion of user-specific decision making can be found in Section 5. For the sake of clarity, we writey
instead ofy(x). The same convention applies to all variables derived fromy. Because of the accept-reject
outcomes, the system may make two types of errors, i.e., false acceptance (FA) and false rejection (FR).
The normalized versions of FA and FR are often used and calledFalse Acceptance Rate (FAR) and False
Rejection Rate (FRR)13, respectively. They are defined as:

FAR(∆) =
FA(∆)

N I
, (2.2)

FRR(∆) =
FR(∆)

NC
. (2.3)

where FA and FR count the number of FA and FR accesses, respectively; andNk are the total number of
accesses for classk = {C, I} (client or impostor). To obtain the FAR and FRR curves, one sweeps over
different∆ values.

13Also called False Match Rate (FMR) and False Non-Match Rate (FNMR). In this thesis, we are interested in algorithmic eval-
uation (as opposed to scenario or application evaluation),hence other errors such as Failure to Enroll and Failure to Acquire do not
contribute to FAR and FRR. As a result, FAR and FRR are taken tobe the same as FMR and FNMR, respectively.[[] reference?]
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2.2.2 Threshold Criterion

To choose an “optimal threshold”∆, a threshold criterion is needed. This criterion has to be optimized
on a development set. Two commonly used criteria are Weighted Error Rate (WER) and Equal Error Rate
(EER). WER is defined as:

WER(α,∆) = αFAR(∆) + (1 − α) FRR(∆), (2.4)

whereα ∈ [0, 1] balances between FAR and FRR. The WER criterion discussed here is a generalization of
the criterion used in the yearly NIST evaluation plans [148,Chap. 8] (known asCDET ) and that used in
the BANCA protocols [5]. This is justified in Section B.

Let ∆∗
α be the optimal threshold thatminimizesWER on adevelopment set. It can be calculated as

follows:
∆∗

α = arg min
∆

|αFAR(∆) − (1 − α) FRR(∆)|. (2.5)

Note that one could have also used a second minimization criterion:

∆∗
α = arg min

∆
WER(α,∆). (2.6)

In theory, these two minimization criteria should give identical results. This is because FAR is a decreasing
function while FRR is an increasing function of threshold. In practice, however, they do not, since FAR
and FRR are empirical functions and are not smooth. (2.5) ensures that the difference between weighted
FAR and weighted FRR is as small as possible while (2.6) ensures that the sum of the two weighted terms
are minimized. By taking advantage of the shape of FAR and FRR, (2.5) can estimate the threshold more
accurately and is used for evaluation in this study.

Note that a special case of WER whereα = 0.5 is known as the EER criterion. The EER criterion
makes the following two assumptions: the costs of FA and FR are equal and the prior probabilities of client
and important class are equal.

2.2.3 Performance Evaluation

Having chosen an optimal threshold using the WER threshold criterion discussed in Section 2.2.2, the final
performance is measured using Half Total Error Rate (HTER).Note that the threshold (∆∗

α) is found with
respect to a givenα. The HTER is defined as:

HTER(∆∗
α) =

FAR(∆∗
α) + FRR(∆∗

α)

2
. (2.7)

It is important to note that the FAR and FRR do not have the sameresolution. Because there are more
simulated impostor accesses than the client accesses in most benchmark databases, FRR changes more
drastically than does FAR. Hence, when comparing the performance using HTER(∆∗

α) from two systems
(at thesamecostα), the question of whether a given HTER difference is statistically significant or not has
to take into account the highly unbalanced numbers of clientand impostor accesses. This is discussed in
Section 2.2.4.

Note that the key idea advocated here is that the threshold has to be fixeda priori using a threshold
criterion (optimized on a development set) before measuring the system performance (on an evaluation set).
The system performance obtained this way is calleda priori. On the other hand, if oneoptimizesa criterion
and quotes the performance on thesamedata set, the performance is calleda posteriori. Thea posteriori
performance is thus overly optimistic because one assumes that the class-conditional score distributions
are completely known in advance. In an actual operating system, the class-conditional score distributions
as well as the class prior probabilities are unknown; yet thedecision threshold has to be fixeda priori.
Quotinga priori performance thus reflects better the application need. Thissubject is further discussed in
Section 2.2.6. It is for this reason that the NIST yearly evaluation plans include two sets of performance for
CDET : onea priori and anothera posteriori(called minimumCDET ). In this thesis, onlya priori HTER
is quoted.
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2.2.4 HTER Significance Test

Although there exists several statistical significance tests in the literature, e.g., the McNemar’s Test [30],
it has been shown that the HTER significance test [9] better reflects the unbalanced nature of precision in
FAR and FRR.

A two-sided significance test for HTER was proposed in [9]. Under some reasonable assumptions, it
has been shown [9] that the difference of HTER of two systems (sayA andB) is normally distributed with
the following variance:

σ2
HTER =

FARA(1 − FARA) + FARB(1 − FARB)

4 · N I
+

FRRA(1 − FRRA) + FRRB(1 − FRRB)

4 · NC
(2.8)

where HTERA, FARA and FRRA are HTER, FAR and FRR of the first system labeledA and these terms
are defined similarly for the second system labeledB. Nk is the number of accesses for classk = {C, I}.
One can then compute the followingz-statistic:

z =
HTERA − HTERB

σHTER
. (2.9)

Let us defineΦ(z) as the cumulative density of a normal distribution with zeromean and unit variance.
The significance ofz is calculated asΦ−1(z). In a standard two-sided test,|z| is used. In (2.9), the sign
of z is retained so thatz > 0 (resp.z < 0) implies that HTERA > HTERB (resp. HTERA < HTERB).
Consequently,Φ−1(z) > 0.5 (resp.Φ−1(z) < 0.5).

Note that the HTER significance test [9] does not consider thefact that scores from the same user tem-
plate/model are correlated. As a result, the confidence interval can be under-estimated. There exists a more
advanced technique that considers such dependency and it iscalled the bootstrap subset technique [12].
Note that the usage of the HTER significance test and that of the bootstrap subset technique are different.
If one is interested in comparing two algorithms evaluated on thesamedatabase (hence of the same pop-
ulation and size), the HTER significance test is adequate. However, if one is interested in comparing two
algorithms evaluated on two different databases (hencedifferentsets of population) the bootstrap subset is
more appropriate.

2.2.5 Measuring Performance Gain And Relative Error Change

This section presents the “gain ratio”. This measure is aimed at quantifying the performance gain obtained
due to fusion with respect to the baseline systems. Suppose that there arei = 1, . . . , N baseline systems.
HTERi is the HTER evaluation criterion (measured on anevaluationset) associated to the output of system
i and HTERCOM is the HTER associated to the combined system. The “gain ratio” β has two definitions,
as follows:

βmean =
meani(HTERi)

HTERCOM

, (2.10)

βmin =
mini(HTERi)

HTERCOM

, (2.11)

whereβmean andβmin are the proportion of the HTER of the combined (fused) systemwith respect to the
mean and the minimum HTER of the underlying systemsi = 1, . . . , N . In order thatβmin ≥ 1, several
conditions have to be fulfilled (see Section C.3).

Another measure that we use often is the relative error change. It is defined as:

relative HTER change=
HTERnew − HTERold

0 − HTERold
=

HTERnew

HTERold
− 1,

where the zero in the denominator is made explicit to show that the relative error change compares the
amount of error reduction with respect to the maximal reduction possible, i.e., zero in this case. This
measure is useful because it takes into account the fact thatwhen an error rate is already very low, making
some more progress becomes very difficult.
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Figure 2.1: An Examples of two EPC curves and their corresponding significance level of HTER difference.
(a): Expected Performance Curves (EPCs) of two experiments: one is a face system (DCTs,GMM) and
the other is speech system (PAC,GMM). (b) HTER significance test of the two EPC curves. Confidence
more than 50% implies that the speech system is better and vice-versa for confidence less than 50%. This
is a two-tailed test so two HTERs of a givencostα are considered significantly different when the level of
confidence is below 10% or above 90% (for a significance level of 20%, in this case for illustration).

2.2.6 Visualizing Performance

Perhaps the most commonly used performance visualizing tool in the literature is the Detection Error
Trade-off (DET) curve [82], which is actually a Receiver Operator Curve (ROC) curve plotted on a scale
defined by the inverse of a cumulative Gaussian density function. It has been pointed out [8] that two DET
curves resulted from two systems are not comparable becausesuch comparison does not take into account
how the thresholds are selected. It was argued [8] that such athreshold should be chosena priori as well,
based on a given criterion such as WER in (2.5). As a result, theExpected Performance Curve (EPC) [8]
was proposed. We will adopt this evaluation method, which isalso in coherence with the original Lausanne
Protocols defined for the XM2VTS and the BANCA databases.

The EPC curve simply plots HTER (in (2.7)) versusα (as found in (2.4)), since different values ofα
give rise to different HTER values. The EPC curve can be interpreted in the same manner as the DET
curve, i.e., the lower the curve is, the better the performance but for the EPC curve, the comparison is done
at a given cost (controlled byα). Examples of DET and EPC curves can be found in Figure 6.3.

We show in Figure 2.1 how the statistical significance test discussed in Section 2.2.4 can be used in
conjunction with an EPC curve. Figure 2.1(a) plots the EPC curves of two systems and Figure 2.1(b) plots
their degree of significance. In this case, (DCTs,GMM) is systemA whereas (PAC,GMM) is systemB.
Whenever the EPC curve of systemB is lower than that of systemA (B is better thanA), the corresponding
significance curve is more than 50%. Below 10% of confidence (or above 90% of confidence) indicates
that systemB is statistically significantly worse thanA (or systemA is statistically significantly worse
thanB).
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2.2.7 Summarizing Performance From Several Experiments

It is often necessary to pool several DET/EPC curves together. For instance, when two algorithms exhibit
very similar performance on an experiment, by usingN databases, one is interested to know if one system is
better than the other by using only a single visualization curve via DET or EPC. Two of these reasons are: (i)
to summarize the curves; (ii) to obtain asignificantstatistics. Often, due to fusion, FAR and FRR measures
can be very small and can reach 100% accuracy. By pooling the curves, this problem can be avoided. It
is due to this problem that anasymptotic performanceprocedure [42] was proposed. This procedure first
fits the conditional scores with a chosen distribution modeland then the smoothed FAR and FRR curves
can be generated. While such a model-based approach is well accepted in the medical fields (where the
data is not continuous but rank-ordered) [84], it is not commonly used in biometric authentication. This is
because the empirical FAR and FRR values in biometric authentication can be linearly interpolated. The
composite FAR and FRR measures hence is a practical solutionwithout any model-fitting (whose model
and hyper-parameter tuning are subject to discussion).

The main idea in pooling several curves together is by establishing a global coordinate such that the
pair of FAR and FRR values from different curves are comparable. Examples of such coordinates are DET
angle [2], LLR unique to each DET [54] and theα value used in WER as shown in (2.5), among others.
We use theα parameter because it inherits the property that the corresponding threshold isunbiased, i.e.,
the threshold is set without the knowledge of the score distribution of the test set. The pooled FAR and
FRR acrossi = 1, . . . , N experiments for a givenα ∈ [0, 1] is defined as follow:

FARpooled(∆∗
α) =

∑N
i=1 FA(∆∗

α)[i]

N I × N
, (2.12)

and

FRRpooled(∆∗
α) =

∑N
i=1 FR(∆∗

α)[i]

NC × N
, (2.13)

where FA(∆∗
α)[i] counts the number of false acceptances of systemi due to using the threshold∆∗

α at the
costα, NC is the number of accesses for classk{C, I}. FR(∆∗

α)[i] that counts the number of client is
defined similarly. The pooled HTER is defined similarly as in (2.7) by using the pooled versions of FAR
and FRR.

2.3 Summary

In this chapter, we discussed the databases and the evaluation techniques that will be used throughout this
thesis. In particular, we highlight the following issues:

• A priori performance : We quote onlya priori performance, where the decision threshold is fixed
after optimizing a criterion on a separate development set as a function ofα. In contrast, quotinga
posterioriperformance measured on an evaluation set isbiasedbecause such performance assumes
that the class-conditional distribution of the test score is completely known in advance. For this
reason, all DET/EPC curves in this thesis are plotted witha priori performance given (some equally
spaced and sampled values of)α ∈ [0, 1]14.

• HTER significance test:We choose to employ the HTER significance test that considersthe unbal-
anced numbers of client and impostor accesses, thereby obtaining a more realistic confidence interval
around the performance difference involving two systems.

• Pooled performance evaluation:We adopt a strategy to visualize a composite EPC/DET curve that
is summarized from several experiments.

In this chapter, we also made available a score-level fusionbenchmark fusion benchmark dataset which
was published in [106].

14The DET curve plotted witha priori FAR and FRR values is hence a discrete version of the originalDET curve. This is not a
weakness as a fine sampling ofα values will compensate for the discontinuities. The advantage, however, is that when “comparing
two DET curves”, we actually compare two HTERs given the sameα value. In this sense, theα value establishes an unambiguous
coordinate where points on two DET curves can be compared.
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Chapter 3

Score-Level Fusion

3.1 Introduction

Fusing information at the score level is interesting because it reduces the problem complexity by allowing
different classifiers to be used independently of each other. Since different classifiers are used, a fusion
classifier will have to take into consideration the fact thatthe scores to be combined are of different types,
e.g., a fingerprint which outputs scores in the range[0, 1000], a correlation based face classifier which
outputs scores in the range[−1, 1], etc. In this respect, there exists two fusion strategies. In the first strategy,
the system outputs are mapped into a commonscore representation– a process called score normalization
– before they are combined using (very often) simple rules, e.g., min, max, mean, etc. Learning takes
place at the score normalization stage. In the second strategy, a fusion classifier is learnt from the scores
to be combined directly. Examples of fusion classifiers are Support Vector Machines, Logistic Regression,
etc. Both the fusion strategies are analyzed in this chapter.

While there exists many score representations, only two score representations are statistically sound:
probability and Log-Likelihood Ratio (LLR). While in theory, both representations are equivalent, using
LLR has the advantage that the corresponding scores can be conveniently characterized by the first- and
second-order moments. Furthermore, these moments can be conditioned on a particular user, thus providing
a means to introduce the statistics associated to a particular user.

This chapter is presented with the goal to prepare the readerto better understand our original contribu-
tions on better understanding the fusion problem (Chapter 4in Part I) and on user-specific processing (Part
II).

Chapter Organization

This chapter contains the following sections: Section 3.2 introduces the notations to be used through out
this thesis and presents some of the basic concepts, e.g., levels of information fusion and decision functions.
Section 3.3 emphasizes the importance of mapping the systemoutputs into a common domain since the
system outputs areheterogeneous(of different types). Section 3.4 includes a survey of existing fusion
techniques. Section 3.5 emphasizes the benefits of working on the LLR representation of system outputs
from the fusion perspective. These benefits will be concretely shown in Chapter 4 using a parametric fusion
model, as well as in Chapters 6 and 7, where scarce user-specific information is exploited.

In order to support some of the claims in this chapter, several experiments have been carried out.
However, in the interest to keep this chapter concise, none of the experimental results (in terms of DET/EPC
curves) are included here. Most of these results can be foundin [101].
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3.2 Notations and Definitions

3.2.1 Levels of Fusion

According to [132] (and references herein), biometric systems can be combined at several architectural
levels, as follow:

• sensor, e.g., weighted sum and concatenation of raw data,

• feature, e.g., weighted sum and concatenation of features,

• score, e.g., weighted sum, weighted product, and post-classifiers (the conventional machine-learning
algorithms such as SVMs, MLPs, GMMs and Decision Trees/Forests); and

• decision, e.g., majority vote, Borda count, Behavioral Knowledge Space [138], Bayes fusion [74],
AND and OR.

The first two levels are called pre-mapping whereas the last two levels are called post-mapping. Algo-
rithms working in-between the two mappings are called midst-mapping [132]. We are concerned with the
score level fusion (hence post-mapping) in this thesis. Note thatwe do not work on the decision level
fusion but the score level fusion because much richer information is available at the score level, e.g., user-
specific score statistics. In fact, an experimental study in[74] shows that the decision level fusion does not
generalize as well as the score level fusion (although this was the objective of the paper).

3.2.2 Decision Functions

Let us denoteC (for client) andI (for impostor) as the two class labels the variablek can take, i.e.,
k ∈ {C, I}. Note that classC is also referred to as thegenuineclass. We consider a “person” as a
composite of data for various biometric modalities, which can be captured by biometric devices/sensors,
i.e.,

person= {tface, tspeech, tfingerprint, . . .},
whereti is the raw data, i.e., 1D, 2D and multi-dimensional signals,of thei-th biometric modality.

To decide whether to accept or reject an access requested by aperson, one can evaluate theposterior
probability ratio in logarithmic domain (called log-posterior ratio, LPR):

LPR ≡ log

(
P (C|person)
P (I|person)

)

= log

(
p(person|C)P (C)

p(person|I)P (I)

)

,

= log
p(person|C)

p(person|I)
︸ ︷︷ ︸

+ log
P (C)

P (I)
︸ ︷︷ ︸

,

= log
p(person|C)

p(person|I)
− log

P (I)

P (C)
≡ yllr − ∆, (3.1)

where we introduced the termyllr – also called a Log-Likelihood Ratio (LLR) score – and a threshold
∆ ≡ log P (I)

P (C) to handle the case of different priors. This constant also reflects the differentcostsof false
acceptance and false rejection. In both cases, the threshold ∆ has to be fixeda priori. The decision of
accepting or rejecting an access is then:

decision(LPR) =

{
accept if LPR> 0
reject otherwise,

(3.2)

or

decision∆(yllr) =

{
accept ifyllr > ∆
reject otherwise,

(3.3)

where in (3.3), the adjustable threshold is made explicit.
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Let yprob be the probability of being a client, i.e.,yprob ≡ P (C|person) and using the definition of

LPR ≡ log
(

P (C|person)
P (I|person)

)

, the decision function of (3.2) can be written asP (C|person) > P (I|person)

or P (C|person) > 0.5, sinceP (C|person)+P (I|person) = 1. In terms ofyprob, this decision function is:

decision∆(yprob) =

{
accept ifyprob > 0.5
reject otherwise,

(3.4)

Note that the prior probability has already been absorbed, i.e,P (C|person) ∝ p(person|C)p(C).
We callyllr an LLR score whereasyprob a probability1. In theory, the decision functions of (3.3) and

(3.4) are equivalent because both can be derived from (3.2).However, in practice, the explicit presence of
a threshold in (3.3) ismore convenientbecause the prior probabilities (P (C) andP (I)) can be adjusted
separatelyfrom the LLR score. For this reason, (3.3) ismore commonly usedin the literature. For the rest
of the discussion, we will writey ≡ yllr so that we consistently use LLR in our discussion unless stated
otherwise.

3.2.3 Different Contexts of Fusion

From an architectural view point, the (LLR) scorey can be explicitly written as:

y ≡ fθ(fe(s(t))), (3.5)

where,s is a sensor capturing a particular biometric traitt, fe is a feature extractor,θ is a set of classifier
parameters associated to the classifierfθ. We also denotex ≡ fe(s(t)) when only the extracted features
are concerned.

When considering different fusion contexts, the scorey is associated to a subscripti, which takes on a
different meaning. The score can be summarized as follows:

yi(person) =







fθ(fe(s(t[i]))) if multi-sample
fθ(fe(si(ti))) if multi-modal
fθ(fe,i(s(t))) if multi-feature
fθ,i(fe(s(t))) if multi-classifier,

(3.6)

wheret denotes any given one of theti biometric traits fori ∈ {face, speech, . . .}, t[i] denotes thei-th
instance (in time) of the biometric traitt, andti denotes thei-th biometric trait. As in common biometric
applications, we assume that a dedicated sensor is designedto capture a specific biometric trait, i.e.,si(ti).

Note that the indexi takes on a different meaning in any of the four contexts in (3.6). For example,i
denotes thei-th instance in the multi-sample case, thei-th biometric modality in the multi-modal case, the
i-th feature set in the multi-feature case, and thei-th classifier in the multi-classifier case.

To simplify the notation, we writeyi instead ofyi(person), while bearing in mind thatyi is always
dependent on the “person” (in the sense of composite 1D or 2D signals as captured by biometric devices)
who makes an access request. Without loss of generality, we assume that for each access request, there are
yi|i ∈ {1, . . . , N} scores available. We further writey to refer to the output of any of the arbitrary systems
i ∈ {1, . . . , N}.

Let y = [y1, . . . , yN ]′ be the vector of system outputs to be combined. To decide if anaccess should
be granted or not, a fusion classifierfCOM : R

N → R must be defined. This can be expressed by
yCOM = fCOM (y). Note that the decision function in (3.3) can still be used for the scoreyCOM . The
different types of fusion classifiers of the formfCOM will be discussed in Section 3.4. In the next Section
we will examine different score types commonly used in the literature.

1There is an increase use ofyprob′ = P (C|y) in fusion, e.g., [60], wherey is an output score andP (C|y) is considered ascore-
normalization procedureintended to approximate the ideal probabilityyprob = P (C|t) andt is a biometric trait. Whileyprob is a
true probability,yprob′ can, at best, be thescore-level approximationof yprob. No distinction is made betweenyprob andyprob′ in
this thesis.
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3.3 Score Types and Conversion

3.3.1 Existing Score Types

In biometric authentication, there are several types of output, depending on the underlying system, which
are listed as follows:

• Distance metric: y ∈ R
+ (a positive number). This is often an output of a template matching system

usingy = dist(x,xtmplt), wheredist is a distance function comparing a stored templatextmplt and
a query biometric samplex. Some fingerprint recognition system outputs an index between 0 and
1000 using the function INT(y × 1000) where INT converts any real number to its nearest integer
value.

• Probability y ∈ [0, 1]. This is a typical output of a Multi-Layer Perceptron (MLP) with a sigmoid
activation output.

• Similarity index: y ∈ [−1, 1]. This is a typical output of a Multi-Layer Perceptron (MLP) with a
hyperbolic tangent activation function.

• Correlation index: y ∈ [0, 1]. Similar to a distance, the correlation index measures the closeness of
two biometric samples.

• LLR score: y ∈ R (a real number). This type of output is typical for systems relying on LLR test,
i.e., Bayes classifier. The state-of-the-art speaker verification system based on the Gaussian Mixture
Models (GMMs) output an LLR.

• Direction from the decision plane:. The classical Linear Discriminant Analysis and the more recent
Support Vector Machines (SVMs) for instance output a score that can be interpreted as a geometric
perpendicular direction from the decision hyper plane in the feature (or kernel) space. Based on
the direction (positive or negative), a decision function classifies a sample as either one class or the
other. The distance (magnitude) of this direction can be associated with the level of confidence in
classifying a given query sample.

Although there are many types of scores, they can be categorized roughly by their types of class-conditional
distribution, i.e., approximately normally (Gaussian) distributed or not. Byapproximately normally dis-
tributed, we mean that the scores can be summarized by the first order (mean) and second order (covariance)
statistics. Obviously probability and similarity index ([−1, 1]) have extremely skewed class-conditional
distributions. The rest of the scores are approximately normally distributed [109] (see also Section C.1).
Fortunately, by converting the probability scores (and similarly the similarity scores) to LLR scores, the
process that causes such a skewed class conditional (score)distribution can be reversed. This subject is
discussed in Section 3.3.2.

3.3.2 Score Conversion Prior to Fusion

Given the heterogeneous system outputs listed in Section 3.3.1, the first challenge is to convert them into a
common representation. We survey here a family of score-normalization procedures here, namely, conver-
sion to probability and to LLR, non-linear score conversion, linear score conversion with the[0, 1] range
constraint and linear score conversion without the[0, 1] range constraint While these score normalization
procedures are not new, e.g., [60], our somewhat original contribution here is to propose algorithms to
systematically convert any score types into probability and LLR.

Conversion Between Probability and LLR

According to the decision functions discussed in Section 3.2.2, there are only two types of score, i.e.,
probability and LLR. We will discuss the conversion betweenboth types of scores here.
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Algorithm 1 Conversion to probability:fprob(y)

• If y is an LLR score,fprob(y) = sigmoid(y).

• If y is P (C|x), fprob(y) = y.

• If y is tanh, fprob(y) = 1+y
2 .

• If y is a distance metric, a similarity index, a correlation or any other score type not considered, two
solutions can be used:

1. fprob(y) = sigmoid(fLLR(y) − ∆) where∆ = P (I)
P (C) . See Algorithm 2 forfLLR(y).

2. fprob(y) = sigmoid(y−B
A

) whereA andB have to be empirically adjusted using algorithms
such as logistic regression [56]. This is a moread hocform and was reported in [60, 127] for
instance.

Algorithm 2 Conversion to LLR:fLLR(y)

• If y is an LLR score,fLLR(y) = y.

• If y is P (C|x), fLLR(y) = sigmoid−1(y).

• If y is tanh, fLLR(y) = tanh−1(y).

• If y is a distance metric, a similarity index, a correlation or any other score type not considered,
fLLR(y) = log p(y|C)

p(y|I) − log P (C)
P (I) .

Let y = P (C|t). By using the definition of LPR appeared in (3.2), LLR and probability can be
converted into one another by:

LPR = log
P (C|t)
P (I|t) = log

y

1 − y
or sigmoid(z)−1 = log

z

1 − z
(3.7)

y =
1

1 + exp (LPR)
or sigmoid(z) =

1

1 + exp (z)
, (3.8)

where we explicitly show that a probability can be convertedto an LPR using an inverse sigmoid function
and the process can be reversed using a sigmoid function. In asimilar fashion, an MLP outputy with a
hyperbolic tangent activation function,tanh(z) = sinh(z)

cosh(z) , can be mapped into LLR by its inverse, i.e.,

tanh−1(y) =
1

2
log

(
1 + y

1 − y

)

. (3.9)

The algorithms that convert fromany score type(including those not considered in Section 3.3.1) to prob-
ability and LLR are shown in Algorithm 1 and 2, respectively.

An Example to Illustrate the Differences Between Probability and LLR

To motivate why converting from one score type to another is important, we consider a fusion task consist-
ing of two systems in the XM2VTS database (see Section 2.1.1). These two systems are based on outputs
of two MLP classifiers with non-linear activation functions. The scoresbeforeandafter transformation into
LLR are plotted in Figure 3.1. Because these two systems use the same face image as input (but different
feature representations), their system outputs are expected to be somewhat correlated. Their corresponding
correlations before and after LLR transformation are measured to be 0.382 and 0.471, respectively. As can
be seen, the supposedly observed correlation isunderestimatedusing the original scores (due to hyperbolic
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Figure 3.1: Conversion between probability and LLR. Scatter plots of two systems (a) before and (b) after
probabilistic inversion. The X-axis is a face system based on histogram features and an MLP classifier,
labeled as (FH,MLP). The Y-axis is also a face system based onDCTMod2 features and an MLP classifier,
labeled as (DCTs,MLP).

tangent transformation) than using the transformed scoresin LLR. Furthermore, the transformed scores
can better be characterized by the first and second-order moments (the second order moment, variance, is
proportional to correlation). More about the merits of working in probability and LLR will be discussed in
Section 3.5.

Non-Linear Score Conversion

In [60], several variants of sigmoid-like functions are proposed, namely double-sigmoid and tanh-estimator.
While the techniques mentioned thus far are parametric approaches that convert any score type to proba-
bility, in [101], we proposed a non-parametric approach. Itis defined as:

fprob(y) = FRR(y) − FAR(y). (3.10)

where FRR and FAR are estimated curves from the scores.

Linear Score Conversion with [0,1] Output Range Constraint

There exists also a family of linear transformation functions, all of the form

flin(y) =
y − B

A
, (3.11)

such that
flin : R → [0, 1]. (3.12)

The terms{A,B} are called scaling factor and bias, respectively. Examplesof normalization proce-
dures [60] are:

• decimal-scaling, i.e.,{
(
10log

10
max y,

)−1
, 0}

• min-max, i.e.,{(max(y) − min(y))
−1

,min(y},

• median, i.e.,{median(|y − median(y)|)−1
,median(y)}
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Figure 3.2: Effects of some linear score transformations. Scatter plots of one of the fusion data sets using
(a) the original score, (b) Z-norm and (c) F-norm. The X- and Y-axes are the outputs of two systems. For
each sub-figure and each class of scores, a bi-variate Gaussian fit is also depicted whose mean is marked
by a big plus sign and whose width is displayed with an oval. The client cluster of scores (small plus signs)
are on the upper right corner and the those of impostor (smalldots) are on the lower left corner. Note that
for (b), the impostor centers are always zero for the two systems whereas the client centers could take on
any value. In (c), not only the impostor centers are always zero, the client centers are also fixed to 2 in this
case (or any number desired). Due to being linear transformations, both Z- and F-normspreservethe score
distribution linearly.

Note that imposing the range to be[0, 1] does not guarantee that the normalized scores are probability. For
instance,fprob(y) > 0.5 can be a sensible decision rule where asflin(y) > 0.5 is not guaranteed to be
optimal.

Linear Score Conversion without [0,1] Output Range Constraint

Another commonly used normalization also having the form of(3.12) is called z-score normalization (or
Z-norm), except thatfz : R → R. The following choice of parameters{A,B} can be used:

(1) Unconditioned Z-norm: i.e., {µ, σ}, whereµ ≡ E[y] andσ ≡
√

V ar[y]. These parameters are
motivated by the assumption that the unconditional scoresy are normally distributed. In reality, this
assumption is violated (even if theclass-conditionalscores are normally distributed!) but practically
it still works.

(2) Impostor-conditioned Z-norm: i.e., {µI , σI}, whereµI ≡ Ey∈Y|I [y] andσI ≡
√

V ary∈Y|I [y].
In doing so, one applies the parameters conditioned only on the impostor distribution. The rationale
is that the parameters of the client distribution are less informative (due to the relatively less data
points on which the parameters are estimated) compared to that of the impostor distribution.

(3) F-norm: i.e.,{µI , µC−µI} whichrelaxesthe conditional Gaussian assumption because the second-
order statisticσk|∀k are not used. Note that in this case, both the client and impostor parameters are
used, i.e., F-norm is considered “client-impostor centric”.

Unless stated otherwise, the term “Z-norm” refers to the impostor-conditioned Z-norm in this thesis, es-
pecially Chapter 7. While Z-norm is commonly used in the literature, F-norm is our original idea and is
presented here for convenience. The rationale for its parameters is justified in Section 4.4.3.

Figure 3.2 shows the effect of impostor-conditioned Z-normand F-norm. Preliminary experiments
using both these normalization procedures show that their fusion performance, using the mean operator,
are not statistically significantly different [101]. However, as will be illustrated in Chapter 7, a modified
version of F-norm that limits the hypothesis to each user is superior over Z-norm. This is because F-norm
is client-impostor centric, whereas (the impostor-conditioned) Z-norm is (necessarily) impostor centric.
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3.4 Fusion Classifiers

This section contains a brief survey of the commonly used fusion techniques in pattern recognition. Sec-
tion 3.4.1 discusses the various ways fusion classifiers canbe categorized. We then identify three distinctive
types of fusion classifiers each adopting a different philosophy. They are discussed in Sections 3.4.2–3.4.4.

3.4.1 Categorization of Fusion Classifiers

In the literature, there are several ways one can categorizescore level fusion classifiers:

• In probability or in LLR: To the best of our knowledge, the majority of literature converts scores
to probabilities before combining them using sum or productrules [60, 72, 66, 123, 138, 58]. The
use of LLR as a score normalization, although equally important, especially in predicting the fusion
performance, e.g., [54, 1], is somewhat downplayed. This thesis focuses on LLR.

• Trainable or non-trainable (classification or combination) [37]: A fusion classifier needs train-
ing if it contains free parameters that have to be optimized given some training data. A trainable
fusion classifier can be viewed as a second-level classifier.For this reason, it is also called a stack-
generalizer[150] or a supervisor [10]. Examples are any machine-learning based classifier, i.e.,
SVMs, MLPs, GMMs, etc. On the other hand, since a non-trainable fusion classifier does not have
any free parameter, it does not need training. Instead, the training takes place at the score normaliza-
tion stage, which is an essential part of a non-trainable fusion classifier. Non-trainable classifiers are
known as fixed fusion operators here. Examples aremean, max, min, median, majority vote, etc.

• Dependent or independent [65]:– Whether one assumes the system outputs to be dependent or
not. When they are their probabilities are jointly estimated; otherwise, their probabilities can be
separately estimated and combined using a product rule.

• Adaptive or non-adaptive [132]: A fusion classifier is considered adaptive if it changes its strategy
for each observed sample based on the sample quality. Empirical studies in [127, 10] show that
by exploiting the quality information appropriately, the adaptive methods can be superior over the
conventional non-adaptive methods.

• User-specific or user-independent:In the former, a fusion classifier (or its weight parameters)
differs from one user to another. In the latter, all users share the same fusion classifier.

• Discriminative or generative [145]: In the former, one introduces a parametric model for the poste-
rior probabilities and infers the values of the parameters from a set of labelled data. In the latter, one
models the joint label and feature distributions. This is done by learning the class prior probabilities
and the class-conditional densities, separately for each class.

• Parallel or serial combination [65]: In the parallel case, each participating system performs the
same classification task hence each of them canalso be used independently. In the serial case,
the systems work together in a collaborative manner. One example is a hierarchical classification
scheme. Under such a scheme, when a top-level classifier cannot make a decision, it passes the
decision making process to the next available level of classifier and so on. A hierarchical approach
was reported in [152] to combine multiple feature representations of palmprint. It was shown that
the first level of classifier can already achieve 80% of accuracy, leaving the 20% to be fine-tuned by
other more computationally demanding classifiers. Note that deciding when to delegate the decision
making process to another level of classifier is still an openresearch problem. We consider only the
parallel case in this thesis.

Figure 3.4.1 shows one way to categorize score level fusion classifiers and sections in which they are
discussed.
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Figure 3.3: Categorization of score-level fusion classifiers.

3.4.2 Fusion by the Combination Approach

Having mapped the system outputs to an appropriate space, i.e., probability, LLR or[0, 1] space, combining
scores assuming that system outputs are independent become:

∏

i fprob(yi) and
∑

i fLLR(yi), respectively
for probability and LLR. In the linear space, the theoretical justification for combining scores using sim-
ple rules such as sum (

∑

i(flin(yi))) and product (
∏

i(flin(yi))) is unclear. In fact, combining scores
using simple rules withflin often results in sub-optimal performance compared to transforming them into
probability and LLR [101].

Simple Fusion Operators (Fixed Rules)

Several operators are commonly used in the literature, namely min, max, median, weighted sum and
weighted product, defined as follow:

ymin = min
i

(yi), (3.13)

ymax = max
i

(yi), (3.14)

ymed = mediani(yi), (3.15)

ywsum =

N∑

i=1

wiyi, (3.16)

ywprod =
N∏

i=1

ywi

i , (3.17)

respectively, wherewi|∀i are parameters that need to be estimated. Themean operator is a special case
of weighted sum withwi = 1

N
. Similarly, the product operator is a special case of weighted product

with wi = 1. Themin, max andmedian operators are sometimes collectively known asOrder Statis-
tics (OS) combiners because they consider the ordering of scores. The order statistics,mean, sum and
product combiners are collectively known assimple fixed rulesbecause they do not contain any adjustable
parameter.

Kittler et al [66] provided an explanation on how these fusion rules can arise as approximations to the
product and sum rules in a Bayesian framework. In particular, min estimates product andmax estimates
sum. In the case the estimate of probabilityy (or yi, for any i) is biased(inaccurate due to mismatch
between training and test sets), they showed that the sum rule outperforms the product rule. Note that the
so-called “biased” estimate of probability is due to the underlying mismatch between training and test sets.
Extending Kittleret al’s work, Lucey [76, Chap. 10] provided an interesting noise mismatch framework in
probability for independent fusion classifiers. Working towards this direction, we will provide a parametric
view in LLR in Section 4.6. Note that in reality, the weightedproduct rule is more commonly found in
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adaptivefusion where each weight is a function of a quality index [127]. We will thus not discuss further
the weighted product rule here.

Specialized Fusion Classifiers Based On the Combination Approach

Two other specialized fusion classifiers should be mentioned here, namely Bayesian expert conciliation [44]
and Decision Template (DT) [72]. The expert conciliation isbased on the assumption that the conditional
scores are normally distributed and is more appropriate to be carried out in LLR. One can implement DT
using many types of distance measures such as Dempster-Shafer rules, fuzzy rules and geometric distances.
Among them, the most common one is the Euclidean distance, which has the following form:

yCOM = −
(
‖y − µ

C‖ − ‖y − µ
I‖

)
(3.18)

where‖z‖ is
√∑

i(z
2
i ), zi is an element of the vectorz, µ

k is the mean vector of system outputs (or a
“class prototype”). A negative sign is introduced here so that the measure is interpreted as similarity (the
larger it is, the closery is to the client prototype). Our empirical studies [101] show that this classifier
works best using probability scores. We conjecture that this is due to the unimodal nature of scores in
this space. However, its generalization, in most fusion experiments, is worse than the general purpose
classifiers that will be discussed in Sections 3.4.3 and 3.4.4.

3.4.3 Fusion by the Generative Approach (in LLR)

Let us define thejoint system output in the LLR domain byyllr ≡ [yllr
1 , . . . , yllr

N ]′ andyllr
i ≡ fLLR(yi).

Then, the classical approach to establish an LLR test between the client and impostor classes, i.e.,k =
{C, I}, is defined as:

yllr
dep = log p(yllr|C)

p(yllr|I)
or yllr

dep = log p(y|C)
p(y|I) , (3.19)

for the dependent assumption2 and

yllr
indep = log

∏

i p(yi|C)
∏

i p(yi|I)
=

∑

i

fLLR(yi), (3.20)

for the independent assumption. The approximations to (3.19) and (3.20) using GMM [11, Chap. 2], for
anyyllr andyllr

i |∀i (or y andyi|∀i, i.e., in the original score domain), can be written as follow:

p̂(y|k) =

Nk
cmp∑

c=1

wk
cN (y|µk

c ,Σk
c ), (3.21)

p̂(y|k) =

Nk
cmp∑

c=1

wk
cN

(
y|µk

c , (σk
c )2

)
, (3.22)

for anyy ∈ {yi|i = 1, . . . , N}, respectively, where, thec-th component of the class conditional (denoted
by k) mean vector isµk = [µk

1 , . . . , µk
N ]′, its covariance matrix of dimensionN × N is Σk

c and there are
Nk

cmp components for eachk = {C, I}. The mean and variance in the mixturep(y|k), i.e.,µk
c and(σk

c )2

are defined similarly except that they are single dimensional. The GMM parameters can be optimized using
the Expectation-Maximization algorithm [11] for instanceand the number of components can be tuned by
validation or optimization of a criterion, e.g., minimum description length [45].

There are two remarks regarding the generative classifiers discussed here:

2We make no distinction between the first form of (3.19) (on the left) and the second form (on the right) as GMM is a general
purpose algorithm. However, by converting scores to LLR (thefirst form) can ensure that the data is in linear scale. As a result, the
LLR scores can be more appropriately summarized by a mixture of Gaussian distributions. In practice, we observe that using the first
or second form has no significant influence on the generalization performance.
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• Special cases of generative classifier:Note that when the number of Gaussian componentsNk
cmp =

1 for k = {C, I}, the resultant classifier is a Quadratic Discriminant Analysis (QDA) classifier. The
Linear Discriminant Analysis (LDA) (also called Fisher linear discriminant) classifier is obtained
by further imposing thecommoncovarianceΣ. This can be done by taking the linear interpolation
of the two covariance matrices, i.e.,Σ = γΣC + (1 − γ)ΣI , whereγ is parameter to be tuned.
We also used two preset values ofγ that give acceptable generalization performance. They are
γ = P (C) (the prior probability of the client classP (C)) andγ = 0 (making the contribution of the
client covariance matrix to be zero). The rationale for the second version,γ = 0, is that the client
covariance matrix cannot be estimated reliably. Our empirical results on XM2VTS (not reported
here) show that the second version (γ = 0) generalizes well, especially in the user-specific context
(see Section 6). This phenomenon is further confirmed in Section 7.2.

• Robustness of naive Bayes classifiers:Our preliminary fusion experiments (carried out on the
XM2VTS database) show that the generalization performancebetween the fusion classifiers based
on (3.19) and that based on (3.20) (also called Naive Bayes Classifier) isnotstatistically significantly
different (figure not shown here), even though the system outputs are known to be correlated (e.g., in
the context of intra-modal fusion). This is because there are no “outliers” – samples that are found
extremely far from the rest. This is not entirely surprisingfollowing the observation from [34],
which confirms that Naive Bayes classifiers (as in (3.20)) arerobust to the underlying system outputs
dependency.

3.4.4 Fusion by the Discriminative (Classification) Approach

There exists a handful of discriminative algorithms for score-level fusion. However, one must be careful to
take into account the fact that the amount of training samples for each class can be highly unbalanced. We
will pay particular attention to linear classifiers as non-linear classifiers such as QDA and reduced polyno-
mial classifier [140] are not known to performstatistically significantlybetter than its linear counterpart3.
Before doing so, it is important to point out that the bias in the linear classifier, even though is available, is
not used directly to make the accept/reject. The externallyoptimized threshold∆ replaces the actual bias
used (see (2.1)). All linear classifiers, in our context, have the following form:

yCOM =

N∑

i=1

wiyi − ∆ = w′y − ∆ (3.23)

where,∆ is a bias. For convenience, we introduced the vector representationw = [wi, . . . , wN ]′ and
y = [yi, . . . , yN ]′. The discussion that follows will consider three classifiers in this category: Support
Vector Machine, Logistic Regression and Linear (Fisher) Discriminant Analysis.

• Support Vector Machine: Among the existing classifiers, SVM [146] is undoubtedly themost
popular for two reasons: (i) it relies on minimizing the empirical risk (or maximizing the margin)
and (ii) it does not make any assumption about the data (score) distribution. Suppose thaty(j) and
t(j) ∈ {−1, 1} (positive or negative class) are the input and target outputof examplej andω(j) is its
associatedembedding strengthobtained after SVM training. Largeω(j) implies that the associated
example is difficult to classify, and vice-versa for smallω(j). Examples withω(j) > 0 are known as
support vectors. The linear solution proposed by an SVM witha linear kernel is:

f(y) =
∑

j

ω(j)t(j)
〈

y(j),y
〉

=




∑

j

ω(j)t(j)y(j)′





︸ ︷︷ ︸

y = w′y, (3.24)

where〈·, ·〉 is the linear kernel and the underbraced term forms is the solution to the weight vector
w′.

3As no statistical significance test was reported in [140].
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• Logistic Regression: In [56], another algorithm called Logistic Regression (LR)is compared to
SVM. According to [56], LR shares many similar characteristics with SVM. Our past empirical
experiments show that LR and SVM perform equally well in biometric fusion tasks [113]. LR is
defined as:

yLR ≡ P (C|y) =
1

1 + exp(−g(y))
,

where

g(y) =

M∑

i=1

βiyi

︸ ︷︷ ︸

+β0.

One should recognize thatg(y) is LPR, the underbraced term is LLR and the biasβ0 is replaced by
∆. The weight parametersβi are optimized using gradient ascent to maximize the likelihood of the
data given the LR model [32]. Note that the LR classifier used here is more general than the one
used in [94]. The former is thestandardapproach as described in [56] whereas the latter assumes
class-conditional Gaussian assumption as well as common covariance of both client and impostor
distributions.

SVM and the standard LR classifier are attractive because they do not make any assumption about
the distribution of the system outputs and thus are good general purpose algorithms for classification.
In practice, using any transformedy, e.g.,flin(y), fLLR(y), or fprob(y), for anyy ∈ {y1, . . . , yN}
cannot affect the generalization performance of SVM and LR (see [101]). For the case offlin(y),
we illustrate this property theoretically in Section D.1.

• LDA as a discriminative classifier: The classical LDA as well as QDA classifier which was dis-
cussed in Section 3.4.3 can also be considered a discriminative classifier. This is because LDA can be
written as a linear function as in (3.23). Similarly, QDA canbe written as a quadratic discriminative
function. We will consider the LDA case here because we foundits use in user-specific processing
(to be used in Chapter 6). Using the class-conditional mean and covariance (i.e.,µk andΣk for each
k = {C, I}) as described in Section 3.4.3, let us define the within-class covariance matrix as:

Sw =
∑

k={C,I}

Σk

The Fisher linear discriminant solution of the weight vector w for a two-class problem (see [11]) is:

w = S−1
w

(
µ

C − µ
I
)

(3.25)

Note that the solutionwi can take on any value and their sum is not necessarily equal to1. As can
be seen, LDA turns out to be both generative and discriminative.

Note that LDA and QDA both rely on the Gaussian assumption. Asa result, they are inferior in performance
compared to SVM and LR which do not make such an assumption. This is confirmed by our empirical
studies in [101]. While this assumption seems to be a limitation, converting scores into LLR scores prior
to applying LDA canimprovethe generalization performance of LDA.

3.4.5 Fusion of Scores Resulting from Multiple Samples

This section describes two trainable methods to combine scores resulting from multiple samples. This
fusion problem is more commonly solved using fixed fusion rules as discussed in Section 3.4.2. Trainable
approaches are proposed here because we conjecture that it can give better results since the parameters of
the fusion classifier can further be adjusted to suite the data.

Although trainable fusion classifiers as discussed in Sections 3.4.3 and 3.4.4 can be used, they are not
suitable for combining scores resulting from multiple samples for two reasons: the ordering in which the
samples are presented is not important and the number of samples per access can be different for different
accesses.

We choose here two fusion strategies for combining scores from multiple samples. Below are two
intuitive rationales for each of the two strategies:
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• If one considers the fact that the scores are drawn from a distribution that can be estimated, then,
matching can be done by comparing two distributions. This inspires us to use a distribution-based
matcher via therelative entropy, which is also known as theKullback-Leibler distance. The “relative
entropy” method evaluates the difference of two relative entropies: the relative entropy between dis-
tribution of the sample scores and that of client scores; andthe relative entropy between distribution
of the sample scores and that of impostor scores.

• If one treats the scores like a sequence, then classifiers that compare sequence can be used. This
inspires us to use GMM, in a similar way that the state-of-the-art speaker verification system [121] is
used. The “GMM” method calculates the average log-likelihood ratio of the sample samples between
a GMM modeling the client scores and another one modeling theimpostor scores.

Both these methods are further described below (for readerswho want to probe further):

• Combining Sample Scores by Relative Entropy:Relative entropy is used to compare two prob-
abilistic density functions (pdfs). In our case, onepdf is derived from a global model (client or
impostor), denoted aspk(y), for k = {C, I} and the otherpdf is derived from scores resulting from
multiple samples, denoted asq(y). Bothpdfs can be estimated using any density estimator discussed
in [11, Chap. 2], e.g., GMM (as in (3.22)) or the Parzen window. The relative entropy of a given
access distributionq(y) with respect topk(y) can then be defined as:

L(pk, q) = −
∫

pk(y)ln
q(y)

pk(y)
dy. (3.26)

In practice, we sample the distribution ofpk andq in fine steps ofy so that the integral is approxi-
mated by a sum operator over the sampledy space. Relative entropy can be regarded as a distance
as to how muchq(y) is from pk(y) but not the other way round, i.e., this distance is not symmetric.
This alone does not give discriminative information. To do so, the relative entropy of a client and
impostor models should be used together, as follows:

yCOM = −
(
L(pC , q) − L(pI , q)

)
(3.27)

Note that the negative sign is introduced so thatE[yCOM |C] > E[yCOM |I]. In this way, the decision
function as in (2.1) can be used.

• Combining Sample Scores by GMM:This is an extension of GMM (discussed in Section 3.4.3)
used in the general context of fusion. In the context of combining multiple samples, one can safely
assume that the samples (scores) are drawn from the same distributionp(y|k) estimated using (3.22)
for eachk. The LLR test can thus be constructed usingfLLR(yi) = log p(yi|C)

p(yi|I) for each samplei.

By naivelyassuming that the scores are independent given the user4, the joint score is:

yCOM =
∑

i

fLLR(yi). (3.28)

In general,mean is used in place of
∑

so thatyCOM is not biased towards the access characterized
by a larger number of samples. In this way, we consider the “average LLR”.

3.5 On the Practical Advantage of LLR over Probability in Fusion
Analysis

While working in probability and LLR are theoretically equivalent, we have shown intuitively that the
statistics of the LLR scores follow approximately a normal distribution. In [23], the logit transform, i.e.,

4These scores are expected to be dependent because their corresponding biometric samples are closely related in time.
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Figure 3.4: (a) The distribution of LLR scores and its approximation using a Gaussian distribution. The
mean of both distributions are zero. (b) The distribution ofprobability scores for several shift (B) and scale
(A) values using 10,000 sample data generated by the LLR distribution.

x = log z
1−z

, was used to post-process randomly generated numbersz to obtain another set of numbers (x)
having the following form of distribution:

p(x) =
1

π(exp(x/2) + exp(−x/2)))
(3.29)

One can recognize thatx corresponds to an LLR score. We drew 10,000 random samples according top(x)
and re-approximated the sample distribution using a Gaussian. The distributionp(x) and its approximation
using a Gaussian distribution are shown in Figure 3.4(a). Ascan be observed, both the distributions are
similar. In this case, both the distributions have zero mean. The approximated Gaussian has a variance
fixed to 105. Using the same generated samples, we applied the sigmoid function with some chosen scale
(A) and shift (B) values. The distributions of the resultant transformed probability scores are shown in
Figure 3.4(b). Note that the scale value determines the width (variance) of the distribution whereas the
shift value determines the center (location) of the distribution. Only whenB = 0, the score distribution
become central since the generated samples have zero mean. Although Figures 3.4(a) and (b) are drawn
from the same distribution as shown in (3.29), the LLR scorescan be moreconvenientlyapproximated
using a normal distribution whereas the transformed probability scores may have to be described using
a non-central distribution, e.g., a gamma distribution. Summarizing the LLR scores using a Gaussian is
convenient because a Gaussian distribution isclosedunder a linear transformation. For instance, if a score
vectory follows a multivariate normal distribution andw is a weight vector,w′y will also follow a one-
dimensional normal distribution [120]. For this reason, byworking on LLR scores, we deviate from the
mainstream literature in terms of analysis (where probability is a popular choice), e.g. [135, 67, 57, 76],
and fusion methodology (where scores are transformed into probability prior to combination), e.g., [60, 72,
66, 123, 138, 58]. It should be noted that the use of LLR for performance prediction was reported in [54, 1]
whereas its use in fusion is more common, e.g., [27, 65].

3.6 Summary

This chapter discussed the following issues:

5We drew the samples several times and found that the expected variance was about 10.
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• Fusion modes:Several ways of combining scores are discussed, i.e., usingmultiple samples, bio-
metric modalities, features and classifiers.

• Score types: Some commonly used score types in biometric systems are discussed: probability,
LLR, distance, correlation, similarity index, direction from the decision plan, etc.

• Score normalization: This issue aims at mapping scores into a common domain so thatscores can
be combined using simple combination rules. The two statistically sound representations of score
are discussed: probability and LLR. Another family of functional transformation of scores having
the formR → [0, 1] is also discussed. However, this family of functional approaches does not have
a sound justification and in practice do not perform as well asconverting scores into the probability
or the LLR space.

• Types of score-level fusion classifiers:Three categories of fusion classifiers are identified: fusion
by combination (using simple rules), by the generative approach (using the LLR test) and by the
discriminative approach.

While none of the materials presented here is novel, we conclude that between the two statistical repre-
sentations of score, i.e., LLR and probability, LLR is thepreferredchoice because scores in this domain
can be summarized by using the first- and second-order moments. This deviates from the mainstream
whereby scores are almost always systematically convertedinto probability scores prior to fusion using
simple rules [60, 72, 66, 123, 138]. The choice of using LLR has important consequences to this thesis.
In fact, almost all the contributions in this thesis, as found in Chapters 4–7, essentially demonstrate the
usefulness of LLR.
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Chapter 4

Towards a Better Understanding of
Score-Level Fusion

4.1 Introduction

There have been a growing number of works that empirically show that combining multiple system outputs
is beneficial, e.g., [125] (and many references herein). However, admittedly, relatively much less works
were reported on the theoretical understanding of fusion, e.g., [66, 73, 57, 143, 123, 76]. Such an un-
derstanding is important because the empirical approach tostudying fusioncannotexplain why or when
a combined system fails to achieve the desired performance.This is because there are simply too many
factors to be considered, e.g., the type of system output, the dependency among system outputs, the relative
performance of systems, the choice of decision threshold, the presence of noise and the choice of fusion
classifier.

Previous studies on the understanding of fusion rely on one or more of the following simplifying (and
unfortunately unrealistic) assumptions:

• Independence of system outputs:that the system outputs are independent of each other. In in-
tramodal fusion, where several biometric systems rely on the same biometric capturing device, the
system outputs are likely to be correlated. In this case, this assumption is violated.

• Common class-conditional distributions:that the client and impostor distributions are the same.

• Common output distributions: that the scores of all the system outputs follow a common distribu-
tion.

We will consider LLR scores in this chapter so that it is adequate to summarize the LLR scores to be
combined using a class-conditional multivariate Gaussian. The resultant client and impostor multivariate
Gaussian models are referred to as a “parametric fusion model” since the model essentially summarizes
the fusion problem. Although relying on the class-conditional score Gaussian assumption seems to be
restrictive, the model is powerful because it does not make use of any of the three simplifying assumptions.
Furthermore, we will show that in the context of classification, deviation from this assumption cannot
severely influence the precision of the estimated Equal Error Rate (EER).

We will revisit in this chapter a well known upper bound of theminimal classification (Bayes) error,
i.e., the Chernoff bound [35], given the parametric fusion model. Although this bound is useful for classi-
fication, it does not estimate EER, a measure that isfar more importantas long as performance evaluation
is concerned. Our original contribution in this chapter is to propose an exact EER solution given any linear
fusion classifier (with mean as a special case) or any order-statistic fusion operators (e.g.,min, max and
median). Thanks to the parametric fusion model, we can justify the reduction of classification error due
to fusion, study the effect of correlation of system outputs, predict fusion performance and compare the
performance of commonly used fusion operators.

37
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Chapter Organization

This chapter is organized as follows: Section 4.2 is purely an empirical study to show that “the combined
system isneverworse than the average performance of its underlying systems”. Section 4.4, as opposed
to Section 4.2, is a theoretical study that explains the above phenomenon using the parametric fusion
model. Section 4.5 demonstrates the real potential of the parametric fusion model by applying the proposed
parametric model to determine an optimal subset of systems for fusion.

The next two sections are extended studies based on the parametric model presented in Section 4.4.
These are advanced topics and can be skipped for readers who are more interested in user-specific pro-
cessing (treated in Chapter 6 and 7). Section 4.6 analyzes whether or not correlation is a necessary and
sufficient factor to predict the fusion performance (the answer turns out to be necessary butnot sufficient!),
the effect of unbalanced system performance and the effect of noise (or bias) to the fusion performance.
Section 4.7 then extends the proposed parametric model to other fusion operators based on order-statistics.
Thanks to the extended parametric model, one can now identify the conditions which favormin, max,
mean or weighted sum. As a summary, Section 4.8 highlights the original contributions of this chapter
with respect to the state-of-the-art in fusion.

Because this chapter is theoretical in nature, most experiments that are designed to support our claims
are put in Section C. Readers who are more concerned with the practical applicability of the proposed
parametric fusion model are strongly encouraged to refer tothe mentioned Section. Finally, a collection of
proves, all needed to support the proposed model, can be found in Section D.

4.2 An Empirical Comparison of Different Modes of Fusion

From (3.6), we know that there are different ways one can create diverse systems, i.e, using different modal-
ities, different classifiers, different feature representations and different samples. We design a set of ex-
periments containing these four scenarios, based on the XM2VTS score-level fusion benchmark database.
In each fusion tasks, only two systems are involved. In the first three scenarios, the system outputs are
combined using MLP, SVM and the mean operator as inmeani(fz(yi)) (using Z-norm). For the last sce-
nario, we did not have multiple samples per access but we could generate “virtual samples” by randomly
introducing geometric transformation to the images (translation, rotation, scaling). In order to combine the
scores due to virtual samples, apart from using non-trainable fusion operators, e.g., mean and median, we
also used two trainable order-insensitive fusion classifiers: therelative entropyandGMM approaches as
discussed in Section 3.4.5.

From the available 13 systems, we combined each time two systems according to the following modes
of fusion:

• multi-modal (21 fusion tasks)

• multi-feature (9 fusion tasks)

• multi-classifier (2 fusion tasks)

• virtual samples (2 fusion tasks)

Details of these experiments can be found in our publication[98]. The results are shown in Figure 4.1. The
performance is measured by the gain ofa priori HTER (as discussed in Section 2.2.5) whose threshold is
optimized using WER withα = 0.5 (see Section 2.2). As can be observed, all systems achieveβmean ≥ 1,
without exception. On the other hand, not all systems achieve βmin ≥ 1 – suggesting than fusion may
not be always useful. By comparing all four ways of generating diversity, the performance gain is most
evident using multimodal fusion. This is expected because richer and more complementary information is
available than the other fusion modes. It is interesting to observe that fusion with virtual samples can help
improve the performance, albeit statistically insignificantly. Note that higher diversity (as in multimodal
case) incurs higher computation/hardware costs. Ideally,one wishes to keep the cost low. This suggests that
selecting a subset of systems may be more beneficial, i.e., trading off statistically insignificant performance
gain for lower computation. This will be discussed in Section 4.5.
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Figure 4.1: An empirical study of relative performance of different modes of fusion. Boxplot of (a)βmean

andβmin. Each bar shows the relative improvement in terms ofβ (defined in (2.10) and (2.11)) within 95%
of confidence. The vertical line around the middle of each baris the median ofβmean. Dotted lines at each
end of a bar are extreme values found outside the 95% confidence interval. For fusion with virtual samples,
βreal is used in place ofβmean. The x-axis of all the boxplots are aligned so thatβmean across different
techniques of generating diversity are comparable. For virtual samples, the classifier “Entropy” refers to
the relative entropy strategy whereas “GMM” refers to the GMM classifier discussed in Section 3.4.5.

4.3 Estimation of Fusion Performance

4.3.1 Motivations

The study of fusion is very often complicated by various factors. Some of these factors are:

1. The type of output of classifier of the base-systems

2. The dependency among features of base-systems

3. The relative performance of base-systems

4. The choice of fusion operator

5. The choice of decision threshold

6. The presence of noise

An empirical approach to understanding fusion is to study one factor by varying its parameters while fixing
the rest of the factors. Unfortunately, such an approach is not appropriate since these factors may be
dependent on a particular experimental setting and thus cannot be controlled.

We propose to study these factors by first modeling the scoresto be combined. To give an intuition, one
can summarize the class-conditional scores to be combined using a multivariate Gaussian whose dimension
corresponds to the number of systems to combine. This is shown in Figure 4.2. Factor 1, i.e., different types
of classifier output, can be considered by mapping scores into a domain where the scores can be more easily
summarized by the first- and second-order moments. For example, if scores are probabilities, they can be
transformed into LLR using Algorithm 2. Factor 2, i.e., the dependency among system outputs, can be
captured by measuring the class-conditional pair-wise correlation among the system outputs. Note that
this information has already been captured by the covariance matrix of the class-conditional multivariate
Gaussian (since a correlation matrix can be derived from a covariance matrix in a close form). By modeling
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Figure 4.2: A geometric interpretation of a parametric model in fusion. A real fusion task whose samples
are fitted by two class-conditional bi-variate Gaussian distribution. System 1 is IDIAP’s voice system and
system 2 is Surrey’s automatic face authentication system,applied on the Ud-g1 BANCA data set.

the scores, factor 3, i.e., the relative performance among systems, will be captured. This point will become
clear later. By summarizing the scores using two class-conditional multivariate Gaussians, we will show
that it is possible to estimate analytically the distribution of the combined score, for a given fusion operator.
Factor 4 is thus considered by repeating the estimate of the combined score distributionfor each fusion
operator. Since the distribution of the combined score can be estimated, its corresponding FAR and FRR
curves which are functions of a decision threshold can also be estimated analytically. Therefore, Factor 5 is
taken into consideration. Finally, Factor 6 can be considered by assuming that the noise has a known effect
on the multivariate class-conditional distributions, e.g., introducing a bias to the mean vector. Therefore,
we justify that in order to analyze the problem of fusion, thescores to be combined must be summarized.
For a tractable analysis, the use of a multivariate Gaussiandistribution is a practical choice.

Section Organization

In Section 4.3.2, we will explain how the scores to be combined in a more formal way, using a so-called
“parametric fusion model”. Section 4.3.3 then presents a very well known approach – the Chernoff bound
– to estimate theminimal classification (Bayes) errorgiven the parametric fusion model. In contrast to the
Bayes error, Section 4.3.4 explains how the EER of a linear classifier can be estimated given the parametric
fusion model. Note that EER plays a somewhatmore important rolein biometric performance evaluation
than the minimal Bayes error. Section 4.3.5 then outlines the differences between the minimal Bayes error
and EER. Because the proposed parametric model relies on theGaussian assumption, Section 4.3.6 verifies
the adequacy of the model when applied to the real (score) data. By doing so, we examine how well the
estimate of EER is when the Gaussian assumption is violated1.

4.3.2 A Parametric Fusion Model

Let us assume that thei-th system output (out ofN participating systems) is composed of a deterministic
componentµk

i , and a noise componentηk
i , and that their relation is additive, i.e.,

yk
i = µk

i + ηk
i , (4.1)

1Section 4.3.6 essentially summarizes the experimental results reported in Section C.1 and Section C.2. These two sectionsare not
required to understand the proposed parametric fusion model but areimportantto illustrate empirically that the fusion model is still
useful even if the Gaussian assumption is violated. Section C.1 empirically examines the effect of violating the Gaussian assumption.
Section C.2 not only relaxes the Gaussian assumption but alsoimproves the experimental design of Section C.1 so that classification
errors other than EER, e.g., low FAR and low FRR, are also considered.
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for k ∈ {C, I}. The deterministic component is due to the discrete binary classification task whereas the
noise component is due to some random processes during biometric acquisition (e.g. degraded situation
due to light change, miss-alignment, etc) which in turn affect the quality of extracted features. Indeed, it
has a distribution governed by the extracted feature setx under some unknown conditionsc ∈ C such as
geometric distortion. The unconditioned noise varianceη2

i (x) is related to the conditioned noise variance
η2

i (x|c) by:

E[η2
i (x)] =

∫

x∈RN

∫

c∈C

η2
i (x|c)p(x) dc dx

=

∫

x∈RN

η2
i (x)p(x) dx.

We generally writeηi instead ofηi(x) since the noise component is always dependent on the biometric
featurex. This is also true for its class-conditioned counterpart,ηk

i . Note that the same convention applies
to yi andµi (so asyk

i andµk
i ).

By ignoring the source of distortion in the (extracted) biometric feature space, we actually assume that
the noise component is random (while in fact they may be not ifwe were able to systematically control
the conditionsc). As before, we writey instead ofyi when referring to any of the participating systems.
The noise component is drawn from an unknown distributionW with zero mean and(σk)2 variance, i.e.,
ηk ∼ W

(
0, (σk)2

)
. It follows that yk

i ∼≡ W
(
µk, (σk)2

)
. Due to the noise model in (4.1), one can

characterize the system by the first- and second-order moments, i.e.,µk andσk. While it is unnecessary
to assume that the noise is normally distributed at this point of discussion, we will assume so when the
integral of the distribution (cumulative density function) is involved. If the system output is not in the LLR
domain, one can convert the output to LLR usingfLLR(y) (Algorithm 2) in order to ensure that (4.1) is
adequate.

Extending from a single system toN systems, the system output vector can be written asyk =
[yk

1 , . . . , yk
N ]′ whose class-conditional distribution is a multi-variate GaussianN (y|µk,Σk). The parame-

tersµ
k,Σk) for k = {C, I} are the so-called parametric fusion model. It is a model because it summarizes

the problem of fusion. The next two Sections, 4.3.3 and 4.3.4, will rely uniquely on these parameters
as input in order to predict the fusion performance. Note that Section 4.3.3 aims to predict the minimal
classification error whereas Section 4.3.4 predicts EER. Their difference will be presented in Section 4.3.5.

4.3.3 The Chernoff Bound (for Quadratic Discriminant Function)

Analytically estimating the Bayes error is a classical problem in machine-learning [35]. In a two class
problem, following the decision function of (3.4), the probability of making an error given the observation
y is:

P (error|y) =

{
P (I|y) if decision isaccept
P (C|y) if decision isreject

= min
[
p(I|y), p(C|y)

]
. (4.2)

Note that this is theminimalpossible error, orminimal Bayes errorsince the decision function

P (C|y) > P (I|y)
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(for an accept decision) is optimal. The probability of error is thus:

P (error) =

∫

P (error,y)

=

∫

P (error|y)P (y)

=

∫

min
[
p(I|y), p(C|y)

]
P (y)

=

∫

min

[
p(y|I)P (I)

P (y)
,
p(y|I)P (C)

P (y)

]

p(y)dy

=

∫

min [p(y|I)P (I), p(y|I)P (C)] dy. (4.3)

The probability of error can be expressed in terms of risk as follows:

WER =

∫

min
[
p(y|I)α, p(y|C)(1 − α)

]
dy, (4.4)

where we explicitly introduce WER as defined in (2.4). Note that α includes the dual factor of prior
probability (between client and impostor classes) andnormalized costs(between FRR and FAR) which
sum to one. By making use ofmin[a, b] ≤ aβb1−β for a, b > 0 andβ ∈ [0, 1], P (error) can be written as:

P (error|β) ≤ P β(I)P 1−β(C)

∫

p(y|I)βp(y|C)1−βdy

︸ ︷︷ ︸

, (4.5)

or in terms of risk:

WER ≤ αβ(1 − α)1−β

∫

p(y|I)βp(y|C)1−βdy

︸ ︷︷ ︸

. (4.6)

If the class-conditional probabilities are normal, the underbraced term can be evaluated analytically,
i.e.,

∫
p(y|C)βp(y|I)1−βdy = exp(−k(β)), where

k(β) =
β(1 − β)

2
(µC − µ

I)′[βΣI + (1 − β)ΣC ]−1(µC − µ
I)

+
1

2
log

|βΣI + (1 − β)ΣC |
|ΣI |β |ΣC |1−β

. (4.7)

This quantity is called the Chernoff bound. The minimal Bayes error is given byminβ P (error|β). On the
other hand, the minimal Bayes error, assuming equal prior (or cost), i.e.,α = 0.5, is given byminβ k(β).
The advantage of introducing an upper bound viaβ is that the search is not dependent on theN dimen-
sional spaces ofy but on a single dimension spanned byβ. A special case of error bound, called the
Bhattarcharyya bound is given byk(0.5). This quantity ispracticalbecause it does not involve any numer-
ical search but suffers from a looser estimate of the minimalBayes error [35, Chap. 2]. Note that these
statistics give anupperbound of the minimal Bayes error a QDA fusion classifier.

4.3.4 EER of A Linear Classifier

However, in reality, QDA is not used as a fusion classifier. The most commonly used one is perhapsmean
or weighted sum, i.e., a linear discriminant function or a linear opinion pool.

To quickly give an intuitive picture, we consider a fusion task consisting of two system outputs after
transforming them into the LLR space. The scatter plot of scores are shown in Figure 4.3(a) using the
XM2VTS data of one of the fusion tasks described in Section 2.1.1. By summarizing the class-conditional
scores (for each class) using a multivariate Gaussian, our goal is to predict the fusion performance. There
are two sub-problems to solve. Firstly, one needs to determine the fusion classifier to be used (including
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Figure 4.3: A geometric interpretation of a parametric model in fusion. (a) A real fusion task whose
samples are fitted by two class-conditional bi-variate Gaussian distribution. System 1 is IDIAP’s voice
system and system 2 is Surrey’s automatic face authentication system, applied on the Ud-g1 BANCA data
set. (b) A schematic interpretation of projecting from a class-conditional multivariate Gaussian to a single
Gaussian.

its parameters). Having chosen a fusion operator, the second problem consists of calculating the EER
analytically. Because of the class-conditional Gaussian assumption, obviously the optimal fusion classifier,
according to the LLR test, is to use Quadratic Discriminant Analysis (QDA). We consider the less fortunate
(but realistic!) case whereby the parameters of the distribution may not be estimated correctly due to the
lack of genuine data and hence QDA is not necessary optimal.

For the case of a linear classifier, Figure 4.3(b) shows that it is possible to project each class-conditional
multivariate Gaussian to a single Gaussian. This single Gaussian represents the class-conditional distribu-
tion of thecombinedscores.

We will propose a procedure that finds theexactsolution in terms of EER analyticallywithout any
numerical search. However, calculating the operational errors other than EER requires a single dimensional
numerical search in the combined score space (threshold). In this case, the solution is stillexactcontrary
to the Chernoff bound. Then, we will extend such an analysis to other fusion operators, e.g.,min, max,
etc. An application of such analytical technique will be illustrated in Section 4.5 in the user-independent
context and its full potential in the user-specific context will be developed in Chapter 7.

To begin, we suppose that a system output may be pre-processed by a linear transformationflin as in
(3.11) so that

ynorm = (y − B) ./ A,

where “./” is an element-by-element division and the resultant combined score is

yCOM = w′ynorm. (4.8)

This generalizes the case where there is no such pre-processing, i.e., the normalizing terms ofeach
system take on the valuesBi = 0 andAi = 1 for all B = [B1, . . . , BN ]′ andA = [A1, . . . , AN ]′ and
i ∈ {1, . . . , N}.

The class-conditional distribution of the combined scoreyCOM using a linear opinion pool as appeared
in (4.8) can be written asN (µk

COM , (σk
COM )2) where,

µk
COM =

N∑

i=1

wi

Ai

(
µk

i − Bi

)
(4.9)
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and

(σk
COM )2 =

N∑

m=1

N∑

n=1

wmwn

AmAn

E
[
ηk

mηk
n

]
(4.10)

respectively, for anyk ∈ {C, I}, whereE
[
ηk

mηk
n

]
is them-th andn-th element of the class-conditional

covariance matrixΣk. The derivations can be found in Section D.2.
If the class-conditionalynorm follows a multivariate Gaussian distribution, then the class-conditional

yCOM must be 1D Gaussian distribution [120]. It follows that the corresponding FRR and FAR are inte-
grals of Gaussian. We will writey instead ofyCOM to emphasize the fact that this equation is generally
applicable toanysystem output. The derived statistics fromy, e.g.,µk andσk, follow the same convention.
The resultant FRR and FAR can be written as:

FRR(∆) = P (∆ > y|C) =

∫ ∆

−∞

p(y|C)dy

=

∫ ∆

−∞

1

σC
√

2π
exp

[−(y − µC)2

2(σC)2

]

dy

=
1

2
+

1

2
erf

(
∆ − µC

σC
√

2

)

, and (4.11)

FAR(∆) = 1 − P (∆ > y|I) =

∫ ∞

∆

P (y|I)dy

= 1 −
[
1

2
+

1

2
erf

(
∆ − µI

σI
√

2

)]

=
1

2
− 1

2
erf

(
∆ − µI

σI
√

2

)

, (4.12)

where

erf(z) =
2√
π

∫ z

0

exp
[
−t2

]
dt,

which is known as the “error function” in statistics.
The minimal error happens when FAR(∆) = FRR(∆) = EER, i.e., the Equal Error Rate. Making these

two terms equal – (4.11) and (4.12) – and using the property that erf(−z) = −erf(z), we can deduce that:

∆ =
µIσC + µCσI

σI + σC
. (4.13)

By introducing (4.13) into (4.12) (or equivalently into (4.11)), we obtain:

EER =
1

2
− 1

2
erf

(
F-ratio√

2

)

≡ eer(F-ratio), (4.14)

where we introduced F-ratio, defined as:

F-ratio=
µC − µI

σC + σI
. (4.15)

Note that the use of an error function similar to F-ratio was reported in [22], but with differences in the
definition of the error function. In another similar work (but in the context of combining multiple sam-
ples) [67], EER was not calculated explicitly.
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Other Class-Separability Measures

It should be noted that the term “F”-ratio is used here because this value is somewhatsimilar to the standard
Fisher ratio, but not defined exactly in the same way. In a two-class problem, the Fisher ratio [11, pg. 107]
is defined as:

µC − µI

(σC)2 + (σI)2
. (4.16)

F-ratio is used here just to underpin the idea that the degreeof separability of the class distribution af-
fects the authentication performance measured by EER. There exists similar measures such as thed-prime
metric proposed by Daugman [29]. It measures how separable the client distribution is from its impostor
counterpart. It is defined as:

d′ =
|µC − µI |

√
1
2 (σC)2 + 1

2 (σI)2
. (4.17)

Besides the abovementioned quantities, in [71], three other similar quantities used in texture classification
were also considered for biometric authentication, i.e.,:

J1 =
µC

µI
, J2 =

(µC − µI)2

µCµI
andJ3 =

(µC − µI)2

(σC)2 + (σI)2
.

F-ratio will be used throughout this thesis because it is directly related to EER by (4.14).

Summary of Results

We gather here several important results presented so far. From (4.9) and (4.10), one knows how to calculate
the first- and second-order moments of the combined scoreyCOM , i.e.,µk

COM and(σk
COM )2. Based on

these four Gaussian parameters{µk
COM , σk

COM} for bothk = {C, I}, the F-ratio of the combined score
yCOM , according to (4.15) is:

F-ratioCOM =
µC

COM − µI
COM

√

V C
diag + V C

ndiag +
√

V I
diag + V I

ndiag

, (4.18)

where
V k

diag =
∑

i∈[1,N ]

wiwi

AiAi

E
[
ηk

i ηk
i

]

and
V k

ndiag =
∑

i,j∈[1,N ],i 6=j

wmwn

AmAn

E
[
ηk

mηk
n

]

are respectively the diagonal and non-diagonal sum of the covariance matrixΣk whosei-th andj-th ele-
ment is denoted asE

[
ηk

mηk
n

]
. The corresponding theoretical EER will beeer(F-ratioCOM ) as defined in

(4.14).
From (4.18), three factors can be identified to influence the performance of the fusion performance.

They are:

1. The mean difference (µC
COM −µI

COM ) : Higher mean difference improves the system performance.

2. The diagonal component (V k
diag): This term measures, on average, how good the base-systems are,

when acting alone. Note that by definition,V k
diag ≥ 0. Lower variance is desirable.

3. The non-diagonal component (V k
ndiag): This term is influenced by the pair-wise correlationsρk

m,n

for m,n ∈ {1, . . . , N} and therefore can be positive or negative since−1 ≤ ρk
m,n ≤ 1 for any pair

of systemsm,n. Lower covariance or even negativeV k
ndiag is desirable.
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Note that the second and third factors cannot be separated since they are tied by a common square-root. The
reason we separated the weighted sum of the covariance matrix into V k

diag andV k
ndiag is to show explicitly

thatV k
ndiag is directly dependent on the pair-wise correlation. Therefore, correlation is a required but not

sufficient condition to predict the fusion performance. This claim is verified in Section C.3 using real
datasets.

4.3.5 Differences Between the Minimal Bayes Error and EER

It is important to distinguish between the Chernoff bound presented in Section 4.3.3 and our proposed EER
calculated based on the F-ratio in Section 4.3.4. They differ in the following ways:

• Definition: Figure 4.4 illustrates the difference between the minimal Bayes error and EER from their
definitions. From (4.5), the minimal Bayes error is:

∫

min [p(y|I)P (I), p(y|C)P (C)] dy.

Therefore, this expression minimizes theoverlapof the two posterior distributions, i.e.,P (k|y) ∝
P (y|k)P (k), for k = {C, I}. On the other hand, EER by definition is FAR(∆) = FRR(∆) or

∫

p(y|I)dy = 1 −
∫

p(y|C)dy.

The constraint ensures that the overlap between the two class-conditional distributions are equal.
Note that EER does not take the class prior probability into consideration whereas the Bayes error
does. For the example in Figure 4.4, equal class prior probabilities are assumed, i.e.,P (C) = P (I).
In this case, the Bayes error at EER is2 × EER.

• Bound or exact error: The Chernoff bound is, at best, only an upper bound of the theoretically
minimal classification error. On the other hand, the EER is anexact estimate.

• Quadratic or linear classifier: The Chernoff bound is only indicative of the Bayes error of a
quadratic classifier (which includes LDA as a special case).On the other hand, the proposed EER
applies toany linear classifier, e.g., SVM with a linear kernel, logistic regression, the Perceptron
algorithm, the LDA classifier (based on the Fisher ratio), etc. This is thank to the property that a
multivariate Gaussian is closed under a linear transform, as discussed in Section 3.5.

To the best of our knowledge, this is the first time in the literature where an analytical expression of EER
for fusion is proposed.

4.3.6 Validation of the Proposed Parametric Fusion Model

Since F-ratio is based on the class-conditional Gaussian assumption – an assumption that is likely to be
violated –, it is thus important to verify if the EER calculated based on F-ratio is acceptable or not. The
“level of acceptability” can be quantified by the differencebetween thetheoreticalEER (due to applying
(4.15)) and theempiricalEER (that is measured directly on the observed data). This experiment is reported
in Section C using 1186 BANCA score sets. We summarize the findings here:

• Despite deviation from the Gaussian assumption, the theoretical EER (derived from F-ratio) corre-
lates well with the empirical EER, i.e., 0.957 for all the 1186 datasets.

• The error estimates at the extreme ends (low FAR or high FAR costs) are less accurate than EER.

• Relaxing the class-conditional Gaussian assumption improves the error estimates.
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Figure 4.4: The difference between minimal Bayes error and EER. For this example, equal class prior
probabilities are assumed, i.e.,P (C) = P (I). For all the figures, the Y-axis is the score combined score
and the X-axis is likelihood or probability. The top figure shows the minimal Bayes error. The middle
figure shows the Bayes error due to EER. The bottom figure showshow the EER criterion, i.e., FAR=FRR,
is fulfilled. Due to equal prior probabilities, in this case,the Bayes error at EER is 2× EER.

4.4 Why Does Fusion Work?

4.4.1 Section Organization

This section aims to explain theoretically the phenomenon observed in Section 4.2, i.e., the combined sys-
tem works better than the average performance of systems working individually. Section 4.4.2 summarizes
the literature that attempts to explain theoretically the mentioned phenomenon and explains why the cur-
rent literature is not adequate. In the justification, an additional step is required to align the system outputs.
This step is explained in Section 4.4.3 and has important consequences on Chapter 7. Section 4.4.4 then
demonstrates the reduction of classification error due to combining several systems using the mean operator
and a brief explanation of how this can be done for the weighted sum case.

4.4.2 Prior Work And Motivation

Although fusion in the context of biometric authenticationhas been discussed elsewhere, there is still a
lack of theoretical understanding, particularly with respect to correlation. Thecorrelationhere refers to the
pairwise class-conditional correlationbetween the outputs of any two participating systems. We review
several theoretical studies here:

• In [57], it was demonstrated that combining several multimodal system scores using AND and OR
will result in improved performance. The underlying assumption is that multimodal system scores
are independent. As we understood, the issue of relative performance among systems and the strategy
of choosing the decision thresholdprior to fusionwere not thoroughly considered.

• In [73], the theoretical classification error of six classifiers are thoroughly studied for a two-class
problem. This study assumes that the underlying classifier outputs are probabilities, i.e.,P (y|C)
using our notation (see Chapter 3.2). Therefore, regardless of the cost of FAR or FRR, the optimal
threshold is always set to0.5. The study also assumes that all the participating system outputs follow
a common distribution. Gaussian and uniform distributionswere used in this study. This assumption
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is unfortunately unrealistic in most situations, particularly in multimodal fusion. This is because the
(class-dependent) score distributions are oftendifferentacross different systems.

• In [143], order statistics (OS) combiners, i.e.,min, max andmedian, are examined both theoretically
and empirically. The authors introduced the concept of biased and unbiased classifier, which is the
same as mismatch between training and test sets as observed by the system outputs. While the
analysis in [143] is certainly interesting, there is no direct way of inferring the overall classification
performance given a data set. It is also unclear how correlation affects the OS operators.

• In [66], sum and product rules were discussed in a Bayesian framework. According to this study,
several fixed rules such asmin, max, median and majority vote can be seen as approximations to
the aforementioned rules. In particular, it was shown that the sum rule (ormean in our context) out-
performs the rest of the fixed rules and even better than the single best underlying system. A further
investigation showed that the sum rule is most resilient to estimation error of individual classifier
than the product rule. Similar to [73] this study, too, assumescommon probability distributionwhich
is likely violated in reality.

• In [76, Chap.10], product and sum rules were studied by taking into condieration of the mismatch
between training and test sets. The conclusion is similar tothat of [66]. Again, the analysis assumes
that the underlying classifier/system outputs are independent. This assumption is acceptable for
multimodal fusion but inadequate for intramodal fusion.

• A more recent study, [123], considers correlation, unbalanced performance among participating sys-
tems and biased system outputs.

Note that these prior works, except [123], make simplifyingassumptions in one way or another, e.g.,
common distribution for all the underlying systems and independence assumption of system outputs.

The goal of the following Section is to provide a very simple parametric fusion model that precisely
takes the mentioned factors into consideration. This is done in LLR, instead of probability as in [57, 73,
143, 66, 76, 123].

4.4.3 From F-ratio to F-Norm

We now introduce a useful normalization derived from F-ratio that we call F-norm It is used to simplify
the proof of EER reduction in Section 4.4.4. It is also used extensively in user-specific processing. F-norm
is introduced here because of its frequent usage.

Motivation to Align Scores using Z-norm as An Example

Because different system types are used, the deterministiccomponentµk
i for all i = 1, . . . , N andk =

{C, I} are not necessarily the same. As a result, the combined system output using simple fusion rules will
be biased toward the system with large output values. This will cause a sub-optimal fusion performance.
One way to align them using a linear function such asflin appeared in (3.11). For Z-norm, the scaling
factor and bias areA = σI

i andB = µI
i , respectively for eachi (see Section 3.3.2). By doing so, one

obtains:

yZ
i =

yi − µI
i

σI
i

.

Becauseyk
i is (or assumed to be) approximately normally distributed, it follows thatyZ,k

i is the case too,
with the class-conditional mean and variance:

µZ,k
i ≡ E[yZ

i ] =
E[yi|k] − µI

i

σI
i

=
µk

i − µI
i

σI
i

.

(σZ,k
i )2 =

(σZ,k
i )2

(σZ,I
i )2

.
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Note that while the resultant impostor distribution isstandardnormal (µZ,I
i = 0, (σI

Z,i)
2 = 1) for all i, the

resultant client distribution varies from one system to another (µZ,C
i =

µC
i −µI

i

σI
i

, (σZ,C
i )2 =

(σC
i )2

(σI
i )2

). As a

result, such a normalization procedure is not satisfactory.

Derivation of F-norm

A reasonably good procedure should align the system outputssuch that the expected means (the deter-
ministic components) of the client and impostor distributions are the same. One way to achieve this is by
imposing the following constraint, based on F-ratio:

µC
i − µI

i

σC
i + σI

i

=
1 − 0

σ′C
i + σ′I

i

, (4.19)

where the numerator of the RHS term is thedesireddifference in mean and the denominator is the sum of
standard deviations as a result of the desired transformation. Solving this constraint yields:

σ′k
i = ασk

i , (4.20)

whereα = (µC
i − µI

i )
−1. Using the definition of variance and taking the square of (4.20), we obtain:

(σ′k
i )2 = E

[(
α(yi − µk

i )
)2

]

. (4.21)

Note that the factorα is not dependent onyi. This implies that the desired transformation due to the
constraint of (4.19) should take the formy

µC
i −µI

i

. However, this constraint does not guarantee zero impostor

mean. To do so, we introduce a subtraction termµI
i to obtain F-norm:

yF
i =

y − µI
i

µC
i − µI

i

. (4.22)

Characteristics of F-norm

We verify that the following constraints are fulfilled (by design):

µF,C
i ≡ E[yF |C, i] =

E[y|C, i] − µI
i

µC
i − µI

i

= 1, for all i (4.23)

and

µF,I
i ≡ E[yF |I, i] =

E[y|I, i] − µI
i

µC
i − µI

i

= 0, for all i (4.24)

The corresponding class-conditional standard deviation is: σF,k
i =

σk
i

µC
i −µI

i

as implied by (4.20).

Differences Between Z-norm and F-norm

It is not immediately obvious why F-norm isbetter than Z-norm. Following our empirical experiments
reported in [101], the generalization performance of Z-norm and F-norm are not statistically significantly
different between the two procedures. However, the advantage will become apparent in the user-specific
context (Chapter 7). One reason is that the alignment due to F-norm is client-impostor centric, i.e., making
use of both the genuine and impostor distributions, whereasZ-norm is only impostor centric, i.e., making
use of only the impostor distribution.

We introduce F-norm here so that after applying such procedure, one needs only to focus onσF,k
i for

all i without worrying about the alignment problem.
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Figure 4.5: A sketch of EER reduction due to the mean operatorin a two-class problem

4.4.4 Proof of EER Reduction with Respect to Average Performance

We have demonstrated that making the class-conditional Gaussian assumption is somewhat acceptable
on real biometric authentication problems, thanks to the robustness of Gaussian assumption. To the best
of our knowledge, such a demonstration (using EER) has not been reported elsewhere in the literature
for classification problemsbut is well known forregression problems, e.g., [11, Chap. 9]. It should be
mentioned that in [123], a proof along similar line was reported for classification problems but the error
term used in the demonstration is not EER but the so-called “added error”2.

A Sketch of the proof

A sketch of the approach is shown in Figure 4.5. Suppose that F-norm is first applied to all system outputs
so that their expected values are the same, i.e.,µC

i = 1 andµI
i = 0 for any i ∈ [1, . . . , N ]. Then, we

show that due to fusion, the class-conditional variance is reduced – which is the first part of the proof.
Consequently, the resultant EER is reduced – which is the second part of the proof. For the proof, we will
first consider the special case of mean operator and then provide a sketch for the general case of weighted
sum.

Variance Reduction

Let us consider two cases here. In the first case, for each access,N system outputs are available and are
used independently of each other. Theaverage of varianceof yk

i over alli = 1, . . . , N , denoted as(σk
AV )2

is, according to [103]:

(
σk

AV

)2
=

1

N

N∑

i=1

E[ηk
i ηk

i ]

(Ai)2
≡ 1

N

N∑

i=1

(
σk

i

Ai

)2

, (4.25)

whereAi = µC
i − µI

i .

2This term is due to bias between the approximated class posterior and the actual posterior not available during training.In this
sense, the bias is due to mismatch between training and test sets. This subject of noise mismatch is treated in Section 4.6.5.
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In the second case, allN responses are used together and are combined using the mean operator so
that one obtainsyCOM . Note that becauseµk

i = µk
j for any i, j ∈ [1, . . . , N ], µk

COM = µk
i for any i.

The variance ofyk
COM , denoted as(σk

COM )2, is called thevariance of average. Based on (4.10) (with
wi = 1

N
), its value is:

(
σk

COM

)2
=

1

N2

N∑

i=1

(
σk

i

Ai

)2

+
2

N2

N∑

m=1,m<n

ρk
m,nσk

mσk
n

AmAn

,

=
1

N

(
σk

AV

)2

︸ ︷︷ ︸

+
2

N2

N∑

m=1,m<n

ρk
m,nσk

mσk
n

AmAn

︸ ︷︷ ︸

,

≡ V k
diag + V k

ndiag, (4.26)

where we separated the matrix sum involvingΣk (whose element isE[ηk
m, ηk

n]) into a diagonal term (V k
diag)

and a non-diagonal term (V k
ndiag). Note thatV k

diag is always positive whereasV k
ndiag can be a negative

value. Note also thatρk
m,n is the correlation coefficient betweenyk

m andyk
n for k ∈ {C, I} and it is defined

by:
ρk

m,nσk
mσk

n = E[ηk
mηk

n], (4.27)

with the property thatρk
n,n = 1 for k ∈ {C, I}. BecauseV k

diag ≥ 0, it follows that(σk
COM )2 ≥ V k

diag or

(σk
COM )2 ≥ 1

N

(
σk

AV

)2
. We can also show that(σk

COM )2 ≤ (σk
AV )2 (see Section D.3). As a result, we

have:

1

N

(
σk

AV

)2 ≤
(
σk

COM

)2 ≤
(
σk

AV

)2
. (4.28)

Hence, by combiningN responses using the mean operator, the resulting variance is assured to be smaller
than the average (not the minimum) variance.

EER Reduction

In order to show that the EER of the combined scores is lower than the average EER overN outputs, i.e.,

EERCOM ≤ EERAV , (4.29)

we first need to calculateµk
p andσk

p for k = {C, I} andp = {COM,AV }. σk
p |p = {COM,AV } have

been defined by (4.25) and (4.26), respectively.µk
AV is the average ofN responses when used separately.

It is defined as:

µk
AV ≡ 1

N

N∑

i=1

µk
i − Bi

Ai

, (4.30)

whereAi andBi are the parameters due to F-norm.µk
COM is the mean of the combined scores ofN

responses (used simultaneously). It is defined as:

E[yk
COM ] ≡ µk

COM =
1

N

N∑

i=1

E[yk
i ] − Bi

Ai

=
1

N

N∑

i=1

µk
i − Bi

Ai

= µk
AV . (4.31)

Hence,µk
COM = µk

AV . Since F-ratio is non-linearly and inversely proportionalto EER as shown in (4.14),
the inequality of (4.29) can be rewritten as:

F-ratioCOM ≥ F-ratioAV , (4.32)
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Replacing the two F-ratio terms using (4.31) and (4.30) into(4.32) and using the relationµk
COM = µk

AV ,
we obtain:

µC
COM − µI

COM

σC
COM + σI

COM

≥ µC
AV − µI

AV

σC
AV + σI

AV

σC
COM + σI

COM ≤ σC
AV + σI

AV
∑

{C,I}

σk
COM ≤

∑

{C,I}

σk
AV (4.33)

Hence, the inequality of (4.29) is true, i.e., fusing scorescan reduce variance which results in reduction of
EER (with respect to the case where scores are used separately). This formed the argument for why fusion
using multiple modalities, features, and classifiers worksfor biometric authentication tasks. Note that this
observation is in perfect agreement with the empirical experiments in Section 4.2, especially Figure 4.1(a).

Extending the Proof to Weighted Sum

Note that a similar proof for fusion using weighted sum instead ofmean can be demonstrated as well. Such
a proof will lead to the form:

∑

{C,I}

σk
wsum ≤

∑

{C,I}

σk
COM ≤

∑

{C,I}

σk
AV

whereσk
wsum is the class-conditional variance due to weighted sum fusion. Note that such a proof requires

that the weight parameters to be estimated correctly, a requirement that is quite restricted to have any
practical value. An involved discussion can be found in [11,Chap. 9]. Instead, we will demonstrate that
weighted sum is better thanmean by simulation in Section 4.6.2.

4.5 On Predicting Fusion Performance

In order to demonstrate the potential of the parametric fusion model discussed so far, in this section, we
outline an approach toanalyticallyselect a subset of systems for fusion. The weighted sum fusion classifier
will be used as it is somewhat optimal for the data sets available to us, i.e., the same datasets as those used
in Section 2.1.2. The task is to choose out of theN = 5 systems, a combination of them that will give an
optimal result, without degrading the performance significantly compared to usingall the sub-systems. In
other words, we want to trade-offinsignificant performance gainwith lower computation cost. Note that
this is a combinatory problem with2N − 1 possibilities (minus one for the case where not choosing any
system is not a valid option).

The brute-force approach to the solution, typically adoptsthe following procedure:

1. For each of the possible combinations:

• Estimate the best (weight) parameters from the developmentset according to a criterion (such
as Mean Squared Error)

• Use the weights to evaluate the performance on the development set

2. Choose the best fusion candidate based on the evaluated performance.

Our proposed analytical solution works as follow:

1. Estimateµk, Σk, for eachk ∈ {C, I}.

2. For each of the possible combinations:

• Estimate the weightsw given{µk,Σk} for k ∈ {C, I}. The weights can be found using the
Fisher linear discriminant solution as appeared in (3.25).
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Figure 4.6: Comparison of empirical EER and F-ratio of the combined scores with respect to robustness to
population mismatch between training and test data set. In both figure, the X-axis are EER or F-ratio of the
development set whereas the Y-axis are the same measurements on the evaluation set. Each point is one of
the 31 possible combinations per protocol and there are 7 protocols, hence, there are31 × 7 = 217 data
points. Note the improved correlation from (a) to (b).

• Evaluate the F-ratio givenw and the model parameters

3. Choose the best fusion candidate that maximizes F-ratio.

In the brute-force approach, to choose one best fusion candidate from all possibleN base-systems, one
would have to carry out the experiment2N − 1 times (or2N ). In each experiment, one has to loop through
l examples. The complexity is thus:

O
(
l × (2N )

)
. (4.34)

In the proposed approach, one only has to loop through the data set once to derive all model parameters
and then to evaluate the F-ratio criterion2N − 1 times on the evaluation set. Hence, the complexity is thus:

O
(
l + 2N

)
. (4.35)

To understand why such an analytical procedure can work, we measured the F-ratio of the combined
scores of the development set versus its evaluation set counterpart. For comparison, we also performed the
same experiments but this time empirically and the performance for both the development and evaluation
sets are measured usinga posterioriEER. Because there are5 systems per experimental protocol (hence
25−1 = 31 combinations) and there are altogether 7 BANCA protocols, there are altogether31×7 = 217
F-ratio pairs. The results are plotted in Figure 4.6. As can be observed, compared to the empirical EER, F-
ratio has a higher correlation than EER. Note that in the BANCA database, the development and evaluation
datasets are from twocompletely differentsets of population. Therefore, an additional advantage of F-ratio
is its robustness to the population mismatch.

In [102], we showed that the quality of prediction is satisfactory. Taking the evaluation set as the
ground-truth, the top three proposed combination of fusioncandidatesalwayscontain the ground truth
combination, for all the seven BANCA protocols. It should bementioned that the top three fusion candi-
dates contain rather similar EER values. Hence, choosing any of the top three solutions cannot significantly
influence the generalization performance.
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4.6 An Extensive Analysis of Mean Fusion Operator

4.6.1 Motivations and Section Organization

The demonstration in Section 4.4 can only show that a combined system is better than the average perfor-
mance of its underlying systems. Ideally, a more desirable result is to know when the combined system is
better than thebestsystem. To the best of our knowledge, such a more desirable result has not been found
in the literature. While a general result is not possible, we will consider the special case of combining two
system outputs using the mean fusion operator here. This is actually not a limitation as generalizing to
more than two fusion operators is straightforward. Section4.6.2 is our attempt to work towards identifying
the necessary conditions.

We are also motivated by the improved understanding of noisemismatch in regression problems,
e.g., [69, 144]. However, until now, the consequence of noise in classification, also known as bias, is
not well known. Although this subject has been treated in [123], there is no way one can make use of the
findings in regression to classification directly. By working in the LLR space, we will show that the noise
mismatch model in regression, as proposed by [69, 144], can be used in binary classification problems.
Working towards this direction, Sections 4.6.3 and 4.6.4 review the works of [69] on the ambiguity decom-
position and of [144] on the bias-variance-covariance decomposition, respectively. Finally, Section 4.6.5
extends the noise mismatch model to binary classification byusing the already proposed parametric fusion
model in Section 4.3.2. A useful finding from our study is thatthe bias introduced by the noise can possibly
be rectified.

4.6.2 Effects of Correlation and Unbalanced System Performance on Fusion

Suppose that themean operator is used to combine scores under the following scenarios:

1. Combining 2 uncorrelated system outputs with very different performance

2. Combining 2 highly correlated system outputs with very different performance

3. Combining 2 uncorrelated system outputs with very similar performance

4. Combining 2 highly correlated system outputs with very similar performance

The first and third cases are often encountered in multimodalfusion while the second and fourth cases are
encountered in intra-modal (multi-feature) fusion. Fusing systems of similar and different performances are
encountered in almost all biometric authentication problems. It should be noted that empirical evidences of
these scenarios have been examined in [133] but unfortunately there was a lack of theoretical explanation.
To make analysis simple, let us assume that (i) the two base-systems have the same numerator of F-ratio
and that (ii) for each base-system, the variance and covariance of client and impostor distributions are
proportional. The first assumption can be taken care of by using F-norm (see Section 4.4.3). The second
assumption implies thatσC

i ∝ σI
i for systemi ∈ {1, 2} as well as their covariance

ρCσC
1 σC

2 ∝ ρIσI
1σI

2 .

This simplifies the analysis so that one considers only one class at a time. An empirical justification of the
second assumption can be found in Figure C.5(c). Hence, the class labelk can be dropped. Without loss of
generality, we assumeσ1 ≤ σ2 (i.e., system 1 is better than system 2).

For the first case,ρ ≃ 0. Hence, for the combination to bebetter than the best system, i.e., system 1, it
is required that:

σ2
COM < σ2

1

σ2
1 + σ2

2 + 2ρσ1σ2

4
< σ2

1 (4.36)

σ2
COM is calculated using (4.26) with N=2.
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Figure 4.7: Comparison between the mean operator and weighted sum using synthetic data. Performance
gain of in terms of EER with respect to the best underlying classifier, βmin (Z-axis), across different
variance ratios (of two system outputs; X-axis) and different correlation values (Y-axis), as a result of
fusing synthetic scores of two systems. The scores are combined using (a)mean and (b) weighted sum.
(c): the weight of theweakersystem found in the weighted sum after training. This can be thought of as
the degree of “reliance on the weaker system”.

We see that:
σ2

2 < 3σ2
1 − 2ρσ1σ2.

Note that in general,ρ ≥ 0. For instance, in multimodal fusion,ρ is around zero while in multi-feature
fusion,ρ is positive. Hence, the combined system will benefit from thefusion whenσ2

2 is at mostless than
3 times ofσ2

1 sinceρ ≃ 0.
Furthermore, correlation (or equivalently covariance; see (4.27)) between the two systems penalizes

this margin of3σ2
1 . This is particularly true for the second case sinceρ > 0. Also, it should be noted that

ρ ≤ 0 (which implies negative correlation) could allow for larger σ2
2 . As a result, adding another system

that is negatively correlated, but with large variance (hence large EER)will improve fusion. Unfortunately,
in biometric authentication, 2 systems are either positively correlated or not correlated, unless these systems
arejointly trained together by algorithms such as negative correlation learning [13].

For the third and fourth cases, we haveσ2
1 ≃ σ2

2 . Hence, (4.36) becomes

ρσ2
2 < σ2

1 . (4.37)

Note that for the third case,ρ ≃ 0 which will satisfy the constraint of (4.37). Therefore, fusion will
definitelylead to better performance. On the other hand, for the fourthcase whereρ ≃ 1, according to
(4.37), fusion may not necessarily lead to statistically significantly better performance – suggesting that
using only the better system may be appropriate.

Experimental Simulation

In order to support the theoretical analysis here, we performed a simulation.σ1 = 0.5 whereasσ2 varies
from 0.5 to 2. The correlation value varies from0 to 1 by a step of0.1. While σi andρ vary, the determin-
istic components are held constantµC = 1 andµI = 0 (the system outputs are aligned). This simulation
produces a set of fusion tasks completely specified by the matrix (σ2

σ1

, ρ) (variance ratio and correlation).
The first system has HTER between 5.3% and 6.2%, with a mean of 5.8% and the second system has
HTER between 5.4% and 22% of HTER with a mean of 15% at the EER point. We then employ two fusion
classifiers, mean and weighted sum whose weights are tuned tominimize EER empirically.

We plot the result (see Figure 4.7) as(σ2

σ1

, ρ, βmin) where the Z-axis is the gain with respect to the
single best system (see (2.11)). Note thatβmin <= 1 implies that fusion results in worse performance.
For the mean rule, we observe that at(3, 0) (in the variance ratio and correlation space),βmin = 0. When



56 CHAPTER 4. TOWARDS A BETTER UNDERSTANDING OF SCORE-LEVEL FUSION

(3, ρ ≥ 0), βmin ≤ 0. On the other hand, the weighted sum operator does not sufferfrom such situation as
the weight parameters can be adjusted accordingly. As a result, for the weighted sum operator,βmin ≥ 1
in all possible values of(σ2

σ1

, ρ, βmin). Of course, this is an overly optimistic result because we assume that
the weight parameters can be estimated correctly.

4.6.3 Relation to Ambiguity Decomposition

We would like to link our findings with those of Krogh and Vedelsby [69] (see also [11, pages 368]). Note
that the authors’ findingappliesonly to the regression problem and does not directly offer anexplanation
to the same phenomenon in classification because in classification, the statistics of client and impostor
distributions have to be consideredsimultaneously. Nevertheless, the authors’ finding is an important
precursor to the EER we proposed in Section 4.3.4. Using our notations, the authors showed that:

E[yk
COM ′ − µk

COM ′ ]2 =
∑

i

wiE
(
yk

i − µk
COM ′

)2 −
∑

i

wiE
(
yk

i − yk
COM ′

)2

(σk
COM )2 ≡ acck − divk, (4.38)

wherewi are the weights in weighted sum combination,yk
COM ′ is the output of the unnormalized combined

system andµk
COM ′ is its expected value. Note thatwi = 1/N because we are using the mean operator

instead of weighted sum. The first term, denoted as acc (or “accuracy”), measures how accurate each base-
system is with respect to the mean score of the combined mechanism. It depends only on the individual
base-systems. The second term, denoted as div (or “divergence”), measures the spread of prediction of the
base-systems relative to the score of combined mechanism.

Based on the definition of accuracy in (4.38), the accuracy ofyk
COM (after taking into account of the

linear transformationAi andBi for all i) as defined by the fusion rule (4.8) is:

acck =
1

N

∑

i

E[
yk

i − Bi

Ai

− µk
COM ]2

=
1

N

∑

i

E




yk

i − Bi

Ai

− 1

N

∑

j

µk
j − Bj

Aj





2

=
1

N

∑

i

E




1

N

∑

j

Nyk
i − µk

j

Aj





2

( change index fromj to i)

=
1

N

∑

i

(
1

N

E[ηk
i ηk

i ]

(Ai)2

)

= V k
diag. (4.39)

From (4.38) and (4.26), it is obvious that divergence is simply:

divk = −V k
ndiag. (4.40)

The negative sign in this term shows that divergence is indeed negatively proportional to the covariance
component. Hence, conclusions drawn in Section C.3 also apply here: divergence (negative covariance) is
not a sufficient metric for measuring classification error diversity. This explains why a number of heuristics
to define classification error diversity have been proposed in the literature [135], all based on zero-one loss
function where a threshold has already been applied. What we really want to do is in fact to measure the
diversitywithout fixing the thresholdin advance. For a specific case in biometric authentication,this can
be done via F-ratio as proposed in Section 4.3.4. By doing so,one assumes that the client and impostor
scores can be modeled by Gaussian distributions, and that the prior class distributions and cost of two types
of errors are equal.

4.6.4 Relation To Bias-Variance-Covariance Decomposition

Ueda and Nakano [144] presented the bias-variance-covariance decomposition while Brown [13] provided
the link between this concept and the ambiguity decomposition. However, both discussions were limited to
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the context of regression, as clearly pointed out by Brown [13, Sec. 3.1.2]. So far, we have not discussed
the effect of mismatch between the training and the test conditions. We will show that the concept of bias
introduced in [144, 13] is useful but unfortunately not relevant for the classification problem. Section 4.6.5
then a noise mismatch model that is relevant of classification in terms of HTER.

Suppose that the noise model in (4.1) can only be calculated from a training set. During testing, the
noise model deviates from the one observed during training,i.e., there is amismatchbetween training and
testing. Suppose that the new noise model now is:

yk′

i = µk
i + hk

i + ηk
i , (4.41)

wherehk
i is a bias. By using the new noise model, we also assume that thenoise termηk

i |∀i do not change
in both training and test sessions. Note that (4.41) is also true foryk′

COM as defined in (4.8). Therefore, it
is also valid to write:

yk′

COM =
1

N

∑

i

(
µk

i + hk
i + ηk

i

)
− Bi

Ai

,

=
1

N

∑

i

yk
i − Bi

Ai

+
1

N

∑

i

hk
i

Ai

+
1

N

∑

i

ηk
i

Ai

,

≡ µk
COM + hk

COM
︸ ︷︷ ︸

+ηk
COM , (4.42)

= µk′

COM + ηk
COM , (4.43)

whose mean is the underbraced terms resulting inµk′

COM . Using (4.43), the class-dependent Mean-Squared
Error (MSE) due to this mismatch can be calculated as follows:

E

[(

yk′

COM − µk′

COM ]
)2

]

= E

[(

yk′

COM − µk
COM − hk

COM

)2
]

=
(
hk

COM

)2
+ E

[(
yk

COM − µk
COM

)2
]

=
(
hk

COM

)2

︸ ︷︷ ︸
+V k

diag + V k
ndiag

︸ ︷︷ ︸
. (4.44)

where the first underbraced term is bias2 and the second underbraced term is variance of the fused score
(found in the training set). As defined in (4.26), the second term can be further decomposed intoV k

diag

(i.e., the average variance of all systems when used separately) andV k
ndiag (i.e., the spread of prediction;

negative divergence as found in (4.40)). (4.44) is the so-called bias-variance-covariancedecomposition.
Note that this is a decomposition of MSE. In the context of classification, MSE is not relevant; HTER is
and it is defined in (2.7) with the optimala posteriorithreshold∆apost (hence giving EER on the test set).
The variance ofyk′

COM is:

(σk′

COM )2 ≡ E

[(

yk′

COM − E
[

yk′

COM

])2
]

= E
[((

yk
COM + hk

COM

)
−

(
µk

COM + hk
COM

))2
]

= E
[(

Y k
COM − µk

COM

)2
]

= (σk
COM )2. (4.45)

Under the new noise model, it is interesting to note that the class-conditional variance of the fused score is
indeed not affected by the bias, whereas the MSE is. However,Section 4.6.5 will show that the presence
of bias can adversely affect the classification error measured by HTER.

4.6.5 A Parametric Score Mismatch Model

Note that a noise mismatch model has been proposed in [76, Chap. 10], but for fusion classifiers in
probability using the combination approach discussed in Section 3.4.2. Here, we propose a parametric
noise model that is adequate for the fusion classifiers in theLLR space.
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When one knows the amount of mismatch (i.e, one has access to the test data), thea posterioriF-ratio
is:

F-ratioCOM,apost =
µC′

COM − µI′

COM

σC′

COM + σI′

COM

=

(

(µC
COM + hC

COM ) − (µI,′
COM + hI

COM )
)

σC
COM + σI

COM

. (4.46)

Note that at thea posterioriF-ratio and its correspondinga posterioriEER, their corresponding threshold
is at:

∆apost =

(
(µI

COM + hI
COM )σC

COM + (µC
COM + hC

COM )σI
COM

)

σI
COM + σC

COM

. (4.47)

The corresponding HTER will be:

HTERCOM,apost ≡ EERCOM,apost

=
1

2
− 1

2
erf

(
F-ratioCOM,apost√

2

)

. (4.48)

When one does not know the amount of mismatch, thea priori threshold that will be used is the one that is
estimated from the training set, i.e.,

∆apri =
µI

COMσC
COM + µC

COMσI
COM

σI
COM + σC

COM

. (4.49)

This threshold is then applied to the mismatched test set. Asa result, thea priori HTER (on the test set)
will be:

HTERCOM,apri ≡ HTERCOM (∆apri) (4.50)

where, in a general context, for any given∆, the corresponding HTER is:

HTERCOM (∆) =
1

2
(FARCOM (∆) + FRRCOM (∆)) , (4.51)

where

FARCOM (∆) =
1

2
− 1

2
erf

(

∆ − µI
COM − hI

COM

σI
COM

√
2

)

, (4.52)

and

FRRCOM (∆) =
1

2
+

1

2
erf

(

∆ − µC
COM − hC

COM

σC
COM

√
2

)

. (4.53)

It is possible to show that
HTERCOM,apost < HTERCOM,apri.

This can be done by showing that HTERCOM,apost is theglobal minimum, i.e.,

∆apost = arg min
∆

HTERCOM (∆). (4.54)

Hence any∆ 6= ∆apost will not be optimal, including∆apri. In fact this global minimum happens at EER
where FAR=FRR because FRR is an increasing function of the threshold and FAR is a decreasing function
of the threshold.

In summary, this section shows that the bias-variance-covariance decomposition (of MSE) is not rele-
vant for classification problems. Specifically, in a two-class problem such as biometric authentication, the
concepts ofa priori anda posteriorithresholds play an important role in decision-making because these
thresholds directly affect the classification error.

Of course in reality, the mismatch is unknown in advance. Onepossible solution will be toestimatethe
biashk

i , for all i. This estimated bias can then be used to calculate a new threshold using (4.47). This bias-
correction at the threshold level is practical, for instance, in a multimodal systems where the participating
systems exhibit different degree of bias in different application scenarios.
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4.7 Extension of F-ratio to Other Fusion Operators

4.7.1 Motivations and Section Organization

The proposed parametric fusion model discussed until now only applies to the weighted sum fusion clas-
sifier/operators (with mean as a special case). The first goalof this section is to generalize the proposed
fusion model to other fusion operators. Its second goal is toidentify conditions under which a fusion
operator is superior or more appropriate for a given fusion task. Prior to our study, several theoretical
fusion models have already been proposed, e.g., [66] on the sum and product rules (withmax andmin as
special cases), [142] on OS combiners, [73] on several fusion classifiers and the most recent study [123]
which takes into consideration correlation and unbalancedsystem performance. All these studies share the
common characteristic that they consider system outputs inprobability. Our proposed model is somewhat
different because we consider system outputs in the LLR space, where scores can be summarized using
first- and second-order statistics. This advantage, not shared by the previous studies [66, 142, 73, 123],
allows us tocomparethe performance of different fusion operators using the mentioned statistics.

This Section is divided into four sub-sections. Section 4.7.2 lists the Bayes error of some commonly
used fusion operators in the literature. Section 4.7.3 examines the Order Statistics (OS) operators in details,
e.g.,min, max andmedian. Section 4.7.4 compares the performance of different fusion operators with
respect to two factors: correlation among system outputs and unbalanced system performance. Lacking the
necessary data, the comparison is performed using simulated data according to the class-conditional score
Gaussian assumption. The experimental setting in Section 4.7.4 does not allow us to distinguish between
min andmax fusion operators. Section 4.7.5 then explicitly introduces another experimental setting that
highlights the differences. This leads to a rarely considered result in previous studies, e.g., [66, 142, 73,
123].

4.7.2 Theoretical EER of Commonly Used Fusion Classifiers

There are more than one ways to extend the proposed parametric fusion model to other fusion operators.
One can begin with the Chernoff bound formulation as appeared in (4.6). Note that it is an upper bound
of the Bayes error or EER as appeared in (4.14), which is an exact solution. With the Chernoff bound
formulation, one can replacep(Y|k) in (4.6) byp(yCOM |k, the conditional distribution of the combined
score. Because any fusion operatorfCOM : R

N → R maps fromN dimensions to a single dimension, one
no longer needs the upper bound parameterized byβ so that a direct optimization of WER is possible, i.e.,:

WER =

∫

min
[
αp(yCOM |I), (1 − α)p(yCOM |C)

]
dyCOM , (4.55)

= αFAR + (1 − α)FRR, (4.56)

recalling that FAR and FRR are integrals ofp(yCOM |I) andp(yCOM |C), respectively. When FAR and
FRR are assumed to be integrals of Gaussian andα = 0.5, the minimal WER value is EER. As a re-
sult, we see that while the Chernoff bound provides an upper bound to the Bayes error, EER provides
anexactsolution. This section will develop the EER of several othercombination operators discussed in
Section 3.4.2.

Thanks to F-ratio, the analysis of EER can be summarized by the following four parameters:
{µk, σk|∀k={C,I}}. Theaverage baselineperformance of classifiers, considering that each of them works
independently of the other, is shown in the first row of Table 4.1. The (class-dependent) average variance,
σk

AV , is defined as the average over all the variances of classifier. This is in fact not a fusion classifier but the
average performanceof classifiers measured in EER. The single-best classifier inthe second row chooses
the baseline classifier that maximizes the F-ratio. This is the same as choosing the one with minimum EER
because F-ratio is inversely proportional to EER, as implied by the left part of (4.14).

The derivation of EER of weighted sum (as well asmean) fusion can be found in Section D.2.
For the product operator, it is necessary to boundy to be within the range[0, 1], otherwise multiplication

is not applicable. Consider the following case: two instances of classifier score can take on any real value.
The decision function (3.3) is used with optimal threshold being zero. With an impostor access, both
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Table 4.1: Summary of theoretical EER based on the assumption that class-independent scores are normally
distributed.

Fusion methods EER where

average baseline†1 EERAV = eer
(

µC
AV −µI

AV

σC
AV

+σI
AV

) µk
AV = 1

N

∑

i µk
i

(
σk

AV

)2
= 1

N

∑

i

(
σk

i

)2

single-best classifier EERbest = eer
(

maxi

(
µC

i −µI
i

σC
i +σI

i

))

–

mean rule EERmean = eer
(

µC
mean−µI

mean

σC
mean+σI

mean

) µk
mean = 1

N

∑

i µk
i

(
σk

mean

)2
= 1

N2

∑

i,j Σk
i,j

weighted sum†2 EERwsum = eer
(

µC
wsum−µI

wsum

σC
wsum+σI

wsum

) µk
wsum =

∑

i ωiµ
k
i

(
σk

wsum

)2
=

∑

i,j ωiωjΣ
k
i,j

OS combiners†3 EEROS = eer
(

µC
OS−µI

OS

σC
OS

+σI
OS

) µk
OS = µk + γ1σ

k

(
σk

OS

)2
= γ2

(
σk

)2

†1: This is not a classifier but the average performance of baselines when used independently of each other.
By its defintion, scores are assumed independent as classifiers function independently of each other.†2: the
weighted product (respectively product) takes the same form as weighted sum (respectively sum), except
that log-normal distribution is assumed instead.†3: OS classifiers assume that scoresacross classifiersare
i.i.d. The reduction factorγ is listed in Table 4.2. The mean and weighted sum classifiersdo notassume
that scores are i.i.d.

classifier scores will be negative if correctly classified. Their product, on the other hand, will be positive.
This is clearly undesirable.

The weighted product (and hence product) at first seems slightly cumbersome to obtain. However, one
can apply the following logarithmic transform instead:log(yk

wprod) =
∑

i wi log(yk
i ), for anyyk

i sampled
from p(yk

i ). This turns out to take the same form as weighted sum. Assuming thatyk
i is log-normally

distributed, we can proceed the analysis in a similar way as the weighted sum case (and hence themean
rule).

4.7.3 On Order Statistic Combiners

To implement fixed ruleorder statistics(OS) such as the maximum, minimum and median combiners,
scores must be comparable. This can be done by using F-norm. Unlike the previous section, we further
assume here that the scores are i.i.d. (independently and identically distributed). Hence,p(yi|k) = p(yj |k)
for any i, j ∈ [1, . . . , N ]. Although this assumption seems too constraining, it is at least applicable to
fusion with multiple samples which are indeed identically distributed but not independently sampled.

All OS combiners will be collectively studied here. The subscript OS can be replaced bymin, max and
median. Supposing thatyk

i ∼ Y k
i is an instance ofi-th response knowing that the associated access claim

belongs to classk. yi has the following model:

yk
i = µk

i + ωk
i ,

whereµk
i is a deterministic component andωk

i is a noise component. Note that in the previous sectionωk
i

is assumed to be normally distributed with zero mean. The fused scores by OS can be written as:

yk
OS = OS(yk

i ) = µk + OS(ωk
i ),

wherei denotes thei-th sample (and not thei-th classifier output as done in the previous section). Note
thatµk is constant acrossi and it isnot affectedby the OS combiner. The expectation ofyk

OS as well as
its variance are shown in the last row of Table 4.1, whereγ2 is a reduction factor andγ1 is a shift factor,
such thatγ2(σ

k)2 is the variance ofOS(ωk
i ) andγ1σ

k is the expected value ofOS(ωk
i ). Bothγ’s can be

found in tabulated form for various noise distributions [3]. A similar line of analysis can be found in [143]
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Table 4.2: Reduction factor of order statistics.

N γ2 values γ1 values
OS combiners mean OS combiners

min, max, median ( 1
N

) min max
1 1.000 1.000 1.000 0.00 0.00
2 0.682 0.682 0.500 -0.56 0.56
3 0.560 0.449 0.333 -0.85 0.85
4 0.492 0.361 0.250 -1.03 1.03
5 0.448 0.287 0.200 -1.16 1.16

Reduction factorγ2 of variance (2 for the second moment) with respect to the standard normal distribution
due to fusion withmin, max (the second column) andmedian (third column) OS combiners for the first
five samples according to [3]. The fourth column is themaximumreduction factor due tomean (at zero
correlation), with minimum reduction factor being 1 (at perfect correlation). The fifth and sixth columns
show the shift factorγ1 (for the first moment) as a result of applyingmin andmax for the first five samples.
These values also exist in tabulated forms but here they are obtained by simulation. Formedian, γ1 is
relatively small (in the order of10−4) beyond 2 samples and hence not shown here. It approaches zero as
N is large.

except that class-unconditional noise is assumed, i.e.,σC = σI . The reduction factors of combining the
first five samples, assuming Gaussian distribution, are shown in Table 4.2. The smallerγ2 is, the smaller
the associated EER. The fourth column of Table 4.2 shows the reduction factor due tomean (as compared
to the second and third columns). It can be seen thatmean is overall superior.

4.7.4 Experimental Simulations

Lacking of the necessary data, we performed a set of simulations similar to those mentioned in Section 4.6.2
and following exactly the same assumptions: (i) the two base-systems have the same numerator of F-ratio
and that (ii) for each base-system, the variance and covariance of client and impostor distributions are
proportional. By doing so, the experimental task can be described by the matrix(σ2

σ1

, ρ) (variance ratio and
correlation) and the corresponding outcome byβmin. The only difference from Section 4.6.2 is that we
usedmin andmax and

∏
as fusion operators. The results are shown in Figure 4.8.

Comparing Figure 4.7 with Figure 4.8, it can be observed thatthe mean operator is better thanmin or
max. For all cases except the product operator, low correlationand low variance ratio (unbalanced system
performance ) are important to guarantee a positive gain. The product rule only has performance as good
as the single-best classifier at variance ratio=1 while doesnot match the rest of the fusion classifiers. Its
performance does not evolve with correlation. One plausible explanation of such suboptimal performance
comes from [66], which states that the the product rule is more sensitive to error as compared to the sum
(or mean) rule.

4.7.5 Conditions Favoring A Fusion Operator

In this Section, we would like to investigate conditions which favor a given fusion operator, e.g.,min, max,
etc. Due to the assumptionsσC = σI andµC = µI , the simulations in Figure 4.8 could not distinguish
between the two operators. The F-ratio ofOS combiners can be written as:

F-ratioOS =
µC

OS − µI
OS

σC
OS + σI

OS

=

µC − µI + γ1(σ
C − σI)

︸ ︷︷ ︸√
γ2(σC + σI)

, (4.57)

for bothOS ∈ {min,max}. The underbraced term is critical in that it is different formin andmax whereas
the rest of the terms remain the same for both operators. In order that this quantity is positive (to ensure
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Figure 4.8: Comparison betweenmin or max and the product operator using synthetic data. Performance
gain βmin, (the Z-axis) across different variance ratios (of two systems) from 1 to 4 (the X-axis) and
different correlation values from 0 to 1 (the Y-axis), as a result of fusing synthetic scores of two system
outputs using (a)min or max (both produce identical results) and (b) product fusion operators.

gainβmin > 1), there are two possibilities:

• γ1 > 0 andσC > σI – in which casemax is better.

• γ1 < 0 andσC < σI – in which casemin is better.

As can be observed, the magnitude ofσk for k = {C, I} determines largely which operator is more
suitable. We performed a simulation using the experimentalsettings as before but this time, we varied the
variance ratioσC

σI whereasρ = 0. The results are shown in Figure 4.9. As can be observed, whenσC = σI ,
so that the ratio is1, min andmax are equivalent. However, as dictated by the constraint of (4.57),max is
better whenσC > σI and vice versa formin. It is interesting to observe that whenσC

σI > 1.6, max is even
better thanmean or weighted sum. This shows that contrary to what one may expect, in some situations,
max may be better than weighted sum.

Finally, we also carried out some empirical evaluations to verify the findings so far using the XM2VTS
score-level fusion benchmark datasets with 32 two-system fusion tasks. Each system output is first pre-
processing such thaty′

i ≡ fZ(fLLR(yi)) for any systemi. The empirical results [107] show that (EPC
curves not shown):

• maxi y′
i is better thanmini y′

i. An analysis shows thatV ar[y′
i|C] > V ar[y′

i|I] is true for most
system outputsy′

i, for anyi in this data set.

• Weighted sum fusion operator,w′y (whose weights are optimized by minimizing EER on the devel-
opment set), is better thanmin, max or mean rule. This indicates that trainable fusion classifiers are
optimal for the 32 fusion tasks.

4.8 Summary of Contributions

While estimating Bayes error is a classical problem in machine learning, e.g., the Chernoff bound, we
demonstrate that the Bayes error in our fusion setting, which is equivalent to EER in our case, can be esti-
matedexactly(hencetighter estimate). The underlying assumption is that the class-conditional scores are
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Figure 4.9: Performance gainβmin (with respect to the best underlying system) versus conditional variance
ratio σC

σI of different fusion operators.

normally distributed. Even though this assumption seems tobe restrictive, by using more than a thousand
biometric experiments, we show that the estimated EER is acceptable in practice. Thanks to the fusion
model, we can:

1. Justify why fusion is better than the average performance ofits sub-systems empirically and
theoretically: Although this subject has been investigated elsewhere, e.g., [57, 67, 68, 133], our
justification is unique in the sense that it isdirectly related to the reduction of classification error in
terms of EER. The empirical justification shown in Section 4.2 was summarized from our paper [97]
whereas the theoretical justification shown in Section 4.4 was extended from our paper [103].

2. Predict fusion performance: To the best of our knowledge, prior studies on classifier combina-
tion, e.g., [67, 68, 123], have not dealt with the subject of performance prediction since they deal
with system outputs in probability. However, by working on the alternative LLR space, we show that
performance prediction is not only feasible, but also that the predicted performance is sufficiently ac-
curate to be used in classifier selection. This study that wasdiscussed in Section 4.5 was summarized
from our work [102].

3. Understand the effects of unbalanced classifier performance and correlation: These two fac-
tors have been studied in [123] by considering weighted sum fusion in probability. Our parametric
approach models these two factors in the LLR space. Althoughboth studies lead to thesamecon-
clusion, the approach based on LLR is undoubtedlymuch simplercompared to [123] thanks to the
ability to summarize data in the LLR space (using the first- and second-order moments). For in-
stance, the pairwise correlation can naturally be described by the covariance matrix in LLR but this
is not obvious in probability. Therefore, our proposed model provides analternative understanding
of fusion with respect to the two effects mentioned. Our study as described in Section 4.6) was taken
from our published work [109].

4. Study the adverse effect of bias on fusion:The study of score-level mismatch between training and
test sets was examined in [76, Chap. 10] for the case of fusionusing simple operator in probability.
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It further makes the system output independence assumption. Different from [76, Chap. 10], our
study uses weighted sum as a fusion classifier and considers the system output dependencyexplicitly
in the LLR space. Due to using LLR, our approach is more advantageous because it allows one to
correct the bias while such remedial procedure is non-obvious with probability. This study was also
taken from our published paper [109].

5. Identify conditions which favor a particular fusion operat or: Thanks to the parametric model,
these conditions, described using class conditional Gaussian parameters, can be identified. By using
many experimental simulations, we found two observations interesting and somewhat surprising.
Firstly, contrary to popular beliefs, there exists conditions under whichmax andmin operators are
better than weighted sum (or mean as a special case). In practice, however, these conditions occur
rarely. Secondly, there exists conditions under whichmin is better thanmax, and vice-versa, in
the context of fusion. Prior to our study, e.g., [67, 68, 123,76], these conditions were not well
understood. This study as described in Section 4.7 has not been published yet.

In brief, we have shown that working in LLR is more advantageous than in probability since we can sum-
marize and analyze thesamefusion problem (in both cases) more easily thanks to the Gaussian distribution.
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Chapter 5

A Survey on User-Specific Processing

5.1 Introduction

While Part I of this thesis is about user-independent fusion,Part II is about user-specific fusion. In theory,
extending the user-independent parametric fusion model toa user-specific one is straightforward, e.g.,
replacing the statisticsµk and Σk by user-specific statisticsµk

j and Σk
j for a given user indexj. In

practice, however, due to limited amount of user-specific data, the reliability of user-specific statistics are
greatly reduced. We will survey in this chapter all techniques that rely on using data specific to a user.
We call this family of techniquesuser-specific processing. Examples of user-specific processing are user-
specific feature extraction, user-specific model/template, user-specific fusion classifier, user-specific score
normalization and user-specific threshold.

There are at least two motivations to apply user-specific processing in biometric authentication. Firstly,
it has been observed that in a database acquired in similar conditions, a fraction of users are more difficult
to recognize than the rest [33]. It is, in fact, possible to rank users in a database according to an index of
ease of recognition (Section 7.4). Secondly, it is common knowledge that human beings recognize people
by their salient traits. These traits are best seen in human caricature characters where remarkable traits of
a person are exaggerated.

User-specific processing is a challenging problem because very often, extremely few samples are avail-
able per user. This is even more so for newly enrolled users. For instance, it has been shown in [40]
that at least six genuine samples are needed before its proposed user-specific procedure can outperform
the baseline system. Ten samples were reported in [139] and five in [50]. Such a large number of sam-
ples can be inconvenient if one considers that conventionalnon-automatic biometric applications use only
one sample, e.g., a single mug-shot photo for traveling documents. Therefore, an important challenge to
overcome in user-specific processing is to reduce the required number of genuine training samples, i.e.,
learning with small sample size. This is a non-trivial machine-learning problem. Chapters 6 and 7 provide
two alternatives of applying user-specific processing thatcan work with a single genuine training sample.

To the best of our knowledge, one of the earliest applications of user-specific processing is user-specific
score normalization [48]. Since then, such family of methods is extended to user-specific threshold,
e.g., [92], and user-specific fusion, e.g., [61, 139, 40]. These studies show that exploiting user-specific
information can effectively improve the system accuracy. This chapter provides a survey as well as a thor-
ough analysis of this subject. To the best of our knowledge, despite its importance, this is the first survey
written on the subject.

Chapter Organization

This chapter is organized as follows: Section 5.2 introduces the terminology in user-specific processing
and motivates user-specific decision making. Section 5.3 will give an overview of user-specific processing
techniques from an architectural perspective. Sections 5.4–5.6 present user-specific fusion, user-specific
score normalization and user-specific threshold. Section 5.7 analyzes the relationship between user-specific
normalization and threshold. Finally, Section 5.8 concludes the chapter.

67
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5.2 Terminology and Notations

5.2.1 Terminology Referring to User-specific Information

Due to the evolving nature of this field, several terms have been introduced by different authors, e.g. [43,
139]. To avoid confusion, in this thesis, we will adopt the following terms:

• User-specific/client-dependent/local: (adjective) on a per client basis.

• User-independent/client-independent/global/common: (adjective) indifferent to each client.

• User-adapted: (adjective) that makes use ofbothuser-specific and user-independent statistics..

• Client-centric/target-centric: (adjective) that makes use of user-specific client accesses only.

• Impostor-centric: (adjective) that makes use of user-specific impostor accesses only.

• Client-impostor centric/target-impostor centric: (adjective) that makes use of both user-specific
client and impostor accesses.

Note that the bold terms are used in this thesis whereas the rest of the terms separated by “/” are synonyms.

5.2.2 Towards User-Specific Decision

Let j ∈ {1, . . . , J} be the identity being claimed when making an access request and there areJ users. The
user-specific decision will necessary take the indexj into consideration. In contrast to user-independent
decision based on Log-Posterior Ratio (LPR) as defined in (3.1), the user-specific decision function, which
considers the identity claimj, using LPR, can be written as:

LPRj ≡ log

(
P (C, j|person)
P (I, j|person)

)

= log
P (person|C, j)

P (person|I, j)
︸ ︷︷ ︸

− log
P (I, j)

P (C, j)
︸ ︷︷ ︸

(5.1)

Instead of considering at the “person” level (the compositeof digitized biometric signals), the LPR test is
also valid at the feature level (by replacing “person” with the feature vectorx) or at the system level (by
replacing “person” with a vector of system outputsy = [y1, . . . , yN ]′ with N elements). By considering
N systems, our framework generalizes to a single system output whereN = 1.

To illustrate the usefulness of user-specific decision, we will focus on LPRj at the system output level.
Therefore, (5.1) can be written as:

LPRj = log
P (y|C, j)

P (y|I, j)
︸ ︷︷ ︸

− log
P (I, j)

P (C, j)
︸ ︷︷ ︸

≡ Ψj(y) − ∆j , (5.2)

where one can recognize thatΨj : R
N → R is a user-specific fusion function and∆j is its corresponding

user-specific threshold. WhenN = 1, the functionΨj : R → R is called a user-specificscore normal-
ization. Following a similar discussion as in Section 3.2.2, the decision function of (5.2) can be written
as:

decision(y) =

{
accept if Ψj(y) > ∆j

reject otherwise.
(5.3)

This decision function is impractical for two reasons. Firstly, the user-specific threshold∆j is difficult to
estimate due to lack of genuine samples associated to identity j. Secondly, the user-specific fusion function
(or score normalization forN = 1) is also difficult to estimate for the same reason. Despite the difficulties,
this form of solution was examined in [139], where as many as ten samples were used – demonstrating the
drawback of this approach.
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In order to be robust to few user-specific training samples, (5.3) can be approximated by the following
ways:

1. Using only user-specific function:This results in the following decision function:

decision(y) =

{
accept if Ψj(y) > ∆
reject otherwise,

(5.4)

In this case, the threshold∆ is common to all users. The functionΨj in (5.4) is auser-specific fusion
for N > 1 and is called auser-specific score normalization procedurefor N = 1.

2. Using only user-specific threshold:

decision(y) =

{
accept if y > Ψ′

j(∆)
reject otherwise,

(5.5)

whereΨ′
j : R → R is a user-specific threshold(Ψj with ′). In this case, the fusion function is

common to all users. This form was examined by [43] for instance.

3. Using neither one: In this case, no user-specific information is used. This results in the user-
independent decision function shown in (3.3) whereΨ(∆) = ∆. This is thede factoapproach.

Note that (5.4) and (5.5) are closely related. Their relationship will be shown in Section 5.7. This section
is original because to the best of our knowledge, such relationship has not been shown in the literature.
The dual relationship is useful because it indicates that itis always possible to find an equivalence of
user-specific threshold from user-specific score normalization but not necessarily the other way round (de-
pending on whether the common threshold∆ is considered or not). In other words, user-specific score
normalization generalizes over user-specific threshold. For this reason, we choose to focus on user-specific
score normalization.

Our contributions to be discussed in Chapters 6 and 7 will be based on (5.4) in the context of fusion
(for N > 1) and that of score normalization (forN = 1).

5.3 Levels of User-Specific Processing

User-specific processing can be applied at the following three architectural levels:

1. Feature level – User-specific feature set. At this level, different feature representations are used
for different user or group of users. For instance, for userswhose fingerprint minutiae cannot be
extracted reliably, the textual information may be more useful. In [22], it was shown that the per-
formance of a speaker verification task can be enhanced by using a subset of features for each user.
These features are chosen using a feature selection technique.

2. Model level – User-specific model. This is a standard approach whereby a biometric authentication
system builds a model on aper userbasis. For instance, it is common to train an MLP classifier to
separate the face of a user from the rest of the users [81]. This strategy is called the one-against-all
classification strategy. The-state-of-the-art approach in speaker verification, which is based on a user-
adapted model [122] from a general speaker independent model, is also based on the same strategy.
Recent techniques in face verification also follow the same trend, e.g., [16] using local features
(which are classified with a user-adapted model) and [151] using user-specific Fisher’s projection.

3. Score level– which can be further divided into:

• User-specific score normalization.The most representative example is called Z-norm and
first proposed by [48], which relies on user-specific impostor scores to carry out the normal-
ization. In [126], a similar version of Z-Norm but using onlyuser-specific genuine scores was
reported. However, this technique requires much more user-specific genuine accesses. The
authors’ experiments were based on 5 accesses per user. Since the first work by [48], the form
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of normalization has not been changed much although the context of application is extended
beyond that of mitigating user-induced score variations, such as T-Norm [4], (aiming at exten-
uating the mismatch during test), H-norm [53], (aiming at extenuating the mismatch due to the
use of different handsets) or and D-Norm [6] (aiming at reducing model-induced variations and
is specific to GMMs). Other normalization techniques employing both user-specific client and
impostor information (i.e., client-impostor centric) include EER-norm [43] and the proposed
F-norm in Chapter 7.

• User-specific fusion. This technique was proposed by [61] using a linear weighingscheme
to weigh the outputs of several multimodal systems while a non-linear version, achieved via
Multi-Layer Perceptron (MLP) was reported in [71]. In [40],a Support Vector Machine (SVM)
classifier was used to construct a user-specific fusion function while in [41], a Bayesian classi-
fier was used.

• User-specific threshold. This class of techniques is commonly applied to speaker verification
tasks for instance [48, 126, 75, 93, 18].

The literature cited here is certainly not exhaustive but itrepresents the state-of-the-art in user-specific
processing.

Often, the score-level techniques are used together with the feature-level techniques. For instance,
the state-of-the-art speaker verification technique basedon adapted Gaussian Mixture Model [122, 4] uses
both user-specific model and user-specific score normalization. The same adapted GMM architecture was
employed successfully to signature verification [43] and toface verification [130]. In [79], another possible
combination was proposed, i.e., between user-specific score normalization (based on Z-norm) and user-
independent fusion.

A recent study [139] proposed a new paradigm consisting of two dichotomies: user-specific/user-
independent fusion (called “local/global learning” by theauthor) and user-specific/user-independent thresh-
old (called “local/global decision”). These two dichotomies thus give four categories of methods to incor-
porate user-specific information, at the score level. Rather than just looking at these dichotomies, one
should investigate the possibility of applying user-specific strategies atall possible levels listed here.

A detailed discussion on user-specific fusion can be found inSection 5.4, score normalization in Sec-
tion 5.5 and threshold in Section 5.6. Section 5.7 shows the duality between user-specific score normaliza-
tion and threshold normalization.

5.4 User-Specific Fusion

The user-specific fusion,Ψj , can be constructed based on the following methodologies:

1. A classifier withN inputs but one for each user.

2. A classifier receivingN + 1 inputs, i.e.,N system outputs to be combined and an identity label.

3. A classifier withN inputs, based on a common model, but its parameters change according to the
score statistics of each user.

In the first case, one does not make use of the data of the rest ofthe users. Therefore, it is inefficient in
terms of data usage. In the second case, due to parameter sharing, the use of data is more efficient. In the
third case, the possible sets of solution is restricted but with the right model, its generalization performance
may be superior over the first two cases. The following five types of user-specific fusion classifiers are
found to be relevant:

• Brute-Force User-Specific Weight Sum:The first work that exploited user-specific fusion can be
attributed to [61], whereby a linear combination of the form

∑

i wi,jfprob(yi) is used, with the
constraint that the weights sum up to one and that the solution with equal weights is preferred. The
functionfprob converts the output to probability (see Algorithm 1). The weight wi,j for a given user
j and systemi is tuned directly to minimize the population EER criterion from the data. A potential
problem with this technique is that if there areJ users andN systems, then there are a total ofN ×J



5.4. USER-SPECIFIC FUSION 71

weight parameters to solve. Given the high degree of freedom, the solution is unlikely to generalize
well.

• D-prime Based User Specific Weighted Sum:An improved version of user-specific weighting
scheme over [61] was proposed in [137]. The improved scheme useswi,j ∝ d′−1

j whered′j is user-
specific d-prime as defined in (4.17) except that the statistics are derived uniquely from user-specific
data (scores). Although this solution is expected to be morerobust than the direct weight estimation
approach, the user-specific statistics inherent in d-primecan be very unreliable. As a result, such
strategy may not generalize well (see Section 7.2).

• User-Specific SVM:In [40], a standard SVM was used in a somewhat novel way, i.e.,an SVM was
constructed using a user-independent set of scores plus a user-specific set of scores. Each of these
sets of scores contain both client and impostor classes of scores. This strategy was called “adapted
user-dependent fusion” by the author. This is to be distinguished from “user-independent fusion”
whereby no user-specific data is used, or “user-dependent fusion” whereby only user-specific (client
and impostor) scores are used (while ignoring the existenceof user-independent client and impostor
scores). The mentioned novelty in the said study is the use oftheC parameter in SVM [146]. This
parameter rates therelative influenceof each example. When included in the support vectors (i.e.,
examples falling in the margin), the relatively highC parameters of these examples can change the
decision boundary drastically. In [40], twoC values are assigned to two sets of scores, i.e., one for
the user-specific scores and one for the user-independent scores. In order for the adapted fusion to be
effective agreaterC value has to be associated to the precious user-specific scores as compared to
theC value of the user-independent scores. It was demonstrated empirically that whenC was tuneda
posteriorion the test set (due to lack of available data for tuning theC parameter), the adapted fusion
was potentially beneficial as compared to either user-independent or user-specific fusion. Since the
additional free parameterC was tuneda posteriori, hence providing an additional degree of freedom
to fit the data, the experimental results are thusbiasedtowards the adapted fusion strategy.

• User-Specific Gaussian Classifier:Another similar idea using Bayesian adaptation (instead ofus-
ing SVM) was reported by the same author in [41], also using the same multimodal database. The
architecture employed is similar to the Gaussian Mixture Model (GMM) with MaximumA Poste-
riori (MAP) adaptation, the current state-of-the-art system in speaker verification [122]. However,
a single Gaussian component with a diagonal covariance matrix was used1. According to our un-
derstanding, the justification for using a single Gaussian component is that there are just too few
user-specific client scores to adapt (from two to three, depending on bootstrap samples). Similar to
theC parameter in SVM, the GMM-MAP algorithm also has a free parameter called a “relevance
factor” (to be discussed in Section 6.3.2). This factor is crucial in that it balances the right mix
between the user-specific and user-independent information. In other words, bothC and relevance
factor play the same role in this context. Again, the relevance factor was tuneda posterioriand
thus inevitably reportingbiasedperformance towards the GMM-MAP algorithm. Ideally, any free
parameter should be tuned on a separate validation set.

• Identity-based MLP Fusion: In [71], an MLP was employed to combine the vector of system out-
putsy together with the user-identity indexj. Hence, the MLP hasN + 1 inputs. It was shown that
employing the identity claim as an additional feature can improve the performance, albeit insignifi-
cantly.

These user-specific classifiers shows that it is important/useful to:

• Use explicitly user-specific score statistics, e.g., [137].

• Share parameters and/or training data among different user-specific classifiers, e.g., [41, 40].

1In the context of speaker verification, the use of GMM with a diagonal matrix per Gaussian component is fine since a full
covariance matrix does not necessarily provide better performance. On the other hand, in the context of score-level fusion, a single
Gaussian component with a full covariance matrix may be more appropriate, if the covariance information isbelieved to bevaluable.
Unfortunately, no comparative study was reported in this regard.
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• Restrict the possible solution space by choosing a model, e.g., [137, 41].

However, none of the above studies possess all these characteristics. We will propose in Chapters 6 and 7
two designs of user-specific classifiers that considerall these characteristics which are extremely important
in order to reduce the size of user-specific training samplesto one. This is a significant savings considering
that the studies presented here rely on at least five trainingsamples before the classifier outperforms ade
factofusion classifier which does not consider the user label.

5.5 User-Specific Score Normalization

User-specific score normalization can be categorized into two families:

• Z-norm Based Normalization: The desired effect is that the distribution of normalized impostor
score is aligned. These methods are impostor-centric.

• EER-norm Based Normalization: Thesignof the normalized score is indicative of the class label.
These methods are client-impostor centric.

We will introduce another class of methods based on F-norm inChapter 7. F-norm belongs to a different
family because the expected values of the normalized clientand impostor scores aresimultaneouslyaligned.

The Ideal User-specific Normalization Procedure

If one considers user-specific LLR score as in (5.2) and assumes the class-conditional Gaussian distribution,
Ψj(y) can be written as:

Ψj(y) = − 1

2(σC
j )2

(
(y − µC

j )2
)

+
1

2(σI
j )2

(
(y − µI

j )
2
)
− log

√

2π(σC
j )2

√

2π(σI
j )2

, (5.6)

whereµk
j andσk

j are the class conditional mean and standard deviations of user j for k = {C, I}. We call
these statisticsuser-specific statistics.

Being an LLR, such a user-specific normalization procedure is optimal (i.e., results in the lowest Bayes
error) when

1. The parametersµk
j , σk

j for k ∈ {C, I} and for allj are estimated correctly.

2. The class-conditional scores can be described by the firstand second order statistics.

The second condition can be fulfilled by converting any scoretype to LLR using Algorithm 2). The first
condition is unlikely to be fulfilled in practice because oneis always lack of user-specific training data. As
a result, in its original form, (5.6) is not a practical solution.

Z-norm Based Normalization

SinceµC
j andσC

j cannot be reliably estimated, the following constraints may be applied to (5.6):σC
j = σI

j

andµC
j = y (the score itself). As a result, (5.6) becomes:

Ψj(y) =
(y − µI

j )
2

2(σI
j )2

,

which is proportional to the square of Z-norm [48] having theform.:

yZ
j =

y − µI
j

σI
j

. (5.7)
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A more involved discussion of score normalization of this form can be found in [63]. If one further imposes
the constraintσI

j = a constantbecause it is non-informative, one obtains:

yZ′

j = y − µI
j . (5.8)

We call this expressionZ-shift. Note that the constant can be discarded as the common threshold in the
decision function of (5.4) can be adjusted accordingly.

EER-norm Based Normalization

Note that Z-norm isimpostorcentric because it relies only on the impostor distribution. A Client-impostor
centric normalization was also studied in [43] and has two variants:

yTI1 = y − ∆′
j (5.9)

yTI2 = y − ∆j (5.10)

where∆′
j is a threshold found by assuming that the class-conditionaldistribution is Gaussian and∆j is

found empirically.∆′
j takes the form of (4.13) with the difference that all the user-independent terms are

replaced by the user-specific terms, i.e.,
µI

j σC
j +µC

j σI
j

σI
j +σC

j

. In reality, the empirical version (5.10) cannot be used

when only one or two user-specific genuine scores are available.
Another study conducted in [139] used a rather heuristic approach to estimate the user-specific thresh-

old. This normalization is defined as (the rest of the approaches can be seen as an approximation to this
one):

ymid = y −
µI

j + µC
j

2
︸ ︷︷ ︸

(5.11)

The under-braced term is consistent with the term∆′
j in (5.9) when one assumes thatσC

j = σI
j = 1.

Common characteristics of User-Specific Score Normalization Procedures

All the procedures presented here are linear with respect tothe score, i.e.,ym =
y−Bj

Aj
where the scaling

factor and bias,(Aj , Bj) are dependent on the statistics of user-specific distribution. This characteristic
also generalizes to the F-norm to be discussed in Chapter 7.

5.6 User-Specific Threshold

Considering the vast amount of works on user-specific threshold procedures, we will provide a brief survey
here. They are summarized in Table 5.1. These procedures arecategorized by their type (i.e., client, impos-
tor or client-impostor centric), the biometric modality applied to and whether they use a global threshold
or not. The inclusion of a global threshold (e.g., rows 3, 6 and 9 of Table 5.1) is important for association
with user-specific score normalization (see Section 5.7) and for providing an added degree of flexible or
refinement to the local threshold.

Admittedly, most works are reported in the speaker verification community and few come from other
biometric domains. This is because there are conditions (notably the fact that the client and impostor sets
of scores each follows approximately a normal distribution) that make threshold normalization procedures
more effectivein the state-of-the-art systems used in speaker verification (mostly based on Gaussian Mix-
ture Models or the like) than other systems2.

2Our experimental outcome to be presented in Section 7.3.3 (in particular Figure 7.5(b)) suggests that score normalizationproce-
dures are more effective when applied to GMM-based systems than when applied to other systems.
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Table 5.1: A survey of user-specific threshold methods applied to biometric authentication tasks.

No. Equations authors type modality use global
(-centric) applied threshold

1 Ψ′

j(∆) = α
`
(µI(j) + σI(j)

´
+ β Furui [48] impostor speech no†

2 Ψ′

j(∆) = αµI(j)σI(j) + βµI(j) + γσI(j) Pierrot [92] impostor speech no†

3 Ψ′

j(∆) = ∆−
“

αµI(j)σI(j) + βµI(j) + γσI(j)
”

| {z }

b

Genoud [52] impostor speech yes‡

4 Ψ′

j(∆) = µI(j) + α
`
σI(j)

´
2 impostor speech no†

5 Ψ′

j(∆) = αµI(j) + (1 − α)µC(j) Lindburget al [75] client-impostor speech no†

6 Ψ′

j(∆) = ∆ + α
“

µC(j) − µI(j)
”

| {z }

b

client-impostor speech yes‡

7 Ψ′

j(∆) = α(µI(j) + βσI(j) + (1 − α)µC(j) Chen [18] client-impostor speech no†
8 Ψ′

j(∆) = µC(j) − ασC(j) Saeteet al [126] client speech no†

9 Ψ′

j(∆) = µI(j)
| {z }

b

+ σI(j)
| {z }

a

∆ Jonssonet al [64] impostor face yes∗

Parametersa andb correspond to those found in (5.14).†: For these equations (which use a global thresh-
old), theb term corresponds to the right hand-side of the respective equation anda = 0. ‡: For these
equations,a = 1. ∗: Although went unnoticed by the author, this isexactlythe dual form of Z-norm and
was applied to a correlation-based matcher.

5.7 Relationship Between User-Specific Threshold and Score Nor-
malization

The user-specific score normalization in Section 5.5 and user-specific threshold normalization in Sec-
tion 5.6 are strongly related. Taking the right-hand sides of (5.4) and (5.5), we have:

Ψj(y) > ∆, (5.12)

y > Ψ′
j(∆). (5.13)

Note that the threshold∆ refers to the threshold foundafter applying a respective user-specific score
normalization procedure andnot before(i.e., not directly on the scores prior to normalization).

To show that they are dual, we will re-express (5.13) into theform of (5.12). To do so, it is necessary
to assume thatΨ′

j(∆) takes the following form, as a function of∆:

Ψ′
j(∆) = a∆ + b. (5.14)

Note that all equations in Table 5.1 can be expressed by (5.14) using differenta andb. In particular, for
those which do not contain a global threshold,b corresponds to the right hand-sides of the equations. For
those using a global threshold, any multiplicative factor to the global threshold will be represented bya
and the rest of the terms are represented byb. Replacing (5.14) into (5.13), and after rearrangement, we
obtain:

y − b

a
> ∆ (5.15)

From (5.12) and (5.15), we see that:

Ψj(y) =
y − b

a
, (5.16)
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For equations whosea = 0, we have:

Ψj(y) = y − b, (5.17)

As a result, manipulating the threshold or the scorey hasexactly the sameeffect. Hence, the threshold
refinement procedure (row thee of Table 5.1) is just another score normalization technique. The additional
advantage of score normalization over threshold normalization is the additional flexibility provided by
the global threshold which can still be adjusted to different operating costs of false acceptance and false
rejection.

5.8 Summary

In this chapter, we survey user-specific processing, i.e., afamily of techniques that considers the user
claimed user index. These techniques can be categorized into three types, according to the level of in-
formation dealt with, i.e., feature level, model level, andscore level. User-specific score-level processing
can further be divided into three types: user-specific fusion, user-specific score normalization and user-
specific threshold procedure. Although user-specific processing is extremely useful and has been shown by
numerous authors, this is the first survey written on the subject.

There are two somewhat original ideas in this chapter. Firstly, by analyzing the decision function using
LLR, we unify the three types of user-specific score-level processing in a single framework. Thanks to the
framework, user-specific score normalization can be seen asa special case of user-specific fusion having
only a single system. This observation has a significant influence in our work because user-specific fusion
techniques can suddenly be used as user-specific score normalization techniques, e.g., Chapter 6, and vice-
versa, e.g., Chapter 7.

Secondly, we show that, in theory, user-specific score normalization and user-specific threshold pro-
cedure are equivalent. In practice, however, one may not obtain exactly the same result depending on the
optimization criterion used and on whether or not the globalthreshold is considered for decision making.
Between these two, user-specific score normalization is more advantageous due to an added degree of flex-
ibility – the global threshold which can still be tuned afterthe normalization. We will therefore focus only
on user-specific score normalization. This survey has not been published yet.

Thanks to the survey, we identify our contributions in user-specific processing as follows:

• An original compensation scheme that combines both user-specific and user-independent fusion clas-
sifiers consisting ofN participating systems (Chapter 6). This framework generalizes to the case of
N = 1 which can be considered as a novel user-specific score normalization.

• A user-specific score normalization called the “F-norm” anda user-specific fusion classifier called
the “OR-switcher”. (Chapter 7).
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Chapter 6

Compensating User-Specific with
User-Independent Information

6.1 Introduction

While prior works on user-specific fusion require many user-specific genuine samples (apart from those
used to train the base-systems) in order to outperform the conventional fusion classifiers, e.g., as many
as ten in [139] and six in [41], our goal in this chapter is to reduce the number of required user-specific
genuine training samples to one or two.

This chapter contains two original ideas. The first idea is onthe design of a user-specific fusion classifier
that is in fact a Gaussian classifier with highly constrainedBayesian adaptation. Our novelty lies on the
introduction of a set of useful constraints representing the domain knowledge. The second idea is referred
to as acompensation schemesince one combines both the outputs of a user-specific fusionclassifier (based
on the first idea) and a user-independent (conventional) fusion classifier. The scheme is advantageous for
three reasons. Firstly, it compensates for the possibly unreliable (due to lack of training data) but useful
user-specific fusion classifier. Secondly, both the underlying fusion classifiers can be trained independently
of each other. Thirdly, both the fusion classifiers are likely to be independent of each other thanks to the
“phenomenon of large number of users”. This phenomenon is based on our observation that when the
number of users is large, the class-conditional score likelihood of a population is independent of that of a
given user (who can be a member of the population). The schemeis in fact very general because it extends
to the case where only a single system is involved; hence resulting in a compensated user-specific score
normalization procedure.

Chapter Organization

Section 6.2 analyzes the effect of large number of users. Thetwo original ideas – a compensation scheme
and a user-specific classifier – are discussed in Section 6.3.The scheme is then empirically evaluated in
Section 6.4. Finally, Section 6.5 draws the conclusions.

6.2 The Phenomenon of Large Number of Users

The idea of user-specific versus user-independent information is deeply related to the phenomenon of
large number of users. To show this property, let the class-conditional score distribution bep(y|k) for
k = {C, I}, wherey = [y1, . . . , yN ]′ is the vector ofN system outputs to be combined. Note that the
vectory generalizes to the case of a single system, i.e.,N = 1. The likelihood of the user-independenty

77
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is thus a result ofaccumulateduser-specific likelihoody of all identitiesj ∈ J , i.e.,

p(y|k) =
1

P (k)

∑

j∈J

p(y, k, ID = j)

=
1

P (k)

∑

j∈J

p(y|k, ID = j)P (k, ID = j), (6.1)

whereP (k, ID = j) denotes the prior probability of an impostor claiming identity j, i.e.,P (I, ID = j),
or the prior probability of userj making an identity claim, i.e.,P (C, ID = j).1. We will now single out a
particular userj∗ ∈ J from the rest of the users.

p(y|k) =
1

P (k)

(

p(y|k, ID = j∗)P (k, ID = j∗) + p(y|k, ID 6= j∗)P (k, ID 6= j∗)
)

(6.2)

Assuming the independenceP (k, ID) = P (k)P (ID) and equal priors, i.e.,P (ID = j) = 1
J

for all j ∈ J ,
P (ID = j∗) = 1

J
andP (ID 6= j∗) = 1 − 1

J
. As a result, (6.2) can be written as:

p(y|k) =
1

P (k)

(

p(y|k, ID = j∗)P (k)
1

J
+ p(y|k, ID 6= j∗)P (k)(1 − 1

J
)
)

= p(y|k, ID = j∗)
1

J
+ p(y|k, ID 6= j∗)(1 − 1

J
)

≈ p(y|k, ID 6= j∗) whenJ → ∞. (6.3)

We observe that when the number of users,J , is large, the user-specific likelihood,p(y|k, ID = j∗), cannot
contribute significantly to the overall population likelihood,p(y|k). Because of this phenomenon, one can
modelp(y|k) by a mixture of user-independent (and hidden) components. Let then-th user-independent
component be denoted bycn and there areNk

cmp components for each classk. The user-independent
likelihood can be estimated by:

p(y|k) ≡
J∑

j=1

P (ID = j)p(y|k, ID = j) (6.4)

≈
Nk

cmp∑

n=1

P (cn)p(y|k, cn) (6.5)

where bothp(y|k, cn) andp(y|k, ID) are each modeled by a Gaussian distribution. The difference, how-
ever, is that the number of Gaussian components is much fewerthan the number of users available, i.e.,

Nk
cmp ≪ J. (6.6)

An Illustration

This phenomenon is illustrated in Figure 6.1. We randomly chose 10 users out of 200 for one of the
XM2VTS fusion tasks. In Figure 6.1(a), the user-specific class conditional score density,p(y|k, j) is
represented by a single Gaussian, for eachk{C, I} and eachj = {1, . . . , 10}. In Figure 6.1(b), by ignoring
the claimed identity, the densityp(y|C) requires only two mixture of Gaussian components whereasp(y|I)
requires only three. The number of Gaussian components was tuned by cross-validation. In both cases, the
number of Gaussians in the mixture is always smaller than thenumber of users. Therefore, (6.6) is always
true.

1In real application, the user with high probability of beingimposed will have highP (I, ID = j) and the user who uses more
frequently the system than the rest will also have highP (C, ID = j).
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Figure 6.1: An illustrative example of the independence between user-specific and user-independent in-
formation. For both figures, the X- and Y-axes are the output score-space of a face and speech systems,
respectively. The upper right clusters are client accesseswhereas the lower left clusters are impostor ac-
cesses. In (a), the user-specific class conditional score distribution is represented by a single Gaussian
distribution. Note that these distributions are very different from each other, especially for the client class.
In (b), by not using the claimed identity, the user-independent class-conditional distribution requires a
significantly lesser number of Gaussian mixtures.

6.3 An LLR Compensation Scheme

Section 6.3.1 proposes the compensation framework betweenuser-specific and user-independent classifiers
and two of its possible forms of realization, i.e., a fusion and a score normalization procedure. Section 6.3.2
discusses the design issue related to the user-specific classifier which requires a special attention due to few
training samples.

6.3.1 Fusion of User-Specific and User-Independent Classifiers

In Chapter 5, we have motivated the use of the following form of user-specific decision:

Ψj(y) > ∆,

whereby a user-specific fusion classifier,Ψj(y) is used in conjunction with a common (user-independent)
threshold∆ wherey = [y1, . . . , y

N ]′ is a vector of system scores to be combined (see (5.4)). However,
considering the fact thatΨj(y) is potentially unreliable, we could consider the followingform instead:

γΨj(y) + (1 − γ)Ψ(y) > ∆,

whereΨ(y) is a user-independent fusion classifier andγ ∈ [0, 1] adjusts the contribution of the two
classifier outputs. We will consider the user-specific and user-independent fusion classifier below:

Ψj(y) = log
p(y|C, ID = j)

p(y|I, ID = j)
(6.7)

and

Ψ(y) = log
p(y|C)

p(y|I)
, (6.8)
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respectively. There are three advantages using the above form because of:

• Mutual compensation: The solution compensates for the potentially unreliable user-specific classi-
fier but at the same time, enhances the user-independent classifier with a user-specific one.

• Hybrid learning algorithms: Both classifiers can be trained independent of each other. For instance,
in practice,Ψj(y) is restricted to Gaussian classifier due to the lack of training data whereasΨ(y)
can be implemented using any general purpose fusion classifier described in Section 3.4. This is
perfectly logical since there is no reason to restrictΨ(y) to be a Gaussian classifier.

• Independence of information: Following the justification in Section 6.1 thatp(y|k is independent
of p(y|k, ID = j whenJ is large, it is reasonable to expect thatΨ(y) andΨj(y) are also likely to be
independent. This is highly desirable because combining independent outputs will lead to improved
generalization performance.

An Overview of Compensation Scheme

Consistent with our discussion in Part I, we will now restrict the classifiersΨ andΨj to those that output
LLR scores. We will also consider two specific cases in which the proposed compensation scheme can be
realized: a single-modal system whereN = 1 and a multimodal system whereN > 1. The realization for
both cases are:

ycom = fadjust

(
Ψj(y),Ψ(y)

)
(6.9)

and
ycom = fadjust

(
Ψj(y),Ψ(y)

)
, (6.10)

respectively, where:

1. fadjust : R
2 → R is a linear combination function of two LLRs. In theory, any trainable linear

classifier discussed in Sections 3.4.2 and 3.4.4 can be used.We choose two techniques: one is
trainable via SVM and the other one is a fixed rule using the mean operator such thatγ = 1

2 .

2. Ψ : R
N → R is a fusion classifier that outputs LLR scores. While we choosea GMM classifier

for this purpose, any classifier discussed in Sections 3.4.3and 3.4.4 can be used. In the case where
N = 1, Ψ reduces to a user-independent/system-level score normalization procedure, i.e.,fLLR as
described using Algorithm 2 in Section 3.3.

3. Ψj : R
N → R is a user-specific fusion classifier. Due to lacking user-specific data, a careful

treatment is required. This is discussed in Section 6.3.2. Note that in the caseN = 1, Ψj reduces to
a user-specific score normalization procedure. In theory, the ideal form of solution is given by (5.6).
In practice, however, approximated solutions using Z-,F- and EER-norms are simpler to implement
(see Section 5.5). We will deal withΨj in the context of fusion and generalizes the result to the case
N = 1. The approximated solutions will not be dealt with here.

As will be shown, Step 1 is crucial to guarantee the success ofthe scheme, especially when relying onΨj

alone can fail. Step 3 is particularly difficult to design because the problem isN -dimensional (correspond-
ing to combiningN system outputs). Consider the solution using a multivariate Gaussian. In this case,
the covariance matrix must be estimated from at leastN + 1 samples in order to ensure a non-singular co-
variance matrix. In most cases, this condition cannot be fulfilled unless one assumes a diagonal covariance
matrix (in which case one cannot model the correlation amongsystem outputs). Furthermore, due to the
small training size, the obtained statistics may not be reliable. Section 6.3.2 deals with the design issue of
user-specific fusion classifier.

6.3.2 User-Specific Fusion Procedure Using LLR Test

Approximating user-specific LLR is more difficult than approximating user-independent LLR since few
user-specific data points are available, especially the genuine scores. The same difficulty does not apply to
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Figure 6.2: An illustration user-specific versus user-independent fusion of two system outputs.p(y|k, ID =
j) is thej-th user’s (hence user-specific) distribution whereasp(y|k) is a user-independent distribution, for
k = {C, I}. The user-independent (global) decision boundary is drawnwith a continuous line whereas
the user-specific (local) decision boundary, for userj, is drawn with a dashed line. Each oval shape, as
illustrated here, is a bivariate Gaussian.

the user-specific impostor scores because these scores can be generated by using an external database. We
tackle the lack of training data using the following rules:

1. Use simple classifier model (with low degree of freedom)

2. Estimate parameters using reliable data only

3. Rely on some prior knowledge such as user-independent distribution.

Because of few user-specific data points, the best one can do is to assume that each class of user-specific
scores is normally distributed. The first rule implies that using more than one Gaussian components as
in the user-specific case will probably result in overfitting. We present here two classifiers based on the
concept of MaximumA posteriori(MAP) adaptation.

User-Specific Gaussian Classifier

The idea of user-specific fusion classifier, implemented as aGaussian classifier, is illustrated in Figure 6.2.
There are essentially two decision boundaries, one is user-independent (the classical solution) and the other
is user-specific. Although using only user-specific information seems to be the best approach, in practice,
one has extremely few samples to estimate the user-specific parameters reliably. The optimal solution is
therefore found somewhere between the two decision boundaries. A good and proven solution is to use
Bayesian adaptation which has been successfully deployed in speaker verification [122]. A simplified
framework using a single multivariate Gaussian (with a diagonal covariance matrix) was used in [41]. The
user-specific classifier, in its most general form, is shown in (6.7). The solution proposed in the literature on
speaker verification is the so-called MaximumA posteriori(MAP) adaptation. In our context, this classifier
can be written as:

Ψqda
j (y) = log

N (y|µC
adapt,j ,Σ

C
adapt,j)

N (y|µI
adapt,j ,Σ

I
adapt,j)

(6.11)

whereµ
k
adapt,j andΣk

adapt,j are theadaptedclass-conditional mean and covariance as respectively, for
k = {C, I} and for userj. The adapted parameters are defined by

µ
k
adapt,j = µ

k
j γk

1 + µ
k(1 − γk

1 ) (6.12)

and

Σk
adapt,j = Σk

j γk
2 + Σk(1 − γk

2 ), (6.13)
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respectively. Both parametersγk
1 andγk

2 (for the first and second moments) are within the range[0, 1].
This form of adaptation can be found in [51] and is called Maximum A Posteriori (MAP) adaptation by
the authors. They balance between the user-specific estimate and the user-independent estimate of the two
Gaussian parameters.

One can recognize that the Gaussian classifierΨj shown in (6.11) is a Quadratic Discriminant Anal-
ysis (QDA) classifier whenΣC

adapt,j 6= ΣI
adapt,j and as a special case, a Linear Discriminant Analysis

(LDA) classifier whenΣC
adapt,j = ΣI

adapt,j . The only difference between the usual MAP adaptation as
implemented in speaker verification is that only a single Gaussian component is used here as opposed to a
mixture of Gaussians.

Due to few genuine samples, the determination of the fourγk
i parameters fork ∈ {C, I} andi = {1, 2}

is unfortunately problematic in practice since one cannot use cross-validation. This subject is somewhat
involved and will be discussed in Section 6.3.3.

User-Specific GMM Classifier

Note that (6.11) imposes the constraint that the user-independent distribution (p(y|k)) is also a Gaussian
distribution. In reality, it must be a mixture of Gaussian distributions since it contains many different users.
To take this fact into consideration, we use the following user-specific classifier:

Ψgmm
j (y) = log

γCp(y|C, ID = j) + (1 − γC)p(y|C, ID 6= j)

γIp(y|I, ID = j) + (1 − γI)p(y|I, ID 6= j)
(6.14)

wherep(y|k, ID = j) is a Gaussian distribution of the formN (y|µk
j ,Σk

j ) andp(y|k, ID 6= j) is a mixture
of Gaussian distributions of the rest of the users, i.e.,:

p(y|k, ID 6= j) =
∑

j′∈J−j

p(y|k, ID = j′) (6.15)

Note thatγk can be interpreted as a prior probabilityP (k, ID = j) and1 − γk as the prior probability
of P (k, ID 6= j). We useγ ≡ γC = γI . The use ofγk again in reminiscent of MAP adpatation in the
user-specific Gaussian classifier. The difference is that, in (6.14),γk weighs LLRs instead of Gaussian
parameters. (6.14) is different from the standard GMM used in speaker verification because in our case,
the Gaussian component is not hidden but is conditioned on the observedidentity claim. For this reason,
(6.14) is called a user-specific GMM classifier.

Similar to the user-specific Gaussian classifier, determining γk is again problematic because one is
always lack of user-specific genuine training scores. In ourexperiments, a non-informative prior of these
values are used, i.e.,γC = γI = 0.5.

6.3.3 Determining the Hyper-Parameters of a User-Specific Gaussian Classifier

This Section deals with setting the hyper-parametersγk
1 , γk

2 for k ∈ {C, I}, as appeared in (6.12) and
(6.13), respectively. At first sight, having the four free parametersγk

i to tune is too many if one consid-
ers that there are about a hundred user-specific impostor scores and about two user-specific client scores.
One strategy is to parameterizeγk

i via a relevance factor. This solution was reported in speaker verifica-
tion [122]. We will propose another solution by pre-fixing some of the parameters, which is better suited
to the problem of fusion. Both approaches are described below:

• Relevance Factor:A “relevance factor”,r, parameterizesγk
i for all i ∈ {1, 2} andk ∈ {C, I} as a

function of the number of available user-specific class-conditional samplesNk
j . The resultantγk

i is:

γk
i ≡

Nk
j

Nk
j + r

, (6.16)

Note that therelevance factor, r, takes only positive values. In biometric authentication,where
N I

j ≫ NC
j , r will give more weight to the user-specific impostor Gaussianparameters than their
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Table 6.1: Proposed pre-fixed values forγk
i

classk
i C I
1 tune 1
2 0 1

client counterparts. The use of relevance factor in a user-specific Gaussian classifier for fusion was
reported in [41].

• Pre-fixed Parameter: Based on the observation thatN I
j ≫ NC

j , whereby a very large set of sim-
ulated impostors is available, we propose to fixγI

1 = γI
2 = 1, hence putting full confidence on the

user-specific impostor estimates. Furthermore, we can alsosetγC
2 = 0, hence, putting zero con-

fidence on the user-specific client covariance estimate since it is likely to be unreliable due to the
small size of training samples. These constraints effectively limit the degree of freedom tighter than
the relevance factor. The result is that we are left with a single parameterγC

1 ∈ [0, 1] to tune. The
pre-determined parameters will be justified by experimentsin Section 7.2.

Differences with the User-Specific Gaussian Classifier Proposed in [41]

The proposed user-specific classifier here is undoubted verysimilar to that proposed in [41]. There are,
however, two differences:

• The relevance factor was used in [41] while we use pre-definedvaluesγk
i , which are shown in

Table 6.1.

• A diagonal covariance matrix was used in [41] while we use a full covariance matrix which is capable
of capturing the possible correlation among the system outputs.

It should be recognized that relevance factor is also a form of constraint. Otherwise, a differentr for
eachk or for eachi would have meant that one has still to tune the four parameters. In our case, we fixed
these parametersa priori to further constrain the model fitting.

6.4 Experimental Validation of the Compensation Scheme

Choice of Database

For the purpose of experimental validation, we could not usethe BANCA database because the BANCA
protocols are defined as such that the development and evaluation sets consist of two different population
sets of genuine of users. The XM2VTS database, on the other hand, satisfies our need2 and will be used.
The fusion tasks can be found in Section 2.1.1.

Section 6.4.1 first examines the compensation scheme in multimodal fusion whereas Section 6.4.2
reports a more detailed analysis on the experiments done.

6.4.1 Pooled Fusion Experiments

For the multimodal fusion experiments, the following classifiers are used:

1. gmm – a user-independent GMM

2. US-gmm – a user-specific GMM as shown in (6.14)

2To be precise, the genuine users are found in both the development and evaluation sets but not the impostors.
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Figure 6.3: Experimental results validating the effectiveness the proposed compensation scheme between
user-specific and user-independent fusion classifier on the15 XM2VTS multimodal fusion tasks shown
using (a) pooled DET curves and (b) EPC curves. “gmm” is user-independent fusion classifier, “US-qda” is
a user-specific Gaussian-based fusion classifier, “US-gmm”is a user-specific GMM-based fusion classifier
and the last two are two compensated classifiers combining the two classifiers using the mean operator.

3. US-qda – a user-specific Gaussian (QDA) classifier as shown in (6.11). The defaultγ parameters
used are shown in Table 6.1 withγC

1 = 0.5.

4. mean(gmm, US-qda) – a combination ofgmm andUS-qda using the mean operator

5. mean(gmm, US-gmm) – a combination ofgmm andUS-gmm using the mean operator

The results are shown in Figure 6.3. As can be observed the compensation scheme, particularmean(gmm,
US-qda), results in the best generalization performance. The classifier US-gmm did not achieve the
expected result because the classifier overfits the trainingdata. Since thisbiasedtraining data is used to
tune thea priori chosen threshold, the resultant performance on the test setis thus sub-optimal3. This
shows that using a full mixture of Gaussians, where each Gaussian represents the score density of a user,
is not a suitable model since its capacity or degree-of-freedom is more than necessary. On the contrary,
US-qda which highly restricts the model is an adequate choice.

6.4.2 Experimental Analysis

In this Section, we examine several factors that could influence the performance of the proposed compen-
sation scheme, i.e.,:

• Sensitivity to theγ parameter: One of the difficulties related to constructing a user-specific fusion
classifier is its instability and sensitivity to any hyper-parameters, i.e., parameters than control other
parameters. In our case, these parameters areγk

i ’s. While a pre-determined set ofγk
i values have been

3When we plot a pool DET curve, the WER criterion was used so that each DET curve is aligned thanks to theα parameter of
the WER criterion. To evaluate the WER criterion, two sets of (combined) scores are needed: one from the development and the
other from the evaluation sets. The so-called development set of combined scores forUS-gmm in this case is the output ofUS-gmm
itself. Although a procedure such as cross-validation as described in Section A could have been used, for the purpose of algorithmic
comparison, it was not used in all algorithms considered here.
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Figure 6.4: Multimodal fusion experimental results shown using (a) a DET and (b) EPC curve verifying the
sensitivity of the compensation scheme with respect to theγ parameter of the user-specific fusion classifier.
“US-qda” is the Gaussian classifier with the defaultγ = 0.5 and “US-qda-fix” is the same classifier with
γ = 1. In both cases, the same user-independent fusion classifiercompensation scheme and the fusion
between the user-specific and user-independent classifier is a mean operator. SVM was used in place of the
mean operator and this resulted in slightly degraded performance because it relies on thebiasedtraining
which are outputs associated to the data its two base classifiers used to train on.

proposed in Table 6.1, it is still unclear howγC
1 should be tuned. In the previous experiments, a non-

informative prior (since it can be seen as a probability) of0.5 was used throughout the experiments.
We repeated the experiments withγC

1 = 1 and measured the generalization performance of the
resultant compensated classifier. The results are shown in Figure 6.4. As can be observed, although
settingγC

1 = 1 degrades the performance of the user-specific Gaussian-based fusion classifier, its
influence on the compensated classifier is insignificant on the resultant compensated classifier.

• On the use of trainable fusion classifier in place of the mean operator to combine user-specific
and user-independent classifier:We replaced the mean operator with a logistic regression (LR) and
found that the generalization performance degrades. Although in theory LR is better than the mean
operator, in this case, the training data isbiasedsince the data was used to construct the user-specific
and user-independent fusion classifiers.

• Correlation between the output of a user-specific and a user-independent fusion classifier:
Since our justification in Section 6.2 shows that the estimate of the class-conditional likelihood of the
user-specific classifier and that of the user-independent classifier will be different when the number
of users is large, it is natural to verify to what extent two LLR-based fusion classifiers carry comple-
mentary information. For this purpose, we measured the correlation between the class-conditional
outputs of the two fusion classifiers. An example of the LLR scores are shown in Figure 6.5(a). In
this case, two correlation values can be measured, each conditioned the client and impostor classes.
We measured the correlation across all the 15 fusion experiments and their distributions are shown
in Figure 6.5(b) as boxplots. As can be observed, the client LLR scores has lower correlation –
indicating that the two classifiers aremore complementaryon the client accesses than on the im-
postor accesses. From Chapter 4, we know that lower correlation contributes to higher F-ratio of
the combined scores. Hence, this shows that the compensation scheme is largely responsible for the
statistically significantimprovement of generalization performance.
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Figure 6.5: Correlation between user-independent and user-specific fusion classifier output. Figure (a) is
an example of the scatter plot of the LLR scores. In this case,two correlation values can be calculated for
each of the client and impostor sets of scores. Figure (b) is avertical boxplot that shows the extent of the
correlation values over the 15 fusion experiments.

6.5 Conclusions

This chapter proposes analternativescheme to implement user-specific processing at the score level, a
subject which has been investigated in [40, 41, 122, 139, 61,71, 137]. The proposed scheme capitalizes
on the use of user-specific and user-independent information sources. By representing both information
sources as two Log-Likelihood Ratios (LLRs), e.g., one due to a user-specific fusion classifier and the
other due to a user-independent one, the scheme proposes to linearly combine the output of these two
fusion classifiers. Therefore, we call this scheme “fusion of fusion”.

This proposed scheme has the following benefits:

• Mutual compensation: The solution compensates for the potentially unreliable user-specific classi-
fier but at the same time, enhances the user-independent classifier with a user-specific one.

• Hybrid learning algorithms: Both classifiers can be trained independently of each other.This is an
advantage since the user-specific classifier is limited to a Gaussian classifier, the user-independent
one is not. The compensation scheme thereforerelaxesthe Gaussian assumption.

• Independence of information: Following the justification in Section 6.1, both classifiersare likely
to complement each other when the number of users is large.

The compensation scheme compares favorably with [40, 41, 139, 71, 61] principally because it is
the only one that can learn fromvery fewuser-specific genuine samples, which is a non-trivial machine-
learning problem. A second advantage is that thedomain knowledge, in the form of pre-fixed adaptation
parameters (as in Table 6.1), is exploited in the user-specific classifier that we proposed. The class of
solutions is therefore so highly constrained that the only free parameter,γC

1 , has no strong influence on
the overall system performance. This is the main differencebetween our proposed user-specific classifier
and that reported in [41]. Our proposed scheme also comparesfavorably with [139] whereby due to the
same problem, noise is injected to increase the number of user-specific client scores. Due to the Bayesian
scheme, our approach handles such an uncertainty in a natural way.

Apart from those experiments reported here, in [105], we also considered the compensation scheme
with a single system whereN = 1, i.e., a user-specific score normalization procedure. Although the data
sets and experimental settings are somewhat different, theconclusions remain the same.



Chapter 7

Incorporating User-Specific
Information via F-norm

7.1 Introduction

This chapter offers analternative approachto applying user-specific processing at the score level. In
particular, four distinctive but related topics are analyzed. Firstly, we evaluate the robustness of class-
conditional user-specific score statistics, i.e., the degree of invariance with respect to different train/test
conditions ofµk

j andσk
j for k = {C, I} for each userj. Secondly, we investigate a new user-specific

score normalization procedure that aims toreduce the user-induced variabilityand that possesses a list of
desired characteristics, e.g., robustness to deviation from the class-conditional Gaussian assumption, to few
user-specific genuine samples and to mismatch between train/test conditions. Thirdly, we design a criterion
that is robust and that can rank users according to their easeof recognition after reducing the user-induced
variability. Finally, we design a fusion classifier that selectively combines a subset of systems on a per
person basis. This fusion classifier is a proof-of-concept of the effectiveness of the first three ideas since
we literally put all the above findings into a single working algorithm.

Motivations

We describe below the motivations of investigating the fourmentioned topics:

• On the robustness of class-conditional user-specific scorestatistics: Although user-specific statis-
tics have been used extensively in user-specific score normalization (Section 5.5) and user-specific
threshold (Section 5.6) procedures, to the best of our knowledge, nosystematicstudy has been con-
ducted to examine therobustnessof these statistics. A user-specific score statistic is considered
robustif it is invariant to different biometric samples, possibly separated over a fixed duration, of the
same person for the client class, and ofdifferentpersons for the impostor class. We expect the user-
specific impostor statistics to be more robust than their client counterparts because there are simply
more simulated impostor data1 than client data. We are also motivated by the empirical findings by
Doddingtonet al [33], which suggest that the user-specific statistics are different from one user to
another. An important difference between our approach taken here and that of Doddingtonet al’s is
that the authors did not consider the concept of robustness of statistics (to mismatch between training
and test conditions). By considering the robustness of statistics, our aim is to devise algorithms that
exploit only robust statistics for user-specific processing. The next three topics are examples of such
processing.

• On reducing user-induced variability: Given that the user-specific score statistics are predictable
to some extent, our next investigation is to design a user-specific score normalization procedure of

1Note that in reality, professional impostors should be used.Unfortunately, few databases today have such a data.
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the formΨj : R → R – taking a score as input and outputting a normalized score – that have
reduceduser variability. Two categories of score normalization have been surveyed in Section 5.5;

they are Z-norm based methods (ΨZ
j (y) =

y−µI
j

σI
j

) and EER-norm based methods (Ψeer
j (y) = y −

∆j where∆j =
µI

j σC
j +µC

j σI
j

σI
j +σC

j

). These two categories of techniques have their own short-comings.

For instance, Z-norm does not consider client statistics and EER-norm relies heavily on the class-
conditional Gaussian assumption due to its extensive use ofsecond-order statistics. These two short-
comings motivate us to investigate a new category of normalization that we call “F-norm”.

• On ranking users according to their ease of recognition:In [33], Doddingtonet al showed that
a minority of users are particularly difficult to be recognized – the so-called goats, some are easy to
imitate – the lambs, and some are particularly successful atimitating others – the wolves. Although
identifying these groups of users is important, there is no direct way to rank users according to their
ease of recognition. In order to rank users, one has tosimultaneouslyconsider the user-specific
client and impostor scores. A natural candidate to rank users is the F-ratio proposed in Chapter 4
except that it is applied on a per user basis. Directly applying user-specific F-ratio may fail because
not all the user-specific statistics are equally robust. Therefore, this motivates us to design a robust
equivalent of F-ratio with the possibility of reducing the user-induced variability.

• On designing a selective user-specific fusion classifier:Motivated by the fact that we have at our
disposal a criterion to rank users given a system, we attemptto modify the criterion so that it can
rank a subset of systems to combine, on a per person basis. Such a criterion can be used in a multi-
modal biometric fusion whereby based on the criterion, a fusion operator decides an optimal subset
of systems to combine, based on a validation data set. This fusion classifier is unique in its category
because it is bothuser-specificand selective. It has at least two advantages. Firstly, the selec-
tive strategy means hardware cost saving for personal devices since an under-performing biometric
system does not have to be built in the first place. Secondly, the authentication can be performed
faster since not all biometric modalities are considered. The novel fusion technique is called the OR-
switcher. Our experimental results suggest that, without using the selective strategy, the OR-switcher
alwaysoutperforms the state-of-the-art fusion techniques. When the selective strategy is used, the
performance of the OR-switcher can still outperform the state-of-the-art fusion techniques in some
experimental settings. The added advantage, however, is that not all the participating systems need
to be operational. Such a flexibility mimics our human ability where a person can still be recognized
with only some partial evidences.

Chapter Organization

This chapter is organized as follows: Section 7.2 reports our experiments that objectively quantify the
robustness of user-specific statistics. Section 7.3 proposes and evaluates the new user-specific F-norm.
Section 7.4 designs a criterion to rank user. Section 7.5 presents the OR-switcher. Finally, Section 7.6
summarizes the original contributions presented in this chapter.

7.2 An Empirical Study of User-Specific Statistics

We have motivated the use of class-conditional Gaussian assumption when surveying user-specific score
normalization in Section 5.4. One important concern is whether or not the user-specific statistics,µk

j or σk
j ,

are robust to the unseen data which may be different from the training conditions.

Choice of Data Set and Preparation

In order to answer this question, we analyzed the scores of the 13 systems in XM2VTS (Section 2.1). First,
the score sets are divided into two subsets: a development set and an evaluation set, such that the same
clients must be found in both sets of scores. The impostors, however, may be from two different sets of
populations. The XM2VTS score data sets satisfy the requirement but not the BANCA score data sets.
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Figure 7.1: An initial study on the robustness of the user-specific mean statistic. User-specific conditional
score mean of development set (Y-axis) versus that of evaluation set (X-axis), i.e.,µk

j |dev versusµk
j |eva,

for k = {C, I}, of the 13 XM2VTS systems. There are 200 data points for each statistic which correspond
to 200 users. Blue circles are genuine means whereas red plussigns are impostor mean.

This is because the g1 and g2 data sets in BANCA contain different population of clients. Note that the
XM2VTS fusion protocols (see Section 2.1.1) have already defined both the development and evaluation
sets. Whenever a system output is an MLP with sigmoid or hyperbolic tangent activation function, we
convert the scores into LLR using Algorithm 2 (Section 3.3) to ensure that the scores follow a normal dis-
tribution. Both the original and the converted score data sets are used in the experiments. The original data
set is labelled “MLP” whereas the converted one is labelled “MLPi” (‘i’ for probabilistic inversion). We
kept these two data sets in order to study the effect of non-conformity of scores to the Gaussian assumption
– a fundamental assumption of our proposed techniques.

Experimental Results

For each set of scores (development or evaluation), each class k ∈ {C, I} and each userj ∈ J , we
computed the class-conditional (genuine and impostor) first and second-order moments (µk

j andσk
j ). The

statistics are then compared as follows:

• µk
j |dev versusµk

j |eva (see Figure 7.1)

• σk
j |dev versusσk

j |eva (see Figure 7.2)

for both classesk ∈ {C, I} and allJ = 200 users (hence 200 data points for eachµC
j , σC

j , µI
j andσC

j ).
One way to measure the degree of generalization or “agreement” is by computing correlationρk

t be-
tween the statistict ∈ {µ, σ} estimated on the development set and the one estimated on theevaluation
set, for each classk = {C, I}. We summarizeρk

t of the 13 systems in Figure 7.3 as a box plot. Each
box indicates the bounds of the upper and the lower quantiles. The two horizontal lines at the top and the
bottom of a box covers the 95% confidence bound. Any data sample (correlation in this case) beyond this
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Figure 7.2: As per Figure 7.1, except thatσC
j andσI

j are used in place ofµC
j andµI

j . The X-axis isσk
j |eva

and the Y-axis isσk
j |eva

bound is denoted with a plus sign and is considered an outlier. Each bar contains 13 data samples. The
higher the correlation, the more robust the statistic is. Ascan be observed and as expected, the user-specific
impostor statistics are likely to be more robust than that ofgenuine, independent of the underlying systems.
Note that there are two or three samples (depending on LP1 or LP2 protocol) to estimate the user-specific
genuine statistics. Despite this fact,µC

j is still informative. On the other hand,σC
j is not at all informative,

judging from its relatively low correlation (whose median is 0.2).

Note that the outliers (with very low correlation values; indicated by plus signs) are due to the MLP
systems prior to converting the scores into LLR using Algorithm 2 (as discussed in Chapter 3). This is
expected since the MLP user-specific class-conditional output scores are not normally distributed but are
known to have a skewed distribution due to the nature of the non-linear activation function. As a result,
their associated user-specific statistics generalize poorly compared to the rest of the systems. This shows
that Algorithm 2 iseffectivein mitigating this systematic and undesirable effect.

7.3 User-Specific F-norm

This Section is divided into five sub-sections. Section 7.3.1 proposes the user-specific F-norm. The user-
specific F-norm is then compared to other user-specific scorenormalization procedures in Section 7.3.2
theoretically and in Section 7.3.3 empirically. Section 7.3.4 improves the way F-norm is parameterized
so that the number of user-specific genuine samples can automatically be taken into account. Finally,
Section 7.3.5 illustrates the usefulness of F-norm in the context of fusion.
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Figure 7.3: A summary of the robustness of user-specific statistics. Box plot of the conditional correlation
ρk,∀k of the four parameters,µI

j , µC
j , σI

j andσC
j of the 13 face and speech systems XM2VTS.

Each correlation value is measured on 200 users. The two outliers (with plus signs) inσI
j are due to

(MLP,F) of P1:6 and P1:8, respectively. Similarly the outlier inµI
j is due to (MLP,F) of P1:6.

7.3.1 Construction of User-Specific F-norm

The user-independent F-norm was derived in Section 4.4.3 and is given by (4.22). In the user specific
context, one can simply replace the system output indexi by the user-specific indexj, hence giving:

yF
j =

y − µI
j

µC
j − µI

j

. (7.1)

Directly using (7.1) can lead to a complete failure sinceµC
j cannot be estimated reliably. To account

for such unreliability, a Bayesian solution is to compensate the user-specific statisticµC
j with the user-

independent statisticsµC via an adjustable parameterγ ∈ [0, 1], i.e.,

γµC
j + (1 − γ)µC .

We have seen this solution in Chapter 6. Although this Bayesian solution is classical (and therefore not a
heuristic), e.g., [56, Chap. 4], surprisingly, it has not been introduced to the user-specific score normaliza-
tion or user-specific threshold procedures surveyed in Chapter 5. Thanks to the Bayesian solution, (7.1)



92 CHAPTER 7. INCORPORATING USER-SPECIFIC INFORMATION VIA F-NORM

can be rewritten as2:

yF
j =

y − µI
j

γµC
j + (1 − γ)µC − µI

j

. (7.2)

whereγ has to be tuned. Two sensible default values are0 whenµC
j cannot be estimated because no data

exists and at least0.5 when there is only a single user-specific sample.γ thus accounts for the degree of
reliability of µC

j and should be close to1 when abundant genuine samples are available.

7.3.2 Theoretical Comparison of F-norm with Z-norm and EER-norm

In Section 5.5, two groups of user-specific score normalization procedures were surveyed, i.e.,

• Z-norm based methods:Two examples are Z-norm itself and Z-shift. For Z-norm, the user-specific
statisticsafter transformationhave the following characteristics:µI

j = 0 andσI
j = 1 for all j ∈ J .

For Z-shift, only the constraintµI
j = 0 is satisfied. The advantage of these methods are thatµI

j and
σI

j are robust statistics and can generalize across different impostor sets. Their weakness, however,
is that they do not consider the user-specific client statistics.

• EER-norm based methods:These methods are based on EER-norm and its variants. The user-
specific threshold,∆j , after applying these methods, becomes common to all users,i.e.,∆j = ∆s =
0 for all j, s ∈ J . These methods, as represented by (5.9)–(5.11), differ only in their assumptions.
The least assumption made among the three, (5.9), requires many more user-specific client data
and hence is impractical. (5.10) makes the class-conditional Gaussian assumption but is unlikely
robust due to the inclusion ofσC

j which is uninformative when few user-specific genuine samples
are available. Finally, the mid-point solution of (5.11) includes theµC

j statistic which may not be
robust.

In comparison with these two families of score normalization techniques, the user-specific F-norm is an-
other family of techniques. This is because the user-specific statisticsafter applying F-normsatisfy another
set of constraints:µC

j = µC
s andσI

j = σI
s for all j, s ∈ J for the general case as proposed in our published

paper [108] orµC
j = 1 andσI

j = 0, for all j ∈ J , for the F-norm proposed in (7.2)3. The advantage of
(user-specific) F-norm over Z-norm is that F-norm considersthe user-specific client statistic (µC

j ). Hence,
F-norm is client-impostor centric. F-norm’s advantage over EER-norm is that it does not consider the
non-robust second orderσC

j statistic. Although F-norm uses the possibly non-robustµC
j , its γ parame-

ter compensates for its unreliability. Figure 7.4 illustrates the differences among Z-, F- and EER-norms
with respect to a list of characteristics just discussed. Table 7.1 summarizes the differences of Z-, F- and
EER-norms.

Z-norm and F-norm share the common denominator but have different numerators. In Z-norm, the

numerator isσI
j =

√

E
[
(y − µI

j )
2
]
; and in F-norm, this term isµC

j − µI
j by settingγ to 1. Both terms

quantify some kinds of “score difference” in different waysbut are in the same unit scale (domain). While
Z-norm is impostor centric, F-norm can be seen as its improved version by incorporating the user-specific
client information, making F-norm client-impostor centric. As a result, if F-norm can make use of the
client informationreliably, it can be superior over Z-norm.

In summary, F-norm possesses many interesting characteristics:

2The original form of F-norm was proposed in [108] and has the following form:

yF ′

j =
y − µI

j

γ (µC
j − µI

j )
| {z }

+(1 − γ) (µC − µI)
| {z }

.

This version is superseded by (7.2) due to our finding in Section 7.2. Note that by settingγ = 1, both F-norm and its variant converge
to the same solution. Their difference is thus rather subtle.Preliminary experiments on the XM2VTS fusion benchmark dataset show
their generalization performance is not significantly different.

3The general case of user-specific F-norm and the special caseproposed here are both theoretically and empirically equivalent,
i.e., they result in exactly the same generalization performance. For this reason, we opted to present only the special (but also the
simpler) case.
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Figure 7.4: Comparison of the effects of Z-, F- and EER-norms. (a) The original distributions containing 2
user models (each represented by continuous and dotted lines; The genuine score distributions are plotted
with thick lines and impostor score distributions with thinlines). A global threshold may not be optimal.
(b) After applying Z-norm, the impostor distributions become normal whereas the client distributions vary.
(c) After applying F-norm, all the client and impostor distributions are aligned so that a global threshold
can be found easily. (d) After applying EER-norm, all the client and impostor distributions are aligned at
their corresponding EER.

• It is more robust to departure from the Gaussian assumption since it does not rely on second-order
statistics (an observation also remarked by Lindberget al in [75]) in comparison with EER-norm.

• It is client-impostor centric as opposed to Z-norm which is only impostor-centric.

• It is more robust to few user-specific genuine training samples in comparison with EER-norm, since
F-norm relies on user-independent information.

As a result, F-norm can be expected to perform better than Z-norm or EER-norm. Having compared the
proceduresqualitatively, the next Section will compare them quantitatively.

Table 7.1: Qualitative comparison between different user-specific normalization procedures.

Characteristics Z-norm F-norm EER-norm

Formula
y−µI

j

σI
j

α′(y − µI
j ) where

α′ = µC
j γ + (1 − γ)µC − µI

j

y − µI
j σC

j +µC
j σI

j

σI
j +σC

j

Use second-order
user-specific statistic

yes no yes

centric type impostor client-impostor client-impostor
Rely on global infor-
mation

no yes no

Robustness to few
user-specific ac-
cesses

moderate
high withβ = 0.5
low with β = 1

low
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7.3.3 Empirical Comparison of F-norm with Z-norm and EER-norm

In this section, we designed several experiments to validate the following hypotheses in comparison with
Z- and EER-norms:

(1) F-norm works withfewersamples.

(2) F-norm improvesfasterwith increasing training genuine samples.

(3) F-norm ismore robustto deviation from the class-conditional Gaussian assumption.

The NIST2005 database is used to test these hypotheses because it has abundant user-specific genuine
accesses4. To test hypotheses (1) and (2), we chose a subset of users allhaving at least 7 accesses. The
experiment is conducted for each user until all the users areprocessed. For each user, 7 partitions of
equal size are created such that each partition contains exactly one genuine score (but can have many more
impostor scores). One of the partitions is reserved as a testset whereas the other 6 partitions are used as
training sets. 6 training sets are created by adding one partition of data at a time, such that the first training
set is a subset of the second training set, the second is a subset of the third, and so on. These 6 training sets
simulate the scenario where more data is available in an incremental manner. Although having 6 training
sets, there is only one andcommontest set. All 6 normalization procedures, i.e., the baseline without
normalization, EER-norm, Z-norm, Z-shift, F-norm withγ = 1 and F-norm withγ = 0.5, are tested on all
the 24 systems and all the 6 training sets. This experimentalsetting results in

6 training sets× 6 normalization procedures× 24 systems= 864 EPC/DET curves.

Due to the large amount of data, we chose to evaluate only the point α = 0.5 on the EPC. The results are
shown in Figure 7.5(a). Note that each curve is calculated from thepooledHTER of all 24 systems. Based
on the experiments, we conclude that:

• Increasing training samples can improve the generalization performance of user-specific score nor-
malization;

• Client-impostor centric procedures i.e., F-norm and EER-norm, are generally better than the classical
impostor centric procedures, i.e., Z-norm and Z-shift.

• Largeγ value of F-norm is favorable with increasing training sample size.

• F-norm withγ = 0.5 can improve over the baseline systems (without normalization) even with a
single genuine sample.

As for hypothesis (3), it is necessary to measure the degree of deviation from Gaussian. We used the
KS-statistic for this purpose and it is calculated on the scores prior to applying any user-specific score
normalization procedure. It is calculated as

max |Ψ̂(y|I) − Ψ(y|µI , (σI)2)|,

whereΨ̂(y|I) is the estimatedcdf of the impostor scores andΨ(y|µI , (σI)2) is thecdf of the impostor
scores assuming that the scores are normally distributed. Note that the same statistic but for the genuine
scores are not used because the statistic is less robust due to much fewer samples. We then plotted the rela-
tive change of HTER, i.e.,(HTERnorm − HTERorig)/HTERorig, due to different normalization schemes.
Negative change implies better performance. For a realistic scenario, we considered the normalization
procedures trained with two partitions of data. The resultsare plotted as relative change of HTER versus
KS-statistic as in Figure 7.5(b). As can be observed, F-normperforms almost always the best across differ-
ent KS-statistics. When the KS-statistic is more than0.4, Z-norm almost always degrades in performance
(with respect to the original system).

4The XM2VTS has also been used and the results are somewhat consistent with the results reported here [99]. We will therefore
not report the results carried out on XM2VTS here.
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Figure 7.5: Comparison of the effects of different normalization techniques. The comparison is done with
respect to (a) the sample size and (b) deviation from class-conditional Gaussian distribution of scores. For
(b), larger KS-statistic implies larger deviation from Gaussian.

7.3.4 Improvement of Estimation ofγ

As a final note, given the observation thatβ scales with the number of examples, it is possible to define a
function which fulfills the following constraints:

• γ = 0 when the number of user-specific client accesses is zero, i.e., NC
j = 0 (for client j).

• γ = 0.5 whenNC
j = 1.

• 0.5 < γ ≤ 1 whenNC
j ≥ 1.

This function is:

γ =

(
NC

j

)r

(
NC

j

)r
+ 1

(7.3)

wherer ≥ 1 parameterizesγ according to the available training data. This function is shown in Figure 7.6.
Note that (7.3) is somewhat similar to the “relevance factor” proposed in [122] having the form

γk =
Nk

j

Nk
j + r

(also appeared in (6.16)) withNk
j representing the number of user-specific accesses for anyk ∈ {C, I}.

Note that the role of relevance factorr in both cases are different in that (7.3) is exponential while the
relevance factor of (6.16) is additive.

7.3.5 The Role of F-norm in Fusion

This Section examines the effectiveness of F-norm in minimizing the effect of user-variability in the con-
text of fusion. For this purpose, we used the 15 XM2VTS face and speech fusion tasks described in
Section 2.1.1. We randomly chose ten users from one of the 15 fusion tasks. The scores of each user as
well as the class-conditional Gaussian fit (whose mean is represented by a plus sign and whose covariance
is represented by an ellipse) are shown in Figure 7.7(a) prior to applying F-norm and in Figure 7.7(b) after
applying F-norm. Since there are ten users and two classes, there are 20 ellipses in each figure. As can
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Figure 7.6: Parameterizingγ in F-norm with different relevance factorr’s after taking into account the
number of user-specific client accesses available.

be observed, the user-specific impostor distributions are all centered at the origin whereas the user-specific
client distributions are scattered very close to the point(1, 1). This is expected due to the two F-norm’s
properties:µF,I

j = 0 andµF,C
j = 1 whereµF,k

j = E[yF |k, j], i.e., the expectation of the user-specific
class-conditional F-normalized scores. Note that the parameters of the F-norm were learned from the de-
velopment score set and the figures shown here are plotted using the evaluation score set. For the example
shown here, the F-norm’sγ parameter was set to the default0.5 so that the user-specific Gaussians cannot
be perfectly aligned as in the impostor case. This choice is reasonable becauseµC

j cannot be estimated
reliably due to too few user-specific genuine scores (two in this case). Forcingγ = 1 will result in overfit-
ting.

We then used GMM to combine the 2D scores for both the data setsbefore and after applying F-norm.
Their corresponding DET curves plotted using the evaluation score set are shown in Figure 7.7(a). In this
case, we obtained a reductiona posteriorierror from 0.57% EER to 0.25% EER, or arelative reduction
of EER of 56%. Considering the already highly accurate systems, this error reduction is thus important.
In order to ensure that this improvement is systematic, we compared thea posterioriEER before and after
applying F-norm across all the 15 fusion tasks. These pair ofEERs are plotted in Figure 7.7(b). As can be
observed, the EER due to F-norm is systematically smaller than the EER prior to applying F-norm.

We then repeated the experiments but this time witha priori evaluation where the thresholds are op-
timized on the development set. The results depicted using the pooled DET curves calculated on the
evaluation set are shown in Figure 7.9. The following observations can be made:

• Applying F-norm to the output of the speech systems can improve the baseline system (without
normalization) significantly.

• Applying F-norm to the output of the face systems, on the contrary, does not improve the baseline
system significantly.

• The combined systems due to F-norm is statistically significantly better than the baseline combined
systems.

The degree of user-induced variability is obviously different for different biometric modalities. As a result,
the effectiveness of F-norm is also different. In this case,the speech systems contain more variability
than the face systems. Given that only the scores are available, and that the user-induced variability is an
observed phenomenon, the reason why the face systems have lower user-induced variability is not exactly
known. One possible reason is that, from the system point of view, face is much more homogeneous than
speech. Measuring the degree of user-induced variability across different biometric modalities and systems
will be a future subject of research.
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Figure 7.7: An example of the effect of F-norm For both figures, the X- and Y-axes are the output score-
space of a face and speech systems, respectively. The upper right clusters are client accesses whereas the
lower left clusters are impostor accesses. In (a), before the score normalization the user-induced variability
is high. In (b), after applying F-norm, the user-specific distributions are better aligned and separated as
well.

7.4 In Search of a Robust User-Specific Criterion

Since the user-specific statistics are variable, the performance associated to each user must be different.
The goal of this Section is to rank users given their associated user-specific statistics. To the best of our
knowledge, this is the first study that attempts to rank usersaccording to their performance. Having a
criterion to rank users is useful in practical biometric applications. For example, Immediately after a new
user has just been introduced to the system, it is important to know if the reference data (template) just
registered is of reasonable quality. The quality in this case is taken as the estimated user-specific perfor-
mance in terms of EER. If the EER is too high, remedial procedures can then be taken, e.g., acquiring more
registration data to ensure a better modeling of the biometric features, using a different feature extraction
algorithm or classifier, using different biometric traits,etc.

A good user-specific criterion should:

• Be robust to mismatch between the training and test data sets

• Be estimated based on as few samples as possible

• Necessarily contain the four (or less) user-specific statistics: µk
j , σk

j |k = {C, I} for each userj.
From Section 7.2, we know thatσC

j can be ignored since it is not informative.

Because the criterion must be related to performance, the user-specific F-ratio (from (4.15)) can be a good
candidate, i.e.,

F-ratioj =
µC

j − µI
j

σC
j + σI

j

. (7.4)

Other similar measures are the d-prime statistic used in [28] and the two-class Fisher-ratio [11]. However,
the user-specific F-ratio is preferred because it is functionally related to EER by (4.14) in a closed form.

Using the same datasets as those in Section 7.2, we compared the user-specific F-ratio of the 13
XM2VTS systems given the development set versus its evaluation set counterpart and the results are shown
in Figure 7.10. In this case, 13 correlation values can be measured. As can be seen, using the original
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Figure 7.8: Improvement of class-separability due to applying F-norm prior to fusion. (a) An example of
improvement due to F-norm visualized using a DET curve. (b)A posterioriEER of the baseline systems
versus that due to F-norm for all the 15 fusion tasks.

form as given, this quantity is very noisy and does not generalize well. Therefore, the user-specific F-ratio
(similarly d-prime and two-class Fisher ratio) is not a goodcriterion because it is not robust.

Ideally, we would like to maximize the user-specific F-ratio. However, in this study, the user-specific
model (which constitutes the baseline biometric classifier) has already been built and therefore its parame-
ters cannot be modified. Our primary goal here is to make the user-specific F-ratio morerobust, especially
to mismatch between the training and test sets. One way to do so is by dropping the termσC

j since fol-
lowing the findings in Section 7.2,σC

j is not robust. The resultantconstraineduser-specific F-ratio thus
becomes:

F-ratioj =
µC

j − µI
j

σI
j

. (7.5)

One important assumption when using (7.4) and (7.5) is that the optimal user-specific threshold is
known. In this case, one implicitly assumes that the decision function as in (5.3) can be used. In prac-
tice, however, a user-independent threshold is more appropriate. In this case, the more practical decision
function as appeared in (5.4) is used. The choice of user-specific score normalization procedureΨj (where
N = 1) can be F-norm or Z-norm. The advantage of applying user-specific score normalization prior to
ranking the users is that the user-induced variability is effectively reduced even before the ranking takes
place. The resultant F-ratio and its constrained counterpart for both the original, F-normalized and Z-
normalized scores are summarized in Table 7.2. A figure similar to Figure 7.10 is not shown here for the
rest of the five versions of user-specific F-ratios. However,without loss of generality, the goodness of
prediction can still be objectively quantified by the following two measures:

• The correlation between F-ratioj |dev and F-ratioj |eva over all observedj ∈ J

• The arithmetic difference between a given criterion estimated on a development set and its counter-
part estimated on an evaluation set over all usersj ∈ J , i.e,:

bias≡ Ej [F-ratioj |dev − F-ratioj |eva].
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Figure 7.9: An empirical comparison of F-norm-based fusionthe conventional fusion classifiers. The
fusion performance. Each DET is pooled over the 15 fusion experiments.orig1 contains face systems,
orig2 contains speech systems,origcom are combinedorig1 andorig2 systems using GMM,fnorm1 and
fnorm2 and the normalizedorig1 andorig2 systems after applying F-norm;fnormCOM are combined
fnorm1 andfnorm2 systems using GMM.

Figure 7.11 summarizes the robustness of the original user-specific F-ratio and its five variants using two
box-plots which correspond to the two measures just explained. As can be observed, the constrained F-
norm ratio, i.e.,

CFNRj =
1

σF,I
j

, (7.6)

has the highest correlation while having an acceptable level of bias whose median is centered at zero.
Before concluding this section, we evaluated the goodness of the Constrained F-norm Ratio (CFNR)

as shown in Table 7.2, i.e, by filtering away theN worst performing users whereN = {200, 180, . . . , 20}.
The data sets used are the same 13 XM2VTS systems used in the previous sections. In order to ensure
unbiased user ranks, the users were ranked according to the development set and this same user rank was
applied to the evaluation set. The results of 8 of the 13 filtered system performances are shown in Fig-

Table 7.2: User-specific F-ratio and its constrained counterpart

Score normalization F-ratio constrained Remarks
procedure F-ratio

None
µC

j −µI
j

σC
j +σI

j

µC
j −µI

j

σI
j

σC
j is not robust

Z-norm
µ

Z,C
j

σ
Z,C
j

µZ,C
j µZ,I

j = 0 andσZ,I
j = 1

F-norm 1

σ
F,C
j +σ

F,I
j

1

σ
F,I
j

µF,C
j = 1 andµF,I

j = 0

Note: In the second and third rows,σZ,C
j andσF,C

j are omitted for computation in the corresponding
constrainedF-ratio because they are functionally dependent onσC

j which is not robust. The superscriptsF

andZ denotes statistics derived from F- and Z-norms, .e.g,σF,k
j ≡ var[yF

j |k] andµF,k
j ≡ E[yF

j |k]. The
statistics for Z-norm is calculated in a similar manner.
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Figure 7.10: User-specific F-ratio as in (4.15) of development set versus that of evaluation set of the 13
face and speech based XM2VTS systems .

ure 7.12. As can be observed, by removing the under-performing users, the system performance gradually
improves. While the trend is more obvious in thea posterioriDET curves on which CFNR was calculated
(see Figures 7.12(a–b)), this trend is somewhat reasonableon the evaluation set (see Figures 7.12(c–d)).
The other five systems which were not shown behavior similarly.

Discussions

User-ranking is a difficult problem for two reasons. Firstly, one is always lack of user-specific genuine
data. Secondly, for this particular database, the simulated impostors are totally different from those used
in the development set. This is a realistic scenario. We therefore conclude that user-ranking based on
the proposed CFNR criterion is feasible, although there aredefinitely rooms for improvements. We will
consider below some practical examples of how CFNR can be used:

• As a diagnostic tool: Immediately after a new user has just been introduced to the system, CFNR
can be used to determine the quality of the reference data (template) just registered. To proceed, we
can acquire one or two trial access requests. This gives us one or two genuine scores. The biometric
samples of an arbitrary large set of simulated impostors canbe used to generate some impostor
scores. The CFNR criterion can then be evaluated given thesetwo sets of scores. Two indications
can be used to decide if the reference data is of poor quality.Firstly, the absolute CFNR is not high
enough (say, by comparing to ana priori minimal CFNR value). Secondly, one can determine the
rank of the newly registered user. When the CFNR value or the user’s rank according to CFNR is
too low, a warning will be issued. To the best of our knowledge, such a mechanism has not been
previously proposed in the literature.

• As a criterion for selective fusion: While the existing combined system usesall systems by default,
the CFNR criterion can be used to determine if fusion is indeed needed at all if the user is not
among the worst performing users. For biometric applications where convenience are more important
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Figure 7.11: Comparison of the proposed six user-specific F-ratio as listed in Table 7.2, i.e., F-ratio, con-
strained F-ratio, Z-norm’s F-ratio, constrained Z-norm’sF-ratio, F-norm’s F-ratio and constrained F-norm’s
F-ratio (or the constrained F-norm ratio) using (a) correlation and (b) bias between a given criterion of the
development and that of the evaluation sets of the 13 XM2VTS face and speech systems. Each bar thus
contains 13 (correlation or bias) statistics. Higher correlation and bias around zero are desirable properties.
Note that the bias values of the constrained Z-norm’s F-ratio (third column in (b)) were divided by 100
since they are originally in the range of[10,−60].

than security, having the option of not using all the biometric systems but tailored to a particular
user’s need can be important. Furthermore, in an application involving personal devices, the low-
performing biometric sensor associated to a particular user does not need to be built into the device.
Consequently, the hardware and software costs can be further reduced. Of course, it is expected that
the systems may degrade in performance with respect to the case where all the available biometric
systems are used. This subject ofselective fusionwill be investigated in Section 7.5.

7.5 A Novel OR-Switcher

7.5.1 Motivation

As far as fusion in the context of biometric authentication is concerned, the usual approach is to combine
all the available system outputs. While this is certainly easierto design, all the participating biometric
systems have to be operational. Despite the fact that the system is designed with the redundancy of having
multiple biometric systems (devices), the verification cannot proceed if one of the sub-systems (devices)
fail. For this reason, we investigate the possibility ofselectivefusion, where a multimodal (and multi-
algorithmic) system will be capable of giving an output score even when one of the sub-systems fails or
determines that its acquired sample is unreliable. This selective fusion strategy in a way mimics biological
perception in the nature. For instance, human is capable of recognizing a person by just having a partial
evidence, e.g., speech, gait or occluded face. Very often, only salient features are needed. One prominent
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example is human caricature5. Our preliminary findings here suggest that the user-specific and selective
fusion strategy can indeed be better than the state-of-the-art fusion techniques to some extent.

Our Proposal

The fusion operator to be proposed here is different from thestate-of-the-art fusion techniques in two
aspects:

• User-specific: it must take the user specific performance into consideration. The CFNR criterion
can readily be used for this purpose because from the previous experiments, it has been shown to be
robust and can be computed using only a few user-specific genuine samples.

• Selective: It must be able to handle “missing values”, where some underlying biometric systems
cannot output scores. If the classifier is based on LLR, for instance using GMM to estimate the
class-conditional score distribution, handling missing values becomes integrating the distribution
with respect to the missing values. This subject will be further discussed in Section 7.5.4.

We call the novel fusion operator the “OR-switcher”. To the best of our knowledge, because of the two
properties just mentioned, the OR-switcher is a unique fusion operator.

Section Organization

Note that while CFNR can indicate a user’s performance, it does not indicate which combination of system
subset will give a theoretically optimal fusion performance. This subject will be dealt with in Section 7.5.2.
Section 7.5.3 then gives an overview of the OR-switcher. Section 7.5.4 deals with the problem of conciliat-
ing the output due to missing scores. Section 7.5.5 proposestwo metrics to evaluate the OR-switcher. These
metrics do not deal with the generalization performance butwith the adequecy of the choice of the system
subset and computational saving. Finally, Section 7.5.6 compares the performance of the OR-switcher with
two other baseline classifiers

7.5.2 Extension to the Constrained F-norm Ratio Criterion

This section aims to extend CFNRj to take into account the performance due to a system subsetp, i.e.,
CFNRj,p. If there are3 systems (henceN = 3), p will be one of the possible power set of{1, 2, 3},
excluding the empty set. In our notation, we write:

p ∈ P({1, 2, 3}) − ∅ ≡
{
{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

}
.

We also denote the default fusion mode that uses all the systems ascom ≡ {1, 2, 3}.
In order to calculate CFNRj,p, we first need to prepare the combined score set due to using the system

subsetp, i.e.,{yF
p |j}. A good candidate to use is the mean operator:

yF
j,p = meani∈p yF

i,j . (7.7)

SinceyF
i,j can be interpreted as an LLR, taking the sum (or mean in this case) corresponds to making the

independence assumption of the system outputsi ∈ p. Using the labeled development set{yF
p |j, k} for

k ∈ {C, I}, we can effectively assess CFNRj,p as in (7.6).

7.5.3 An Overview of the OR-Switcher

We will consider here the case of combining two biometric systems. The extension toN systems is straight-
forward. We will discuss here an overview of the proposed strategy. It should be noted that there are two
data sets: development and evaluation sets. The development set is served to derive all the training param-
eters, e.g., F-norm’s parameters, the user-specific CFNR criterion and the optimal decision threshold. The
evaluation set is served uniquely as a test set.

5Test your skill at http://www.magixl.com
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1. Apply F-norm to each participating biometric system independently. Note that the F-norm parame-
ters must be derived from the development set.

2. Train a GMM fusion classifier of the formyF
com = log p(yF |C)

p(yF |I)
by estimating the class-conditional

score distributionp(yF |k) for eachk = {C, I} separately (see Section 3.4.3).

3. For each userj ∈ J and each possible subset combinationp, assess the CFNRj,p criterion given the
labeled combined scores{yF

p |k, j} based on the development set.

4. Sort the users in descending order based on CFNRcom (the default mode where all the systems are
considered). For ther × 100% top portion of users, we determine that fusion is not necessary. In
this case, we decide the next best alternative of system subset p. In the case ofN = 2 systems,
p ∈

{
{1, }, {2}

}
, we choose the better of the two systems, i.e.,

p∗j = arg max
p

CFNRj,p.

5. During the operational phase, the combined LLR score is calculated asyOR = log
p(yF |C,p∗

j )

p(yF |I,p∗

j )
where

p(yF |k, p∗j ) is a marginalized distribution ofp(yF |k) with respect to the systemsnot inp.

There are two points to note regarding the strategy presented here. Firstly, the fusion classifier of the form

yF
com = log p(yF |C)

p(yF |I)
is the F-norm based classifier presented in Section 7.3.5 (denoted asfnormcom). In

this case, steps 3 and 4 can be omitted and in step 5,p∗j is replaced by the defaultpcom
j (which uses all the

systems). By setting the fractionr = 0, fnormcom converges to the OR-switcher. We expect that whenr
increases, the performance will degrade since less and lessinformation is considered. In other words, the
OR-switcher will be inferior tofnormcom. However, the question we are interested in is, to what extent r
can take such that the performance of the OR-switcher is as good as the standard fusion classifier based on
GMM, i.e.,ycom = log p(y|C)

p(y|I) . In our experience, other standard fusion classifiers, e.g., SVM and logistic
regression, give similar results [101]. This is expected since they all rely on the same training data and
none exploit special knowledge, e.g., the user-specific information.

Secondly, there is an elegant way to convert from the defaultlikelihoodp(yF |k) – where all the systems
are used – top(yF |k, p∗j ) – where only the system subsetp∗j is used whenp(yF |k) is approximated using
a mixture of Gaussian components. This is discussed in Section 7.5.4.

7.5.4 Conciliating Different Modes of Fusion

Let yF,k = [yF,k
1 , . . . , yF,k

N ]′ be a vector of the class-conditional scores to be combinedafter applying
F-norm. Let us approximate the joint conditional distribution of yF,k, p(yF,k) by a mixture of Gaussian
components of the form:

p(yF,k) =

Nc∑

c=1

wcN
(
y|µF,k

c ,ΣF,k
c

)
, (7.8)

wherewc is the prior of thec-th Gaussian component whose parameters areµ
F,k
c andΣF,k

c , for k = {C, I}.
Note that this classification is user-independent but receives input from user-specific normalized scores
obtained via F-norm.

Given thejoint distribution described by the mixture of Gaussian parameters{wc,µ
F,k
c ,ΣF,k

c |∀c}, our
goal is to find the marginal distribution spanned only by the subset (or subspace)p ⊆ {1, . . . , N}. One
way is to marginalize the conditional joint distributionp(yF,k) with respect to the output of the systems
not considered. Using a mixture of Gaussian parameters, this can be done in a rather straight-forward
manner. First, let us drop the parametersF , k andc from µ

F,k
c ,ΣF,k

c since the discussion that follows will
always be dealing withµ andΣ in the F-norm domain, applying to eachk and eachc Gaussian component
individually. Then, the marginalized parameters due to using the subsetp can be written asµp andΣp.
The matrices before and after marginalization are related by:

µ = [µp,µp̄]
′
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Σ =

[
Σp Σq

Σ′
q Σr

]

whereµp̄ is the mean vector whose elements are systemsnot in the setp andΣt|t ∈ {q, r} are the rest
of the sub-covariance matrices which contains the elementsnot inp. The above marginalization procedure
for GMM can be found in [87], for instance, and is used for noisy band-limited speech recognition. Let us
take an example ofN = 3 systems. Suppose the optimal subset isp = {1, 2} and the excluded system set
is p̄ = {3}. Consequently,

µp = [µ1, µ2]
′,µp̄ = [µ3]

′,Σp =

[
e1,1 e1,2

e2,1 e2,2

]

,Σq =

[
e1,3

e2,3

]

,Σr = [e3,3] ,

whereem,n is them-th row andn-th column element of the covariance matrixΣ andem,n = en,m (since
a covariance matrix is reflexive).

7.5.5 Evaluating the Quality of Selective Fusion

Two types of evaluation are considered here, i.e., by agreement and by computational saving.

Evaluation by Agreement

Note thatp∗j contains the subset of systems that are considered optimal,in the F-norm domain, for a user
j according to thedevelopmentset. One could equally evaluate the same parameter for theevaluationset.
A useful way to evaluate ifp∗j |dev is optimal or not is by comparing the same parameter derived from the
evaluation setp∗j |eva – which is considered the ground truth. LetI(m,n) be an indicator function that
outputs 1 if the setsm andn are identical and zero otherwise. The probability of choosing the “right”
mode of fusion, within the population of users considered, in the OR-switcher, can be defined as:

d =

∑

j I
(
p∗j |dev, p∗j |eva

)

J

Higherd is thus clearly desired.

Evaluation by Computational Saving

One can also evaluate the computational savings by not usingsome of the biometric systems. It can be
quantified by:

computational saving= 1 −
∑

j∈J

∑N
i=1 I(systemi,j)

2 × J
,

whereI(systemi,j) is an indicator function that gives 1 if thei-th biometric system of userj is used and
zero otherwise and there areJ users. In the case of a conventional fusion classifier where all the systems
are used, the computational saving is simply zero. In our case, when two systems are considered using the
OR-switcher, the fractionr as presented in Section 7.5.3 is directly related to the computational saving in
the following way:

computational saving= (1 − r)/2 × 100%.

7.5.6 Experimental Validation

Fusion Experiments

We set up a fusion protocol in the following ways: (i) for LP1,we combined exhaustively the face systems
{ P1:1, P1:2, P1:7, P1:9} with the speech systems{ P1:3, P1:4, P1:5}; (ii) for LP2, we combined
exhaustively the face system{ P2:1} with the speech systems{ P2:2, P2:3, P2:4}. LP1 (resp. LP2) has
12 (resp. 3) multimodal fusion tasks.
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Table 7.3: Comparison of the OR-switcher and the conventional fusion classifier usinga posterioriEER
evaluated on the evaluation set of 15 face and speech XM2VTS fusion benchmark database.

a posterioriEER on the eva. set (%)
No. OR-Switcher’sr values baseline

0.6 0.7 0.8 0.9 1.0
1 0.87 0.57 0.46 0.34 0.32 0.62
2 2.07 2.00 1.87 1.73 1.51 1.58
3 1.36 0.82 0.72 0.52 0.48 1.33
4 0.46 0.39 0.34 0.29 0.24 0.58
5 0.96 1.00 0.94 0.88 0.80 1.02
6 0.74 0.72 0.69 0.63 0.57 0.91
7 1.15 0.93 0.79 0.64 0.34 0.48
8 1.46 1.49 1.39 1.11 0.84 0.85
9 1.33 1.02 0.78 0.73 0.46 1.03

10 1.64 1.39 1.05 0.83 0.42 0.69
11 4.16 4.08 3.74 2.94 2.38 2.46
12 3.40 3.14 2.59 2.02 1.44 1.68
13 0.43 0.39 0.35 0.05 0.01 0.19
14 0.50 0.47 0.28 0.03 0.03 0.23
15 0.21 0.19 0.05 0.03 0.02 0.24

Note: The EER values in bold indicate that the respective OR-switcher has an EER lower than that of
the baseline classifier. The data in the last two columns wereplotted in Figure 7.8(b). Whenr = 1, the
OR-switcher is equivalent to combining F-normalized scores. All the classifiers evaluated here are GMM
classifiers. The DET curves of experiments 15, 3 14 and 10 (in this order) are shown in Figures 7.13(a)–(d).

Using our proposed criterion, the percentage of correctness d is measured to be 88.5% with minimum
and maximum being 80% and 97.5%, respectively, across all 15fusion tasks.

We then compared the OR-switcher with two baseline systems,as follows:

• The de factofusion classifier based on GMM:In this case, the scoresyi∀i are used.6

• The user-specific GMM based on F-normalized scores:In this case, the GMM classifier was
trained with F-normalized scores, i.e.,yF

i ∀i

The OR-switcher behaves different for a given set of the fraction valuesr = {0.6, 0.7, 0.8, 0.9}. The
system performances are plotted using only DET curves and are shown in Figures 7.13. Since we could
not plot all the DET curves which behave very differently from each other, we listed thea posterioriEER
performance evaluation in Table 7.3. We can identified four types of experimental outcomes:

• Ideal: where no lost is observed atr = 0.6.

• Potential: where no lost is observed atr = 0.7

• Satisfactory: where no lost is observed atr = 0.9

• No gain: where no lost is observed atr = 1.0

According to this categorization, at EER, 4 systems are considered ideal, 3 are potential, 2 are satisfactory
and 5 has no gain. The DET curves of an example in each categoryis shown in Figure 7.13.

6From our previous study [101], the GMM fusion classifier performs as well as the logistic regression and Support Vector Machines
with a linear kernel. Since all these classifiers rely on the same training sets with carefully tuned hyper-parameters, their generalization
performances cannot besignificantlydifferent.
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Discussion

The experimental outcomes suggest that it is still possibleto make decisions based onincompleteinforma-
tion. The proposed OR-switcher is really a proof of this concept. While having less information (depending
on the pruning rater), the OR-switcher is at least as good as the conventional fusion classifier, if not better.
However, by using lowerr (higher pruning), the system is expected to degrade steadily in accuracy. How-
ever, at least, the OR-switcher does not fail completely as would the conventional fusion classifier because
the OR-switcher can capitalize on the inherent system redundancy. Furthermore, one of its advantage over
the conventional fusion classifier is that the OR-switcher makes use of the user-specific information.

7.6 Summary of Contributions

This Chapter contains the following novelties:

• Empirical investigation of the robustness of user-specificstatistics: Although the user-specific
statistics, i.e.,µk

j andσk
j , have been used in user-specific score normalization and threshold pro-

cedures (Chapter 5), no systematic study has been made regarding the robustness (the ability to
generalize to unseen data) of the mentioned statistics. Ourexperiments in Section 7.2 show thatσC

j

is not robust and hence should not be considered. This has significant influence on the design of
user-specific procedures. This Section appears in our published paper [115].

• User-specific score normalization based on F-ratio (F-norm): Our study in Section 7.3 shows that
F-norm belongs to a new family of user-specific score normalization besides Z-norm and EER-norm.
Our empirical and theoretical analysis show that in comparison to Z- and EER-norms, F-norm has
the following advantages:

– F-norm is more robust to deviation from Gaussian since it does not use the second-order user-
specific statistics.

– F-norm can work with fewer training samples since it does notuse the second-order user-
specific statistics and it relies on Bayesian adaptation.

– Empirically, its generalization performance increases faster in proportion to the number of
genuine samples since it is client-impostor centric.

This Section appears in our published paper [108].

• Criterion to rank users: Although Doddingtonet al [33] were the first to develop techniques to
categorize different types of users in a biometric databaseaccording to their score statistics, they
did not provide a technique to rank users according to their ease of recognition. Furthermore, the
statistical techniques developed by Doddingtonet al were not designed with statistical robustness
as a primary concern. In Section 7.4, we found out that such a criterion is best evaluated using a
constrained F-ratio with scores transformed into F-norm. This criterion is called Constrained F-norm
Ratio (CFNR). Due to working in the F-norm domain, user-induced variability is effectively reduced
before the ranking takes place. This is an advantage becausethis variability can adversely affect
the user ranking. Again, CFNR is designed with maximal robustness and this property was verified
using 13 face and speech biometric systems on XM2VTS. This Section appears in our published
paper [115].

• User-specific fusion via the OR-switcher:The ability to rank users based on CFNR has a practical
application in the context of multimodal biometric fusion.We illustrated the usefulness of CFNR
to selectively combine systems on a per user basis. We calledthis novel fusion operator the OR-
switcher. The performance of the OR-switcher is as good as the fusion system that combinesall the
system outputs with user-specific F-normalized scores. However, because the OR-switcher does not
use all the biometric systems, it can reduce the computational cost. For instance, in our experimental
setting with 15 fusion taskson average, the OR-switcher can reduce the computational resources
up to a quarter of that with a conventional fusion classifier (that uses all the sub-systems). This is



7.6. SUMMARY OF CONTRIBUTIONS 107

achievedwithoutsignificant reduction in performance with respect to the onewith full-fledged sys-
tems which is also based on F-norm. We also compared the performance of the OR-switcher with the
state-of-the-art technique which uses trainable user-independent fusion classifiers. We used GMM
in this case but SVM gave also similar performance as reported in [101]. Since the OR-switcher
exploits the user-specific information, its performance isstatistically significantlybetter than the
state-of-the-art fusion classifiers; and this is achieved by reducing the overall software/hardware re-
sources. This advantage becomes more apparent for multimodal authentication using a personalized
device because an under-performing biometric hardware with respect to a given user can be removed
from the device. This Section appears in [112] and is under peer-review.
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Figure 7.12: Results of filtering away under-performing users for each of the first 8 XM2VTS systems
shown using DET curves. The users were ranked according to the constrained F-norm ratio (CFNR, or
(σF,k

j )−1) based on the data of the development set. TheN ∈ {200, 180, . . . , 20} lowest performing users
are filtered at each stage. Figures (a) and (b) show thea posteriorifiltered DET curves of the development
score set on which CFNR was calculated and Figures (c) and (d)show thea priori filtered DET curves
evaluated on theevaluationscore set. Some DET curves cannot be plotted because no errorwas observed.
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Figure 7.13: An empirical comparison of user-specific classifier, OR-switcher and the conventional fusion
classifier. The fusion performance depicted by DET curves. An example of each of the four types of
experimental outcomes were observed: (a) ideal, where the OR-switcher achieves 20% computational
savings (whose cutting rate is 0.6) without remarkable lostof performance compared to the baseline system
(4 fusion experiments in this category); (b) potential, where 15% computational savings (cutting rate= 0.7
was achieved (3 experiments); (c) satisfactory, where 10% computational savings (cutting rate= 0.8)
was achieved; and (d) no gain, where 5% computational savings (cutting rate= 0.9) was achieved (6
experiments).
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Benefits of Using LLR in Fusion

In the literature, fusion is dominated by techniques that convert participating system outputs to probability
prior to combining them using simple fixed rules [66]. Score conversion is important because different
systems output different score types. We proposed a unifying framework that converts different score types
to probability or LLR (see Section 3.3.2). Deviating from the mainstream, we showed that converting
scores into the LLR space ismore usefulthan into probability because the underlying statistics can better
be described using the first- and second-order moments. Thanks to this advantage, we could:

• Analyze fusion via a parametric fusion model (Part I)

• Better exploit the user-specific information (Part II).

These two parts are closely related in that the parametric fusion model can be extended to user-specific
processing by conditioning the model to a particular user, i.e., using user-specific statistics,µj andΣj

instead of user-independentµ andΣ.

Parametric Fusion Model

With a parametric fusion model (Chapter 3), we could:

• Explain why fusion works

• Predict fusion performance

• Identify conditions which favor fusion with a particular fusion operator

• Study the joint phenomena of combining classifiers with different degree of strength and correlation

• Reduce the adverse effect of bias (or score-level mismatch between training and test sets) on fusion

An interesting statistic from the proposed parametric fusion model is called the F-ratio. It characterizes
the separability between the genuine scores and the impostor scores. Although relying on class-conditional
score distribution, we showed that the F-ratio (as well as other related performance measures such as FAR,
FRR and EER) is robust to deviation from the assumption in thecontext of classification (see Sections C.1–
C.2).

An application of performance prediction using the F-ratiois to select an optimal subset of (possibly
correlated) systems to combine (see Section 4.5). In this context, one is ready to trade-off insignificant
performance gain with less computation. F-ratio is more useful than the empirically calculated EER be-
cause F-ratio is more robust to different population composition. Furthermore, the system selection using
F-ratio has a complexity that is independent of the data available since only the F-ratio criterion has to be
evaluated for each possible combination.
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User-Specific Processing

There are three original contributions to the state-of-the-art in user-specific processing.

1. Survey on user-specific processing:We analyzed some of the desired characteristics from exist-
ing literature in order to exploit user-specific processing. In particular, we generalized user-specific
fusion and user-specific score-normalization techniques in the following form for making the ac-
cept/reject decision:

Ψj(y) > ∆

for y = [y1, . . . , yN ]′. WhenN > 1, Ψj is a user-specific fusion classifier. whenN = 1, Ψj is a
user-specific score normalization procedure. We also showed that the user-specific threshold tech-
nique is a special case of the user-specific score normalization technique. The survey was reported
in Chapter 5.

2. A compensation scheme:In Chapter 6, we proposed the following alternative framework for deci-
sion making:

γΨj(y) + (1 − γ)Ψ(y) > ∆,

whereΨ is a user-independent function (fusion classifier or score-normalization procedure) andγ
adjusts the contribution between the user-specific and user-independent functions. This form has the
following benefits:

• Mutual compensation: The solution compensates for the unlikely robust user-specific classi-
fier but at the same time, enhances the user-independent classifier with a user-specific one.

• Hybrid learning algorithms: Both classifiers can be trained independently of each other.

• Independence of information: Following the justification in Section 6.1, both classifiersare
likely to produce independent outputs when the number of users is large.

The compensation framework compares favorably with [40, 41, 139, 71, 61] principally because it
is the only one that can learn from very few user-specific genuine samples, which is a non-trivial
machine-learning problem.

3. User-Specific F-ratio based techniques:We extended the system level F-ratio used in the paramet-
ric fusion model to the user-specific F-ratio (Chapter 7). The usefulness of the user-specific F-ratio
is shown in the following applications:

• F-norm: F-norm is a user-specific score normalization technique that aims to reduce the user-
induced variability. F-norm is superior to existing normalization techniques, e.g., Z-norm,
EER-norm and their variants, due to its following properties:

– Robustness to the Gaussian assumption
– Robustness to extremely few genuine training samples thanks to Bayesian adaptation – an

advantage not shared by existing methods in user-specific score/threshold normalization,
e.g. [18, 48, 52, 64, 75, 92, 126]

– Client-impostor centric – making use of both the genuine andimpostor scores

• Criterion to rank users: Although the user-induced variability has been studied [33], there
exists no criterion that ranks users according to their easeof recognition. Such a criterion is
important to decide the usability and suitability of a biometric system on a per person basis. We
proposed a criterion based on F-ratio, called constrained F-norm ratio (CFNR), which isrobust
(able to generalize to unseen data), isunbiasedto mismatch between training and test sets and
can bereliably estimatedfrom few samples.

• The OR-switcher: The OR-switcher is a user-specific selective fusion wherebyonly a subset
of systems are used. It strongly relies on the CFNR criterionafter taking into account all pos-
sible combinations of system subsets. The OR-switcher is better than the conventional fusion
classifiers proposed in the literature because it makes the resultant multimodal system faster
(less processing), cheaper (less hardware component in applications with personal devices) and
better (more accurate by exploiting user-specific information).
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Other Contributions in User-Specific Processing

We summarize here the results of two related topics which areoriginal contributions but could not fit
exactly in the two major themes chosen in this thesis.

1. A discriminative framework to combine user-specific and quality information: While studies
have been conducted on incorporating user-specific and quality informationseparately, we consid-
ered fusion of these two information sourcessimultaneously. The discriminative framework is useful
for two reasons:

• Ease of implementation:The framework can be implemented using any existing discrimina-
tive classifier whose properties are well studied rather than using specialized classifiers for this
purpose, e.g., support vector machines, multi-layer Perceptrons, etc, linear or non-linear.

• Ease of integration with user-specific information: User-specific information can be inte-
grated into the framework by means ofanyuser-specific score normalization whose effective-
ness can be evaluated independently from the framework.

We showed that combining both information sources is betterthan using either one, or using none
of them. This paper was published in [111] and was the winner of the best student poster award in
the 5th Int’l. Conf. Audio- and Video-Based Biometric Person Authentication (AVBPA 2005) for
contribution on “biometric fusion”.

2. User-specific performance trend analysis:The goal of this study was to assess whether or not
the performance ofindividual usersas well as that of theoverall system changes when a biometric
authentication system is operational on a regular basis. While a pilot study in [46] attempted to as-
sess the overall system performance, there was no study thatmakes the assessment at the individual
level. The trend is useful to decide when a user’s template ormodel should be updated. We pro-
posed to model the user-specific trend in two steps. Firstly,one models the user-specific client and
impostor sequences of scores over time using a regression algorithm. The output of regression is
a series oftime-dependent user-specific statisticsin terms of mean and variance, i.e.,µk

j,t andσk
j,t

over time indext for a given userj and classk = {C, I}. By assuming the class-conditional Gaus-
sian assumption, the instantaneous user-specific performance (e.g., user-specific F-ratio, EER) can
be traced. The conventional approach uses a sliding window,which defines the set of scores inside a
limited period, to calculate a time dependent performance [147].

There are two disadvantages with the conventional approachcompared to our proposed one:

• The trade-off between time precision and reliability of performance estimate: A large
window reduces the time precision but increases the reliability of performance estimate whereas
a small window increases the time precision but decreases the reliability of the performance
estimate.

• Limitation to user-independence analysis:The sliding window approach cannot be used to
estimate the user-specific trend because user-specific genuine scores are extremely limited.

Because of this trade-off, deciding on the window size is also a difficult problem. Our proposed
algorithm uses standard regression tools whose parameterscan be tuned elegantly. Furthermore, the
model can estimate the trend to anarbitrarily smoothed precision.

The devised algorithm to estimate both the user-specific anduser-independent (system level) trend esti-
mation is an important proof of concept that user-specific processing is extremely powerful in biometric
authentication as well as identification. Our finding suggests that only a quarter of users degrade signifi-
cantly in performance over time. Furthermore, the initial template, and not the user identity, is responsible
for the trend. This study can be found in [96].

To the best our our knowledge, at the time of writing, this thesis represents the state-of-the-art ofuser-
specific processingin biometric authentication.
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8.2 Future Work

This Section provides a non-exhaustive list of future work related to biometric person authentication. Some
of these issues were encountered during the research for this thesis but could not be fully addressed.

• Composite DET/EPC curve. Visualizing a composite DET/EPC curve becomes a necessity for
algorithmic evaluation when several data sets are involved. This is done by establishing a global
coordinate among different DET curves. To the best of our knowledge, three types of coordinate
exist, namely, DET angle [2], LLR unique to each DET [54] and the α value used in the WER
criterion (see (2.5)). The merits of each approach should beexamined.

• User-specific processing at feature or score level.Chapters 6 and 7 show that user-specific pro-
cessing at the score-level can improve the system performance. This suggests that the processing at
the score-level can be potentially extended to the feature level. While the information is richer at
the feature level, the dimensionality is also much higher. Overcoming this possible drawback is thus
very challenging but if successful,significant improvementcould be obtained.

• Template-updating. When a biometric system is operational, the user-specific performance changes
over time. If the performance degrades, then the algorithm has to update the underlying tem-
plate/model. There are two important questions to answer: (i) whenand (ii) how the update should
proceed. For a completely automatic system, this can be considered a semi-supervised learning.
There are certainly many more issues to examine, for instance, what if the wrong template is updated
and how the remedial procedure should proceed.

• Mismatch due to different sensors.When a system is operational, its sensor may be replaced but
not the user’s template. In speaker verification, using a different microphone type than the one used
during enrollment is a common problem. As a result, the system performance degrades when a differ-
ent sensor is used. Algorithms developed in speaker verification can certainly be adapted to different
biometric modalities. Ultimately, a common noise mismatchframework has to be addressed.

• User-specific and population assessment.Current evaluation techniques using standard EPC/DET
curve cannot generalize to a different population, size of users and of course the mismatch conditions.
This is a drawback because one cannot conclude that if algorithm A is better than B in a database
with population X, the result is consistent with another database with population Y. One even has
the least idea if algorithm A is better than B for a given user.This issue is particularly important for
applications involving personalized biometric devices, e.g., mobile phones and PDAs.

• User-specific criterion for joint training. The current fusion systems combine system outputs
after the base-systems are trained. A joint training strategy, including the fusion classifier can be
potentially useful. It is yet to find out to what extent this training can be beneficial, considering that
limited genuine training samples are available per user. Weconjecture that joint training is useful in
the case where the underlying data streams correlate in time(e.g., audio-visual speech) or in space
(e.g., common facial image but different facial features).

8.3 An Open Question

Finally, it should be noted that despite many research workson biometric fusion and its promise of achiev-
ing lower verification error rates, it is still an open question why the deployment of multimodal biometric
fusion is not widespread after 30 years of research. We conclude this thesis by leaving the reader with the
following reflection quoted in [149]:

“Although multi-modal biometric approaches are theoretically fascinating, the practical path forward
in multi-system biometrics is in first fully exploiting the time, cost, and complexity economies of
multi-presentation/ instance/sensor/algorithmic data.”



Appendix A

Cross-Validation for Score-Level Fusion
Algorithms

Algorithm 3 [7] shows how K-fold cross-validation can be used to estimate the correct value of the hyper-
parameters of our fusion model, as well as the decision threshold used in the case of authentication. The
basic framework of the algorithm is as follows: first performK-fold cross-validation on the training set by
varying the value of the hyper-parameter, and for each hyper-parameter, select the corresponding decision
threshold that minimises Half Total Error Rate (HTER); thenchoose the best hyper-parameter according to
this criterion and perform normal training with the best hyper-parameter on the whole training set; finally
test the resultant classifier on the test set with HTER evaluated on the previously found decision threshold.

There are several points to note concerning Algorithm 3:Z is a set of labeled examples of the form
(X ,Y), where the first term is a set of patterns and the second term isa set of corresponding labels.
The “train” function receives a hyper-parameterθ and a training set, and outputs an optimal classifier
F̂ by minimising the HTER on the training set. The “test” function receives a classifier̂F and a set of
examples, and outputs a set of scores for each associated example. The “thrdHTER” function returns a
decision thresholdthat minimises HTER by minimising|FAR(∆)−FRR(∆)| with respect to the threshold
∆ (FAR(∆) and FRR(∆) are false acceptance and false rejection rates, as a function of ∆) while LHTER

returns the HTERvaluefor a particular decision threshold. What makes this cross-validation different from
classical cross-validation is that there is only one singledecision threshold and the corresponding HTER
value for all the held-out folds and for a given hyper-parameter θ. This is because it is logical to union
scores of all held-out folds into one single set of scores to select the decision threshold (and obtain the
corresponding HTER).
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Algorithm 3 Risk Estimation(Θ,K,Ztrain,Ztest)

REM: Risk Estimation with K-fold Validation. See [7].
Θ : a set of values for a given hyper-parameter
Zi : a tuple(X i,Yi), for i ∈ {train, test} where
X : a set of patterns. Each pattern contains scores/hypothesis from base experts
Y : a set of labels∈ {client, impostor}
Let∪K

k=1Zk = Ztrain andZi ∩ Zj = ∅∀i,j

for each hyper-parameterθ ∈ Θ do
for eachk = 1, . . . ,K do

F̂θ = train(θ, ∪K
j=1,j 6=kZj)

Ŷk
θ = test(F̂θ, X k)

end for
∆θ = thrdHTER

(

{Ŷk
θ }K

k=1, {Yk}K
k=1

)

end for
θ∗ = arg minθ

(

LHTER

(

∆θ, {Ŷk
θ }K

k=1, {Yk}K
k=1

))

F̂θ∗ = train(θ∗, Ztrain)
Ŷtest

θ∗ = test(F̂θ∗ , X test)
returnLHTER(∆θ∗ , Ŷtest

θ∗ ,Ytest)



Appendix B

The WER criterion and Others

The WER criterion of (2.4) (see Section 2.2.2) is similar to the criterion used in the yearly NIST evaluation
plans [148, Chap. 8] and also the WER criterion used in the BANCA protocols [5].

The NIST evaluation plans use theCDET point which is defined as:

CDET (CFR, CFA) = CFR × P (C)
︸ ︷︷ ︸

×FRR(∆) + CFA × P (I)
︸ ︷︷ ︸

×FAR(∆), (B.1)

whereCFA andCFR are respectively the costs of FA and FR, andP (k) is the prior probability of class
k ∈ {C, I}.

The BANCA protocols uses a criterion also called “the WER criterion” but is different from (2.4). It is
defined as:

WERbanca(R,∆) =
FRR+ R FAR

1 + R
, (B.2)

whereR ≥ 0 balances between the costs of FAR and FRR.
The two underbraced terms inCDET as well asR of WERbanca play the same role asα in (2.5): they

adjust for the different costs between FA and FR. Note that this adjustment parameter is not normalized for
CDET . Let us explicitly write the grouped underbraced terms inCDET as

CDET = αFRRFRR(∆) + αFARFAR(∆).

Sincemin∆ CDET is equivalent tomin∆
CDET

αF RR+αF AR
, the normalized and non-normalized versions of

CDET are equivalent. As a result, (2.5) as well as (2.6) generalizes to both the NIST and BANCA criteria.
In the NIST evaluation, the following constants are used:

CFR = 10 , CFA = 1 , P (C) = 0.01 andP (I) = 0.99.

As a result,CDET = 0.1 × FRR+ 0.99 × FAR. By enforcing that the two costs sum to one, it can be
observed thatα = 0.91. For the BANCA protocols, threeR values are used, namely0.1, 1 and10. They
correspond toα values of0.09, 0.5 and0.91, respectively.
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Appendix C

Experimental Evaluation of the
Proposed Parametric Fusion Model

C.1 Validation of F-ratio

This section investigates whether or not the EER derived from the F-ratio is acceptable. This is done by
comparing thetheoreticalEER derived using (4.14)) with itsempirical counterpart, i.e., the minimum
HTER as appeared in (2.7). Note that the minimum HTER is foundby minimizing WER with respect to
the threshold as appeared in (2.6) withα = 0.5.

We conducted 1186 experiments on the BANCA database as described in Section 2.1.2 and [80]1. There
are 490 experiments from the output of MLPs; 182 from SVMs; and 514 from GMMs. Two approaches
are adopted here. The first approach is to test whether for each of the 1186 experiments, the respective
client and impostor scores are normally distributed or not.The second approach is to directly compare
the empirical EER against its theoretical counterpart (assuming that client and impostor distributions are
normally distributed).

For the first approach, we applied the Lillie-test [24], which evaluates the hypothesis that a set of (client
or impostor) scores has a normal distribution with unspecified mean and variance against the alternative
that the set of scores does not have a normal distribution. This test is similar to Kolmogorov-Smirnov
(KS) test, but it adjusts for the fact that the parameters of the normal distribution are estimated from the
set of scores rather than specified in advance. Using this test, we found that 22.85% of impostor scores
and 25.89% of client scores (out of 1186 experiments) supported the hypothesis that they are Gaussian
distributed. Hence, only approximately a quarter of the distributions are Gaussian according to the Lillie
test.

The results of the second approach are shown in Figure C.1. From Figure C.1(a), it can be seen that both
the theoretical and empirical EERs are non-linearly and inversely proportional to their F-ratio. Removing
the F-ratio, we compared the theoretical EER directly with its empirical counterpart in Figure C.1(b). Here
the output of different classifiers are plotted with different symbols. If the theoretical EER matches exactly
its empirical EER, the points (each one corresponding to a single experiment) should be on the diagonal
line. One measure of agreement is to use correlation. Its value is evaluated to be 0.9573, indicating the the
variables arestrongly correlated. In other words, knowing theoretical EER, one can use the correlation to
approximatelyestimate the empirical EER.

One way to understand the effect of deviation from Gaussian assumption on the quality of estimated
EER, we plotted the absolute EER difference (between theoretical EER and empirical EER) versus the
average KS-statistic of their respective client and impostor distributions in Figure C.1(c). Note that from
each experiment, we will have two KS-statistics, one for each distribution. KS-statistic quantifies the
degree of divergence from normal distribution. It is an intermediate calculation used in the Lillie test to
accept or reject the Gaussian hypothesis. Note that KS-statistic itself is not used to accept or reject the

1The NIST2001 and XM2VTS databases have also been used and we obtained similar results and conclusions in [103].
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Figure C.1: Results of experiments carried out using all theavailable 1186 experiments on the BANCA
score database. (a) Theoretical EER and empirical EER (HTER) versus their common F-ratio (b) Theoret-
ical EER versus empirical EER (HTER) using output of different classifiers – 490 MLPs, 182 SVMs and
514 GMMs; the correlation coefficient between the two variables is 0.9573. (c) Absolute EER difference
between theoretical EER and empirical EER versus the average KS-statistic between the corresponding
client and impostor distributions. KS-statistic measuresthe degree of deviation from Gaussian assumption.
Note that “mlp-inv” denotes the experiments involving MLP outputs that are converted to the logit space
where the conditional scores are once again more normally distributed. Their corresponding KS-statistic
after such post-processing is much smaller.

Gaussian hypothesis. As can be seen, the output of MLPs (trained using sigmoid output function) gives
high KS-statistic whereas the outputs of SVMs and GMMs conform better to the Gaussian assumption.

Prior to this experiment, we thought that deviation from Gaussian would mean large absolute EER
difference. If this was the case, absolute EER difference would have been increasing proportionally with
respect to the KS-statistic. It turns out that this is not thecase. In Figure C.1(c), despite high KS-statistic
of MLP outputs, their corresponding absolute EER differences are spread below 0.06; some are even near
0! Hence, deviation from Gaussian does not mean large absolute EER difference. In other words, the
theoretical EER is fairly robust to deviation from the Gaussian assumption.

It should be noted that a more interesting issue to investigate is therelativevalues of EER, i.e., if the
empirical EER of experimenta is more than the empirical EER of experimentb, does the theoretical EER
of these experiments also follow the same trend? Using the data at hand, we calculated all the possible
combinations of two EER experiments. This turns out to be1186C2 = 702, 705 combinations. The number
of “disagreements”,d, can be calculated as follows:

d =
∣
∣(EERemp

a > EERemp
b ) − (EERtheo

a > EERtheo
b )

∣
∣ (C.1)

for (a, b) ∈ {(1, 2), (1, 3), . . . , (1185, 1186)} and

(z1 > z2) =

{
1 if true
0 otherwise.

(C.2)

The percentage of disagreement turns out to be 11%. If the 1186 experiments are representative of bio-
metric authentication tasks, we can conclude that to compare any two experiments, the theoretical EER
(calculated from the F-ratio) can give a correct answer 89% of the time as compared to using the empirical
EER as the ground-truth.
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(a) Gaussian,α = 0.1
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(b) Gaussian,α = 0.5
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(c) Gaussian,α = 0.9
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(d) GMM, α = 0.1
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(e) GMM, α = 0.5
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(f) GMM, α = 0.9

Figure C.2: Empirical WERs vs. approximated WERs. Compare each of a, b and c with d, e and f.
The approximated WERs refer to those calculated using the class-conditional Gaussian assumption for
a–c and those using the assumption by GMM d–f. For each of a–c or d–f, the followingα values are
used{0.1, 0.5, 0.9}. Each point represents one of the 1186 BANCA datasets. For those computed with
the Gaussian assumption, we converted the scores into the logit space usingfLLR(y). This is the one
shown here. We also omitted this pre-processing step but notshown here to avoid cluttering the figures.
The distribution of the error deviates of GMM, Gaussian withand without pre-processing are shown in
Figure C.3.

C.2 Beyond EER and Beyond Gaussian Assumption

In the last section, although only the EER point is studied, one can extend the present finding to a more
general case, whereby the EER constraint by its definition, i.e, EER(∆) = FAR(∆) = FRR(∆), does not
hold anymore. In this case, one is interested in WER with varying α values. We choose the followingα
values:{0.1, 0.5, 0.9} which approximate the scenarios in the BANCA protocols.

We also propose here an improvement over the Gaussian assumption by using a mixture of Gaussians
(GMM) as appeared in (3.22). Of course, a non-parametric Parzen window with Gaussian kernel could
have been used. In either case, any hyper-parameter (numberof Gaussian component for GMM; kernel
width for Parzen window) are tuned using two-fold cross validation in our case. The results are shown in
Figure C.2 and the distribution of their error deviates are shown in Figure C.3. The error deviate is defined
as the difference between the empirical WER and the theoretical WER. Recall that the empirical WER is
based on empirical FAR and FRR obtained from the data whereasthe theoretical WER is based on FAR
and FRR with Gaussian assumption, as appeared in (4.12) and (4.11). As can be observed and expected, the
GMM solution fits better the distribution (smallest bias) but the Gaussian solution is still robust to different
WER values. In both cases, the WER estimates are less accurate towards boundary values (near 0 or 1). In
any case, the robustness of Gaussian assumption, as in any practical application, is confirmed.
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(a)α = 0.1
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(b) α = 0.5
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(c) α = 0.9

Figure C.3: The distribution of WER error deviates between the empirical and the theoretical counterpart
for differentα values.

C.3 The Effectiveness of F-ratio as a Performance Predictor

The goal of this section is to test the effectiveness of F-ratio as a performance predictor compared to the
commonly used correlation. We used the BANCA fusion datasets as outlined in Section 2.1.2. For this
study, the mean fusion operator is used.

C.3.1 Experimental Results Using Correlation

A naive approach to analyse fusion is to empirically find the relationship between minimuma posteri-
ori HTER and the sum of correlation of client and impostor distributions. Let the client and impostor-
dependent correlations between two baseline systems (to befused) be the scalarsρC andρI , respectively2.
The results are shown in Figure. C.4. From this figure, it can be observed that multimodal fusion experi-
ments have less correlated scores while multi-feature fusion experiments have high correlated scores. One
would have expected that the minimuma posterioriHTER is somewhat proportional toρC + ρI . This is
actually partially true because the variance of participating systems are not taken into account. As a result,
there is no clear trend in this graph and one cannot conclude that HTER is proportional to correlation.

C.3.2 Experimental Results Using F-ratio

We distinguish here two concepts: empirical F-ratio and itstheoretical counterpart. For each of the pa-
rameters to be tested,empiricalmeans that the respective parameter is directly estimated on the combined
system outputyCOM ; andtheoreticalmeans that no fusion experiment is performed – only the respective
parameters need to be estimated.

Figure C.5(a) shows empirical F-ratio versus its theoretical counterpart (based on (4.18)) calculated
uniquely on the development set. As can be seen both empirical and theoretical F-ratios areexactlythe
same. Their equivalence can be shown mathematically (see Section D.5). Figure C.5(b) plots the F-ratio
found on the development set versus the F-ratio found on the evaluation set. They are not exactly the same
this time because there is a mismatch between these two data sets. Nevertheless, their correlation is 0.90,
indicating that knowing F-ratio from the development set, it is possible to predict reasonably F-ratio of the
evaluation set. This property will be exploited in Section 4.5.

As a by-product of these set of experiments, Figure C.5(c) plots the following two variables: correlation
of client and that of impostor scores. The overall correlation between these two variables is 0.83. This
indicates that knowing the covariance (or correlation; since one is proportional to the other as shown in
(4.27)) of the impostor scores, one can approximate the covariance of the client scores. Note that all

2In general, the correlation of scores ofN responses are a matrix ofN by N with elementsρm,n. It has the property that
ρm,m = 1 andρm,n = ρn,m. In the case of two responses, we simply writeρ in place ofρ1,2.
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Figure C.4: Empirical EER of combining two baseline systemsversusρC +ρI using the BANCA database.
The crosses represent experiments combining 2 modalities while the circles represent those combining 2
features of thesamemodality. The correlation between the two variables is 0.38.

intramodal fusion experiments have high correlation values. Figure C.5(c) thus has two clusters. The
cluster in the upper right corner belongs to intramodal fusion experiments whereas the cluster in the lower
left corner belongs to multimodal fusion experiments.

Summary

Comparing Figure C.4 with Figure C.5(a) (or Figure C.5(b)),we conclude that F-ratio is an adequate fusion
performance predictor.
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Figure C.5: Effectiveness of F-ratio as a fusion performance predictor. Experiments carried out on fusion
of 5C2 × 7 = 70 experiments, i.e., combining2 systems each time out of five available systems, for all
the 7 BANCA protocols: (a) Empirical F-ratio versus theoretical F-ratio on the development set. (b) F-
ratio of development set versus its evaluation set counterpart. The correlation between the two variables
is 0.90. (c) Correlation of client scores versus correlation of impostor scores. The correlations between
the two variables (class-dependent correlations) on the development and evaluation sets are 0.85 and 0.80,
respectively.



Appendix D

Miscellaneous Proves

D.1 On the Redundancy of Linear Score Normalization with Train-
able Fusion

Suppose that a linear classifier is used. Then, the fused score can be written as:

yCOM =
∑

i

wiy
lin
i − ∆ =

∑

i

wiAi(yi − Bi) − ∆

=
∑

i

wiAi
︸ ︷︷ ︸

yi −
∑

i

wiAiBi − ∆

︸ ︷︷ ︸

(D.1)

Comparing (D.1) with the linear combination without normalisation, as in (3.23), we see that the first
underbraced term is the new weight whereas the second underbraced term is the new decision threshold.
This shows that ifyi|∀i are unevenly scaled, their scaling factorAi may not be necessary as it will be
automatically absorbed by the weight. This implies that if scores are not evenly scaled, the weights in the
linear combination should be allowed to take on any values, without the constraint

∑

i wi = 1. This shows
that linear score normalisation is notnecessary. ¤

D.2 Deriving µk
wsum and (σk

wsum)2

The central idea consists of projecting theN dimensional score onto a one dimensional (combined) score.
Suppose that the class conditional scores (prior to fusion)are modeled by a multivariate Gaussian with
meanµ

k = [µk
1 , . . . , µk

N ]′ and covarianceΣk of N -by-N dimensions. LetΣk
i,j be thei-th row andj-th

column of covariance matrixΣk for k = {C, I}. The linear projection fromN dimensions of score to
one dimension of score has the same effect on the Gaussian distribution: from N multivariate Gaussian
distribution to a single Gaussian distribution with meanµk

wsum and variance(σwsum)
2 defined in the fourth

row of Table 4.1 for each classk. Themean operator is derived similarly withwi = 1
N
∀i. Note that the

weightwi affects both the mean and variance of fused scores.
The expected value ofY k

wsum, for k = {C, I}, is:

µk
wsum ≡ E[yk

wsum] =

N∑

i=1

wiE[yk
i ]

=
N∑

i=1

wi

Ai

(
E[yk

i ] − Bi

)

=

N∑

i=1

wi

Ai

(
µk

i − Bi

)
(D.2)

125



126 APPENDIX D. MISCELLANEOUS PROVES

The variance ofyk
wsum is:

(σk
wsum)2 = Cov(yk

wsum, yk
wsum)

= E
[(

yk
wsum − E[yk

wsum]
)2

]

= E





(
N∑

i=1

wi(y
k
i − Bi)

Ai

−
N∑

i=1

wi(µ
k
i − Bi)

Ai

)2




= E





(
N∑

i=1

wi(y
k
i − Bi)

Ai

)2




= E





(
N∑

i=1

wiη
k
i

Ai

)2


 (D.3)

To expand (D.3), one should take care of possible correlation between differentηk
m andηk

n, as follows:

(σnorm,k
wsum )2 = E

[(
N∑

m=1

N∑

n=1

wmηk
mwnηk

n

AmAn

)]

=

N∑

m=1

N∑

n=1

wmwn

AmAn

E
[
ηk

mηk
n

]
(D.4)

for anyk ∈ {C, I}. ¤

D.3 Proof of (σk
COM)2 ≤ (σk

AV )2

For simplicity, we will omit the conditioningk. For the caseρm,n 6= 0, the inequality can be written as:

σ2
COM ≤ σ2

AV

1

N2

N∑

j=1

σ2
j +

2

N2

N∑

m=1,m<n

ρm,nσmσn ≤ 1

N

N∑

j=1

σ2
j (D.5)

By multiplying both sides byN2 and rearranging them, we obtain:

0 ≤ (N − 1)
N∑

j=1

σ2
j − 2

N∑

m=1,m<n

ρm,nσmσn.

Given that(N−1)
∑N

i=1 σ2
i =

∑N
i=1,i<j(σ

2
i +σ2

j ) (the proof can be found in the appendix), this inequality
can further be simplified to:
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I + σ2
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0 ≤
N∑

m=1,m<n

(σ2
m + σ2

n) − 2
N∑

m=1,m<n

ρm,nσmσn

0 ≤
N∑

m=1,m<n

(
σ2

m − 2ρm,nσmσn + σ2
n

)

0 ≤
N∑

m=1,m<n

(
(σ2

m − 2ρm,nσmσn + ρ2
m,nσ2

n + (1 − ρ2
m,n)σ2

n)
)

0 ≤
N∑

m=1,m<n

(
(σm − ρm,nσn)2 + (1 − ρ2

m,n)σ2
n

)
. (D.6)

Hence, regardless of the value ofρm,n, the inequality is always true. ¤

D.4 Proof of (N − 1)
∑N

i=1 σ2
i =

∑N
i=1,i<j(σ

2
i + σ2

j )

Let σi be a random variable andi = 1, . . . , N . The term
∑N

i=1,i<j(σ
2
i +σ2

j ) can be interpreted as
∑N

i=1

∑N
j=i+1(σ

2
i +σ2

j ). The problem now is to count how many
σ2

k there are in the term, for anyk = 1, . . . , N .

There are two cases here. The first case is wheni = k, the term
∑N

i=1

∑N
j=i+1(σ

2
i + σ2

j ) becomes:
∑N

j=k+1(σ
2
k + σ2

j ). There are(N − k) terms ofσ2
k.

In the second case, whenj = k, the term
∑N

i=1

∑N
j=i+1(σ

2
i + σ2

j ) then becomes:
∑k−1

i=1 (σ2
i + σ2

k).
There are(k − 1) terms ofσ2

k.
The total number ofσ2

k is just the sum of these two cases, which is(N−k)+(k−1) = (N−1), for any
k drawn from1, . . . , N . The sum of(N − 1) σ2

k over all possiblek = 1, . . . , N then gives(N − 1)
∑N

k=1

σ2
k.

Therefore,(N − 1)
∑N

i=1 σ2
i =

∑N
i=1,i<j(σ

2
i + σ2

j ). ¤

D.5 Proof of Equivalence between Empirical F-ratio and Theoretical
F-ratio

The estimated theoretical and empirical parameters can be shown to be exactly the same mathematically.
Suppose there areMk accesses, whereMC are the number of client accesses andM I are the number of
impostor accesses. Suppose also thatY k

i,u is the output of thei-system andu-th access given that the class
label isk = {C, I}, andi = 1, . . . , N andu = 1, . . . ,Mk. µk

i can be estimated by:

µ̂k
i ≡ 1

M

k Mk

∑

u=1

Y k
i,u ≡ Ȳ k

i,·. (D.7)

For theu-th access, the combined score is:

1

N

N∑

i=1

Y k
·,u ≡ Ȳ k

·,u. (D.8)

The empirical estimate ofµk
COM , µ̂k

COM,emp is given by:

1

M

Mk

∑

u=1

Ȳ k
·,u ≡ Ȳ k

·,·. (D.9)
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Note that:

µ̂k
COM,emp =

1

M

Mk

∑

u=1

Ȳ·,u

=
1

N

N∑

i=1

Ȳi,· (interchange thei andu summations)

=
1

N

N∑

i=1

µ̂k
i

= µ̂k
COM,theo. (D.10)

Hence, they are the same. The empirical variance can be calculated as follows:

(
σ̂k

COM,emp

)2
=

1

M

M∑

u=1

(
Ȳ·,u − Ȳ·,·

)
(D.11)

The theoretical variance is obtained by estimating the terms (σk
i )2 and ρk

i,jσ
k
i σk

j in the expression of
(σk

COM )2, as shown in (4.26). The estimate of(σk
i )2 is given by:

1

M

M∑

u=1

(
Y k

i,u − Ȳ k
i,·

)2
. (D.12)

The estimate ofρk
i,jσ

k
i σk

j is given by:

1

M

M∑

u=1

(
Y k

i,u − Ȳ k
i,·

) (
Y k

j,u − Ȳ k
j,·

)2
. (D.13)

Plugging in these two estimates into the expression for(σk
COM )2, we get the theoretical estimate of the

variance of the fused scores as:
(
σ̂k

COM,theo

)2

=
1

N

N∑

i=1

[

1

M

M∑

u=1

(
Y k

i,u − Ȳ k
i,·

)

]

+
2

N

N∑

i=1,j>i

[(
Y k

i,u − Ȳ k
i,·

) (
Y k

j,u − Ȳ k
j,·

)]

=
1

M

M∑

u=1




1

N2

N∑

i,j=1

(
Y k

i,u − Ȳ k
i,·

) (
Y k

j,u − Ȳ k
j,·

)





=
1

M

M∑

u=1

(
Ȳ·,u − Ȳ·,·

)

=
(
σ̂k

COM,emp

)2
. (D.14)

Because the empirical and theoreticalµk
COM andσk

COM are thesame, the empirical and theoretical F-ratios
will be exactly the same. Using the definition of F-ratio in (4.15), the theoretical F-ratio of the combined



D.5. PROOF OF EQUIVALENCE BETWEEN EMPIRICAL F-RATIO AND THEORETICAL F-RATIO129

score can be defined as:

F-ratioCOM,theo ≡
µ̂C

COM,theo + µ̂I
COM,theo

σ̂C
COM,theo + σ̂I

COM,theo

. (D.15)

The empirical F-ratio is:

F-ratioCOM,emp ≡
µ̂C

COM,emp + µ̂I
COM,emp

σ̂C
COM,emp + σ̂I

COM,emp

=
µ̂C

COM,theo + µ̂I
COM,theo

σ̂C
COM,theo + σ̂I

COM,theo

= F-ratioCOM,theo (D.16)

Hence, the theoretical F-ratio is exactly the same as the empirical F-ratio. This applies also for normalised
version ofY . ¤
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