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Abstract. Multi-modality is a fundamental feature that characterizes
biological systems and lets them achieve high robustness in understand-
ing skills while coping with uncertainty. Relatively recent studies showed
that multi-modal learning is a potentially effective add-on to artificial
systems, allowing the transfer of information from one modality to an-
other. In this paper we propose a general architecture for jointly learn-
ing visual and motion patterns: by means of regression theory we model
a mapping between the two sensorial modalities improving the perfor-
mance of artificial perceptive systems. We present promising results on
a case study of grasp classification in a controlled setting and discuss
future developments.
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1 Introduction

Multi-modal learning, that is, learning from sensorial patterns associated with
very different kinds of sensors, is paramount for biological systems. Coupled
acoustic and visual information is essential, for instance, for animals to deter-
mine whether they are facing a predator or a prey, as well as in courtship rituals.
From the point of view of artificial intelligence, multi-modal learning is a poten-
tially excellent way of enriching the input space of pattern recognition problems
which could be otherwise more difficult. Indeed, sensorial inputs are available
to biological systems in an endless, inextricably mixed flow coming from various
sensorial apparatuses. It is not completely clear, then, how this information can
be used to improve pattern recognition. For example, one could argue that the
sight of a certain kind of predator is generally associated with a particular (set
of) sound(s) and smell(s), and that animals learn to associate these multi-modal
patterns during their infanthood; later on, this fact is employed in recognising
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the associated danger in a dramatically better way. It seems apparent, then,
that there is a mapping among sensorial modalities; e.g., the auditory stimulus
corresponding to a predator should be reconstructible from its visual appear-
ance. Therefore, even though not all modalities are always available, it should
be possible to recover one from another, to various degrees of precision.
In this work we focus upon active perception modalities vs. passive ones. By
active modality we mean perception arising from the action an embodied agent
performs in its environment; by passive modality, we mean perception of stimuli
which are independent from the agent’s will. Our paradigmatic case is grasping
for an embodied agent: objects must be grasped in the right way in order to
use them as desired. According to the so-called learning by demonstrations, that
is learning a grasp by observing someone doing it, we build a mapping from
the object appearance to the grasping action and assess its ability to accurately
describe the grasp type. In a multimodal setting, the estimated mapping could
be used to predict the motor data when the corresponding channel is inactive.

In order to reconstruct actions from perception we draw inspiration from
the work on mirror neurons [13, 1]. Mirror neurons are clusters of neural cells
which will fire if, and only if, an agent grasps an object or sees the same object
grasped by another agent; they encode the semantics of an action associated
to an object, and form the basis of internal models of actions, by which an-
imals reconstruct the grasping and can therefore plan the grasp with greater
robustness and effectiveness. Following the path laid out, e.g., in [14, 17], where
perception-action maps have been built into artificial systems, we hereby propose
a theoretical framework for multi-modal learning in which an active modality is
reconstructed via statistical regression from a passive modality. In the worked
example, visual patterns describing the sight of an object are used to recon-
struct the related grasping postures of the hand, with the hope that the use of
two modalities, one active and one passive, instead of the passive one only, will
aid the recognition of the object itself. This framework can be theoretically ex-
tended to any such active-passive coupling. The paper is organized as follows: in
Section 2 we present the framework, discussing motivations and implementation
choices; vision issues are tackled in Section 3 where we deal with objects mod-
elling; the regression techniques used to build the perception-action map are in
Section 4. In Section 5 we describe preliminary experiments that motivate the
pertinence of our approach, while the last Section discusses future work.

2 A theoretical framework for multi-modal learning

As outlined in the Introduction, we assume that there exists a mapping between
(sets of) patterns belonging to different modalities — here we focus upon the
relations which exist between a passive and an active modality. In the aforemen-
tioned example dealing with objects (as seen) and grasping them, something like
what is shown in Figure 1 is sought for.

In general, active modalities are not available to a biological system during
the prediction phase, but only during the training phase. A paradigmatic ex-
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Fig. 1. An instance of the framework we propose: estimating a mapping between ap-
propriate visual descriptions of objects and classes of grasp actions. For the time being,
we assume that such relation is a one-to-one mapping.

ample is that of a human infant learning how to grasp an object: by repeatedly
trying to apply, e.g., a cylindric grasp to a bottle, he will learn not only to do it
more and more efficiently, but also that a bottle is better be grasped cylindrically
when moving it or bringing it close to the mouth. Later on, the sight of a bottle
will remind the young human what one of the correct grasps is for that particular
object. A perception-to-action map (PAM) is the equivalent of such training for
a biological system: a model to reconstruct an active modality from a passive
one. The PAM of our example is a mapping from visual features of an object to
motor features of the grasping action used for that object. In general such a map
is many-to-many: both a hammer and a bottle can be grasped cylindrically1),
and as well a mug can be handled either cylindrically or by the handle. In this
work we make the simplifying assumption that for a specific object there is just
one acceptable grasping action — the PAM is one-to-one. A PAM is useful in
passive pattern recognition (e.g., classifying an object just by seeing it) since it
augments the input space with PAM-reconstructed active patterns (e.g., classify-
ing the same object from its sight and the associated grasp). In this preliminary
work we focus upon a simpler problem, namely that of checking whether, given
the visual features of an object, the PAM-reconstructed grasp is (similar to) the
one associated with that particular object. For example, we might train a PAM
to reconstruct a pinch grip (hand posture) from the visual features of a pen;
given then, in the prediciton phase, the visual features of another pen, will the
PAM-reconstructed hand posture of a pinch grip look like a true pinch grip?

In particular, what is needed is: (i) a vision unit to extract visual features
from an image or a series of images, and (ii) a regression unit, which will build
the PAM.

1 The nomenclature of grasp types loosely follows that of Cutkosky [16].
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Fig. 2. A schema of the vision unit. First, suitable frames are extracted from the
sequence and objects are located by means of background subtaction (BS). SIFT de-
scriptors of a set of random points are input of a clustering step to get to the final
visual vocabulary. Finally, each image is represented with respect to the vocabulary
adopting a nearest neighbour (NN) strategy (see text for details).

3 Vision unit

As we will discuss in Sec. 5, the system gathers, as one input, a video sequence
acting as spectator, whose focus is on object appearance. The goal of the vision
unit is to process the signal to obtain a global model of a set of given objects.
Figure 2 shows the pipeline of the vision unit when considering only one object
(the same procedure is applied to the whole set of objects). Among the sequence,
we first select the frames showing only the object without any occlusion, then we
locate more precisely its position by means of a simple background subtraction.
Although in our application there is not an explicit object recognition step, it
is clear from the architecture pipeline that a robust and specific object model
is functional to subsequent analysis. It is worthwhile also to mention that with
the terms object recognition we indicate the characterization of a specific ob-
ject instance (againts the concept of categorizing classes of objects). We adopt
an approach based on local features to describe image structures: because of
their popularity a rich variety of local measurements have been proposed in the
literature [2–4] and applied successfully to objects recognition and categoriza-
tion problems (see [6, 7] just to name a few). Local approaches tipically include
two distinct steps: keypoints extraction and description. However, in our case, a
keypoint based-representation often ends up into a poor description due to the
limited size of the images. We thus built our representation by extracting enough
random points guaranteeing a more homogenous sampling. We chose to adopt
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SIFT descriptors [4, 5] to model image patches around these points, obtaining a
set of words for each image.
To avoid redundancy and include some global information in our model, we ap-
ply k-means [15], following the well-known bag-of-words approach [6]. We thus
build a global vocabulary, containing SIFT descriptions of all known objects. Im-
age representation is obtained by means of frequency histogram of visual words,
selecting for each random point extracted from the image the most similar vi-
sual word as nearest neighbor. A normalization step may be advisable for the
subsequent data processing.

4 Regression model

The mapping between object description and grasp description (Fig. 1) corre-
sponds to a vector-valued regression problem. Given a training set of input-
output pairs {(xi,yi) : xi ∈ Rp,yi ∈ Rd}ni=1, the aim is to estimate a deter-
ministic map from images of objects to sensor values able to generalize on new
data. In other words, we want to estimate a function f : Rp → Rd, where p
is the number of features representing the input images and d is the number of
sensors.

This requires an estension of supervised learning methods to the vector valued
setting. Assuming that the data is sampled i.i.d. on Rp × Rd according to an
unknown probability distribution P (x,y), ideally the best estimator minimizes
the prediction error, measured by a loss function V (y,f(x)), on all possible
examples. Since P is unknown we can exploit the training data only. On the
other hand, the minimization of the empirical risk : En(f) = 1

n

∑n
i=1 V (yi,f(xi))

leads to solving an ill-posed problem, since the solution is not stable and achieves
poor generalization. Regularized methods tackle the learning problem by finding
the estimator that minimizes a functional composed of a data fit term and a
penalty term, which is introduced to favour smoother solutions that do not
overfit the training data. The use of kernel functions allows to work with non-
linearity in a simple and principled way. In [10] the vector-valued extension of the
scalar Regularized Least Squares method was proposed, based on matrix-valued
kernels that encode the similarities among the components f ` of the vector-
valued function f . In particular we consider the minimization of the functional:

1
n

n∑
i=1

||yi − f(xi)||2d + λ||f ||2K (1)

in a Reproducing Kernel Hilbert Space (RKHS) of vector valued functions, de-
fined by a kernel function K. The first term in (1) is the empirical risk evaluated
with the square loss and the second term is the norm of a candidate function f
in the RKHS defined by the kernel K. The latter represents the complexity of
the function f , while the regularizing parameter λ balances the amount of error
we allow on the training data and the smoothness of the desired estimator.

The representer theorem [11, 10] guarantees that the solution of (1) can al-
ways be written as: f(x) =

∑n
i=1K(x,xi)ci, where the coefficients ci depend
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on the data, on the kernel choice and on the regularization parameter λ. The
minimization of (1) is known as Regularized Least Squares (RLS) and consists
in inverting a matrix of size nd× nd.
Tikhonov Regularization is a specific instance of a larger class of regularized ker-
nel methods studied by [8] in the scalar case and extended to the vector case in
[preprint]. These algorithms, collectively know spectral regularization methods,
provide a computational alternative to Tikhonov regularization and are often
easier to tune. In particular we consider iterative regularization methods with
early stopping, where the role of the regularization parameter is played by the
number of iterations. Besides Tikhonov regularization, in the experiments we
consider L2 boosting (Landweber iteration) [18, 8] and the ν-method [8].

5 Experimental setup

The experimental phase aims at testing the proposed framework in a highly
controlled environment, where we focus on learning the mapping between image
descriptors and motor-sensor data to predict the grasp associated to each object.
In the following we present the experimental setup and the regression results.

5.1 Data acquisition setup

Data were collected using two Watec WAT-202D colour cameras for the images
and a Immersion CyberGlove with 22-sensors for the hand posture. An Ascension
Flock-Of-Birds magnetic tracker mounted on the subject’s wrist, and an addi-
tional standard force sensing resistor glued to the subject’s thumb were used
to determine the hand position and speed, and the instant of contact with the
object.

Fig. 3. Top row: the objects used in our experiments. Bottom, the grasp types we
consider: (left to right) cylindric power grasp, flat grasp, pinch grip, spherical and
tripodal grip.
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The cameras return two video sequences, one placed laterally with focus on
the object (the spectator) and one placed in front of the subject (observing the
actor). We process only the spectator video sequence, because it supplies all
the information required for preliminary testing. The video sequence is acquired
at 25Hz by each camera, while the glove is sampled at 100Hz. Since the three
devices are independent of one another a system of common time-stamps was
used in order to synchronise the data.
The CyberGlove returns 22 8-bit numbers linearly related to the angles of the
subject’s hand joints. The resolution of the sensors is on average about 0.5
degrees. The sensors describe the position of the three phalanxes of each finger
(for the thumb, rotation and two phalanxes), the four finger-to-finger abductions,
the palm arch, the wrist pitch and the wrist yaw.
For these preliminary experiments we considered 7 objects and 5 grasping types
identified by different hand postures (see Fig. 3); 2 subjects have joined the
experiment: for each object, the actor was asked to perform the required grasping
action 20 times.

5.2 Proof of concept experiments

Among the motor data, it is reasonable to consider only the 22 measures of hand
joints as the most relevant for accurately describing the intrinsic properties of
each grasping type. When a grasp occurs the pressure on the force sensing re-
sistor increases, causing the signal to vary hence fixing the time-stamp of the
event. Concurrently the values on each hand joint are stored as our output data.
By synchronising motor data and video sequence we select as input data the
frames showing an object without clutter, going back along the sequence from
the time-stamp in which the event occurs for a fixed amount of frames (see Fig.
2, left). Our data are thus generated as pairs of image descriptors and sensor-
motor values, respectively input and output used to feed the regression model.
The regression methods discussed in Sec.4 are implemented in order to predict
the expected sensor values of a grasp given the image of an object to be grasped.
We compare four different image representations, based on bag-of-words descrip-
tors where the histograms are computed for 20 and 50 words vocabularies on
the entire image or on its four quadrants and then concatenated. We call the
representations W20, W20conc, W50 and W50conc.
We consider two settings to evaluate the prediction performance of the proposed
algorithms. In the first setting (V1-V2) we build training and test sets with the
first and second volunteer’s data respectively (140 examples each). In the second
setting (MIXED) we mix the data of both volunteers and perform a 5 fold cross
validation (5-CV). For both settings 5-CV on the training data only is used to
select the regularizing paramenter for the RLS method and the stopping iter-
ation for the Landweber [18, 8] and ν-method [8]. The optimal regularization
parameter is chosen among 25 values ranging from 10−6 to 10−2, according to a
geometric series. The maximum number of iterations for the iterative methods
is set to 800. Tab.1 summarizes the prediction errors evaluated according to the
square loss on all 22 components. The prediction errors are consistent among the
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three learning methods, homogenous with respect to the setting and there are no
significant differences among the four representations. The values for the second
setting are markedly lower because mixing the data of both volunteers reduces
the variance between training and test sets in each split of the 5-CV. Therefore if
we aim at building a model generalizing on several people, it is crucial to collect
data from a large variety of volunteers.
Finally, we aim at classifying the grasp type given the estimated sensor val-

Setting Representation
RLS Land ν-method

err [103] err [103] iterations err [103] iterations

V1-V2

W20conc 48 47 630 47 60
W20 37 38 580 38 60

W50conc 41 40 340 40 30
W50 43 43 540 43 40

MIXED

W20conc 6.1(1.1) 6.4(1.2) 670 6.4(1.2) 80
W20 7.9(1.3) 8.0(1.2) 630 8.0(1.3) 70

W50conc 6.1(0.8) 6.1(0.9) 630 6.3(0.7) 70
W50 7.4(2.0) 7.2(2.0) 620 7.3(2.0) 60

Table 1. Data analysis results. We considered two different settings, which differ on
the data splitting between training and test sets. Four distinct visual data representa-
tions are compared by feeding three learning methods, namely regularized least square
(RLS), Landweber (Land) and ν-method (see text for details). For each method we re-
port the prediction accuracies expressed as mean square error and the average number
of iterations for the iterative methods. In the MIXED setting the associated variance
is reported as well. Results are consistent among the different learning techniques.

ues. We restrict at the MIXED setting, using the best regression outcome case,
W50conc/RLS. The input data are the sensor measures and the output data
are the grasp classes. Again, a 5-CV is performed. For each split the training
set is the actual set of measures from the sensors paired with the corresponding
grasp type, while the test set is the set of estimated measures. We train a RLS
classifier [20] in a One-vs-All configuration obtaining a prediction accuracy of
99.6 (0.8)%. This result indicates that the regression models perform well and
guaranteeing the validity of the idea underlying the framework.

6 Discussion and future work

In this paper we proposed a general architecture for learning multi-modal pat-
terns of data. The underlying assumption is that the system we want to model
has several perceptual channels available, but among them some might be inac-
tive. We adopted a regression-based approach to build a behavioral model of the
system that can be exploited to amend such inactivity. As a validation attempt,
we presented an application for grasp prediction by means of vector valued re-
gression: the experimental phase produced very promising results that encourage



Title Suppressed Due to Excessive Length 9

us to further investigate this framework. Even though the regression problem is
inherently vector-valued, we restricted our analysis to the simple scalar-valued
case. A preliminary analysis on the covariance matrix of the sensors measures
shows some correlation among the sensors, both positive and negative, point-
ing at the usefulness of a full-fledged vector-valued approach. Recently, much
work has been devoted on how to best exploit the similarity among the compo-
nents and learn all of them simultaneously. The main idea behind most of the
literature is to use prior knowledge on the components relatedness to design a
particular penalization term or a proper matrix-valued kernel [19]. In absence of
prior knowledge, one approach is to design an heuristic to evaluate the similarity
among the components from the available data, e.g. by computing the sample
covariance of the sensor measures. Our current research is focused on how to
translate this information into a viable matrix-valued kernel. Alternatively one
can learn the vector structure directly in the training phase [21, 22].

This multifaceted framework can be further extended in different directions.
Regarding the experimental setup, we plan to enrich the dataset with a higher
number of subjects, and multiple grasps for each object. Indeed, this will let us
relax the one-to-one assumption we adopted in this paper and investigate a more
realistic many-to-many mapping between objects and grasp classes. As antici-
pated in the introduction, the modeled mapping will be used in the context of
multimodal learning to investigate whether, by reconstructing a missing modal-
ity, the object recognition rate improves. From the statistical learning viewpoint,
we plan to explore new solutions drawing inspiration from the mentioned works
on multitask learning.
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