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1 Introduction

The possibility to act upon the surrounding environment without using our
human nervous system’s efferent pathways enables a new interaction modality
that can boost and speed up the human sensor-effector loop. In recent years,
brain-computer interface (BCI) research is exploring many applications in
different fields: communication, environmental control, robotics and mobility,
and neuroprosthetics [1] [2] [3] [4] [5] [6] [7]. Our work in the MAIA project® is
focused on developing asynchronous and non-invasive BCI to control robots
and wheelchairs [7] [8]. It means that the users control such devices spon-
taneously and at their own paced, by learning to voluntary control specific
electroencephalogram (EEG) features measured from the scalp. To this end,
the users learn how to voluntary modulate different oscillatory rhythms by
execution of different mental tasks (motor and cognitive). To facilitate this
learning process, machine learning techniques are utilized, both to find those
subject-specific EEG features that maximize the separability between the pat-
terns generated by executing the mental tasks [9], and to train classifiers that
minimize the classification error rates of these subject-specific patterns [7].
Finally, to assist the control task, different levels of intelligence are imple-
mented in the device jointly with shared control techniques between the two
interacting agents, the BCI system and the intelligent device [10] [11].

One of the main challenges of a non-invasive BCI based on spontaneous
brain activity is the non-stationary nature of the EEG signals. Shenoy and
co-workers [12] describe two sources of non-stationarity, namely differences
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between samples extracted from calibration measurements (training data set)
and samples extracted during the online operation of the BCI system (test
data set), and changes in the user’s brain processes during the online operation
(e.g., due to fatigue, change of task involvement, etc). Such kind of phenom-
ena have motivated that BCI research groups develop adaptive algorithms to
deal with these shifts in the distributions of samples [12] [13] [14]. Unfortu-
nately, current adaptive solutions have two main limitations. Firstly, they are
based on supervised approaches requiring the correct output for every sample
and so the user cannot operate the BCI autonomously. Secondly, adaptation
in the wrong moment (e.g., moments when the user is not executing prop-
erly the mental tasks because fatigue, distraction, etc) will incorrectly change
the feedback (the device’s behavior) and will disrupt user’s learning process.
Given this scenario, two questions arise. Is it possible to find (rather) stable
subject-specific EEG features? How shared control techniques can minimize
the impact of EEG non-stationarity?

In this paper we describe the first asynchronous brain-actuated wheelchair
that can be operated autonomously and report results obtained by two sub-
jects while driving a simulated version of the wheelchair. Our EEG-based
BCI exhibits two key components, namely the selection of stable user-specific
EEG features that maximize the separability between the different mental
tasks, and the implementation of a shared control system [10] [11] between
the BCI and the intelligent simulated wheelchair.

The paper is structured as follows. Sect. 2 describes the complete system
and the experimental setup. Sect. 3 reports the results focusing on the system
robustness over time and context (physical environment). Finally, Sect. 4 gives
some conclusions and discusses future work.

2 Experimental Setup

The system is integrated by two entities, the intelligent wheelchair and the
BCI system. Environmental information from the wheelchair’s sensors feeds a
contextual filter that builds a probability distribution Pg,,(C) over the pos-
sible user’s mental steering commands, C' = {Left, Right, Forward}. The BCI
system estimates the probabilities Prrg(C) of the different mental commands
from the EEG data. Both streams of information are combined to produce a
filtered estimate of the user’s intent P(C) = Prrc(C) - Ppny(C). The shared
control system also uses the environmental information from the wheelchair’s
sensors to map these high-level commands into appropriate motor commands,
translational and rotational velocities, that steer the wheelchair towards the
desired direction while avoiding obstacles. Fig. 1 depicts a schematic repre-
sentation of the shared control architecture of the brain-actuated wheelchair.
See [11] for a detailed description. The BCI has two components, namely a
feature extractor and a Gaussian classifier. The former selects the most rele-
vant features of the EEG signals based on canonical variates analysis (CVA)
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Fig. 1. Architecture of the brain-actuated wheelchair
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Fig. 2. Left: monitor display in a first person view from the Start. The white cursor
at the center is the fixation point. The rectangle at the bottom is the simulated
wheelchair. Right: top view of the simulated world and the pre-specified path.

[9]. Based on these features, the Gaussian classifier estimates the probability
distributions of the three mental commands [7].

2.1 Task

The subjects were sitting in a chair looking at a fixation point placed at the
center of a monitor. The monitor displayed a simulated wheelchair in a first
person view placed in a simulated world. The subjects were asked to mentally
drive the simulated wheelchair from a starting point to a goal following a pre-
specified path by executing three different mental tasks (left hand imagination
movement to turn Left, rest to go Forward, and words association to go Right).
Fig. 2 depicts the monitor display and the pre-specified path. Every subject
participated in 5 experimental sessions, each consisting of 10 trials. The time
elapsed between two consecutive experimental sessions was variable: 1 day
between sessions 1 and 2, 2 months between sessions 2 and 3, 1 hour between
sessions 3 and 4, and finally 1 day between sessions 4 and 5.
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2.2 EEG Data Acquisition and Preprocessing

Data were recorded from the 2 subjects with a portable Biosemi acquisi-
tion system using 64 channels sampled at 512Hz and high-pass filtered at
1Hz. Then, the signal was spatially filtered using a common average refer-
ence (CAR) before estimating the power spectral density (PSD) in the band
8-48 Hz with 2 Hz resolution over the last 1 second. The PSD was estimated
every 62.5 ms (i.e., 16 times per second) using the Welch method with 5
overlapped (25%) Hanning windows of 500 ms. Thus, an EEG sample is a
1344-dimensional vector (64 channels times 21 frequency components).

2.3 Calibration Sessions and Feature Selection

To extract stable discriminant EEG features and build the classifier, both
subjects participated in 20 calibration sessions recorded in the same day than
the test driving session 1. The calibration sessions were recorded during the
morning and the test driving session 1 during the afternoon. As in the driv-
ing sessions, the subjects were sitting in a chair looking at a fixation point
placed at the center of a monitor. The display was also the same, the sim-
ulated wheelchair in a first person view (see Fig. 2 Left). The subjects were
instructed to execute the three mental tasks (left hand imagination move-
ment, rest, and words association) in a self-paced way. The mental task to be
executed was selected by the operator in order to counterbalance the order,
while the subjects decided when they started to execute the mental task. Each
calibration session was integrated by 6 trials each, 2 trials of each class. The
duration of each trial was 7 seconds but only the last 6 seconds were utilized
in the analysis to avoid preparation periods. In these sessions the subjects did
not receive any feedback, so the monitor display was static.

The data from the 20 calibration sessions were grouped in 4 blocks (B1,
B2, B3 and B4) of 5 consecutive sessions. Taking into account the record-
ings timing, there were different configurations of training and testing sets
(train-test): B1-B2, B1-B3, B1-B4, B2-B3, B2-B4, B3-B4, (B1+B2)-B3,
(B14B2+B3)-B4. Feature selection was done in a sequential way, where we
first picked stable frequency components and then chose the best electrodes.
To assess the stability of the frequency components we applied 21 canonical
variates analysis (CVA), one per frequency component, on the training set of
each configuration. For each canonical space we ranked the electrodes accord-
ing to their contribution to (correlation with) this space [9]. Then, we built
up to 24 linear discriminant classifiers, each using those electrodes that con-
tributed more than ¢%, with ¢ € {0.1,0.2,...,0.9,1.0,2.0, ..., 15.0}. We used
the stability of the classifier accuracy over the different configurations to se-
lect the frequency components. Afterwards, for each selected frequency, we
took the configuration of electrodes (out of the 24 possible ones), that yielded
the highest classification accuracy on the configuration (B1+B2+B3)-B4. Fi-
nally, we tested the different combinations of selected frequencies (with their
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associated electrodes) on the configuration (B1+B2+B3)-B4 and chose the
best one. At the end of this sequential process the selected frequencies were 12
Hz for subject 1 and {10,12,14} Hz for subject 2. We then built the statisti-
cal Gaussian classifier for each subject using their individual selected features
from all the data of the calibration sessions.

2.4 Analysis

The system’s robustness was assessed on three criteria, namely the percentage
of goals reached, the BCI classification accuracy, and the shared control (the
actual mental commands sent to the wheelchair after combining the proba-
bility distributions from the BCI and contextual filter) accuracy. The three
criteria were analyzed over time (5 sessions) and context. For the contextual
analysis, the path was split in 7 stretches. Thus, the system’s performance was
measured over the final goal (complete path) and subgoals (path stretches).

The analysis of the accuracies of the BCI and shared control has a main
limitation since it requires to know the subject’s intent. It is true, however,
that in the experiments subjects had to inform the operator whenever they
switched mental task so that the latter could label the data. Unfortunately,
this approach is far from optimal. Indeed, providing this information inter-
feres with, and so hampers, the driving task. As a consequence, the subject
may deliver wrong or delayed mental commands leading to poor trajecto-
ries that the subject needs to correct by rapidly switching between mental
commands—and the subject does not have time to inform the operator of
all those switches and their exact timing. It follows that using the subject’s
stated intent for labelling data yields a pessimistic estimate of the accuracies
of the BCI and the shared control. For this reason data was labelled in a
different way. Each path stretch was labelled with the command that makes
the wheelchair reach the next subgoal and, at the same time, we took into
consideration the subject’s stated intend. Only those samples where the sub-
ject’s stated intent corresponds to the stretch label were utilized to compute
the accuracies. Fig. 3 shows the 7 labelled stretches.

3 Results

This section is structured in two parts. The first part describes the system
performance in terms of percentage of reached goals, average BCI classification
accuracy and average shared control accuracy, over time and context. The
second part describes the system performance on chosen single trials that
show relevant emergent behaviors of the BCI system and the shared control
system originated by their interaction in particular contexts.
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Fig. 3. Top view of the world and the path stretches. Stretches F1 and F2 were
labelled as Forward, R1 and R2 labelled as Right, L labelled as Left, and SD1 and
SD2 labelled as strategy dependent. The subjects can go through SD1 by means
of two strategies, either executing Forward or executing Right followed by Left.
Through SD2, subjects can execute either Forward or Left followed by Right

Reached Final Goals (%)

| : --Subject | -@-Subject 2
2 3 4 5
Sessions

Fig. 4. Percentage of reached final goals over sessions. The time elapsed between
sessions was: 1 day between sessions 1 and 2, 2 months between sessions 2 and 3, 1
hour between sessions 3 and 4, and 1 day between sessions 4 and 5

3.1 Global Performance

Fig. 4 depicts the percentage of final goals reached over the 5 sessions. Subject
1 reached more final goals in all the sessions. For both subjects, session 1 and
session 3 are the sessions with less reached final goals (40% and 10% in session
1, 50% and 40% in session 3). Note that between session 2 and session 3 passed
2 months, so sessions 1 and 3 can be considered as sessions where the subjects
learn (or re-learn, session 3) how to interact with the system and its dynamics.
If these sessions were not considered, the average percentage of reached final
goals are 86.7% and 66.7% for subjects 1 and 2, respectively. Regarding the
maximum performances, subject 1 reached the final goal 100% of the trials in
session 4, and subject 2 reached the final goal 80% of the trials in session 2.
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Table 1. Percentage of local goals reached, average BCI classification accuracy and
average shared control accuracy over the 7 path stretches

Subject Criterion Session Path Stretch
F1 R1 SD1 L SD2 R2 F2

1 100 100 100 70 100 57 100
Local 2 100 100 100 90 100 100 100
Goals 3 100 100 100 50 100 100 100
Reached (%) 4 100 100 100 100 100 100 100
5 100 90 100 89 100 88 100
1
1 18/45 73/62 20/40 62/50 18/33 53/47 23/67
BCI / 2 22/52 73/70 26/53 57/55 20/58 68,67 19/58
Shared Control 3 34/62 70/59 22/46 42/37 15/78 69/63 29/85
Accuracy (%) 4 28/55 70/63 22/66 54/51 16/57 69/64 25,68
5  33/62 56/51 29/62 53/52 29/63 56,/47 30/75
1 100 10 100 100 100 100 100
Local 2 100 100 100 90 100 89 100
Goals 3 100 100 100 40 100 100 100
Reached (%) 4 100 80 100 8% 100 100 100
5 100 100 100 50 100 100 100
2
1 40/61 29/29 17/42 89/89 25/83 61/68 36/50
BCI / 2 33/41 71/68 40/62 57/59 26/48 66/65 35/61
Shared Control 3 40/55 77/75 40/57 38/37 26/56 73/67 48/70
Accuracy (%) 4 38/46 62/63 46/62 49/53 38/48 77/77 35/61
5 31/42 65/63 27/43 48/39 27/43 77/74 24/54

Table 1 displays the percentage of reached local goals, the average BCI
classification accuracy and the shared control accuracy on each session over
the 7 path stretches (local goals) for the two subjects. This table makes it clear
the reasons why subjects couldn’t reach the final goal—they failed sometimes
to turn Left at the stretch L and/or to turn Right at the stretches R1 and
R2. Interestingly, in these three stretches shared control performed generally
worse than the BCI, what could indicate that subjects tried to deliver mental
commands that the shared control system considers impossible to execute. On
the contrary, shared control significantly improved the performance of BCI on
the stretches F1, SD1, SD2 and F2, where the wheelchair was supposed to go
straight. The average difference over these stretches is 35% for subject 1 (24%
BCI vs. 59% shared control) and 21% for subject 2 (34% BCI vs. 55% shared
control). These ‘poor’ accuracies of the BCI and shared control indicate that
to drive the wheelchair straight subjects cannot simply deliver the mental
command Forward, but needed to steer Left and Right. Furthermore, shared
control helped to generate smoother trajectories.

Subject 1 failed to reach the final goal in session 1 because he couldn’t
turn Left in stretch L in 30% of the cases and, afterwards, he failed to turn
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Right in 40% of the cases that he successfully arrived to stretch R2. In this
session, subject 1 always performed correctly the optimal action for all other
stretches he went through. As mentioned before, in these ‘hard’ stretches, L
and R2, shared control degraded the BCI performance (50% vs. 62% in L and
47% vs. 53% in R2). Regarding session 3, subject 1 failed to reach the final
goal because he couldn’t turn Left in stretch L 50% of the cases. This was
due to a low BCI accuracy (42%) and a lower shared control accuracy (37%).
Finally, in sessions 2, 4 and 5 subject 1 reached the final goal 70% (or more)
of the trials and each local goal over 88%.

Subject 2 failed to reach the final goal in session 1 because he couldn’t
turn Right in stretch R1 90% of the cases. This was due to a very low BCI
and shared control accuracy (29%). In sessions 3 and 5, the poor final perfor-
mance was due to failures in turning Left in stretch L—accuracies of 50% and
40%, respectively. As for subject 1, also in these two sessions shared control
degraded the BCI performance although less severely (38% vs. 37% in session
3, 48% vs. 39% in session 5). Finally, in sessions 2 and 4 subject 2 reached
the final goal 70% (or more) of the trials and each local goal over 80%.

3.2 System Performance in Single Trials

In this section we analyze the performance of the brain-actuated wheelchair
in a few single trials to show emergent behaviors originated by the interac-
tion of the BCI system and the shared control system in particular contexts.
Experimental results show that subjects cannot execute a given mental task
with the same level of proficiency all across the trajectories and over time.
But, is this the only reason of the inter-trial differences in BCI classification
accuracy for the same path stretch? We have observed that the interaction of
the BCI system and the shared control system in a particular context plays
also a significant role. We have already mentioned in the previous section that,
for some stretches, shared control degraded the performance of the BCI, what
could indicate that subjects tried to deliver mental commands that the shared
control system considers impossible to execute. Here we take a closer look at
this situation.

Table 2 shows the performance for subject 1 in session 4 for trails 2 and
8 in two stretches, R1 and R2, that requires the same command. In all cases
subject 1 succeeded in making the wheelchair turn Right. However, the BCI
and shared control performances were rather different. Thus, we can see that
whenever the BCI accuracy is sufficiently high (92% in trial 2 stretch R1, 74%
in trial 8 stretch R2) the shared control accuracy is much lower (67% and 53%,
respectively). The opposite happens when the BCI accuracy is not that good
(trial 2 stretch R2 and trial 8 stretch R1). The implication for the subjects is
that they need to learn a model of the shared control system (and its inter-
action with the BCI) to develop successful driving strategies, otherwise their
BCI proficiency cannot be fully exploited and, eventually, can hamper the be-
havior of the wheelchair. But for the subjects to learn that model they need
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to have a stable performance of the brain-actuated wheelchair. Table 2 shows
that, in many cases, the shared control accuracy is rather stable independently
of the performance of the BCI (see, in particular, trial 2).

Table 2. Inter-trial differences in performance: subject 1, session 4

Trial Stretch BCI Acc. Shared control Acc. Wheelchair Behavior

2 R1 92% 67% Right
R2 48% 68% Right
8 R1 65% 76% Right
R2 74% 53% Right

4 Conclusions and Future Directions

In this paper we have presented the first asynchronous and non-invasive EEG-
based BCI prototype for brain-actuated wheelchair driving. The system can be
autonomously operated by the user without the need for adaptive algorithms
externally tuned by a human operator to minimize the impact of EEG non-
stationarities. Our brain-actuated wheelchair has two key components. First,
the selection of stable user-specific EEG features that maximize the sepa-
rability between the patterns generated by executing different mental tasks.
Second, the inclusion of a shared control system between the BCI system
and the intelligent simulated wheelchair. The reported experiments with two
subjects have shown that both were able to reach 90% (subject 1) and 80%
(subject 2) of the goals one day after the calibration of the BCI system, and
100% (subject 1) and 70% (subject 2) two months later. It is worth noting
that both subjects reached less goals in the first session, one hour after the
calibration of the BCI system, and in the third, first session after two months
of the calibration of the BCI system, sessions where the subjects learn or
re-learn how to interact with the system and its dynamics.

In agreement with the results obtained in [11], the analysis over differ-
ent path stretches has shown that the shared control system boosts the BCI
performance when it is low, while it may even degrade it when the BCI per-
formance is higher because the user driving strategy it is not compatible with
the context-based filter. As a consequence, the subject has to learn when these
situations occur in order to develop successful driving strategies compatible
with rules of the shared control system. On the other hand, a low BCI accu-
racy does not necessarily imply that the BCI is not working correctly. This
accuracy is estimated according to the user’s stated intent and/or the optimal
command for each stretch, while for a proper control of the wheelchair sub-
jects need to make steering corrections and so switch rapidly between mental
commands. For this reason we believe that the assessment of an intelligent
brain-actuated device cannot simply be based on the BCI performance.
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Finally, the negative effect that a fixed shared control system may have
in the BCI performance illustrates the need for further research in adaptive
schemes where the level of assistance provided by the shared control system
is flexible and compensates the mental capabilities of the subject: it will help
significantly when the subject’s performance (BCI accuracy) is low whereas
it will decrease its role when the BCI accuracy is very high.
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