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Abstract— Vision-based place recognition is a desirable fea-
ture for an autonomous mobile system. In order to work
in realistic scenarios, visual recognition algorithms should be
adaptive, i.e. should be able to learn from experience and
adapt continuously to changes in the environment. This paper
presents a discriminative incremental learning approach to
place recognition. We use a recently introduced version of
the incremental SVM, which allows to control the memory
requirements as the system updates its internal representation.
At the same time, it preserves the recognition performance of
the batch algorithm. In order to assess the method, we acquired
a database capturing the intrinsic variability of places over time.
Extensive experiments show the power and the potential of the
approach.

I. INTRODUCTION

A fundamental requirement for an autonomous mobile

system is the ability to localize itself within a known environ-

ment. Vision based systems have gained popularity recently,

and several methods have been proposed using vision alone

[1], [2], [3], [4], or combined with more traditional range

sensors, like laser and sonars [5], [6]. We see two main

reasons behind this trend: (1) vision potentially offers more

portable and cost effective solutions, as new mass markets for

camera technology results in significantly reduced prices and

increased performance; (2) vision can provide information

unavailable to other sensors: for instance, it can provide se-

mantic information on a scene through the understanding of

its visual appearance. This would open various opportunities

in terms of flexibility and use of contextual information.

Current research on vision-based localization systems

faces several issues, of which robustness and adaptability

are probably the most challenging. The system should be

robust to many types of variations such as changes in

illumination conditions, people moving around, or objects

being used and moved. Moreover, the visual appearance of

indoor environments changes continuously over time. This

poses serious problems for recognition algorithms trained

off-line on data acquired once and for all during a fixed time

span. At the same time, when used on a robot, the system
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must run in real-time on hardware with limited processing

and memory resources.

In our previous work [4], we presented a purely

appearance-based model using Support Vector Machine

(SVM) able to cope with illumination and pose changes, and

we showed experimentally that it could achieve satisfactory

performances when considering short time intervals between

the training and testing data acquisition. Nevertheless, a

room’s appearance is doomed to change dramatically over

time because it is used: chairs are pushed around, objects are

taken in/out of drawers, furniture and paintings are added, or

changed, or re-arranged; and so forth. As it is not possible

to predict a priori how a room is going to change, it is not

possible to acquire beforehand training data representative

of all its possible visual variations. Thus, the only possible

strategy is to update the representation over time, learning

incrementally from the new data recorded during use.

In this paper, we focus on the ability of the recognition

algorithm to adapt to the changes over long periods (several

months) of time. We argue that adaptation should be per-

formed incrementally, and the internal representation should

be updated (rather then rebuilt from scratch) without the need

to keep all the previously acquired training data in memory;

we call this property controlled memory growth. Moreover,

the updating process should gradually forget unnecessary

information and keep the model compact, fast, and free from

redundancy; we call this property forgetting capability. To

achieve these goals we applied several SVM incremental

learning algorithms [7], [8], [9] to the domain of visual place

recognition, and we evaluated their performance in terms of

accuracy, memory growth, forgetting capability and speed.

In order to test their effectiveness on the place recognition

scenario, we extended the database used in our previous

experiments [4] with new data acquired 6 months later, using

the same two mobile robot platforms. Extensive experiments

clearly show the power of our approach, while illustrating the

need for incremental solutions in real–time mobile robotics.

The rest of the paper is organized as follows: after a review

of related work (Section II), Section III presents our approach

to incremental place recognition as well as our algorithms of

choice. Section IV describes the scenario and database used

during the experimental evaluation, the results of which are

reported in Section V. The paper concludes with a summary

discussion and possible directions for future work.



II. RELATED WORKS IN PLACE RECOGNITION

Incremental learning approaches have so far mostly been

used for constructing a geometrical map, or the environment

representation, online. Brunskill et al. [10] proposed a model

using incremental PCA for simultaneous localization and

mapping (SLAM). A similar approach was used in the only

work we are aware of that uses an incremental method

in the context of place recognition. In [11] incremental

PCA was used to update low-dimensional representations

of images taken by a mobile robot as it moved around in

an environment. They also tested repetitive learning of their

model with the same training images several times. Note that

their work was not addressing the problem of environmental

variations and of its complexity in real-world data.

III. INCREMENTAL LEARNING FOR VISUAL

PLACE RECOGNITION

This section describes our approach to incremental place

recognition and the corresponding algorithm. We adopt the

appearance-based paradigm, and we assume that a realistic

scene can be represented by a global descriptor without

any loss of discriminative information. The method is fully

supervised and it assumes that, at each incremental step,

every room is represented by a collection of images which

captures its visual appearance under different viewpoints, at

a fixed time and illumination setting. The system updates

incrementally its decision function: after having acquired

a fixed, pre-defined number of images for each room, the

algorithm triggers the incremental learning function and

integrates potential new information in the existing internal

representation. This leads to a visual place recognition sys-

tem able to adapt over time to the natural changes of a real-

world setting. During testing, the algorithm is presented with

images of the same rooms, acquired under similar viewpoints

but possibly under different illumination conditions and after

some time (with a time range going from some minutes

to several months). The goal is to recognize correctly each

single image seen by the system.

The rest of this section describes the basic principles

of Support Vector Machines (Section III-A), two popular

incremental versions of the basic algorithm (Section III-B)

and our modified, memory-controlled version of incremental

SVMs (Section III-C). A comprehensive description of the

experimental setup is given in Section IV.

A. Support Vector Machines

Support Vector Machines ([12], [13]) belong to the class of

large margin classifiers. Consider the problem of separating

the set of training data (x1, y1), (x2, y2), . . . (xm, ym) into

two classes, where xi ∈ <N is a feature vector and yi ∈
{−1,+1} its class label (for the multi-class extensions, we

refer the reader to [12], [13]). If we assume that the two

classes can be linearly separated in some Hilbert space

H, the optimal hyperplane is the one which has maximum

distance to the closest points in the training set, resulting in

a classification function

f(x) = sgn

(
m∑

i=1

αiyiK(xi,x) + b

)
, (1)

where αi and b are found by using an SVC learning

algorithm [12], [13]. Most of the αi’s take the value of

zero; xi with nonzero αi are the “support vectors” (SVs).

The mapping to the space H is done using the kernel

function K(xi,x). In this paper we use the χ2 kernel [14]

K(x,y) = exp{−γχ2(x,y)}, which has shown to give

good performances for histogram-like features [4] for place

recognition.

B. SVM: an Incremental Extension

Among all incremental SVM extensions proposed in the

machine learning literature so far [7], [8], [15], approximate

methods seem to be the most suitable for visual recognition:

firstly - as opposed to exact methods like [15] - they discard

a significant amount of the training data at each incremental

step. Secondly, they are expected to achieve performances

not too far from those obtained by an SVM trained on

the complete data set (batch algorithm), because at each

incremental step the algorithm remembers the essential class

boundary information regarding the data seen so far (in form

of support vectors). This information contributes properly to

generate the classifier at the next iteration.

Once a new batch of data is loaded into memory, there are

different possibilities for the updating of the current model,

which might discard a part of the new data according to some

fixed criteria [8], [7]. In this paper we used two methods, the

fixed-partition [7] and the error-driven technique [8].

Fixed-partition technique In this method the training data

set is partitioned in batches of fixed size k:

T = {(x1, y1), . . . , (xm, ym)} = {T 1,T 2, . . .T n},

with T i = {(xi
j , y

i
j)}

k
j=1. At the first step, the model is

trained on the first batch of data T 1, obtaining a classification

function

f1(x) = sgn

(
m1∑

i=1

α1
i y

1
i K(x1

i ,x) + b1

)
.

At the second step, a new batch of data is loaded into

memory; then, the new training set becomes

T inc
2 = {T 2 ∪ SV 1}, SV 1 = {(x1

i , y
1
i )}m1

i=1
,

where SV 1 are the support vectors learned at the first step.

The new classification function will be:

f2(x) = sgn

(
m2∑

i=1

α2
i y

2
i K(x2

i ,x) + b2

)
.

Thus, as new batches of data points are loaded into memory,

the existing support vector model is updated, so to generate

the classifier at that incremental step.

Error-driven technique As opposed to the method de-

scribed above, the error-driven technique makes a filtering

on the new data at each incremental step: given the model



SV Mt at the step t, the new data are loaded into memory

and classified using SV Mt. If the data is misclassified it

is kept, otherwise it is discarded. The support vectors of

SV Mt, together with the misclassified points, are used as

training data to obtain the new model SV Mt+1.

A common problem to both these approaches, and in

general to all incremental extensions of SVM, is that in

principle there is no limitation to the memory growth. Indeed,

several experimental evaluations show that, while approxi-

mate methods generally achieve classification performances

equivalent to those of batch SVM, the number of SVs tends

to grow proportionally to the number of incremental steps

[9]. This is of course a serious issue for a method designed

to work on a robotic platform.

C. Memory-Controlled Incremental SVM

In [9] we proposed a modification of the fixed-partition

algorithm which leads to a controlled growth of the memory

requirements for incremental SVM. Experiments on collec-

tions of images showed promising results. Here we propose

to use this method on image sequences, to obtain an adaptive

model. The core idea of our memory-controlled algorithm

is that the set of support vectors X = {xi}
m
i=1 in Eq. (1)

is not guaranteed to be linearly independent. Based on this

observation, it is possible to reduce the number of support

vectors of a trained classifier, eliminating those which can

be expressed as a linear combination of the others in the

feature space. By updating the weights accordingly, it is

ensured that the decision function is exactly the same as

the original one [16]. More specifically, let us suppose that

the first r support vectors are linearly independent, and the

remaining m − r depend linearly on those in the feature

space: ∀j = r + 1, . . . m, xj ∈ span{xi}
r
i=1. Then it holds

K(x,xj) =

r∑

i=1

cijK(x,xi). (2)

By substituting Eq. (2) into Eq. (1) and re-defining the

weights (we refer the readers to [16], [9] for the detailed

derivation), we get:

f(x) = sgn

(
r∑

i=1

α̂iyiK(x,xi) + b

)
(3)

with

α̂i = αi



1 +

m∑

j=r+1

αjyjcij

αiyi



 . (4)

Thus, the resulting classification function (Eq. (3)) requires

now m−r less kernel evaluations than the original one. Note

that the number r of linearly independent vectors depends on

the definition of linear independence given by the reduction

algorithm, which ultimately is controlled by a threshold

value τ [9]. Thus, this parameter can be effectively used

to trade performance for memory requirements and speed

during classification, depending on the task at hand.

By combining this algorithm with the approximate tech-

niques, it is possible to obtain an incremental SVM with a

mechanism which reduces the memory growth in a principled

way. We apply the reduction scheme at each incremental

step; thus, the new representation of the data is built from the

remaining support vectors. Experiments, reported in Section

V, show that this technique is an effective solution for a

controlled growth of the memory requirements.

IV. EXPERIMENTAL SETUP

This section describes the setup used for the experiments

reported in this paper. We first introduce a new database

for visual place recognition from robotic platforms named

IDOL2 (Section IV-A), then we briefly describe the feature

representation used in the experiments. (Section IV-B).

A. The IDOL2 Database

The IDOL2 (Image Database for rObot Localization 2,

[17]) database contains 24 image sequences acquired by a

perspective camera, mounted on two mobile robot platforms

PeopleBot Minnie and PowerBot Dumbo (Fig. 1). The robots

were manually driven through an indoor laboratory envi-

ronment and the images were acquired at a rate of 5fps.

On Minnie the camera’s height was 98cm above the floor,

whereas on Dumbo it was 36cm. Each image sequence

consists of 800-1100 frames automatically labeled with one

of five different classes (printer area, corridor, kitchen, two

persons office, and one person office). The labeling is based

on the camera’s position given by laser-based localization

system. The acquisition procedure was designed to capture

the changes in illumination and varying weather conditions

(sunny, cloudy, and night). Also, special care was taken to

capture people’s activities, change of location for objects

and for furniture; for part of the environment (the two-

persons office room) we were able to record a quite dramatic

change in decoration, which happened over a long time span

(6 months). Fig. 2 shows some sample images from the

database, illustrating these variations.

(a) Minnie (b) Dumbo

Fig. 1. Robot platforms employed in the experiments.



Fig. 2. Sample images illustrating the variations captured in the IDOL2 database. Images in the top row show the variability introduced by changes in
illumination for two rooms (first six images) as well as people appearing in the environment. The middle row shows the influence of people’s everyday
activity (first four images) as well as larger variations which happened over a time span of 6 months. Finally, the bottom row illustrates the changes in
viewpoint observed for a series of images acquired one after another in 1.6 second.

The 24 image sequences are divided as follows: for each

robot platform and for each weather condition, we recorded

4 sequences. Of these four sequences, the first two were

acquired six months before the last two. This means that, for

every robot and for every illumination condition, we always

have two sequences acquired under similar conditions, and

two sequences acquired under very different conditions. This

makes the database useful for several types of experiments. It

is important to note that, even for the two sequences acquired

within a short time span, variations still exist from everyday

activities and viewpoint differences during acquisition. For

further details, we refer the reader to [17].

In order to test the various properties of interest of the

incremental algorithms, we needed a reasonable number of

incremental steps. Thus, we split every sequence into 5

subsequences, so that each subset contained one of the five

images acquired by the robot every second. Since during ac-

quisition the camera’s viewpoint changes, the subsequences

could be considered as recorded separately in a static envi-

ronment but for varying poses. In order to get a feeling of

the variations of the frame images in a sequence, bottom row

of Fig. 2 shows some sample images acquired within a time

span of 1.6 sec.

B. Image Feature Representation

The experiments were performed using composed recep-

tive field histograms (CRFH) [18] of high dimensionality as

global image features, which could capture the rich visual

appearance of indoor place. We tested a wide variety of

combinations of image descriptors, with several scale levels.

On the basis of the performance and computational cost, we

built the histograms from first order normalized Gaussian

derivative filters applied to the images at two different scales,

and we used χ2 as a kernel for SVM. Such combination

previously proved effective for the place recognition task [4].

Experiments were conducted also using local image features.

We used SIFT [19] as local descriptor and local kernels [20]

for SVM. The experimental findings are similar to those

reported here, and thus we omit them for space reason.

V. EXPERIMENTAL RESULTS

We conducted two series of experiments to evaluate the

effectiveness of our approach. In all the experiments, we

compared the three incremental techniques as well as the

batch algorithm. For all the experiments, we employed

our extended version of the libsvm [21] library, and we

determined the SVM and kernel parameters via cross val-

idation. For the memory-controlled incremental algorithm,

the threshold parameter was adjusted so to allow, at most, a

reduction in recognition rate of 1% of that obtained with the

fixed-partition method.

A. Examining properties of the incremental methods

In the first series of experiments, the system was trained

incrementally on three sequences acquired under similar

illumination conditions with the same robot platform; the

fourth sequence was used for testing. Training on each

sequence was performed in 5 steps, using one subsequence

at a time, resulting in 15 steps in total. We considered 36

different permutations of training and test sequences; here we

report average results with standard deviations. Fig. 3, top,

shows the recognition rates obtained at each step using the

three incremental algorithms (fixed-partition, error-driven,

and memory-controlled) as well as the batch method on

the whole training data. Fig. 3, bottom, reports the number

of support vectors stored in the model at each step of

the incremental procedure. We can observe that the fixed-

partition incremental algorithm requires less support vectors

than the batch one, while achieving an identical performance.

Also, both algorithms show plateaus in the classification rate

whenever the model is trained on similar data, coming from

consecutive subsequences. This behavior is not reflected in

the size of the model: for both techniques, the number

of support vectors grows continuously with the number

of training step. This would eventually lead to a memory

explosion, and it makes us conclude that the batch and the

fixed-partition incremental algorithms are not suitable for this

application.
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(b) Number of support vectors at each incremental step.

Fig. 3. Average results obtained for experiment performed on sequences
acquired under similar illumination conditions with the same robot platform
for three incremental methods and the batch algorithm.

The other two incremental extensions (memory-controlled

and error-driven) seem to be better suited for continuous

learning. We see that for these methods, both the clas-

sification rate and the number of stored support vectors

show plateaus every five incremental steps (Fig. 3, top and

bottom). The error-driven technique is the model with the

smallest memory growth and requirements; however, it also

delivers the worst recognition performance. At the same

time, the memory-controlled algorithm performs comparably

to the batch SVM, but requiring half as much memory.

Furthermore, the memory growth slows down over time (Fig.

3, bottom). Thus, experimental evidence seems to indicate

that the memory-controlled algorithm offers the best trade-

off between accuracy and controlled memory growth of all

the techniques examined.

In order to gain a better understanding of the methods’

behavior, we performed an additional analysis of the results.

Fig. 4e shows, for the three incremental techniques, the

average amounts of vectors (originating from each of the

three training sequences) that remained in the model after the

final incremental step. The figure illustrates how the methods

weigh instances, learned at different time, when constructing

the internal representation. We see that both fixed-partition

and memory-controlled algorithms privilege new data, as the

support vectors from the last training sequence are more

represented in the model. This phenomenon is stronger for

the memory-controlled algorithm, while it is not shown by

the error-driven method, which seems more conservative.

To get a feeling for how the forgetting capability works

in case of the memory-controlled method, we plotted the

positions where the support vectors were acquired. Fig. 4

reports results obtained for a model built after the final

incremental step. The positions were marked on three maps

presented in Fig. 4a,b,c so that each of the maps shows the

support vectors originating from only one training sequence.

As already shown in Fig. 4e, most of the vectors in the

model come from the last training sequence. Moreover, the

number of SVs from the previous training steps decreases

monotonically, thus the algorithm gradually forgets the old

knowledge. It is interesting to observe how the vectors from

each sequence distribute along the path of the robot. On

each map, the places crowded with SVs are mainly transition

areas between the rooms, regions of high variability, as

well as places at which the robot rotated (thus providing

a lot of different visual cues without changing position). To

illustrate the point, Fig. 4d shows sample images acquired

in the corridor, for which the support vectors decay quickly,

and one of the offices, for which they are being preserved

much longer. The results indicate that the forgetting is not

performed in a random way. On the contrary, the algorithm

tends to preserve those training vectors that are most crucial

for discriminative classification.

B. Real-world experiment

The next step was to test each of the incremental methods

in a real-world scenario. For this purpose, we considered

a case in which the algorithms had to incrementally gain

robustness to variations introduced by changing illumination

and natural activity, but also to use their adaptation abilities

to handle long-time environment changes. We first trained

the system on three sequences acquired at roughly similar

time but under different illumination conditions. Then, we

repeated the same training procedure on sequences acquired

6 months later. In order to increase the number of incremental

steps and differentiate the amount of new information intro-

duced by each set of data, each sequence was again divided

into five subsequences. In total, for each experiment we

performed 30 incremental steps. Since the IDOL2 database

consists of pairs of sequences acquired under roughly similar

conditions, each training sequence has a corresponding one

which could be used for testing.

The experiment was repeated 12 times for different or-

derings of training sequences. Fig. 5 reports the average

results together with standard deviations. Fig. 5a, compares

the amounts of SVs stored in the models at each incremental

step for all the methods. Fig. 5b,c,d report the classification



(a) 78 SVs from the first training sequence. (b) 111 SVs from the second training sequence.

(c) 149 SVs from the third training sequence.
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Fig. 4. Maps of the environment with plotted positions of the support vectors stored in the model obtained after the final incremental step for one of the
experiments conducted using the memory-controlled technique. The support vectors were divided into three maps (a, b, and c) according to the training
sequence they originate from. Additionally, each map shows the path of the robot during acquisition of the sequence (arrows indicate the direction of
driving). We observe that the SVs from the old training sequences were gradually eliminated by the algorithm and this effect was stronger in regions
with lower variability. Sample images captured in regions of different variability can be seen in Fig. 4d. Fig. 4e compares the average amounts of training
vectors coming from the three sequences that were stored in the final incremental model for all the three considered incremental techniques.
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(c) Performance of the memory-reduced method at each learning stage. (d) Performance of the error-driven method at each learning stage.

Fig. 5. Average results of the incremental experiments in a real-world scenario. Fig. 5a shows the number of support vectors stored in the model after
each incremental step for the three incremental techniques and the batch method. Fig. 5b,c,d present the classification rates obtained by testing the models
built after every fifth incremental step with all the available test sets. The training and test sets marked with the same indices were acquired under similar
conditions.

rate measured every fifth step (every time the system com-

pletes learning a whole sequence) for the three incremental

techniques. In order to emphasize the need for adaptation

as well as to visualize how the learning process affects

the performance on the past test data, the figures show

recognition rates for all testing sets used throughout the

experiment. By observing the rates for a classifier trained on

the first sequence only, we see that the system achieves best

performance on a test set acquired under similar conditions.

The classification rate is significantly lower for other test

sets especially for images acquired 6 months later, even

under similar illumination conditions. At the same time, the

performance greatly improves when incremental learning is

performed on new batches of data. For all methods, the

classification rate drops for the old test sets. Again, this

behavior is more visible for the memory-controlled method,

due to the fact that the SVs representing the old concept

are being gradually eliminated. However, this is an issue on

offline benchmarking tests and not in real world applications.

At the same time, the size of the model created with the

memory-controlled technique tends to stabilize (which is

not the case for other algorithms), and the method delivers

performance better than the error-driven and comparable with

the fixed-partition technique.

C. Discussion

The presented results provide clear evidence of the capa-

bility of the discriminative methods to perform incremental

learning for vision-based place recognition, and their adapt-

ability to variations in the environment. Table I summa-

rizes the performance obtained by each method in terms of

accuracy, speed, controlled memory growth and forgetting

capability. For each algorithm (i.e. for each row), we put

a cross corresponding to the property (i.e. the column) that

the algorithm has shown to possess in our experiments. The

fixed-partition method performs as well as batch SVM, but it



Accuracy Forgetting Memory Speed

Fixed-partition x x
Error-driven x x

Memory-controlled x x x x

TABLE I

COMPARING INCREMENTAL LEARNING TECHNIQUES FOR PLACE

RECOGNITION AND ROBOT LOCALIZATION APPLICATIONS.

is unable to control the memory growth and requires much

more memory space. We also found that the error-driven

method could get reasonable accuracy while minimizing the

memory requirement. However, none of the two methods

has shown to possess an effective forgetting capability (for

the fixed-partition method, the old SV decays slowly, but

the decay is neither predictable nor controllable). On the

contrary, they can be described as conservative, thus we

could expect that they would adapt slowly in highly dynamic

environments. As opposed to this, the memory-controlled

algorithm is able to achieve performances statistically equiva-

lent to those of batch SVM, while at the same time providing

a principled and effective way to control the memory growth.

Experiments showed that this has induced a forgetting capa-

bility which privileges newly acquired data to the expenses

of old one, while reaching a memory plateau whenever new

data are similar to those already processed. Furthermore,

since a lot of training images can be discarded during

the incremental process, the training time soon becomes

significantly lower than for the batch method, especially in

case of the memory-controlled and error-driven techniques.

As for SVM the recognition speed is directly proportional

to the number of SVs, the two techniques are again much

faster. For instance, in case of the second experiment, training

the classifier at the last step took 25.5s for the batch

algorithm and only 5.6s for the memory-controlled method

on a 2.6GHZ Pentium IV machine. And recognition time

was twice as fast for the memory-controlled algorithm than

for the batch one, where we manage to achieve a recognition

time less than 200ms per frame (bulk of this time is spent

on extracting the features from the image).

VI. SUMMARY AND CONCLUSION

We proposed a discriminative incremental learning ap-

proach to place recognition, using a version of incremental

SVM, which allows to control the memory growth as the

system keeps acquiring new data. Extensive experiments

show that our method achieves recognition performances

statistically equivalent to those of the batch algorithm,

while obtaining a dramatic memory reduction. Moreover, we

showed experimentally that (a) the method tends to forget

the oldest support vectors in favor of newest data when

updating the decision function, and (b) it reaches a plateau in

performance and memory whenever it is presented with data

sequences very similar to those already learned. This seems

to indicate that our algorithm can “recognize” if a new set

of data contains novel information or not. Regardless of the

algorithm complexity, updating the internal representation

at every incremental step is computationally expensive. We

plan in the future to translate this plateau behavior into

measurable quantities so as to to detect if a new set of

data contains enough new information, thus for automatically

switching on/off the incremental update. This would lead to

an algorithm that modifies its internal representation only in

presence of new information.
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