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Abstract. We address issues for improving hands-free speech recognition performance in the

presence of multiple simultaneous speakers using multiple distant microphones. In this paper,

a log spectral mapping is proposed to estimate the log mel-filterbank outputs of clean speech

from multiple noisy speech using neural networks. Both the mapping of the far-field speech and

combination of the enhanced speech and the estimated interfering speech are investigated. Our

neural network based feature enhancement method incorporates the noise information and can be

viewed as a non-linear log spectral subtraction. Experimental studies on MONC corpus showed

that MLP-based mapping techniques yields a improvement in the recognition accuracy for the

overlapping speech.
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1 Introduction

Recognition of speech in the presence of multiple simultaneous speakers - the so-called ‘cocktail party’
condition - remains a challenging problem. In such circumstances, headset microphones positioned
next to the speakers’ mouths have, to date, provided the best recognition performance, however they
have a number of disadvantages in terms of cost and ease of use. The alternative is to capture the
speech from one or more distant microphones located in the far field, however, such remote microphone
recordings generally result in significantly reduced ASR performance.

Recently a thrust of research has focused on techniques to efficiently integrate inputs from mul-
tiple distant microphones with the goal of improving ASR performance. The most fundamental and
important multi-channel method is the microphone array beamformer method, which consists of en-
hancing signals coming from a particular location by filtering combining the individual microphone
signals. The simplest technique is using the delay-and-sum beamformer, which compensates for delays
to microphone inputs so that the target signal from a particular direction synchronizes while noises
from different directions do not. Other more sophisticated beamforming methods, such as superdirec-
tive beamformer [1] and Generalized Sidelobe Canceller (GSC) [2], calculate the filter coefficients to
optimize a particular criterion. Although some reports, e.g. [3], has shown that such microphone ar-
ray techniques can provide improved ASR performance, they generally require a sensitive microphone
arrangement, a strict synchronization between channels, and a reliable means of speaker localization.
Other multi-channel methods based on blind source separation (BSS) [4] or independent component

analysis (ICA) [5] relies on certain assumptions like statistical independence or de-correlated compo-
nents, which cannot be guaranteed in most practical situations.

On the other hand, the motivation behind the microphone array and blind source separation tech-
niques is to enhance or separate the speech signals, and they are not designed directly in the context
of speech recognition. It is well known that the most widely used front-ends like MFCC in the state-
of-the-art speech recognition systems are extracted based on the log mel-filterbank (MFB) outputs
[6]. In this work, we will concentrate on multi-channel enhancement of the spectra of target speech for
improving the ASR performance in the presence of multiple simultaneous speakers. More specifically,
we propose to approximate the log spectral outputs of clean speech by a non-linear combination of
the log spectra obtained from multiple distant microphones. In theory, the approach does not re-
quire a sensitive microphone arrangement, a strict synchronization between channels, and a reliable
speaker-tracking system, and does not need any assumption concerning statistical independence or
de-correlated components, either. We also propose to estimate the log spectral outputs of clean speech
from those of the multi-channel enhanced speech and the interfering reference, which can be viewed as
a highly non-linear log spectral subtraction. The effectiveness of the proposed method is demonstrated
in the improvement of word recognition accuracies in different overlapping speech scenarios..

The organization of this paper is as follows: In Section 2, we describe briefly the neural net-
work based mapping approach. Section 3 describes the experimental setup. Section 4 provides the
experiments on the mapping of array speech to clean speech. Section 5 presents the experimental
studies of the mapping of the enhanced speech to clean speech. In Section 6, we summarize with main
conclusions.

2 Algorithms

The idea of the log spectral mapping is to approximate the log mel-filterbank (MFB) vector of clean
speech by the non-linear combination of several input speech. Fig. 1 shows the concept of the proposed
method. Let xi denote the feature vector for the ith distant microphone and xi,k(n) denote the kth
element for the frame n. Let s denote the feature vector obtained from the clean speech and sk(n)
denote the kth element for the frame n. Let ŝ denote the estimated feature vector obtained from the
feature vectors of five distant microphones. Each element of s is approximated independently.
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Figure 1: Concept of the log spectral mapping.

Let us introduce an input vector:

xk(n) = [x1,k(n), x2,k(n), · · · , xM,k(n)]T . (1)

For multi-layer perceptron (MLP) regression, the network with one hidden layer with P neurons is
used. The kth element of the feature vector is estimated by

ŝk(n) = f(xk(n))

=

P
∑

p=1

(

wp tanh
(

bp + w
T
xk(n)

))

+ b, (2)

where tanh(·) is the tangent hyperbolic activation function. Here w = [w1p, w2p, · · · , wMp]
T is the

weight vector attached to the pth neurons in the hidden layer. The parameters Θ = {wp,w, bp, b} are
found by minimizing the mean squared error:

E =

N
∑

n=1

[sk(n) − ŝk(n)]2, (3)

over the training examples. Here, N denotes the number of training examples (frames). The param-
eters can be updated using a gradient descent algorithm [7]:

Θ = Θ − η
∂E

∂Θ
, (4)

where η is the learning rate and is set as 0.001 experimentally.
Note that clean speech is required for finding the optimal parameters in the regression training,

while in the test phase the clean speech is no longer required. Multiple regression means that regression
is performed for each Mel-filter bank. The use of minimum mean squared error (MMSE) in the log
spectral domain is motivated by the fact that log spectral measure is more related to the subjective
quality of speech [8] and that some better results have been reported with log distortion measures
[9]1.

1In [9], Porter and Boll found that for speech recognition, minimizing the mean squared errors in the log |DFT | is
superior to using all other DFT functions and to spectral magnitude subtraction.



IDIAP–RR 07-55 3

output 
)(�nx

)(ny�input

∑∑∑ ∑∑

∑∑blocking
matrix

FIR 1

FIR 2

FIR M-1

)(�nu

)(nyref

)(nypri�w�w +

�τ�τ	τ


τ
τ)(�nx

)(nx�
)(
nu

)(1 nuM−

delay
w
w�w�w���
��� ���

Figure 2: Block diagram of Generalized Sidelobe Canceller.

3 Experimental setup

In order to evaluate the proposed algorithms, the Multichannel Overlapping Numbers Corpus (MONC)
[10] was used to perform speech recognition experiments. This database comprises a task for con-
tinuous digit recognition in the presence of overlapping speech. The database was collected in a
moderately reverberant, 8.2m×3.6m×2.4m rectangular room. Three loudspeakers (L1, L2, L3) were
placed at 90deg spacings around the circumference of a 1.2m diameter circular table at an elevation
of 35cm. The placement of the loudspeakers simulated the presence of a desired speaker (L1) and
two competing speakers (L2 and L3) in a realistic meeting room configuration. An 8-element, equally
spaced, circular array of 20cm diameter was placed in the middle of the table, and an additional
microphone was placed at the centre of the table. All subsequent discussion will refer to the recording
scenarios as S1 (no overlapping speech), S12 (with 1 competing speaker L2), S13 (with 1 competing
speaker L3), and S123 (with 2 competing speakers L2 and L3).

The speech recognition experiments were carried out using whole-word HMMs. Each number
HMM had 18 states with 16 output distributions. ‘sil’ had five states with three distributions, and
‘sp’ had three states with one distribution. Each distribution of a number HMM had 20 Gaussians
and that of ‘sil’ or ‘sp’ had 36 Gaussians. The duration of analysis window is 20 milliseconds with
a frame shift of 10 milliseconds. 23-channel MFB analysis is applied, and the logarithmic outputs
of the filterbanks are computed. The estimated log MFB outputs are transformed into 12 mel-
frequency cepstral coefficients (MFCCs). The feature vector consisted of 12 MFCCs and log-energy
with their corresponding delta and acceleration coefficients. A baseline speech recognition system was
trained using HTK on the clean training set from the original Numbers corpus. MAP adaptation was
performed on the baseline models using the cross-validation set for each scenario pair, and then the
speech recognition performance of the adapted models was assessed using the corresponding recorded
test set.

4 Preliminary experiments on the regression-based method

For comparison, we performed the following experiments:

centre recognition of the speech captured by the centre microphone;

DS recognition of the speech enhanced by using delay-and-sum beamformer;

GSC recognition of the speech enhanced by using generalized sidelobe canceller (GSC);

MA recognition of the neural network processed features by mapping 8-channel array speech to clean
speech.
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Figure 3: Diagram of the mapping-based speech recognition.

Table 1: Recognition accuracies (as percentages) for different methods.

S1 S12 S13 S123 Average
centre 78.0 34.5 40.8 24.3 44.4
DS 73.8 46.3 54.7 39.8 53.7

GSC 74.0 49.1 54.2 41.4 54.7
MA 80.0 56.0 65.6 48.2 62.5

centre 89.0 38.7 46.9 27.6 50.6
DS 90.4 61.9 70.2 52.8 68.8

GSC 88.3 63.4 68.4 56.7 69.2
MA 84.7 64.9 73.0 54.7 69.3

For the “DS” and “GSC”, the 8-element circular microphone array was used and the delay is calculated
using geometric information of the placement of louderspeaker and microphone array. The architecture
of the GSC used is shown in Fig. 2. It comprises a fixed beamformer (top branch), a blocking matrix
and three adaptive FIR filters (bottom branch). The top branch produces the beamformed signal
which is used as the primary signal. In our experiments, The delay is chosen as half of the adaptive
filter order to ensure that the component in the middle of each of the adaptive filters at time n

corresponds to ypri(n). The blocking matrix in the bottom branch is used to block out the target
signal with which takes the difference between the signals at the adjacent microphones. The three FIR
filters are adapted sample-by-sample to generate replicas of the noise or interfering sources involved
in the beamformed signal by using Normalized Least Mean Square (NLMS) method [11]. The output
yo(n) takes the form of the subtraction of the interfering replicas yref (n) from ypri(n). As a result,
the target signal is enhanced and the detrimental signals such as ambient noise and interferences are
suppressed. In our experiments the number of taps and step-size of adaptation in adaptive beamformer
are set as 100 and 0.01 experimentally.

For “MC” and “MA”, the training data for neural network consists of 2,000 utterances (500 utter-
ances of each recording scenario in the cross-validation set). The total number of training examples
(frames) are 371,543. For a test utterance, the log MFB outputs were first estimated, and then were
converted into MFCCs for recognition by using the Discrete cosine transformation (DCT). A diagram
of the model training and feature estimation is given in Fig. 3.

Table 1 shows recognition results in terms of recognition accuracies for all channel-scenario pairs.
The upper and lower parts of this table depict recognition results without and with the adaption
of acoustic models. This table reveals that speech recognition performance degrade significantly in
the presence of the interfering speech. For example, with the baseline recognition system using the
centre microphone, S12 and S13 result in dramatical reduction of recognition accuracies than S1,
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Table 2: Recognition accuracies (as percentages) for different methods.

S1 S12 S13 S123 Average
DSM 82.5 57.0 69.1 49.7 64.6

GSCM 82.3 60.5 68.7 56.3 66.9
PRM 84.6 63.8 72.1 56.2 69.2

PCM 85.6 63.3 73.2 54.4 69.1

DSM 88.8 63.5 73.6 55.8 70.4
GSCM 86.8 66.2 73.2 62.1 72.1
PRM 87.6 69.8 76.1 62.4 74.0
PCM 88.1 70.6 77.4 62.7 74.7

and S12 performs worse than S13 because the location of interfering speaker is closer; S123 performs
worst as the number of interfering speakers increases. The multi-channel methods (DS and GSC) are
effective and outperform the original noisy speech. The mapping of the array speech to the clean
speech contributes to the improve the recognition performance, especially in the case of without the
adaptation of the acoustic models.

5 Mapping the enhanced speech to clean speech

From the preliminary experiment, we found that the enhanced speech (DS or GSC) based on multi-
channel method helps to improve the speech quality which results in the higher recognition per-
formance, as shown in Table 1. An reasonable motivation of further improving of the recognition
performance is to map the enhanced speech to clean speech. On the other hand, the output the GSC
is obtained by

yo(n) = ypri(n) − yref (n), (5)

where ypri(n) and yref (n) represent the delay-and-sum (DS) enhanced speech and the reference in-
terfering speech from other directions, respectively. In the frequency domain, it is a simple spectral
subtraction [12] which is highly linear. By using our proposed regression method, the estimated log
MFB energy of clean speech can be obtained by

ŝ(n) = f(Ypri(n), Yref (n)), (6)

where Ypri(n) and Yref (n) represent the corresponding log MFB energies for the DS-enhanced speech
and the reference interfering speech, respectively. Here f(·) denotes the mapping function learned by
multi-layer perceptron (MLP) networks, which is highly non-linear. In the non-linear mapping, even
the Yref (n) can be replaced by another recorded speech using a distant microphone. In other words,
the estimated log MFB energy of clean speech can be obtained by

ŝ(n) = f(Ypri(n), Y (n)), (7)

where Y (n) represent the log MFB energies of the far-field speech. In this way, our neural network
based feature enhancement can be viewed as a generalized log spectral subtraction.

For comparison, we performed the following experiments:

DSM recognition of the DS-enhanced speech;

GSCM recognition of the GSC-enhanced speech;

PRM recognition of the neural network processed features by mapping ypri and yref to clean speech
using Equation (6); and
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Figure 4: SDR values of different methods.

PCM recognition of the neural network processed features by mapping ypri and the centre microphone
speech to clean speech using Equation (7).

Table 2 shows recognition results in terms of recognition accuracies for all channel-scenario pairs.
The upper and lower parts of this table depict recognition results without and with the adaption of
acoustic models. Mapping the enhanced speech results in considerable improvements compared to
“MA” in Table 1. By mapping the enhanced speech and the estimated interfering speech (or another
far-field speech), we obtained a further improvement in recognition performance. Compared with GSC
as shown in Table 1, PRM results in significant improvement due to the non-linear regression method.

The effectiveness of the approximation is verified from the viewpoint of signal-to-deviation ratio
(SDR), which is defined as

SDR [dB] = 10 log
10

∑N

n=1
‖s(n)‖

2

∑N

n=1
‖s(n) − ŝ(n)‖

2
, (8)

where s(n) is the reference feature vector from the close-talking microphone and ŝ(n) is the estimated
feature vector. Here N denotes the number of frames during one utterance. The SDR is averaged
over the number of utterances. Fig. 4 shows the average SDR for different methods. First it can been
seen that SDR drops as the amount of overlap increases. Secondly, the SDR values for the mapping
method are significantly higher than all the non-mapping method. This means a better approximation
to the clean speech is obtained, which contributes to the improvement of the recognition performance
as shown Table 2.

6 Conclusions

In this work, we investigated the MLP-based feature mapping approach to extract robust MFCCs
for multi-channel overlapping speaker speech recognition. We trained an MLP to learn the mapping
from log MFBEs of distant microphones speech signal to log MFBEs of clean speech. Experimental
studies on MONC corpus showed that MLP-based mapping techniques yields a improvement in the
recognition accuracy for the overlapping speech. The future work is to detect speaker overlap and
non-overlap regions in multiparty meetings and train/adapt the MLP directly using close-talking
microphone speech as target speech.
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