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Résuḿe. In this report, we propose a statistical model to deal with the discrete-distribution data varying over
time. The proposed model – HMM+DM – extends the Dirichlet mixture model to the dynamic case: Hidden
Markov Model with Dirichlet mixture output. Both the inference and parameter estimation procedures are
proposed. Experiments on the generated data verify the proposed algorithms. Finally, we discuss the potential
applications of the current model.
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1 Introduction

The discrete-distribution data, or proportions or shares allotted to different categories, come from many
fields. Examples include the bag-of-word representation ofdocuments in the information retrieval field [BYRN99],
and also the same representation for images in the computer vision field [SZ03, QMO+05]. In most cases, we
do not care about the total number of words in each document (or image). Recall that the cosine similarity mea-
sure between two documents normalizes the lengths of both documents, and also the probabilistic latent aspect
model (pLSA) [Hof99] treats each document as a discrete distribution over all words in the vocabulary. That
is, we only care the relative proportions of each word in bothcases. So it is reasonable to normalize these data
by their word accounts. Then we get the discrete-distribution data in these two examples. Still another example
comes from the speech processing field [HES00, BW90], where multilayer perceptron (MLP) is trained to get
the posteriors (discrete-distribution data) as the features for further process.
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It is natural to treat the underlying stochastic process to generate these discrete-distribution data as the
Dirichlet process [Ron89, Aic82]. Similar to Gaussian case (Gaussian mixture model, GMM [DHS01]), Diri-
chlet mixtures (DM) are, furthermore, viewed powerful enough to represent the distributions on the compact
probabilistic simplex with multiple symmetric or asymmetric modes [BZV04].

The discrete-distribution data which vary over time are also very common. The last example above in
speech processing is indeed one such example. In video analysis, if we extract the bag-of-word features from
one or several consecutive frames, after normalization, weget the discrete-distribution data varying over time.
In social sciences, the budget shares of households or market shares of firms also very over time.

There may be many ways to impose the temporal constraints on the discrete-distribution data. In [HES00],
Hynek Hermansky and et al. proposed to embedding the discrete-distributional output of multilayer perceptron
(MLP) into hidden Markov model (HMM) by taking the log and Karhunen Lòeve transform (KLT) on the
discrete-distribution data. And then they use the GMM to model the data densities as the HMM’s emission
probabilities.

In this paper, we propose another way to model the discrete-distribution data varying over time : hidden
Markov model with Dirichlet mixture emission (HMM+DM). Instead of transform the discrete-distribution
data to another domain like [HES00], we model the data in a more direct way using Dirichlet mixtures. We
further give the parameter estimation algorithm, with the inference procedure as a subroutine, for HMM+DM
model. As a by-product or a special case, we propose the expectation maximization (EM [DLR77]) algorithm to
estimate parameters of the Dirichlet mixtures. To alleviate the mess of notations in the derivations, we propose
a summation rule similar to Einstein summation in Section2.3.

From another view point, any mixture density model has its dynamic or HMM counterpart. For example,
GMM’s dynamic counterpart is HMM+GMM ; Factor analysis corresponds to Kalman filter. So it is natural to
investigate the dynamic counterpart of the Dirichlet mixtures : that is, HMM+DM.

The outline of this report is as follows. In Section2, we specify the proposed HMM+DM model, with
the detailed derivations for inference procedure gatheredin AppendixA and those for parameter estimation
in AppendixB. Some experiments on the simulated data are presented in Section 3 to verify the proposed
algorithms. Then in Section4, we make a brief review of the related work. Some discussion and future work
are given in Section5. We express our acknowledgement in Section6. Finally we list the main matlab codes in
AppendixC.

2 Dynamic extension of Dirichlet mixtures – HMM+DM model

After introducing the model and notations in Section2.1, we present the inference procedure and parameter
estimation procedure in Section2.2 and Section2.3 respectively. Treating the static Dirichlet mixtures as a
special case of HMM+DM, we give the EM procedure for parameter estimation of the Dirichlet mixtures in
Section2.4.

2.1 Model specification

In Fig. 1, we show the HMM+DM model. The shadowed circles represents observables, which are discrete
distributions here. The unshadowed circles are hidden states. There are two sets of hidden states : one is the
Markov hidden stateht (or simply call it as hidden states) ; the other is the mixtureindicatormt.

Suppose that there areK hidden states. The transition matrix between hidden statesis B = [bij ] ∈ R
K×K
+

1, with

bij = p(ht+1 = j|ht = i) .

1x ∈ R+ meansx ≥ 0.
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The initial probabilities areπ = {πi ∈ [0, 1] | ∑i πi = 1, i = 1, ..., K}. For each hidden stateht = k, the
emission probability is a mixture of Dirichlet :

Ak =






ak,11 · · · ak,1N

...
. . .

...
ak,M1 · · · ak,MN




 , ∈ R

M×N
+ ,

where there areM mixture components. We assume, without generality, the same number of mixture compo-
nents for different hidden stateht = k. The dependence of between the Markov hidden states and the mixture
indicators is characterized by :

C = [Cij ] ∈ R
K×M
+ , Cij = p(m = j | h = i) .

Finally the set of parameters areθ = {A, B, π, C}.

FIG. 1 – Graphical representation of HMM+DM

Note : in fact, Fig.1 is a general graphical representation of the Hidden Markov model with mixture den-
sities as emission probability. If we change the emission asGaussian density, we get the HMM+GMM model.
In general, we could derive the case that the emission density is the mixture of exponential families. Then
HMM+GMM and current HMM+DM are two special case. This model will leave for future investigation.

2.1.1 Notations :

In the following,D is the number of sequences in the data set.K is the number of the hidden states. And
M is the number of mixture components.

The data set consists ofD sequences

X = {Xd | d = 1, ..., D}

with each sequence

Xd =

{

xd
t | xd

t ∈ R
N
+ ,

N∑

n=1

xd
tn = 1, t = 0, ..., Td

}

having length ofTd + 1. Corresponding hidden states are

H = {Hd | d = 1, ..., D}

with eachdth sequence’s hidden states being

Hd =
{
hd

t ∈ {1, ..., K}, md
t ∈ {1, ..., M} | t = 0, ..., Td

}
.
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Some special functions : Γ(x) is gamma function define as

Γ(x) =

∫ +∞

0

tx−1e−tdt .

Ψn(·) denotes the polygamma function of ordern, which is the(n + 1)th derivative of log2 gamma function :

Ψn(x) =
dn+1

dxn+1
log Γ(x) .

See [AS64] for many useful properties of both gamma and polygamma functions.

Dirichlet distribution The Dirichlet distribution is defined as

Dir (x | a) =
Γ(
∑n

i=1 ai)
∏n

i=1 Γ(ai)

n∏

i=1

xai−1
i

where the random variablex ∈ R
n
+,
∑n

i=1 xi = 1 and the parametera ∈ R
n
+.

2.2 Inference procedure

In this part, we give the general inference procedure of HMM +mixture density model. We only list the
recursion formulae. Please refer to AppendixA for the detailed derivations of these recursions listed in this
subsection.

Note : in the following, we only consider one sequence. If necessary, the index for the sequenced will
appear as the super-scripture just after time indext. For example, fordth sequence,αt

km will be written as
αt,d

km.

2.2.1 Forward and backward recursions

FIG. 2 – Junction tree of HMM+DM

By transforming the original graphical model in Fig.1 to the junction tree in Fig.2, we get to know that the
following quantities

p(ht, mt | x0, ..., xT )

p(ht, ht+1 | x0, ..., xT )

p(ht | x0, ..., xT )

are needed to calculate.

2If not stated explicitly, log function is based on e, insteadof 2 or 10.



6 IDIAP–RR 2007-02

Alpha Recursion Alpha recursion is a forward iteration as :

αt
htmt

∆
= p(x0, .., xt, ht, mt)

Then fort = 1, · · ·T ,

αt+1
ht+1mt+1

=

∑

ht,mt
ᾱt

htmt
· bhtht+1

· Cht+1mt+1
· p(xt+1 | ht+1, mt+1)

∑

h′

t,m
′

t,h
′

t+1
,m′

t+1
ᾱt

h′

tm′

t
· bh′

th′

t+1
· Ch′

t+1
m′

t+1
· p(xt+1 | h′

t+1, m
′
t+1)

and fort = 0

ᾱ0
km = πk · Ckm · p(x0 | h0 = k, m0 = m)

For numerical stability, we prefer the following normalized alpha recursion :

ᾱt
htmt

∆
= p(ht, mt | x0, .., xt)

ᾱt+1
ht+1mt+1

=

∑

ht,mt
ᾱt

htmt
· bhtht+1

· Cht+1mt+1
· p(xt+1 | ht+1, mt+1)

∑

h′

t,m
′

t,h
′

t+1
,m′

t+1

ᾱt
h′

tm′

t
· Ch′

t+1
m′

t+1
· bh′

th
′

t+1
· p(xt+1 | h′

t+1, m
′
t+1)

Note,ᾱt
htmt

is the filtered estimate of the state. The initial sates can becalculated as follows :

ᾱ0
km =

πk · Ckm · p(x0 | h0 = k, m0 = m)
∑K

k′=1

∑M

m′=1 πk′ · Ck′m′ · p(x0 | h0 = k′, m0 = m′)

Beta Recursion Beta recursion is a backward iteration :

βt
htmt

∆
= p(xt+1, .., xT | ht, mt)

βt−1
ht−1mt−1

=
∑

ht,mt

bht−1ht
· Chtmt

· p(xt|ht, mt) · β(ht)

Gamma Recursion Gamma values are the smoothed estimates of the states, giventhe whole set.

γt
htmt

∆
= p(ht, mt | x0, .., xT )

γt
htmt

=
∑

ht+1,mt+1

ᾱt
htmt

· bhtht+1
∑

h′

t,m′

t
ᾱt

h′

tm
′

t
· bh′

tht+1

· γt+1
ht+1mt+1

The initial state can be initialized as

γT
km = ᾱT

km .

The ηt
ht

variables We need the following variables as the separators in the junction tree :

ηt
ht

= p(ht | x0, ..., xT ) =
M∑

m=1

γt
htm

The ξt
htht+1

variables We need also the following variables :

ξt
htht+1

∆
= p(ht, ht+1 | x0, .., xT ) =

∑

mt,mt+1

ᾱt
htmt

· bhtht+1
∑

h′

t,m
′

t
ᾱt

h′

tm′

t
· bh′

tht+1

· γt+1
ht+1mt+1
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2.2.2 Hard clustering based on Gamma variables

We can use the following formulae to get the hard clustering results from the posteriors :

(hd
t )

∗ = argmax
k

ηt,d
k (1)

(md
t )

∗ = argmax
m

γt,d
km |k=(hd

t )∗ . (1′)

2.3 Parameter estimation

Here, we use the maximal likelihood criterion to estimate the parameters of HMM+DM model. We use the
EM algorithm to deal with the hidden states in this model.

In the E step, we have

q(hd
t = k, md

t = m) = γt,d
km

q(hd
t = k, hd

t+1 = k′) = ξt,d
kk′ .

As intermediate results, we should also calculate the following filtered state

p(hd
t = k, md

t = m | xd
0, · · · , xd

t ) = ᾱt,d
km .

In the M step, we optimize the energy term or the expected complete log likelihood. To alleviate the mess
of notations in the derivations, we propose the following summation rules first :

Summation Convention : For notational convenience, we use the following convention similar to Einstein
summation : all the subscripts or superscripts of typewriter style mean the dummy indexes, which should be
summed over accordingly ; and those of normal Italians styleare the free indexes, which should not be summed
over. As you can see, some oft above are summed over[0 : T ], while some are summed over[0 : T − 1].
The convention is that try the maximal legal span of the dummyindexes, otherwise the span should explicitly
denoted behind.

Using this summation convention, the energy term can be written as :

E(A, B, U, π, C | X ,H) = 〈log p(X ,H)〉q(H)

=γ0,d
km log πk + γt,d

km log Ckm + ξt,dij log bij

+ γt,d
km log Γ(

N∑

n=1

ak,mn)− γt,d
km log Γ(ak,mn) + γt,d

km (ak,mn − 1) log xd
tn (2)

See AppendixB for the detailed derivation.
Then it easy to see that the updates forB, π, γ andC are

πnew
k ∝

D∑

d=1

M∑

m=1

γ0,d
km or∝ γ0,d

km (3)

bnew
ij ∝

D∑

d=1

Td−1∑

t=0

ξt,d
ij or∝ ξt,dij (4)

Cnew
km ∝

D∑

d=1

Td∑

t=0

γt,d
km or∝ γt,d

km (5)

wherek, i, j = {1, ..., K}, andm = {1, ..., M}.
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2.3.1 Estimation of Dirichlet components

In the following, we should only maximize the following quantity as part of the energy term in Eq.2 :

L(A) =γt,d
km log Γ(

N∑

n=1

ak,mn)− γt,d
km log Γ(ak,mn) + γt,d

km ak,mn log xd
tn (6)

s.t. ak,mn > 0

In order to alleviate the notations, we can restate this sub-problem of estimating the(k, m)th Dirichlet
distribution in the following simple way : we discard the default index ofk andm. So the parameters are
alleviated as{a1, ..., aN} from {ak,m1, ..., ak,mN}. The scale parameter is simplified asγ from γt,d

km. The
mean of random variables in canonical form islog x̄n = (γt,d

km/γ) log xd
tn. Note,x̄ is the geometric mean of

dataset weighted by the posteriorγt,d
km/γ, whereγt,d

km/γ can be interpreted as follows :

γt,d
km/γ =

p(ĥd
t = k, m̂d

t = m | X )
∑D

d=1

∑Td

t=1 p(ĥd
t = k, m̂d

t = m | X )

=
p(ĥ = k, m̂ = m, t̂ = t, d̂ = d | X )

∑D

d=1

∑Td

t=1 p(ĥ = k, m̂ = m, t̂ = t, d̂ = d | X )

=
p(ĥ = k, m̂ = m, t̂ = t, d̂ = d | X )

p(ĥ = k, m̂ = m | X )

= p(t̂ = t, d̂ = d | X , ĥ = k, m̂ = m)

wherê· means random variable. As each(d, t) pair identifies one sample, the above quantity is the likelihood
of the(d, t)th sample generated by the(k, m)th Dirichlet.

We list the change of variables as follows :

γ ← γt,d
km (7)

an ← akm,n (7′)

log x̄n ← (γt,d
km/γ) logxd

tn (7′′)

wheren = 1, · · · , N .
Then the problem can be stated as finding the maximal of

L(a) = log Γ(
N∑

n=1

an)− log Γ(an) + an log x̄n (8)

s.t.an > 0, n = 1, ..., N

In this part, we use the Newton method to maximize Eq.8. As this subproblem is convex3, there exists
unique global maximum.

Newton method : Taking first and second order derivatives of Eq.6, we have the following gradient and
Hessian :

∂L

∂ak,mn

(
∆
= gk,mn) = γt,d

kmΨ0(

N∑

n=1

ak,mn)− γt,d
kmΨ0(ak,mn) + γt,d

km log xd
tn (9)

∂2L

∂a2
k,mn

= γt,d
kmΨ1(

N∑

n=1

ak,mn)− γt,d
kmΨ1(ak,mn) (10)

3The concavity of the log likelihood of the Dirichlet distribution comes from the fact that the Dirichlet distribution belongs to the
exponential family. Also see [Ron86, Ron89] for another direct proof.
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∂2L

∂ak,mn∂ak,mn′

= γt,d
kmΨ1(

N∑

n=1

ak,mn) n 6= n′ (11)

∂2L

∂ak,mn∂ak′,m′n′

= 0 k 6= k′ or m 6= m′ (12)

From Eq.12, we can see that parameters of different mixture componentsare uncorrelated. So we can
find the best parameters of each individual mixture component respectively. In the following, we calculate the
(k, m)th mixture component using the notation alleviation in Eq.7.

The Hessian can be written in matrix form as

H = −Λ + z11T (13)

whereΛ is a diagonal matrix

Λnn = Ψ1(an) ≥ 0 and

z = Ψ1(

N∑

n=1

an) ≥ 0 .

The non-negative properties above come from the propertiesof trigamma function.

The sub-problem of estimating a single Dirichlet componentis a convex problem [Ron89]. And there exists
globally optimal solution.

Then the Newton update is

anew = aold −H−1g

or equivalently in component case

anew
n = aold

n +
gold

n

Λnn
+

1

Λnn
·
∑N

n′=1 gold
n′ · (Λn′n′

)−1

z−1 −∑N

n′=1(Λ
n′n′)−1

where

gold
n = Ψ0(

N∑

n′=1

aold
n′ )−Ψ0(a

old
n ) + log x̄n . (14)

See AppendixB for the inverse of the Hessian matrix.

To avoida becomes negative during the iterations, we simply set the negative components to a small positive
value. Or we can also use the Ronning’s method to reset all components ofa to the samples’ minimal value
[Ron89]. Bouguila and et al. propose to re-parameterizea as eb. However, after this parameterization, the
original convex property will not remain. Please see Appendix B for more detailed analysis.

The whole algorithm is listed at Algorithm1.
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Algorithm 1 : Estimation of themth mixture component associated withkth hidden state by Newton
method.

Input :

–
{

a0
n ← a0

k,mn | n = 1, ..., N
}

–

{

log x̄n ←
γt,d

km log xd
tn

γ | γ = γt,d
km, n = 1, ..., N

}

Result:
– {ak,mn ← an | n = 1, ..., N}
begin

Initialize an ← a0
n for all n = 1, ..., N ;

s← +∞;
while s ≥ ǫ do

for n = 1 to N do
gn ← Ψ0(

∑N

n=1 an)−Ψ0(an) + log x̄n;
λn ← Ψ1(an) ;

end
z ← Ψ1(

∑N

n=1 an);
for n = 1 to N do

hn ← gn

λn
+ 1

λn
·

PN

n′=1
gn′ ·(λn′)−1

z−1−
P

N

n′=1
(λn′)−1

;

end
a← a + h;
if ∃n s.t.an ≤ 0 then

a← max(a, ǫ1);
s← +∞;

else
s← hT · g;

end
end
return {an | n = 1, ..., N}

end

2.3.2 Initialization Algorithm

Parameter initialization is an important issue for both theAlgorithm 1 above and the Algorithm3 in the
latter of this section. In this part, we first give the initialization algorithm for single Dirichlet. Based on this
algorithm, we further propose an algorithm to initialize the mixture of Dirichlet. Finally, we deal with the
initialization problem of the HMM+DM model.

Initializing single Dirichlet In the following, we assumex is aK×1 vector, following Dirichlet distribution
of Dir(a). As there areK parameters in vectora, we should constructK functions to estimatea. It is easy to
see the following integrals :

〈xk〉 =
Z([a1, ..., ak + 1, ..., aK ])

Z([a1, ..., aK ])
=

ak
∑K

k′=1 ak′

(15)

〈
(xk)2

〉
=

Z([a1, ..., ak + 2, ..., aK ])

Z([a1, ..., aK ])
=

(ak + 1) · ak

(1 +
∑K

k=1 ak)(
∑K

k=1 ak)
(16)

where

Z([a1, ..., aK ]) =

∏K

k=1 Γ(ak)

Γ(
∑K

k=1 ak)
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is the normalization constant for Dirichlet distribution.
Eq.15offersK − 1 equations. So we can use the second equation (Eq.16) to get another constraint as :

K∑

k=1

ak =
〈xi〉 −

〈
x2

i

〉

〈x2
i 〉 − 〈xi〉2

(17)

for any i = 1, · · · , K. Note : In general, there is no theoretical guarantee that Eq.17 is positive. But in the
case that all the random variables are proportional data, the numerator of Eq.17is positive. The denominator of
Eq.17 is a variance, and therefore positive. So for proportional data, Eq.17 is positive.

So the estimation of the parameter is

âk =
〈x1〉 −

〈
x2

1

〉

〈x2
1〉 − 〈x1〉2

· 〈xk〉 , k = 1, · · · , K.

Another intuitive way is to use several or all of the second order moments to estimate the scale parameter
∑

k ak :

âk =
1

K

K∑

i=1

〈xi〉 −
〈
x2

i

〉

〈x2
i 〉 − 〈xi〉2

or âk = K

√
√
√
√

K∏

i=1

〈xi〉 − 〈x2
i 〉

〈x2
i 〉 − 〈xi〉2

, k = 1, · · · , K

which are the algebraic and geometric mean over all estimates. Ronning [Ron89] suggests instead using the
samples’ minimum value to set the parameters. In our practice, we prefer to use the geometric mean as the
initial parameters.

Initializing mixture of Dirichlet Bouguila, and etc. [BZV04] propose the initialization algorithm based on
fuzzy C-means and methods of moments (MM). Here, we use a similar procedure based on K-Means algorithm
to initialize the parameters. We have also tried the Gaussian mixture model (GMM). Our experiences show that
K-Means seems better than GMM.

See Algorithm2 for the complete algorithm.

Initializing HMM+DM In case of HMM+DM, there areKM Dirichlet components, which are grouped into
to K groups, and each group is a Dirichlet mixture model withM components.

Ideally, we could initialize the parameters in the following way : First, we initialize theseKM Dirichlet
distributions using Algorithm2, where we discard all the temporal constraints. Then in order to take the tem-
poral constraints into account, we propose to fit a relaxed HMM+DM model : there areKM hidden states,
and each hidden state corresponds one single Dirichlet distribution. We get the following relaxed transition
probabilities :

p(h, m | h′, m′) .

Then we could find the best transition probabilities by minimizing the following distance between the true
parameters (relaxed transition probabilities) and the parameters in the factorized forms :

K∑

h′=1

M∑

m′=1

KL [p(h, m | h′, m′) ‖ p(h | h′)p(m | h)] .

By introducing Lagrange multipliers, we can easily find the minimum are achieved by

p(h | h′) ∝
M∑

m′=1

M∑

m=1

p(h, m | h′, m′)
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p(m | h) ∝
K∑

h′=1

M∑

m′=1

p(h, m | h′, m′)

However, as there is a permutation-invariant property for the above initialization, after permuting the rows
and corresponding columns ofp(h, m | h′, m′) 4, we may get significantly different initial values of both
p(h | h′) andp(m | h). So by taking the permutation-invariant property into account, we propose the following
criterion for find the bestp(h | h′) (or B) andp(m | h) (or C) :

min
σ

min
p(h|h′),p(m|h)

K∑

h′=1

M∑

m′=1

KL [pσ(h, m | h′, m′) ‖ p(h | h′)p(m | h)] .

whereσ is a permutation amongKM elements, and the the minimization is over all(KM)! such permutations.
It will be soon intractable with largeK andM .

In current report, we simply initializeKM Dirichlet components using Algorithm2 and then group orderly
eachM components to one Markov hidden state to getA. Forπ, B andC, we randomly initialize them. Better
solution for initialization in the dynamic case is left for future investigation.

Algorithm 2 : Initialization algorithm for the Dirichlet mixture.
Input :
– Number of mixture components :M .

– A data set for initializing parameter :X =
{

xt ∈ R
N×1
+ | t = 0, ..., T ; xt ≥ 0;

∑N

n=1 xtn = 1
}

Result:
– A = [amn] ∈ R

M×N
+ , with each rowam· corresponding one Dirichlet component.

– π ∈ R
M×1
+ , the prior probabilities for each Dirichlet.

begin
Apply GMM or K-means algorithm on the data setX to getM clusters with the posterior of each
sample belonging to each cluster :p(m | xt);
s← 0;
for m = 1 to M do

y ← zeros(N, 1);
z ← zeros(N, 1);
πm ← 0;
for t = 0 to T do

y ← y + xt · p(m | xt);
z ← z + xt ⊙ xt · p(m | xt);
πm ← πm + p(m | xt);

end
s← πm;
w← sum(log((y − z)⊘ (z − y ⊙ y)))/N ;
am· ← y′ · ew;

end
for t = 0 to T do

πm ← πm/s;
end
return A andπ

end

2.3.3 Parameter estimation algorithm of HMM+DM :

Before arriving the final algorithm for parameter estimation of HMM+DM, we should give the stopping
criterion for the whole algorithm. As EM is a low bound maximization algorithm, we should only check the

4here we treatp(h, m | h′, m′) as aKM × KM matrix with each row being a distribution
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low bound each time. The low bound consists two term : the entropy term and the energy term :

log(p(X )) ≥ E(A, B, π, γ | H) + Etr(H) (18)

Where the energy term is given by Eq.2, and the entropy term is as follows :

Etr(H) = −〈log q(H)〉q(H) (19)

= 2ηt,dk log ηt,dk − η0,d
k log η0,d

k − ηTd,d
k log ηTd,d

k − γt,d
km log γt,d

km − ξt,dij log ξt,dij .

See AppendixB for the detailed derivation.
Then the low bound can be then calculated as

L(θ | X) =γ0,d
km log πk + γt,d

km log Ckm + ξt,dij log bij

+ γt,d
km log Γ(

N∑

n=1

ak,mn)− γt,d
km log Γ(ak,mn) + γt,d

km (ak,mn − 1) logxd
tn

+ 2ηt,dk log ηt,dk − η0,d
k log η0,d

k − ηTd,d
k log ηTd,d

k − γt,d
km log γt,d

km − ξt,dij log ξt,dij (20)

Finally, we list the parameter estimation algorithm of HMM+DM in Algorithm 3.

Algorithm 3 : Parameter Estimation of HMM+DM
Input :
– Number of the mixture components :M
– Number of the hidden states :K
– The Data setX = {xd

t | xd
t ∈ R

N
+ ,
∑N

n=1 xtn = 1, d = 1, ..., D, t = 0, · · · , Td}
Result: Maximal likelihood estimation of :

θ =
{
A ∈ R

M×N×K
+ , B ∈ R

K×K
+ , C ∈ R

K×M
+ , π ∈ R

K×1
+

}

begin
Call Algorithm2 with all or part of the data to initializêA with KM components;
Initialize Anew(m, :, k) as(m(k − 1) + 1)th row of Â;
Initialize πnew , Bnew, Cnew randomly;
Initialize Lold ←∞;
Lnew ← L(θnew | X ) by Eq.20;
while

∣
∣Lold − Lnew

∣
∣ ≥ ǫ do

Updateθold ← θnew ;
// E step -- Inference

Inference using Algorithm5 with θold to getγt,d
km, ξt,d

kk′ ;
// M step
Fork, k′ = 1, · · · , K, m = 1, · · · , M andn = 1, · · · , N , calculate the following quantities :

γ̂km ← γt,d
km ; ξ̂kk′ ← ξt,dkk′ ; π̂k ← γ0,d

km ; log x̄km,n ← γt,d
km log xd

tn;
Updateπnew, Bnew, Cnew by normalizingπ̂k, ξ̂kk′ andγ̂km;
Fork = 1, · · · , K andm = 1, · · · , M :

UpdateAnew(m, :, k) by the Algorithm1 with Aold(m, :, k) andlog x̄km,·/γ̂km;
Lold ← Lnew;
Lnew ← L(θnew | X) by Eq.20;

end
return Anew , Bnew, Cnew, πnew

end

2.4 Static Dirichlet mixture model revisited

Here, we present how to estimate the static Dirichlet mixture model as a special case of HMM+DM. For
static model, there is no link between consecutive two hidden states. Then each state can be viewed as a new
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start state. Or equivalently the transition probability matrix B has the following form :

bij = πj for all i, j = 1, ..., K

for static model. In this case, there is no need to use two hidden variableht andmt to index one Dirichlet
distribution. So without loss of generality, in the following, we assume that the number of mixture components
for each statemt is one (orM = 1). And also there is no need to used to index which sequence. We could
simply pool together all the samples from different sequences. So in the following, we omit the sub- and super-
scripture formt andd.

Algorithm 4 : Parameter Estimation of static Dirichlet mixture model.
Input :
– Number of the mixture components :M
– The Data setX = {xt | xt ∈ R

N
+ ,
∑N

n=1 xtn = 1, t = 0, · · · , T }
Result:
– MLE of Â ∈ R

M×N
+ andπ̂ ∈ R

M×1
+

begin
Initialize Anew by the Algorithm2;
Random initializeπnew as a probability vector;
Lnew ← L(Anew , πnew | X);
Lold ←∞;
while

∣
∣Lold − Lnew

∣
∣ ≥ ǫ do

UpdateAold ← Anew andπold ← πnew;
// E step -- Inference
for t = 0 to T do

s← 0;
for k = 1 to K do

ᾱt
k ← πold

k ·Dir
(
xt· | aold

k·

)
ands← s + ᾱt

k;
end
for k = 1 to K do

ᾱt
k ← ᾱt

k/s;
end

end
// M step
s← 0;
for k = 1 to K do

πnew
k ←∑T

t=0 ᾱt
k ands← s + πnew

k ;
anew

k· ← by calling Algorithm1 with (πnew
k , aold

k· , x̄k);
end
for k = 1 to K do

πnew
k ← πnew

k /s;
end
Lold ← Lnew;
Lnew ← L(Anew , πnew | X);

end
return Anew andπnew

end

2.4.1 E step

Then, we can see that the inference procedure (E step) degenerates to the following simple form.
For t = 0,

ᾱ0
k ∝ πk ·Dir (x0· | ak·)
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and fort = 1, ..., T ,

ᾱt
k =

∑

k′ ᾱt−1
k′ · πk · p(xt | ht = k)

∑

k′,k
′′ ᾱt−1

k′ · πk′′ · p(xt | ht = k′′)

by deletingm, C andbij = πj in the normalized Alpha recursion. As
∑

k′ ᾱt−1
k′ = 1, we get

ᾱt
k ∝ πk · p(xt | ht = k) = πk ·Dir (xt· | ak·)

So, in summary, for allt = 0, · · · , T ,

ᾱt
k ∝ πk ·Dir (xt· | ak·)

And

γt
k =

K∑

k′=1

ᾱt
k · bkk′

∑K

i=1 ᾱt
i · bik′

· γt+1
k′ =

K∑

k′=1

ᾱt
k

∑K

i=1 ᾱt
i

· γt+1
k′ = ᾱt

k

ξt
ij =

ᾱt
i · bij

∑

k ᾱt
k · bkj

· γt+1
j =

ᾱt
i

∑

k ᾱt
k

· γt+1
j = ᾱt

i · γt+1
j = ᾱt

i · ᾱt+1
i

2.4.2 M step

In the M step, we maximize the energy term, which could be simplified from Eq.2 by removing parameters
B andU which is deterministic here, and scripturesd andm, , and also replacingbij with πj :

E(A, π | X, H =γ0
k log πk + ξtij log πj + γt

k log Γ(

N∑

n=1

akn)− γt
k log Γ(akn) + γt

k(akn − 1) log xtn

=ᾱt
k log πk + ᾱt

k

(

log Γ(

N∑

n=1

akn)− log Γ(akn) + akn · x̄kn

)

− ᾱt
k log xtn
︸ ︷︷ ︸

Const.

(21)

where

x̄kn =
ᾱt

k log xtn
∑T

t=1 ᾱt
k

=

∑T

t=0 ᾱt
k log xtn

∑T

t′=0 ᾱt′

k

So for parameterπ we have the following update

πk ∝ ᾱt
k =

T∑

t=0

ᾱt
k k = 1, ..., K .

Forkth Dirichlet, we optimizeanew
k· by calling the Algorithm1 with aold

k· as the initial parameter,̄αt
k as the scale

parameterγ, andx̄k· as the expected variable in canonical form. In the very beginning, we call the Algorithm
2 to initializeA.

2.4.3 The whole EM algorithm for mixture of Dirichlet

Before arriving the final algorithm, we should give the stopping criterion. We similarly check the low bound
each time :

log(p(X)) ≥ E(A, π | X, H) + Etr(H)
∆
= L(A, π | X) (22)
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TAB . 1 – Estimation of one single Dirichlet distribution with 100 random samples.
Real Parameter Para. by MM Estimated Para.

Dim.1 3.000 3.061 2.991
Dim.2 2.000 2.164 2.134
Dim.3 4.000 3.897 3.759
Dim.4 5.000 5.101 4.930
Dim.5 8.000 8.261 7.962
Dim.6 10.000 10.993 10.724
Dim.7 20.000 19.859 19.379

Euclidian dist. 0.000 1.061 0.997
Average data log likelihood 11.501 11.550 11.552

TAB . 2 – Estimation of one single Dirichlet distribution with 2000 random samples.
Real Parameter Para. by MM Estimated Para.

Dim.1 3.0000 3.0667 3.0658
Dim.2 2.0000 2.0039 1.9706
Dim.3 4.0000 4.0292 4.0269
Dim.4 5.0000 4.9658 4.9676
Dim.5 8.0000 8.0515 8.0428
Dim.6 10.0000 10.1336 10.1031
Dim.7 20.0000 20.0790 20.0442

Euclidian dist. 0.0000 0.1823 0.1462
Average data log likelihood 11.5976 11.5989 11.5992

where the energy termE(A, π | X, H) can be calculated according Eq.21, and the entropy term is

Etr(H) = −
T∑

t=0

K∑

k=1

ᾱt
k log ᾱt

k

or = −ᾱt
k log ᾱt

k by summation convetion

Although the static case is a special case of the Algorithm3, for clarity, we list this algorithm in the
Algorithm 4.

3 Experiments on artificial data

In this section, we do some experiments on randomly generated data to verify the proposed algorithms.

3.1 Parameter estimation of one single Dirichlet density

In Table.1 and Table.2 we test the estimation of one single Dirichlet distributionwith 100 and 2000 samples
of 7 dimension. The ”Para. by MM” in both tables refers to parameters estimated by moment matching algo-
rithm (Algorithm 2 with one mixture component orM = 1). And the ”Estimated Para.” refers to parameters
estimated by the Newton method (Algorithm1). Each time, ”Estimated Para.” achieves the highest data log-
likelihood as we expect. The Algorithm1 with ǫ = 10−5 in these two cases take both three Newton iterations
to get converged.
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TAB . 3 – Estimation of the mixture of Dirichlet with 2000 random samples.
π A Aver. likelihood

Real para.
0.20
0.30
0.50

3 3 4 6 5
10 7 1 9 10
2 6 2 9 10

5.2324

Init. para.
0.2940
0.3180
0.3880

2.3979 4.1703 3.5407 8.5459 5.6007
8.7408 5.8869 1.3761 7.6242 8.6959
2.217 6.8453 2.1893 9.0607 12.2773

5.1325

Est. para.
0.1884
0.3046
0.5070

3.0373 2.866 4.1019 5.6673 4.8019
9.377 6.7094 0.98267 8.6981 9.8639
1.9929 6.1727 2.1247 9.3191 10.0062

5.2341

3.2 Parameter estimation of Dirichlet mixtures

We generated 2000 samples from a mixture of Dirichlet model with three Dirichlet distributions. The
samples lie in 5-dimensional space, or more strictly the 4-dimensional probability simplex. The real para-
meters are shown in the first row “Real para.” of Table3, where each sub-row is one Dirichlet. The second
row “Init. para.” is the parameters estimated by Kmeans+Moment Matching (Algorithm2). The last row “Est.
para.” shows the estimated parameters by the EM algorithm described in Algorithm4.

Fig.3 illustrates that the algorithm performs properly. The “Aver. likelihood” is the data likelihood (Eq.22)
divided by the number of samples to avoid big numbers and makeit invariant to the number of samples. The
likelihood increases monotonically in each EM steps.

A
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r.
D

at
a

lo
g

lik
el

ih
o

o
d

Number of EM Iterations

2000 5-Dim. Samples, 3 mixture components

0 10 20 30
5.19

5.2

5.21

5.22

5.23

5.24

FIG. 3 – Experiments on parameter estimation of Dirichlet mixture model.

3.3 Parameter estimation of the HMM+DM

In order to test the parameter estimation of HMM+DM model, werandomly generate6 sequences, the
length of each sequence is

(
1156 2430 3034 3810 4456 4751

)
.

There are all together19637 samples. The real parameters and estimated parameters are listed in the Table4,
where “A.L.L” is the average data log likelihood. Other parameters areD = 6, K = 2, M = 3 andN = 4.
Note : in this experiment, we randomly initializeπ, B andC. Unfortunately We didn’t record the initial values.
The values ofπ, B andC listed in the “Init. para” of the table are randomly generated afterwards.
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TAB . 4 – Estimation of the HMM+DM model with randomly generated6 sequences,19637 samples.
Real para. Init. para. Est. para.

π 0.30 0.70 0.322 0.678 0.5081 0.4919

B
0.033 0.967
0.445 0.555

0.926 0.074
0.473 0.527

0.551 0.449
0.966 0.034

C
0.308 0.559 0.134
0.259 0.325 0.416

0.848 0.387 0.785
0.192 0.475 0.250

0.317 0.263 0.421
0.547 0.147 0.306

A

6.0 5.0 10.0 5.0
1.0 7.0 8.0 10.0
9.0 9.0 3.0 10.0
5.0 5.0 2.0 7.0
10.0 9.0 3.0 4.0
2.0 1.0 3.0 3.0

13.631 8.364 3.347 5.258
8.494 3.800 9.047 6.137
2.908 2.521 10.643 5.041
1.475 8.007 8.560 11.184
7.782 11.113 3.277 6.520
4.054 2.843 2.892 9.250

10.193 9.140 3.048 3.986
5.127 5.089 2.043 7.052
1.935 0.993 2.945 2.881
1.018 7.192 8.026 10.190
8.085 7.587 2.813 7.903
6.073 4.926 10.003 5.069

A.L.L. 2012.4 1845.4 2013.1

From Table4, we can see the estimated parameters coincide well with the real parameters after eliminating
the permutation effects. In fact, we could find the correct order of the estimated parameters by values ofA. If
we use the matlab convention on multidimensional array (A is a3 × 4 × 2 array), we first should reorder the
third dimension ofA. Then for eachA(:, :, k) (k=1,2), we reorder the first dimension respectively. Then we
should reorderB, π andC accordingly. After these reorders, we get the following estimated parameters :

real parameters estimated parameters
(
0.30 0.70

)
∼
(
0.4919 0.5081

)
π

(
0.033 0.967
0.445 0.555

)

∼
(

0.034 0.966
0.449 0.551

)

B

(
0.308 0.559 0.134
0.259 0.325 0.416

)

∼
(

0.306 0.547 0.147
0.263 0.317 0.421

)

C











6.0 5.0 10.0 5.0
1.0 7.0 8.0 10.0
9.0 9.0 3.0 10.0
5.0 5.0 2.0 7.0
10.0 9.0 3.0 4.0
2.0 1.0 3.0 3.0











∼











6.073 4.926 10.003 5.069
1.018 7.192 8.026 10.190
8.085 7.587 2.813 7.903
5.127 5.089 2.043 7.052
10.193 9.140 3.048 3.986
1.935 0.993 2.945 2.881











A

where estimatedA, B, C coincide well with the real ones. However there is a big difference in the estimatedπ.
The reason is that estimatingπ depending on the number of sequences. Currently, there are only 6 sequences,
which are far from enough to get a good estimation ofπ.

Fig.4 illustrates that the algorithm performs properly. The log-likelihood is composed by two terms : Energy
and Entropy. The energy term is further composed by two contributors : Energy from Dirichlet mixtures (i.e.
A), and Energy from the initial and transition probabilities(i.e. π,B andC). We can see that in the first ten
iterations or so, the contribution of the energy from Dirichlet mixtures are more significant than that from the
initial and transition probabilities. However, in the last150 iterations or so, the energy from the initial and
transition probabilities becomes more significant than that from the Dirichlet mixtures.

By applying the Eq.1, we get the hard clustering decisions from the soft one (γ itself). After eliminating the
permutation problem, we can get the confusion matrices among all the19637 samples from6 sequences. See
Table5 for the confusion matrices. The classification accuracies are eh = 0.8827 for the hidden statesh (or
one minus the frame error rate, see Section3.4), em = 0.7921 for the indicatorsm. The reason thatem < eh

is that according to Eq.1, if the system make the wrong decision on the first step forh, then the second step for
decidingm will be a blindly guess.
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FIG. 4 – Experiments on parameter estimation of HMM+DM model

TAB . 5 – Confusion matrix for the19637 samples in6 sequences.

h = 1 h = 2
h = 1 4682 1433
h = 2 870 12652

m = 1 m = 2 m = 3
m = 1 4147 577 672
m = 2 486 7081 214
m = 3 1509 624 4327

3.4 Comparisons of HMM+GMM and HMM+DM

In this part, we compare HMM+GMM and HMM+DM on simulated data. We will show that if the data are
indeed generated by some HMM+DM model, the estimated HMM+DMmodel will achieve better results than
the HMM+GMM model.

Performance measures We use theword error rate(WER) and theframe error rate(FER) as measures to
compare the two models.

WER is the sum of insertions, deletions, and substitutions,divided by the sequence length,

WER =
Sub+Del+Ins

Sequence length
× 100%

. As each word, or sequence, has its own WER, we average them over all sequences to get the WER measure
for particular model.

FER is defined as one minus the ratio between the correctly recognized frames and the number of all frames,

FER= (1 − correct frames
total frames

)× 100%

. We also use the confusion matrices. Please see the experimental part of [ZGPBM06] for more details about
these measures.

Comparison protocol The comparison protocol is as follows : 1000 sequences with lengths uniformly dis-
tributed on[1, 20] are generated by the same HMM+DM model in Section3.3. We record at each time which
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TAB . 6 – Average Edit distances.
HMM+DM HMM+GMM HMM+GMM(Log,KLT)

WER (%) 11.75 35.14 35.62
FER (%) 12.21 33.30 45.71

Confusion matrices

(
2899 726
624 6808

) (
470 3155
527 6905

) (
1104 2521
2312 5120

)

hidden state and which mixture component generate the current sample as the ground truth. HMM+DM and
HMM+GMM models are trained on these data. Then we use Eq.1 to decode these sequences. Finally, WER,
FER and confusion matrices are computed to show the performances of these two models.

Experimental results In Table6, we list the experimental results. We can see in these generated data, the
HMM+DM model achieves the best performances in both measures.

“HMM+GMM” in Table 6 is the model trained directly on the discrete-distributiondata with full cova-
riances. The mean vectors and covariance matrices are also initialized by K-means algorithm.π, B andC are
randomly initialized as HMM+DM.

“HMM+GMM(Log,KLT)” in Table 6 is the model trained on the transformed data. We first take thelog on
the data to make them distributed more normally. Then KLT transform are applied on these data to decouple
the correlations between components. Finally, we apply HMM+GMM with diagonal covariance to these data.

The HMM+DM model trained on these data are (after reorder)

π =

(
0.506
0.494

)

B =

(
0.048 0.952
0.469 0.531

)

C =

(
0.319 0.518 0.164
0.237 0.336 0.426

)

A =











5.819 4.677 9.443 5.028
1.011 7.183 8.020 10.187
8.678 8.401 2.874 8.977
4.933 5.036 2.064 7.427
9.621 8.689 2.905 3.836
1.925 0.977 2.998 2.969











which again coincide well with the real parameters exceptπ (see the second column of the Table4 for the real
parameters).

4 Related work

Estimating single Dirichlet distribution dates back to Ronning’s paper in 1989 [Ron89], where the Newton-
Raphson method was used. Narayanan then gave the algorithm explicitly in [ Nar91]. The Algorithm1 in this
report is essentially the same with Narayanan and Ronning’salgorithm. Minka [Min03] gave the fixed-point
iteration methods to estimation single Dirichlet.

The Dirichlet mixture model is proposed by Bouguila and et al. in [BZV04]. They use Newton method (or
natural gradient descent method [iABNK +87]) to optimize the incomplete log-likelihood directly. We propose,
instead, a EM framework for parameter estimation in this report (see Algorithm4).

HMM+GMM model has been widely used in many fields, including speech processing [Ben96, RJ93] [...],
computer vision[...] and etc. A good reference for the derivation of this model can be found at [Bil97]. To the
best of our knowledge so far, there is no work on HMM with Dirichlet mixture emission.

5 Discussion and future work

As Dirichlet and Gaussian distributions all belong to exponential family, it is useful to generalize HMM+GMM
and current HMM+DM to HMM with mixture of exponential familyemission. For convenience, we call this
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generalization as HMM+EFM. From another view point, HMM+EFM can be viewed as the dynamic (or HMM)
extension of the clustering methods with Bregman divergences [BMDG05]. This extension is under our current
investigation.

One potential improvement of this algorithm will be the suitable initialization. Some heuristic or greedy
methods could be devised here to improve avoid the problem coursed by permutation-invariant property of
clustering methods used in Algorithm2.

In their work on Dirichlet mixtures [BZV04], Bouguila and et al. proposed to use an entropy-based criterion
for model selection. We will also investigate the model selection for HMM+DM model. And we will further
relax the constraint that all Dirichlet mixtures associated with the Markov hidden states have the same number
of Dirichlet components.

Finally, we will find some applications of the current model.Actually, HMM+DM can be applied to any
scenarios where time-varying bag-of-word features are extracted. Before applying the HMM+DM model on
these features, we should better to apply pLSA [Hof99] model to get lower dimensional featuresp(z | d) (z is a
latent aspect andd is a document or feature). The reasons are two folds : Firstly, according to our experiences,
the computational costs are almost linear with the feature dimension. So dimension reduction will, especially
in case of very large vocabulary, greatly improve the algorithm’s efficiency while reducing the number of
parameters. Secondly, as many bag-of-word features are very sparse, after applying pLSA model, we could get
more compact representation of original data.
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A Derivations for inference procedure

Here, we list the detailed derivations of the inference procedure presented in Section2.2.

Normalized Alpha Recursion Alpha recursion is a forward iteration. For numerical stability, we use the
normalized alpha recursion as follows :

ᾱt
htmt

∆
= p(ht, mt | x0, .., xt)

ᾱt+1
ht+1mt+1

=
p(x0, .., xt+1, ht+1, mt+1)

p(x0, .., xt, xt+1)

=

∑

ht,mt
p(x0, .., xt+1, ht, mt, ht+1, mt+1)

∑

h′

t,m
′

t,h
′

t+1
,m′

t+1

p(x0, ..., xt+1, h′
t, m

′
t, h

′
t+1, m

′
t+1)

=

∑

ht,mt
p(x0, .., xt, ht, mt) · p(ht+1 | ht) · p(mt+1 | ht+1) · p(xt+1 | ht+1, mt+1)

∑

h′

t,m
′

t,h
′

t+1
,m′

t+1
p(x0, ..., xt, h′

t, m
′
t) · p(h′

t+1 | h′
t) · p(m′

t+1 | h′
t+1) · p(xt+1 | h′

t+1, m
′
t+1)

=

∑

ht,mt
p(ht, mt | x0, .., xt) · p(ht+1 | ht) · p(mt+1 | ht+1) · p(xt+1 | ht+1, mt+1)

∑

h′

t,m
′

t,h
′

t+1
,m′

t+1

p(h′
t, m

′
t | x0, ..., xt) · p(h′

t+1 | h′
t) · p(m′

t+1 | h′
t+1) · p(xt+1 | h′

t+1, m
′
t+1)

=

∑

ht,mt
ᾱt

htmt
· bhtht+1

· Cht+1mt+1
· p(xt+1 | ht+1, mt+1)

∑

h′

t,m
′

t,h
′

t+1
,m′

t+1

ᾱt
h′

tm′

t
· bh′

th
′

t+1
· Ch′

t+1
m′

t+1
· p(xt+1 | h′

t+1, m
′
t+1)

Note,ᾱt
htmt

is the filtered estimate of the state. The initial sates can becalculated as follows :

ᾱ0
km = p(h0 = k, m0 = m | x0)

=
p(x0 | h0 = k, m0 = m) · p(m0 = m | h0 = k) · p(h0 = k)

∑K

k′=1

∑M

m′=1 p(x0 | h0 = k′, m0 = m′) · p(m0 = m′ | h0 = k′) · p(h0 = k′)

=
πk · Ckm · p(x0 | h0 = k, m0 = m)

∑K

k′=1

∑M

m′=1 πk′ · Ck′m′ · p(x0 | h0 = k′, m0 = m′)

Beta Recursion Beta recursion is a backward iteration as

βt
htmt

∆
= p(xt+1, .., xT | ht, mt)

βt−1
ht−1mt−1

=
∑

ht,mt

bht−1ht
· Chtmt

· p(xt|ht, mt) · β(ht)

Gamma Recursion Gamma values are the smoothed estimates of the states, giventhe whole set.

γt
htmt

∆
= p(ht, mt | x0, .., xT )

γt
htmt

=
∑

ht+1,mt+1

p(ht, mt, ht+1, mt+1 | x0, .., xT )

=
∑

ht+1,mt+1

p(ht, mt | x0, .., xT , ht+1, mt+1) · p(ht+1, mt+1 | x0, .., xT )

=
∑

ht+1,mt+1

p(ht, mt | x0, .., xt, ht+1, mt+1) · γt+1
ht+1mt+1

=
∑

ht+1,mt+1

p(ht, mt, ht+1, mt+1 | x0, .., xt)

p(ht+1, mt+1 | x0, .., xt)
· γt+1

ht+1mt+1
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=
∑

ht+1,mt+1

p(ht, mt | x0, .., xt) · p(ht+1 | ht) · p(mt+1 | ht+1)
∑

h′

t,m
′

t
p(h′

t, m
′
t, ht+1, mt+1 | x0, .., xt)

· γt+1
ht+1mt+1

=
∑

ht+1,mt+1

p(ht, mt | x0, .., xt) · p(ht+1 | ht) · p(mt+1 | ht+1)
∑

h′

t,m′

t
p(h′

t, m
′
t | x0, .., xt) · p(ht+1 | h′

t) · p(mt+1 | ht+1)
· γt+1

ht+1mt+1

=
∑

ht+1,mt+1

ᾱt
htmt

· bhtht+1
∑

h′

t,m′

t
ᾱt

h′

tm
′

t
· bh′

tht+1

· γt+1
ht+1mt+1

(or) =
∑

ht+1,mt+1

αt
htmt

· bhtht+1
∑

h′

t,m′

t
αt

h′

tm
′

t
· bh′

tht+1

· γt+1
ht+1mt+1

The initial state can be initialized as

γT
km = ᾱT

km .

The ηt
ht

variables We need the following variables as the separators in the junction tree :

ηt
ht

= p(ht | x0, ..., xT )

=

M∑

m=1

p(ht, mt = m | x0, ..., xT )

=

M∑

m=1

γt
htm

The ξt
htht+1

variables We need also the following variables :

ξt
htht+1

∆
= p(ht, ht+1 | x0, .., xT )

=
∑

mt,mt+1

p(ht, mt, ht+1, mt+1 | x0, ..., xT )

=
∑

mt,mt+1

p(ht, mt | x0, .., xT , ht+1, mt+1) · p(ht+1, mt+1 | x0, .., xT )

=
∑

mt,mt+1

p(ht, mt | x0, .., xt, ht+1, mt+1) · γt+1
ht+1mt+1

=
∑

mt,mt+1

p(ht, mt, ht+1, mt+1 | x0, .., xt)

p(ht+1, mt+1 | x0, .., xt)
· γt+1

ht+1mt+1

=
∑

mt,mt+1

p(ht, mt | x0, .., xt) · p(ht+1 | ht) · p(mt+1 | ht+1)
∑

h′

t,m′

t
p(ht+1, mt+1, h′

t, m
′
t | x0, .., xt)

· γt+1
ht+1mt+1

=
∑

mt,mt+1

ᾱt
htmt

· bhtht+1
· p(mt+1 | ht+1)

∑

h′

t,m
′

t
p(h′

t, m
′
t | x0, .., xt) · p(ht+1 | h′

t) · p(mt+1 | ht+1)
· γt+1

ht+1mt+1

=
∑

mt,mt+1

ᾱt
htmt

· bhtht+1
∑

h′

t,m
′

t
ᾱt

h′

tm′

t
· bh′

tht+1

· γt+1
ht+1mt+1

or =
∑

mt,mt+1

αt
htmt

· bhtht+1
∑

h′

t,m
′

t
αt

h′

tm′

t
· bh′

tht+1

· γt+1
ht+1mt+1
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B Derivations for parameter estimation

In this section, we list some derivation involved in Section2.3.

B.1 Inverse of Hessian matrix in Eq.13

The inverse of the Hessian can be easily computed by the its special structure. By using the following fact :

(I ±XXT )−1 = I ∓X(I ±XT X)−1XT ,

which is one special case of the matrix inverse lemma. we have

H−1 = −(Λ− z11T)−1

= −Λ− 1
2 (I− (

√
zΛ− 1

2 1)(
√

zΛ− 1
2 1)T )−1Λ− 1

2

= −Λ−1 − 1

z−1 −∑N

n=1(Λ
nn)−1

Λ−111TΛ−1

B.2 Energy term

The complete log likelihood is

log p(X ,H) =

D∑

d=1

log p(Xd, Hd)

=
D∑

d=1

log

{

p(h0)p(m0 | h0)p(xd
0 | h0, m0)

Td−1∏

t=0

[
p(ht+1 | ht)p(mt+1 | ht+1)p(xd

t+1 | ht+1, mt+1)
]

}

=

D∑

d=1

log

{

p(h0)

(
Td∏

t=0

p(mt | ht)

)(
Td−1∏

t=0

p(ht+1 | ht)

)(
Td∏

t=0

p(xd
t | ht, mt)

)}

=

D∑

d=1

log

{

πh0

(
Td∏

t=0

Chtmt

)(
Td−1∏

t=0

bhtht+1

)(
Td∏

t=0

Dir
(
xd

t | aht,mt·

)

)}

=

D∑

d=1

log

{

πh0

(
Td∏

t=0

Chtmt

)(
Td−1∏

t=0

bhtht+1

)(
Td∏

t=0

[

Γ(
∑

n aht,mtn)
∏

n Γ(aht,mtn)

N∏

n=1

(xd
tn)aht,mtn−1

])}

=

D∑

d=1

log πh0
+

D∑

d=1

Td∑

t=0

log Chtmt
+

D∑

d=1

Td−1∑

t=0

log bhtht+1
+

D∑

d=1

Td∑

t=0

log Γ(

N∑

n=1

aht,mtn)

−
D∑

d=1

Td∑

t=0

N∑

n=1

log Γ(aht,mtn) +
D∑

d=1

Td∑

t=0

N∑

n=1

(aht,mtn − 1) log xd
tn

where for clarity, we omit the super-scripture ofd in hd
i andmd

i .
Then the energy term is

〈log p(X ,H)〉q(H) =

D∑

d=1

〈

log πhd
0

〉

q(hd
0
)

=

D∑

d=1

K∑

k=1

M∑

m=1

γ0,d
km log πk

+
D∑

d=1

Td∑

t=0

〈log Chtmt
〉q(hd

t ,md
t ) +

D∑

d=1

Td∑

t=0

K∑

k=1

M∑

m=1

γt,d
km log Ckm

+

D∑

d=1

Td−1∑

t=0

〈
log bhtht+1

〉

q(hd
t ,hd

t+1
)

+

D∑

d=1

K∑

i,j=1

Td−1∑

t=0

ξt,d
ij log bij
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+
D∑

d=1

Td∑

t=0

〈

log Γ(
N∑

n=1

aht,mtn)

〉

q(hd
t ,md

t )

+
D∑

d=1

Td∑

t=0

K∑

k=1

M∑

m=1

γt,d
km log Γ(

N∑

n=1

ak,mn)

−
D∑

d=1

Td∑

t=0

N∑

n=1

〈log Γ(aht,mtn)〉
q(hd

t ,md
t ) −

D∑

d=1

Td∑

t=0

N∑

n=1

K∑

k=1

M∑

m=1

γt,d
km log Γ(ak,mn)

+

D∑

d=1

Td∑

t=0

N∑

n=1

〈
(aht,mtn − 1) log xd

tn

〉

q(hd
t ,md

t )
+

D∑

d=1

Td∑

t=0

N∑

n=1

K∑

k=1

M∑

m=1

γt,d
km(ak,mn − 1) logxd

tn

So by the summation convention, we get Eq.2.

B.3 Entropy term

Then entropy term can be calculated as

Etr(H) = −
〈

D∑

d=1

log q(Hd)

〉

q(H)

= −
D∑

d=1

〈

log

(

q(hd
0, m

d
0)

Td∏

t=1

q(hd
t−1, h

d
t )q(h

d
t , m

d
t )

q(hd
t−1)q(h

d
t )

)〉

q(Hd)

=

D∑

d=1

〈
Td∑

t=0

2 log q(hd
t )− log q(hd

0)− log q(hd
Td

)−
Td∑

t=0

log q(hd
t , m

d
t )−

Td∑

t=1

log q(hd
t−1, h

d
t )

〉

q(Hd)

=

D∑

d=1

Td∑

t=0

2
〈
log q(hd

t )
〉

q(hd
t )
−
〈
log q(hd

0)
〉

q(hd
0
)
−
〈
log q(hd

Td
)
〉

q(hd
Td

)

−
D∑

d=1

Td∑

t=0

〈
log q(hd

t , m
d
t )
〉

q(hd
t ,md

t )
−

D∑

d=1

Td∑

t=1

〈
log q(hd

t−1, h
d
t )
〉

q(hd
t−1

,hd
t )

=
D∑

d=1

Td∑

t=0

K∑

k=1

2ηt,d
k log ηt,d

k −
D∑

d=1

K∑

k=1

η0,d
k −

D∑

d=1

K∑

k=1

ηTd,d
k

−
D∑

d=1

Td∑

t=0

K∑

k=1

M∑

m=1

γt,d
km log γt,d

km −
D∑

d=1

Td−1∑

t=0

K∑

i,j=1

ξt,d
ij log ξt,d

ij

or = 2ηt,dk log ηt,dk − η0,d
k log η0,d

k − ηTd,d
k log ηTd,d

k − γt,d
km log γt,d

km − ξt,dij log ξt,dij (by summation convention)

d Newton method with nonnegative constraints . In previous part, we
in to impose the non-negative constraints by

B.4 Problem with Bouguila’s parametrization

In Section2.3.1, we do not treat the nonnegative constraints on the Dirichlet parametersan > 0. Bouguila
and et al. [BZV04] propose to use the following change of variable to impose the nonnegative constraints
explicitly :

an = ebn .

Then the problem is

L(b) = log Γ(
N∑

n=1

exp(bn))− log Γ(exp(bn)) + exp(bn) · log x̄n (23)
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for anybn ∈ R.

∂L(b)

∂bn

=exp(bn) ·Ψ0(

N∑

n=1

exp(bn))− exp(bn) ·Ψ0(exp(bn)) + exp(bn) · log x̄n

∂2L(b)

∂b2
n

=exp(bn) ·Ψ0(
N∑

n=1

exp(bn))− exp(bn) ·Ψ0(exp(bn))

+ exp(2bn) ·Ψ1(

N∑

n=1

exp(bn))− exp(2bn) ·Ψ1(exp(bn))

+ exp(bn) · log x̄n

∂2L(b)

∂bnbn′

=exp(bn + bn′) ·Ψ1(

N∑

n=1

exp(bn)) n 6= n′

So the Hessian is

H =zrrT + Λ

where z =Ψ1(

N∑

n=1

exp(bn))

r =(eb1 , · · · , ebN )T

Λnn =− exp(2bn) ·Ψ1(exp(bn))

+ exp(bn) ·Ψ0(

N∑

n=1

exp(bn))− exp(bn) ·Ψ0(exp(bn))

+ exp(bn) · log x̄n

The problem for this method is that after changing of variables, the objective function is no longer convex,
which can be easily verified by some numerical trials. For example, if we generate6 samples on 2-dimensional
probabilistic simplex :





0.468 0.456 0.657 0.168 0.407 0.250
0.258 0.100 0.305 0.404 0.319 0.419
0.275 0.444 0.038 0.428 0.274 0.331





Then log x̄n =
(
−1.005 −1.294 −1.437

)T
. For a pointa =

(
1 2 3 4 5

)T
, or equivalentlyb =

(
0.000 0.693 1.099

)T
, we can calculate that

H =





−0.185 0.363 0.544
0.363 −1.875 1.088
0.544 1.088 −3.884





with eigenvalues :
(
−4.391 −1.606 0.052

)
.

So we prefer to use the original parametrization.

C Code list

In this section, we list some core procedures of this report written by the authors. You can find all the sourse
codes inhttp://www.idiap.ch/ ∼cle/papers/resources/SourseCodes for HMMDM.tar.gz .

http://www.idiap.ch/~cle/papers/resources/SourseCodes_for_HMMDM.tar.gz
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Generating samples from single Dirichlet distribution :

function Data = GenDir(a,n)
% Generat samples from single Dirichlet distribution.
% Input:
% a: M-by-1 vector. Dirichlet parameter
% n: Number of samples.
% Output:
% Data: M-by-N matrix with each column being one sample.
% Note: This function is adapted from Minka’s function: diri chelt_sample.m

Generating samples from a mixture of Dirichlet distributions :

function Data = GenMixtureDir(A,Pi,Number)
% Generate samples from Dirichlet mixture model.
% Input:
% A: M-by-N matrix. Parameters for Mixture of Dirichlet
% each row is one Dirichlet.
% N: Data dimension
% M: number of mixture
% Number: Number of samples to generate.
% Pi: M-by-1 vector. Prior distribution for each Dirichlet.
% Output:
% Data: N-by-Number matrix with each column being one sample .

Initializing the mixture of Dirichlet (Algorithm 2) :

function [A, Pi] = MomentMatchingInitDM(M,DataSet)
% Initialize the mixture of Dirichlet by Kmeans + Moment Matc hing.
% Input:
% M: Number of mixture components (M >=1).
% DataSet: N-by-T sample matrix with
% N is the data dimension
% T is the number of samples.
% Output:
% A: M-by-N matrix, with each row corresponding one mixture c omponent.
% Pi: M-by-1 probability vector.
% Note: use the kmeans.m in the statistics toolbox

Estimating single Dirichlet distribution in Algorithm 1 :

function aNew = EstDirchlet(a,nx)
% Estimating single Dirichlet distribution by Newton metho d.
% Input:
% a: Initial parameter for the Dirichlet distr. (Column vect or)
% nx: Mean of log samples.
% Output:
% aNew: a column vector corresponding to Dirichlet paramete rs.

"Script_Test_SingleDirichlet.m" is a demo and test script for this function.
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Evaluate the data’s log-likelihoods relative to a Dirichlet model :

function p = Dirichlet_loglike(a, data)
% Evaluate the data’s log-likelihoods relative to a Dirichl et model.
% Input:
% a: a N-by-1 column vector, Dirichlet parameter.
% data: a N-by-T matrix, with each column being one sample (su m to one).
% Output:
% p: a 1-by-T row vector for log likelihoods.
% Note: This procedure is adapted from Minka’s dirichlet_lo gProb.m

Calculating the samples’ likelihood for given Dirichlet model (either mixture or not) :

function obslik = dataLikelihood_DM(A,data,isLog)
% Calculate the data likelihood for the Dirichlet mixture.
% Input:
% A: M-by-N-by-K matrix, parameters of DM.
% M* K is number of mixture components.
% N is sample dimension.
% When K =1, A is a matrix; When K=1 and M=1, it is a single Dir.
% data: N-by-T matrix. T is the sample number.
% isLog: 0 - output likelihood (Default), otherwise log like lihood.
% Output:
% obslik: T-by-M-by-K matrix.
% obslik(t,m,k) is the tˆth sample’s (log-)likelihood on
% (m,k)ˆth mixture components.

Estimating the parameters of the mixture of Dirichlet by EM algorithm (Algorithm 4)

function [A, Pi] = EstMixDirichlet(Data, M)
% Estimate the parameters of the mixture of Dirichlet by EM al gorithm.
% Input:
% Data: N-by-T data matrix. N is data dimension; T is number of samples.
% M: number of mixture components.
% Output:
% A: M-by-N matrix, with each row corresponding to one Dirich let.
% Pi: M-by-1 probability vector.

Calculate the Entropy

function E = entropy_base_e(Distr)
% Calculate the Entropy using log based on e, instead 2.
% Input:
% Distr: a matrix, with each row is a distribution.
% Output:
% E: a column vector, corresponding to each the entropy of eac h distr.

Inference procedure for general HMM + Mixture of density model (Algorithm 5) :

% function [Gm,Xi] = forback(B,C,Pi,obslik)
% Inference procedure for general HMM + Mixture of density mo del.
% Input:
% B: K-by-K probability transition matrix.
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% K is the number of hidden states.
% B(i,j) = p(h=j|h=i). Then each row of B should sum to 1.
% C: K-by-M probability matrix.
% M is the number of mixture densities.
% C(i,j) = p(m=j|h=i). Then each row of C should sum to 1.
% Pi: K-by-1 column vector, initial probability of hidden st ates.
% obslik: T-by-M-by-K likelihood (not log likelihood) arra ys.
% T is the sample number.
% obslik(t,m,k) is tˆth samples likelihood on (m,k)ˆth comp onent.
% Output: the smoothed states
% Gm: T-by-M-by-K matrix. Gm(t,m,k) = p(h_t = k,m_t = m |X_1,. ..,X_T),
% Xi: (T-1)-by-K-by-K matrix. Xi(t,k1,k2)=p(h_t=k1,h_{t +1}=k2 |X_1,...,X_T),
% t=1,...,T-1.

Generating one sequence of random samples from HMM+DM model:

function Data = GenDynamicMixtureDir(A,B,C,Pi,Number)
% Generate one sequence of random samples from HMM+DM model.
% Input:
% A: M-by-N-by-K positive array.
% M is number of Dirichlet components.
% N is sample’s dimension.
% K is the number of hidden states.
% A(m,:,k) is the Dirichlet corresponding to (m,k)ˆth Diric hlet.
% B: K-by-K probability transition matrix.
% B(i,j) = p(h=j|h=i). Then each row of B should sum to 1.
% C: K-by-M probability matrix.
% C(i,j) = p(m=j|h=i). Then each row of C should sum to 1.
% Pi: K-by-1 column vector, initial probability of hidden st ates.
% Number: Number of samples to generate.
% T is the sample number.
% obslik(t,m,k) is tˆth samples likelihood on (m,k)ˆth comp onent.
% Output:
% Data: N-by-Number matrix with each column is one sample.
% Ind: 2-by-Number matrix, with Ind(1,t) in {1,...,K} denot ing which
% hidden state sample t belongs. And Ind(2,t) in {1,...,M}
% denoting which Dirichlet generating sample t.

Estimating parameters of HMM+DM by EM algorithm (Algorithm 3) :

function [A, B, C, Pi] = EstHMMDM(Data, K, M)
% Estimate parameters of HMM+DM by EM algorithm.
% Input:
% Data: D-by-1 cell, with Data{d} is N-by-Td data matrix.
% D is the number of sequences;
% N is data dimension;
% Td is number of samples in dˆth sequence.
% K: number of hidden states.
% M: number of mixture components.
% Output:
% A: M-by-N-by-K positive array.
% A(m,:,k) is the Dirichlet corresponding to (m,k)ˆth Diric hlet.
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% B: K-by-K probability transition matrix.
% B(i,j) = p(h=j|h=i). Then each row of B should sum to 1.
% C: K-by-M probability matrix.
% C(i,j) = p(m=j|h=i). Then each row of C should sum to 1.
% Pi: K-by-1 column vector, initial probability of hidden st ates.

Calculating the hard clustering results from the smoothed posteriors :

function Ind = HardClusterGamma(Gm)
% Calculate the hard clustering results from the smoothed po steriors Gamma.
% Input:
% Gm: the smoothed posteriors Gamma. 1-by-D cell.
% Gm{d} is a Td-by-M-by-K array:
% D is sequence number
% M is the number of hidden states for Dirichlet mixture
% K is the number of hidden states for h
% Td is sample number of the dˆth sequence
% Output:
% Ind: 1-by-D cell.
% Ind{d} is a 2-by-Td matrix. The tˆth sample’s is generated
% by (h=Ind{d}(1,t),m=Ind{d}(2,t))ˆth Dirichlet.
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Algorithm 5 : General inference procedure for HMM + Mixture density model
Input :
– Model parametersB ∈ R

K×K
+ , C ∈ R

K×M
+ andπ ∈ R

K×1
+ , where

– K is the number of hidden states.
– M is the number of mixture components.

– Samples likelihoodL ∈ R
T×M×K
+ , whereT is the sample number.

Lt
mk is thetth sample’s likelihood for(m, k)th mixture component.

Result:
– The smoothed probability{γt

k | t = 0, · · · , T ; k = 1, · · · , K}
– The joint probability of consecutive two states{ξt

ij | t = 0, · · · , T − 1; i, j = 1, · · · , K}
begin

// Forward pass
for t = 0 to T do

s← 0;
for k = 1 to K do

for m = 1 to M do
if t = 0 then

v ← πk · Ckm · Lt
mk;

else
v ←∑K

k′=1

∑M

m′=1 ᾱt−1
k′m′ · bk′k · Ckm · Lt

km;
end
ᾱt

km ← v;
s← s + v ;

end
end
for k = 1 to K do

for m = 1 to M do
ᾱt

km ← ᾱt
km/s;

end
end

end
// Backward pass
for t = T to 0 do

if t 6= T then
for k = 1 to K do

ck ←
∑K

i=1

∑M

m=1 ᾱt
im · bik;

end
end
for k = 1 to K do

for m = 1 to M do
if t = T then

γt
km ← ᾱt

k;
else

γt
km ←

∑K

k′=1

∑M

m′=1
ᾱt

km · bkk′

ck′
· γt+1

k′m′ ;

ξt
kk′ ←

∑M

m=1

∑M

m′=1
ᾱt

km · bkk′

ck′
· γt+1

k′m′ ;

end
end

end
end
return {γt

km, ξt′

kk′ | t = 0, · · · , T ; t′ = 0, · · · , T − 1; k, k′ = 1, · · · , K; m = 1, · · · , M}
end
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