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Abstract
Accurate detection, localization and tracking of multiple moving speakers permits a wide spectrum

of applications. Techniques are required that are versatile, robust to environmental variations,

and not constraining for non-technical end-users. Based on distant recording of spontaneous multi-

party conversations, this thesis focuses on the use of microphone arrays to address the question

“Who spoke where and when?”. The speed, the versatility and the robustness of the proposed

techniques are tested on a variety of real indoor recordings, including multiple moving speakers as

well as seated speakers in meetings. Optimized implementations are provided in most cases.

We propose to discretize the physical space into a few sectors, and for each time frame, to deter-

mine which sectors contain active acoustic sources (“Where? When?”). A topological interpretation

of beamforming is proposed, which permits both to evaluate the average acoustic energy in a sector

for a negligible cost, and to locate precisely a speaker within an active sector. One additional contri-

bution that goes beyond the field of microphone arrays is a generic, automatic threshold selection

method, which does not require any training data. On the speaker detection task, the new approach

is dramatically superior to the more classical approach where a threshold is set on training data.

We use the new approach into an integrated system for multispeaker detection-localization.

Another generic contribution is a principled, threshold-free, framework for short-term clustering

of multispeaker location estimates, which also permits to detect where and when multiple trajec-

tories intersect. On multi-party meeting recordings, using distant microphones only, short-term

clustering yields a speaker segmentation performance similar to that of close-talking microphones.

The resulting short speech segments are then grouped into speaker clusters (“Who?”), through

an extension of the Bayesian Information Criterion to merge multiple modalities. On meeting

recordings, the speaker clustering performance is significantly improved by merging the classical

mel-cepstrum information with the short-term speaker location information.

Finally, a close analysis of the speaker clustering results suggests that future research should

investigate the effect of human acoustic radiation characteristics on the overall transmission chan-

nel, when a speaker is a few meters away from a microphone.

Keywords: Microphone arrays; speaker localization, tracking, segmentation, and clustering; spontaneous

multi-party speech processing.





Version abrégée
La détection, la localisation et le suivi dans l’espace de plusieurs locuteurs permet un large

spectre d’applications. Les solutions techniques doivent être génériques, robustes aux variations

environnementales et non-contraignantes pour les utilisateurs. Cette thèse propose d’utiliser des

enregistrements distants de conversations spontanées pour répondre à la question “Qui parle, où

et quand ?”. La vitesse, la généricité et la robustesse des solutions proposées sont évaluées sur des

enregistrements variés, incluant plusieurs locuteurs en déplacement, ou bien plusieurs locuteurs

assis dans une réunion. Des implémentations optimisées sont proposées.

Nous proposons de discrétiser l’espace physique en quelques secteurs, et, pour chaque trame

temporelle, de déterminer quels secteurs contiennent des sources acoustiques actives (“Quand ?

Où ?”). Nous proposons une interprétation topologique du “beamforming”, qui permet à la fois

d’évaluer l’énergie acoustique moyenne dans un secteur, et de localiser précisément un locuteur

dans un secteur actif. Une de nos contributions va au-delà du contexte des antennes de micro-

phones. Il s’agit d’une méthode générale pour la sélection automatique d’un seuil, sans données

d’entraı̂nement. Nous utilisons cette approche dans un système intégré de détection-localisation.

Une autre contribution générique est une méthode sans seuil pour le groupage court-terme des

positions spatiales de plusieurs locuteurs. Le groupage court-terme permet aussi de détecter où

et quand des trajectoires se coupent. Sur des enregistrements de réunions, avec seulement des

microphones distants, le groupage court-terme permet une segmentation ayant une performance

similaire à celle obtenue avec des microphones placés près de la bouche de chaque locuteur.

Les segments résultants sont ensuite eux-mêmes groupés, pour former idéalement un groupe

par personne (“Qui ?”), en étendant le Critère d’Information Bayésienne à des modalités multiples.

Sur des enregistrements de réunions, la performance du groupage est améliorée de façon significa-

tive en fusionnant l’information mel-cepstrale classique avec l’information court-terme donnée par

la position spatiale de chaque locuteur. Une analyse détaillée des résultats du groupage suggère,

comme direction pour des recherches futures, d’étudier l’effet de la radiation acoustique humaine

sur le canal global de transmission, lorsque le locuteur est à plusieurs mètres d’un microphone.

Mots-clés : Antennes de microphones ; localisation, suivi, segmentation, et groupage de locuteurs ; traite-

ment de la parole spontanée de plusieurs locuteurs.
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Chapter 1

Introduction

The present chapter first presents the objective and motivation of this thesis. The contributions are

then detailed, following the structure of the thesis. For the sake of readability, notation, definitions

and a detailed literature review are in separate chapters (2 and 3).

1.1 Objective and Motivation

The research presented in this thesis takes place in the context of “instrumented meeting rooms”

and the automatic processing and analysis of multimodal, multi-party meeting recordings. This

thesis investigates the analysis of spontaneous multi-party speech in a “non-invasive” manner. The

goal is to estimate where and when the various speakers are talking. “Non-invasive” means distant

microphones, for example a Uniform Cirular Array (UCA), as illustrated in Figure 1.1a. Compar-

ison between the signals received at the various microphones of the array permits to evaluate the

instantaneous locations of multiple acoustic sources (Krim and Viberg, 1996; Brandstein and Ward,

2001; Chen et al., 2006). For example, with a UCA, the instantaneous location of a given acoustic

source, at a given instant ti, is estimated in terms of azimuth angle θi, i.e. the source direction

in the horizontal plane (round face in Figure 1.1a and dots in Figure 1.1b). Non-invasive methods

can be opposed to very efficient but “invasive” methods that use close-talking microphones such

as lapels (Wrigley et al., 2005), where one microphone is worn by each speaker, usually near the

throat. Lapels permit to know precisely when each speaker is talking, since their signals are much

1
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Figure 1.1. (a) Uniform Circular Array (UCA) of microphones. (b) Objective of the thesis: to determine where and when
each speaker is talking (dotted lines and brackets). Each estimated azimuth angle is depicted by an arrow in (a) and
a dot in (b).

cleaner and have higher energy than those received by distant microphones, due to the difference

of distance. For example, in a series of meeting recordings a 10 dB difference of Signal-to-Noise-

Ratio (SNR) is reported (see Section 2.4 and Table 3.1). However, the range of applications permit-

ted by lapels is limited, because (1) they require each user to wear a lapel, and (2) they provide

practically no information about the location of each speaker.

On the contrary, distant1 microphones are “non-invasive”, which we define as passive (non-

emitting) and not attached to the human body. Thus, distant microphones put much less constraints

on the users. Moreover, arrays of distant microphones permit to estimate speakers’ locations based

on geometrical considerations (Krim and Viberg, 1996; Brandstein and Ward, 2001; Chen et al.,

2006). These two properties allow for a wide range of applications to spontaneous speech processing,

including surveillance (Cerwin, 2004), intelligent homes, offices and meeting rooms (AAAI, 2006),

hearing aids (Spriet, 2004), hands-free speech processing in cars (Lathoud et al., 2006a), as well as

autonomous robots (Sony Corp., 2006). For example, a user browsing a meeting may be interested

to jump directly to the presentation of a person, that is when that person stood up and moved to

the screen. This would require to determine where and when each speaker is talking (Figure 1.1b).

An important issue in spontaneous multi-party speech is “overlapped speech”, that is when two or

more participants talk at the same time (Shriberg et al., 2001). This, along with the presence of

background noise sources, calls for a multisource detection-localization2 system, that performs joint

detection and localization – as opposed to first detect, then locate.

1In the experiments reported in this thesis, we considered distances from about 0.5 m to about 2.5 m.
2See (Korzybski, 1994) on the use of the dash.
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Therefore, the purpose of this thesis is to build and evaluate an integrated system for the detec-

tion and localization of multiple speakers with distant microphones. In other words, the aim is to

determine who spoke where and when. The integrated system is designed to handle both static sce-

narios such as seated speakers in a meeting (McCowan et al., 2005), and dynamical scenarios such

as multiple moving speakers (Lathoud et al., 2005c). The structure of the thesis is a progression

from short-term, low-level analysis (where? when?) to longer-term, higher-level annotation (who?).

At each stage, research issues are investigated, and techniques are proposed and tested on a variety

of real meeting room recordings, including cases with multiple moving speakers as well as seated

speakers in meetings.

The directions taken throughout this thesis correspond to three underlying aims:

• to put the least possible constraints on often non-technical end-users,

• to adapt to varying conditions in a robust manner (one or multiple speakers, clean conditions

or background noise, etc.),

• to propose techniques that can be applied to a wider context than microphone arrays and/or

meetings.

Our work thus focussed on methods that are non-invasive, and use little or no training data. We

have also chosen not to address:

• Improvement of the precision of audio localization. Instead, we investigated whether jointly

detecting and locating speakers could be beneficial, as opposed to first detect, then locate.

• Smooth trajectories in space (e.g., the results of particle filtering, Kalman filtering etc.) over

long periods (several seconds or more). We argue that spontaneous multi-party speech is too

sporadic for long-term tracking. For example a speaker may move while being silent (speaker

#2 in Figure 1.1b). Tracking an explicit number of speech sources leads to difficult data as-

sociation issues (Vermaak et al., 2003), often requiring complex birth/death rules. We thus

investigated whether short-term analysis (on periods shorter than 250 ms) could be helpful

for higher-level tasks such as speech/non-speech segmentation and speaker clustering with

distant microphones.

• High performance systems that use lots of training data, but may not adapt to new conditions

and/or may be difficult to use for non-technical users.
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Figure 1.2. Proposed approach (a,b,c,d,e) and main body of the thesis.

Instead, this thesis explicitly addresses the following three tasks:

1. Instantaneous detection-localization: from a single time frame (about 30 ms) of speech recorded

with multiple microphones, the active audio sources are jointly detected and located. “Audio

sources” include human speech and “non-speech” noise.

2. Speech segmentation with distant microphones: determine speech and silence time intervals,

called “speech segments” and “silence segments”. This implicitly requires to discriminate be-

tween speech sources and non-speech sources (machines, body noises). Also, overlaps between

speakers (Shriberg et al., 2001) need to be properly detected.

3. Speaker clustering with distant microphones: for each speech segment, estimate who spoke.

No enrollment data is available, so speaker “names” are tags #1, #2, etc. (see Figure 1.1b).

The next section briefly summarizes the structure of the thesis, then details each of the main

contributions.

1.2 Structure of the Thesis and Contributions

Chapter 2 defines the notation and abbreviations. As mentioned above, this thesis does not investi-

gate improvement on instantaneous audio source localization, but rather associated issues, such as

joint detection-localization and its applications. Chapter 3 thus summarizes basics of microphone
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array-based instantaneous audio source localization, along with related work on detection. Exist-

ing works on meeting segmentation and speaker clustering are also summarized. The main body of

the thesis is organized in a bottom-to-top approach, starting with the creation of the AV16.3 evalu-

ation corpus (Chapter 4), then progressing from instantaneous, low-level analysis (where? when?)

to long-term analysis (who?). This progression spans three chapters (5, 6 and 7), as depicted by

Figure 1.2, and describes most of the research presented in this thesis. Finally Chapter 8 presents

applications of the developed techniques to other domains: hands-free speech enhancement in cars,

and noise-robust Automatic Speech Recognition. Chapter 9 concludes the thesis. Some lengthy def-

initions and laborious derivations lie in the Appendices, to keep the main body as light as possible.

The main contributions of the thesis are detailed below, following the structure of the thesis.

1.2.1 AV16.3 Corpus

Chapter 4 presents an audio-visual corpus recorded with two uniform circular microphone arrays

similar to the one depicted in Figure 1.2a, and three cameras. A variety of scenarios is included,

with multiple moving speakers and overlapped speech. Most recordings were made with real hu-

man speakers rather than loudspeakers. This choice is justified by studies on the specificity of

human speech radiation (Schwetz et al., 2004). The cameras are calibrated (Bouguet, 2004) and

used to define the ground-truth 3-D mouth locations with an error less than 1.2 cm. To the best

of our knowledge, this corpus was the first publicly available, annotated audio-visual corpus for

speaker localization and tracking.

1.2.2 Joint Detection-Localization of Multiple Audio Sources

Chapter 5 focuses on the instantaneous, static analysis of a time frame of speech (typically about 20

to 30 ms), for the detection and localization of multiple audio sources (Figure 1.2b). The evaluation

is conducted on the AV16.3 Corpus. For localization, we have chosen to use Steered Response

Power methods, which consist in finding the 3-D location(s) in space that maximize a beamformed

power (Krim and Viberg, 1996; DiBiase, 2000). Signal subspace methods such as MUSIC (Schmidt,

1986) are not used here, as they are known to be sensitive to modelling assumptions, which can lead

to issues with speech in reverberant environments (DiBiase et al., 2001). In all of the following,
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“audio source” includes both human and machine sources (laptop, projector, etc.), while “speech

source” includes only human speakers. The main contributions are detailed below:

• The Phase Domain Metric (PDM) is proposed. The idea is to interpret beamforming as a

comparison between observed phase values, and theoretical phase values associated with a

particular speaker location. The PDM is used as a principled framework for both detection

and localization of multiple audio sources.

First, the PDM is used in a sector-based joint detection-localization approach that drastically

reduces the localization search space for a negligible cost, while being able to detect and lo-

cate multiple simultaneous speakers. The space around an array is discretized into sectors,

and the relative phases between the microphones in the array are compared using the PDM,

to determine whether there is audio activity in each sector. This sector-based approach is

successfully applied in the meeting room domain, and in cars (Chapter 8). Optimized code is

provided, combining Matlab and C.

Second, within the active sectors, audio sources are precisely located through minimization of

the PDM. Optimized code is provided, combining Matlab and C.

• A second contribution is unsupervised probabilistic modelling of the acoustic power in a sec-

tor. It consists in modelling background noise and large magnitudes of audio activity jointly.

No training data is required, therefore the method is adaptive and robust to environmental

variations. It is introduced and applied to sector-based detection-localization in Chapter 5.

The same idea is also successfully applied to noise-robust ASR (Chapter 8).

• Based on such probabilistic modelling, a third contribution is the automatic selection of a

detection threshold, which permits to use the probabilistic models in mismatched conditions.

Microphone array experiments validate the approach on mismatched recording conditions.

Theoretical investigations show that it can also be applied to multiclass classification tasks.

As a result of Chapter 5, for each time frame separately, zero, one or more audio source location

estimates are produced (dots in Figure 1.2b).
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1.2.3 Short-Term Clustering of Instantaneous Location Estimates

Chapter 6 proposes to analyze the instantaneous location estimates produced in Chapter 5, to de-

tect speech utterances as segments in time and trajectories in space (brackets and dotted lines in

Figure 1.2c). The highly changing, sporadic nature of spontaneous speech leads to analyze in the

short-term only. Contributions include:

• A principled, unsupervised framework for short-term clustering of location estimates is pro-

posed (Figure 1.2c). Speech/Non-Speech (SNS) decisions are then taken for each cluster (Fig-

ure 1.2d), and only “speech” clusters are kept. This approach is shown to be advantageous

over individual frame-level SNS decisions, both in terms of final performance and robustness

to post-processing.

• Application to meeting segmentation: Short-term clustering is used to segment real recordings

of multi-party speech with distant microphones only, in terms of “speech” and “silence” for

each speaker. The evaluation is conducted on the M4 Corpus (McCowan et al., 2005). The

segmentation performance is comparable to that of close-talking microphones, with a dramatic

improvement on overlapped speech.

• Application to multi-target tracking: experiments on synthetic data show that short-term

clustering can be used to detect trajectory crossings in a threshold-free manner, which may be

useful as a prior step to the recombination of pieces of trajectories, such as (Jorge et al., 2004).

To summarize, using short-term clustering, “non-speech” noise sources are rejected, and the

beginning and end times of each “speech” utterance are detected: the beginning and the end of each

short-term cluster in Figure 1.2d. At this point, we still do not know who spoke a given utterance,

which is addressed below.

1.2.4 Speaker Clustering with Distant Microphones

Chapter 7 investigates the determination of the speaker identity of each speech utterance with

distant microphones. “Distant” means at least 30-40 cm between mouth and microphone (up to

2.2 meters in our data). As presented in Section 1.1, no enrollment data is available. Thus, we

investigate agglomerative clustering, where speech utterances from the same speaker are progres-

sively grouped together into a single “long-term” cluster. Contributions include:
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• A modification of the Bayesian Information Criterion (BIC) (Chen and Gopalakrishnan, 1998)

to merge multiple modalities (location cues and cepstral cues such as MFCCs), resulting in

an effective speaker clustering scheme, that uses distant microphones only. A speaker clus-

tering performance is obtained that is superior to that of a state-of-the-art approach. A close

analysis of the individual errors showed that further research should investigate the distance-

dependent variabilities of the acoustic features (MFCCs).

• Initial investigations on unsupervised audio-visual calibration, as an alternative to audio-only

distant speech processing. The goal is to increase the robustness of speaker clustering without

asking any technical operation from the users. We investigate the discovery of geometrical

links between non-colocated microphone array and camera, as well as the determination of

multiple depths area in the image plane of a camera.

To summarize, Chapter 7 addresses the highest-level annotation considered in this thesis, that

is to determine who spoke. A successful modification of the BIC criterion for speaker clustering

is proposed. An analysis of the errors suggests future directions of work, using audio only, or

combining audio and video.

1.2.5 Applications to Other Domains

Chapter 8 presents the respective applications of two concepts introduced above, to different tasks,

with different hardware and outside the meeting room environment:

• The PDM is used for the detection of two-speaker speech with a linear microphone array,

in a car. The application is the adaptation control of filters for the separation of driver and

co-driver speech. This was a joint work conducted with Mr. Julien Bourgeois, while he was

working at Daimler-Chrysler in Ulm, Germany. This collaboration was part of the HOARSE

Research Training Network3.

• The joint probabilistic modelling of speech and background noise, introduced above for detection-

localization, was also used to determine the noise level in single-channel spectral subtraction.

It was applied to noise-robust speech recognition on telephone channels. This was a joint

3http://www.hoarsenet.org/
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work conducted with my IDIAP colleagues Dr. Mathew Magimai-Doss, Prof. Hervé Bourlard,

Bertrand Mesot and Dr. Jithendra Vepa.

1.2.6 Other Contributions

The lapel baseline for speech segmentation (Section 6.5.3) was applied for fast pre-annotation of

meetings. This was a joint work with Mr. Maël Guillemot and Ms. Joanne Moore from IDIAP, and

Ms. Agnes Lisowska from the University of Geneva. Within the framework of the European AMI

project, human annotators had to mark in the AMI meeting recordings the beginning and end times

of each sentence, as well as the words spoken in between. According to meeting annotators, starting

from an automatic time segmentation makes the work much easier than starting from scratch.

The annotation tools developed for the AV16.3 Corpus (Chapter 4) were also used in the AMI WP4

effort led by Dr Daniel Gatica-Perez from IDIAP.

The work done in the course of this thesis contributed to the Swiss project IM2, as well as the

European projects HOARSE, M4 and AMI.

Most of the data and code developed in the course of this work are freely available at:

http://mmm.idiap.ch/Lathoud/
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Chapter 2

Notation and Definitions

This chapter defines mathematical notation and abbreviations used throughout the thesis. As much

as possible, we tried to keep the notations consistent across the chapters. There may be some

overlap between the notations of the different chapters, but the context should make clear in which

sense a notation is used. Section 2.5 contains a glossary of notations.

The mathematical tools used in this thesis are also briefly defined. The underlying foundations

can be found in (Moon and Stirling, 2000), and more specifically in (Rabiner and Schafer, 1978;

Oppenheim et al., 1999) for discrete-time signal processing of speech signals, and (Delmas, 1993;

Weisstein, 2006b) for probabilities and random variables.

2.1 Mathematics

A list of mathematical notations is given below. To avoid confusion, we distinguish with an under-

line:

• Deterministic quantities, such as a time domain signal x(t) and its Fourier transform X(k).

• Random variables, for example x (t) ∼ Nµ,σ, a Gaussian random variable.

Such a use of the underline may appear unusual. However, it is justified by the relatively large

number of individual notations defined in this thesis (see the glossary in Section 2.5).

11



12 CHAPTER 2. NOTATION AND DEFINITIONS

Integrals:∫

X

f (ξ) dξ is the integral of f (ξ) over the set X, for example X ⊂ R or X ⊂ R3.

In particular, for a real-valued variable ξ:
∫

R

f (ξ) dξ =

∫ +∞

−∞

f (ξ) dξ

Mathematical abbreviations:

iff If and only if.

i.i.d. Independently and identically-distributed.

pdf Probability Density Function.

r.v. Random variable.

r.v.s Random variables.

Mathematical notations:

· Product operator.
def
= Definition.

x x is a variable, taking one value in a set X of possible values (for example R, R2 or C).

= The variable is often identified with its value, for example x = 1.

x (t) or xt The variable x is a function of the variable t: a value x (t) or xt is associated to each value of t.

∝ Proportional to. x (t) ∝ s (t) ⇔ ∃ξ > 0 ∀t ∈ R x (t) = ξ · s (t).

N The set of natural integers: N
def
= {0, 1, 2, · · ·}.

ZZ The set of signed integers: ZZ
def
= {· · · ,−2,−1, 0, 1, 2, · · ·}.

R The set of real numbers.

e The Euler number (log e = 1).

j The imaginary unit (j2 = −1).

C The set of complex numbers C
def
=
{

ξ1 + jξ2

∣∣∣ [ξ1, ξ2]
T ∈ R2

}
.

< (c) ,= (c) The real and imaginary parts of a complex number c = < (c) + j · = (c).

z∗ Complex conjugate of z ∈ C: z∗ def
= < (z)− j · = (z).

|z| Magnitude of z ∈ C: |z| def
=
√

z · z∗ =

√
< (z)

2
+ = (z)

2.

∠z Phase of z ∈ C, defined modulo 2π: z = |z| · ej·∠z = |z| · (cos∠z + j · sin ∠z).
∑

Sum.
∏

Product.
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1proposition Indicator function, equal to 1 iff proposition is true, and 0 otherwise. For example 1x=7.456.

f ⊗ g Convolution of two functions.

In the continuous domain: ∀τ ∈ R (f ⊗ g) (τ)
def
=
∫

R
f (ξ) · [g (τ − ξ)]

∗
dξ.

In the discrete domain: ∀τ ∈ ZZ (f ⊗ g) (τ)
def
=
∑

n f (n) · [g (τ − n)]
∗.

δKr (x) Kronecker function, equal to 1 iff x = 0, and 0 otherwise: δKr (x) = 1x=0.

δ0 (x) Dirac distribution, which has the property:
∫ x

−∞ δ0 (ξ) dξ = 1x≥0.

≡ Congruence of angles modulo 2π: ξ1 ≡ ξ2 ⇔ ∃n ∈ ZZ ξ1 = ξ2 + n · 2π

x̂ Estimate of x – except in Appendix C, where the hat designates a new parameter value.

(x1, x2, · · · , xN ) An ordered sequence.

x1:N Abbreviation for an ordered sequence: x1:N
def
= (x1, x2, · · · , xN ),

or for a set (unordered): x1:N
def
= {x1, x2, · · · , xN}.

x (bold face) Column vector of variables x = [x1, x2, · · · , xN ]
T of dimension N .

‖x‖ L2-norm: ‖x‖ =
√∑N

n=1 x2
n.

M (bold face) Matrix of variables M (a, b) where a is the row and b the column.

I The identity matrix, which has ones on the diagonal and zeroes elsewhere.

|M| Determinant of a matrix M.

[·]T Transpose operator, for a matrix or a vector.

{x} Set of values: {x} contains all possible values of x.
{
x
∣∣ x2 = 5

}
Set of values:

{
x
∣∣ x2 = 5

}
contains all values of x such that x2 = 5.

[ξ1 ξ2] Interval set: [ξ1 ξ2]
def
= {ξ ∈ R | ξ1 ≤ ξ ≤ ξ2}

]ξ1 ξ2] Interval set: ]ξ1 ξ2]
def
= {ξ ∈ R | ξ1 < ξ ≤ ξ2}

7−
{
[(4 + x) 2] y2

}
An expression: in this case {·} and [·] have the same role as parentheses.

A \ B Set subtraction. The set B is subtracted from the set A: A \ B
def
= {ξ ∈ A | ξ /∈ B}.

X× Y Product of two sets X and Y: X× Y
def
= { (x, y) | x ∈ X and y ∈ Y}.

XN Set of N-dimensional vectors of values in X:

XN def
=
{

[x1, x2, · · · , xN ]
T
∣∣∣ ∀n ∈ {1 · · ·N} xn ∈ X

}
.
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2.2 Discrete Time Processing of Quasi-Stationary Signals

Speech waveforms are usually assumed quasi-stationary over a time frame of a length up to about

30 ms. A speech waveform x(t) ∈ R is thus broken into a series of time frames1, each time frame

spans up to about 30 ms 2. Discrete Fourier Transform (DFT) is then applied to each time frame

for spectral analysis. This section details the short-time windowed DFT, as well as the associated

notations. A glossary of notations can be found at the end of the chapter. We adopt a matrix notation

for the DFT: X = F · x.

Continuous Time Domain: x (t), y (t), s (t) and n (t) stand for real-valued waveform signals,

as captured by a microphone. t ∈ R is a continuous variable, its value is expressed in “sampling

periods”: the corresponding time value in seconds is t
fs

, where fs is called the “sampling frequency”,

expressed in Hertz (Hz).

The continuous time domain cross-correlation function is defined as:

gx,y (τ)
def
= [x (t)⊗ y (−t)] (τ) =

∫

R

x (ξ) y (ξ − τ) dξ (2.1)

Discrete Time Domain: To apply the Discrete Fourier Transform (DFT), the continuous time

signals3 are sampled at the sampling frequency fs, and the analysis is restricted to a single discrete

time frame centered on t, where a signal x (t) can be assumed to be stationary. A “discrete time

frame” means a vector of 2NF samples, denoted x(t) ∈ R2NF :

x(t) def
=

[
x(t) (1) , · · · , x(t) (n) , · · · , x(t) (2NF)

]T
(2.2)

where n is a generic integer index. Unless stated otherwise, the framing process is composed of

sampling at frequency fs, pre-emphasis with a 0.97 coefficient, followed by Hamming windowing:

x(t) (n)
def
=

[
0.54− 0.46 cos

(
π

n− 1

NF

)]
· [x (t−NF + n)− 0.97 · x (t−NF + n− 1)] (2.3)

In the following, we abbreviate “discrete time frame centered on t of the continuous time signal x (t)”

with “time frame x(t)”, “time frame t” or “time frame samples”.

1Unless stated otherwise, we use a 50 % overlap between any two consecutive time frames.
2Unless stated otherwise, each time frame spans 32 ms of data.
3All signals x (t) , y (t) etc. are assumed to be limited to the frequency band

h

0 fs

2

i

.



2.2. DISCRETE TIME PROCESSING OF QUASI-STATIONARY SIGNALS 15

For each time frame x(t), the corresponding vector of DFT coefficients is written X(t) ∈ C2NF :

X(t) def
=

[
X(t) (1) , · · · , X(t) (k) , · · · , X(t) (2NF)

]T
(2.4)

where k ∈ {1, · · · , 2NF} is called the discrete frequency index. The discrete frequencies

k ∈ {1, · · · , NF + 1} correspond to the real frequencies k−1
NF
· fs

2 , where fs is the sampling frequency

in Hertz, of the original signal x (t). Time frame samples and DFT coefficients are linearly related,

through the DFT and the Inverse Discrete Fourier Transform (IDFT). Using a matrix notation:

X(t) def
= F · x(t) (2.5)

x(t) = F−1 ·X(t) (2.6)

where each term of the matrix F and its inverse F−1 are respectively:

F (a, b)
def
= exp

(
−jπ

(a− 1) (b− 1)

NF

)
(2.7)

F−1 (a, b) =
1

2NF
exp

(
jπ

(a− 1) (b− 1)

NF

)
(2.8)

where a ∈ {1, · · · , 2NF} is the row index and b ∈ {1, · · · , 2NF} is the column index.

The instantaneous magnitude spectrum estimate M(t)
x ∈ R2NF , and the instantaneous energy4

spectrum estimate E(t)
x ∈ R2NF are derived from the complex spectrum estimate X(t):

M (t)
x (k)

def
=

∣∣∣X(t) (k)
∣∣∣ (2.9)

E(t)
x (k)

def
=

∣∣∣X(t) (k)
∣∣∣
2

(2.10)

Instantaneous and Average Correlation Spectrum: For any two signals x (t) and y (t), the

above-described time frame-based DFT analysis produces two series of DFT coefficients X(t) and

Y(t). The instantaneous complex correlation spectrum estimate is defined as G(t)
x,y ∈ C2NF , where:

G(t)
x,y (k)

def
= X(t) (k) ·

(
Y (t) (k)

)∗
(2.11)

4Energy is often confused with power, although this is not an issue with finite-length signals. See (Lehmann, 2004,
Section 1.5) for a discussion on this topic.
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Figure 2.1. Example of microphone arrays: dots depict microphones, lines depict pairs. (a) Uniform Linear Array with
Nm = 4 microphones and Nq = 6 pairs, (b) Uniform Circular Array with Nm = 8 microphones and Nq = 28 pairs.

The average complex correlation spectrum estimate is defined as Φx,y ∈ C2NF , where:

φx,y (k)
def
=

〈
G(t)

x,y (k)
〉

t
=

〈
X(t) (k) ·

(
Y (t) (k)

)∗〉
t

(2.12)

where 〈·〉t designates the average operator, applied to several time frames t.

The average complex coherence spectrum estimate is defined as Γx,y ∈ C2NF , where:

Γx,y (k)
def
=

φx,y (k)√
φx,x (k) · φy,y (k)

(2.13)

Zero-padding: Unless stated otherwise, zero-padding is not used in this thesis. However,

whenever the time domain GCC-PHAT needs to be evaluated, as defined in (3.9), zero-padding

is necessary to avoid circularity issues. In this thesis, zero-padding means concatenating the time

frame of pre-emphasized samples with an equal number of zeroes. In such a case, (2.3) is replaced

with:

x(zp,t) (n)
def
=




[
0.54− 0.46 cos

(
2π n−1

NF

)]
· [x (t−NF + n)− 0.97 · x (t−NF + n− 1)] if 1 ≤ n ≤ NF

0 if NF < n ≤ 2NF

(2.14)

Whenever zero-padding is used, the value of NF is doubled, so that the number of samples extracted

from x (t) is the same as in (2.3).
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2.3 Multichannel Signals

We denote microphone locations, signals and pairs as follows. Locations are denoted `
def
= [X ,Y,Z]

T,

for example a speaker location `ps, or a microphone location `m, where m ∈ {1, · · · , Nm} (Figure 2.1).

Two particular types of microphone arrays are often used in this thesis: the Uniform Linear Ar-

ray (ULA) and the Uniform Circular Array (UCA). The ULA has equispaced microphones placed

along a line (Figure 2.1a), and the UCA has equispaced microphones placed along a circle (Fig-

ure 2.1b).

The signal received by each microphone m is denoted xm (t). Following Section 2.2, for each

microphone m, each time frame of samples is denoted by the vector x
(t)
m ∈ R2NF , and the cor-

responding vector of DFT coefficients is denoted X(t)
m ∈ C2NF . As explained later in Chapter 3,

pairs of microphones can be used for acoustic source localization. With Nm microphones, there are

Nq = Nm · (Nm − 1) /2 possible pairs of microphones, indexed with q ∈ {1, · · · , Nq}. The two micro-

phones `aq
and `bq

of the q-th pair are indexed with the integers indices aq and bq (1 ≤ aq < bq ≤ Nm).

The notation τ (q) denotes a time delay between the two signals xaq
(t) and xbq

(t), expressed in sam-

pling periods. Note that τ (q) is not necessarily an integer: τ (q) ∈ R.

2.4 Probabilities and Random Variables

This subsection defines the notations of the probabilistic tools that are used in this thesis. We volun-

tarily simplified the definitions. Please refer to (Delmas, 1993; Weisstein, 2006b) for an exhaustive

definition of the underlying concepts, such as probability spaces and measures.

A deterministic variable x, which takes a single value (x = 1.234), can be seen as a realization of

a random variable (r.v.) x, among a set of possible values. The r.v. x is defined by a set X of possible

values (for example X = R), and a Probability Density Function (pdf) on X.

A pdf is a distribution5 px (x) on realizations x ∈ X of the r.v. x, such that:





∀x ∈ X px (x) ≥ 0∫

X

px (x) dx = 1
(2.15)

5Distributions are generalizations of functions, see (Rowland, 2002) for more on this subject. “pdf” are thus sometimes
called “probability distributions”.
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and for any subset Y ⊂ X, the probability that a realization x of x belongs to the set Y is given by:

P (x ∈ Y)
def
=

∫

Y

px (x) dx ∈ [0 1] (2.16)

For the sake of readability, we often use the following abbreviations:

P (Y) = P (x ∈ Y) =

∫

Y

px (x) dx probability of Y, in [0 1]

p (x) = p (x = x) = px (x) likelihood of x, may be greater than 1

(2.17)

Moreover, any equation written using a set of random variables (r.v.s) means that the equation is

valid for any realization of the set of r.v.s. For example:

p (a) = p (b) (2.18)

is strictly equivalent to:

∀a, b p (a = a) = p (b = b) (2.19)

A pdf can also be defined with respect to a prior knowledge H (model, hypothesis, realization of

another r.v., etc.), the likelihood is then a “conditional probability” p (x = x | H) = px|H (x). Bayes’

rule then gives the posterior probability of H, given that a realization x was observed:

P (H | x = x) =
p (x = x | H) · P (H)

p (x = x)
(2.20)

where p (H) and p (x = x) are referred to as the priors of the “events” H and x = x, respectively.

As above, in all terms of (2.20), we often abbreviate x = x with x.

The mean of a function g (x) with respect to a probability distribution p (x) = px (x) is defined as:

〈g (x)〉p(x)
def
=

∫

R

g (x) · p (x) · dx (2.21)

The expectation of a r.v. x, also known as the mean of the r.v. x, is defined as:

E {x} def
= 〈x〉p(x) (2.22)

=

∫

R

x · p (x) · dx =

∫

R

x · px (x) · dx (2.23)
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Similarly, the conditional expectation of a r.v. x with respect to a prior knowledge H, is defined as:

E {x | H} def
= 〈x〉p(x | H) (2.24)

=

∫

R

x · p (x | H) · dx =

∫

R

x · px|H (x) · dx (2.25)

The Signal-to-Noise Ratio (SNR) is the signal power divided by the noise power. Let us

consider a signal r.v. s and a noise r.v. n, both with values in R. The SNR is defined as the ratio of

the two second-order moments:

SNRs,n
def
=

E
{
s2
}

E {n2} (2.26)

The SNR is often expressed in decibels (dB), using the formula: 10 · log10

(
SNRs,n

)
.

In the case of speech, we only have observed values of time domain waveforms: speech s (t) and

noise n (t). Observe that speech is quasi-stationary over a short time frame (up to about 30 ms),

comprising samples (s (t−NF + 1) , · · · , s (t + NF)). Under second-order stationarity and ergodicity

assumptions, the SNR becomes the ratio of the time domain second-order moments:

SNRs,n (t) =

〈
s (t + a)

2
〉
−NF<a≤NF〈

n (t + a)
2
〉
−NF<a≤NF

(2.27)

The SNR is usually reported in the dB domain: 10 · log10

[
SNRs,n (t)

]
. In this thesis, the aver-

age SNR, over several time frames t, is also defined in the dB domain:
〈
10 · log10

[
SNRs,n (t)

]〉
t
.

Note: All definitions involving the DFT also apply to r.v.s. For example, the DFT X = F · x

implies that each DFT coefficient X (k) is a r.v., because it is a linear combination of the 2 ·NF r.v.s

(x (1) , · · · , x (2NF)).

Several types of pdf are used in this thesis:

x ∼ Nµ,Σ x is a multivariate normal r.v. in RN (also known as multivariate Gaussian r.v.),

with mean µ ∈ RN and covariance matrix Σ ∈ RN×N . The multivariate normal pdf is:

∀x ∈ RN Nµ,Σ (x)
def
= |2π ·Σ|− 1

2 · e− 1
2 (x−µ)TΣ

−1(x−µ)

x ∼ Nµ,σ x is a normal r.v. in R (also known as Gaussian r.v.),

with mean µ and standard deviation σ. The normal pdf is:

∀x ∈ R Nµ,σ (x)
def
=

1

σ
√

2π
· e−

(x−µ)2

2σ2
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x ∼ Gγ,β x is a Gamma r.v. of parameters γ > 0 and β > 0. The Gamma pdf is:

Gγ,β(x)
def
=





xγ−1·e
− x

β

βγ ·Γ(γ) if x ≥ 0

0 if x < 0

where Γ is the gamma function: Γ (γ)
def
=

∫ +∞

0

tγ−1 · e−t · dt

x ∼ Rσ,V x is a Rice r.v. with parameters σ > 0 and V ≥ 0. The Rice pdf Rσ,V (x) describes

the probability distribution of the envelope of the sum of a sinusoidal wave

and a zero mean narrowband Gaussian noise.

Rσ,V (x)
def
=





x
σ2 · e−

x2+|V |2

2σ2 · I0
(

x|V |
σ2

)
if x > 0

0 if x ≤ 0

where I0 is the modified Bessel function of the first kind.

In the particular case V = 0, the Rice pdf becomes a Rayleigh pdf:

Rσ,0 (x) =
x

σ2
· e− x2

2σ2

If we assume two zero-mean, uncorrelated Gaussian r.v. A ∼ N0,σ and B ∼ N0,σ

then |A + jB| ∼ Rσ,0 (Rice, 1944, 1945).

2.5 Glossary of Notations

There may be some overlap between the notations of the different chapters, but the context should

make clear in which sense a notation is used.

General purpose notations.

a, b, i, n,N,Q General purpose variables, usually indices (signed integers).

ξ, ξ,Ξ,Ξ General purpose variables, usually real-valued (scalars and column vectors).

f (·) , g (·) , h (·) General purpose functions.

x (t) , y (t) , s (t) , n (t) Continuous time domain signals: real-valued functions of the continuous time t ∈ R.

x(t),y(t), s(t),n(t) One time frame of discrete time domain samples: vectors in R2NF .

X(t),Y(t),S(t),N(t) One time frame of DFT coefficients: vectors in C2NF .

M(t)
x ,M(t)

y ,M(t)
s ,M(t)

n One time frame of magnitude values: vectors in R2NF .

E(t)
x ,E(t)

y ,E(t)
s ,E(t)

n One time frame of energy values: vectors in R2NF .

x Random variable (r.v.), of which x is a realization.
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Specific notations: Roman letters.

aq, bq Indices of the microphones `aq
and `bq

of the q-th pair:

two integers aq ∈ N and bq ∈ N such that 1 ≤ aq < bq ≤ Nm.

c Speed of sound in the air, in m/s.

d (u1,u2) Phase Domain Metric (PDM) between two vectors (u1,u2) ∈
(
RNq

)
×
(
RNq

)
.

fs Sampling frequency in Hz.

gx,y (τ) Continuous time domain cross-correlation between x (t) and y (t), where τ ∈ R.

g
(PH,t)
x,y Instantaneous discrete time domain GCC-PHAT for time frame t: g

(PH,t)
x,y ∈ R2NF .

ĝ
(PH,t)
x,y (τ) GCC-PHAT continuous cross-correlation function (τ ∈ R), for discrete time frame t.

k Discrete frequency index: k ∈ {1, · · · , 2NF}.

` Location vector: ` ∈ R3: ` = [X ,Y,Z]
T. E.g. microphone loc. `m, point source loc. `ps.

m,Nm Microphone index and number of microphones.

nC, n̂C (t) Number of correctly localized speakers: r.v. and its expected value for time frame t.

p (x) Likelihood that x = x.

P (x ∈ X) Probability that x ∈ X.

q,Nq Pair index and number of pairs of microphones.

ri = (θi, Ti) Location estimate, at azimuth θi (radians) and frame Ti (integer). i ∈ {1, · · · , Nr}.

š, Nš Sector index and number of sectors: š ∈ {1, · · · , Nš}.

šmin (k) Index of the sector with the minimum PDM, at the discrete frequency k.

t, tn Continuous time values, expressed in sampling periods: t ∈ R.

u,u Phase value in radians, and vector of phase values u =
[
u1, · · · , uq, · · · , uNq

]T.

uth
q (k, `) ,uth (k, `) Theoretical phase and vector of theoretical phases, for location `.

u
(t)
q (k) ,u(t) (k) Observed phase and vector of observed phases, for time frame t.

vš,n A location vš,n ∈ R3, used to sample the sector Sš. (š, n) ∈ {1, · · · , Nš} × {1, · · · , Nv}

w0, w1 Weights in a mixture, as in f (ξ) = w0 · f0 (ξ) + w1 · f1 (ξ).

xm (t) ,x
(t)
m ,X(t)

m For microphone `m: received signal, time frame, DFT coefficients.

A, At Binary frame state of time frame t: r.v. and its realization.

Bš, Bš,t Binary sector state of sector Sš at time frame t: r.v. and its realization (ground-truth).

B̂š,t Binary decision for sector Sš at time frame t (result).

Dš,k Root Mean Square of the PDM d on sector Sš, at discrete frequency k.
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E {x}, E {x | H} Expectation of a random variable, and conditional expectation.

E, Ei Label field: r.v. and its realization for location estimate ri.

F, F−1 DFT matrix and its inverse.

G(t)
x,y Instantaneous freq. domain cross-correlation for discrete time frame t: G(t)

x,y ∈ C2NF .

G(PH,t)
x,y Instantaneous freq. domain GCC-PHAT for discrete time frame t: G(PH,t)

x,y ∈ C2NF .

H Hypothesis.

I0 (·) Modified Bessel function of the first kind.

MFCC Vector of Mel-Frequency Cepstral Coefficients (MFCC): MFCC
def
= [MFCC0 · · ·MFCC12]

T

K Number of mixtures in a Gaussian Mixture Model.

Nfuture Integer parameter of the short-term clustering. Nfuture ∈ N \ {0}.

Nt Number of time frames, each defined by their center time tn (1 ≤ n ≤ Nt).

Sš Sector Sš of space: Sš ⊂ R3 and š ∈ {1, · · · , Nš}.

T Parameter of the adaptive background subtraction.

Ti Integer time frame index (Chapters 6 & 7): Ti ∈ N \ {0} and i ∈ {1, · · · , Nr}.

Tshort Integer duration parameter of the short-term clustering (number of frames).

TOF
(
`, `′

)
Theoretical Time Of Flight (TOF) of an acoustic wave between locations ` and `′.

T̂OF
(
`, `′

)
Wideband estimate of the TOF of an acoustic wave between locations ` and `′.

n̂tof
(
`, `′, k

)
Narrowband estimate of the TOF of an acoustic wave between locations ` and `′.

U (E) Energy of the label field E.

V Parameter of the Rice distribution.

Zq
š (k) Average theoretical value in C, for sector Sš, pair q and frequency k.

C Cliques in a Markov Random Field.

G Neighborhood system in a Markov Random Field.

Gγ,β , Gγ,β (ξ) Gamma random variable, and Gamma pdf evaluated at ξ.

M Generic notation for a model.

Nµ,σ , Nµ,σ (ξ) Normal/Gaussian random variable, and Gaussian pdf evaluated at ξ.

(N + U) Gaussian + Uniform model, used to evaluate localization results.

Rσ,V , Rσ,V (ξ) Rice random variable, and Rice pdf evaluated at ξ.

U Uniform random variable.

X , Y, Z Euclidean coordinates.
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Specific notations: Greek letters.

α Learning parameter of the adaptive background subtraction.

β, γ Parameters of the Gamma pdf.

βpotts
ij Potts coefficients.

ε A small value: 0 < ε << 1.

ζš,t Activeness value for sector Sš and time frame t: ζš,t ≥ 0.

Ψ Threshold value. For example a threshold Ψζ ≥ 0 on activeness ζ ≥ 0.

θ Azimuth value, in radians.

ϕ Elevation value, in radians: ϕ ∈
[
−π

2 , +π
2

]
.

ρ Radius value, in meters: ρ > 0.

Lρ Log radius value: Lρ
def
= log ρ.

Λ (M) Parameters of a modelM. For example: Λ (Nµ,σ) = (µ, σ).

κ (M) Number of free parameters of a modelM. For example: κ (Nµ,σ) = 2.

λ Generic purpose tuning parameter.

µ Mean (scalar or vector) of a Gaussian pdf, or step size in the adaptive filtering.

σ, Σ Standard deviation σ and covariance matrix Σ.

τ Time delay in sampling periods.

τ th
q (`ps) Theoretical time delay for microphone pair q and speaker/point source location `ps.

τ̂
(t)
q Estimated time delay for microphone pair q and time frame t.

Φx,y Average correlation spectrum between signals x (t) and y (t). Φx,y ∈ C2NF .

Γx,y Average coherence spectrum between signals x (t) and y (t). Γx,y ∈ C2NF .

Γ (γ) Gamma function.

η, η0 Temperature, and initial temperature of the simulated annealing.

ωn, Ω, NΩ Cluster ωn, partition Ω = {ω1, · · · , ωn, · · · , ωNΩ
}, number of clusters NΩ.

OST Set of all possible short-term partitions:

OST
def
= {Ω | ∀n ∈ {1, · · · , NΩ} ωn is a short− term cluster}.

∆ Cost function for gradient descent speaker localization.

∆k,q Basic term in the expression of ∆, for frequency k and pair q.

Υ Subset of the strictly positive discrete frequencies: Υ ⊂ {2, · · · , NF + 1}.
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2.6 Abbreviations

Abbreviation Full name Introduced in

Appendix or Section

Performance Metrics

FAR False Alarm Rate A

F̂AR Estimated FAR value 5.3.2

FART Target value for FAR 5.3

FRR False Rejection Rate A

PRC Precision A

RCL Recall A

HTER Half-Total Error Rate A

F F-measure A

Microphone array processing

BSS Blind Source Separation 3.1.2

DHBF Double Hierarchical BeamForming 3.1.2

GCC Generalized Cross-Correlation 3.1.2

MIMO Multiple Inputs Multiple Outputs 3.1.2

PDM Phase Domain Metric B.1

PHAT Phase Transform 3.1.2

SIR Signal-to-Interference Ratio 8.1

SNR Signal-to-Noise Ratio 2.4

SRP Steered Response Power 3.1.2

TDE Time Delay Estimation 3.1.2

TDOA Time Delay Of Arrival 3.1.2

UCA Uniform Circular Array 2.3

ULA Uniform Linear Array 2.3
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Short-Term Clustering

MRF Markov Random Field 6.2.2

SA Simulated Annealing optimization 6.2.2

SW Sliding Window optimization 6.2.1

Speaker Clustering

BIC Bayesian Information Criterion 7.1

GMM Gaussian Mixture Model 3.2.1

HMM Hidden Markov Model 3.2.3

Others

% Percentage notation: 5%
def
= 5/100 = 0.05

1-D 1-dimensional

2-D 2-dimensional

3-D 3-dimensional

headset mic. Microphone worn by a speaker, near the mouth

i.i.d. Independently and identically-distributed

iff If and only if

lapel mic. Microphone worn by a speaker, near the throat

pdf Probability Density Function

r.v. Random variable

r.v.s Random variables

LHS Left Hand Side

LPCC Linear Prediction Cepstral Coefficients

MFCC Mel-Frequency Cepstral Coefficients

RHS Right Hand Side

ROC Receiver Operating Characteristic 5.2.4

USS Unsupervised Spectral Subtraction 8.2
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Chapter 3

Background

As explained in Chapter 1, the purpose of this thesis is to build an integrated system for non-

invasive multispeaker detection-localization and speaker clustering – “non-invasive” meaning that

only distant microphones are used. This integration effort led to several research issues, which are

addressed by the following chapters of this thesis. In particular, we are trying to build a single

system to cope with static data – seated speakers in a meeting – as well as dynamic data – multiple

moving speakers in a surveillance scenario. As explained in Section 1.1, this thesis does not attempt

to improve fundamentals of instantaneous speaker localization or continuous object tracking, but

rather explores associated issues, such as detection for speech localization and speaker clustering

with distant microphones only.

This chapter sketches the present state-of-the-art in speaker localization, with a particular em-

phasis on the Steered Response Power methods, also known as beamforming methods (Krim and

Viberg, 1996; DiBiase, 2000), because they form the core around which the present work is con-

structed (Section 3.1). Next, Section 3.2 reviews existing work in meeting segmentation, and sum-

marizes a preliminary experiment where multi-party speech is segmented using location informa-

tion.

27
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wavefront

`ps

`m

Figure 3.1. A spherical acoustic wave emitted by a point source at location `ps, and recorded by a microphone at
location `m.

3.1 Speaker Localization

3.1.1 Acoustic Waves

The air is usually assumed to be a non-dispersive medium, which means that c, the speed of an

acoustic wave, is independent of the wave frequency. This speed is usually assumed to only depend

on the air temperature η in Kelvins:

c ≈ 331.46 ∗
√

η

273.15
(3.1)

where c is expressed in m/s (Kinsler et al., 1999). For an ambient room temperature of 18 degrees

Celsius (291 Kelvins), we obtain c = 342 m/s. We denote the Euclidean coordinates of a point ` ∈ R3

with the real values X ,Y and Z: ` = [X ,Y,Z]
T. In this thesis, we assume that a speech source can

be modelled as a point source, placed at `ps def
= [X ps,Yps,Zps]

T, emitting a spherical wave that will

eventually be received by a microphone m placed at `m
def
= [Xm,Ym,Zm]

T. A spherical wave means

that the wavefront is a sphere centered on the point source location `ps, with a radius that increases

over time with the speed c, as depicted in Figure 3.1. We preferred the spherical wave assumption

over the plane wave assumption, in order to accommodate a variety of situations where the speaker

can be close to or far from the microphones (near-field or far-field). A plane wave assumption would

have precluded the near-field situation.
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We can now write the free field signal model, where “free field” means that there is neither obsta-

cle (chair, table) nor reflection (wall) on the wave’s path. Because we have assumed a non-dispersive

medium, the waveform signal xm (t) recorded by the microphone at `m, where t is expressed in sam-

pling periods1, can be written:

xm (t) = A (`ps, `m) · xps[t− TOF (`ps, `m)] (3.2)

where xps (t) is the waveform signal that would be recorded by a microphone next to the speaker’s

mouth, A (`ps, `m) > 0 is an amplitude gain factor, and TOF (`ps, `m) is the time of flight from the

acoustic point source to the microphone, expressed in sampling periods. Alternatively, the signal

model can be expressed in the frequency domain:

X(t)
m (k) = A (`ps, `m) ·X(ps,t) (k) · e−j·π k−1

NF
·TOF(`ps,`m) (3.3)

Amplitude gain: If we neglect the absorption of acoustic energy by the aerial medium, the

spherical wave assumption implies that the total energy carried by the spherical wavefront is con-

stant. Given that the surface of a sphere is proportional to the square of its radius, we obtain the

so-called “inverse square law”. This law can be equivalently expressed in terms of signal amplitude:

A (`ps, `m) =
A1

‖`ps − `m‖
(3.4)

where ‖·‖ is the L2-norm and A1 > 0 is a constant.

Time Of Flight (TOF): The spherical wave assumption implies that the TOF is directly pro-

portional to the distance between the point source location `ps and the microphone location `m. We

thus define the theoretical TOF, expressed in sampling periods:

TOF (`ps, `m) =
‖`ps − `m‖

c
· fs (3.5)

where fs is the sampling frequency in Hertz.

In this simplified model, we have assumed a “free field”, that is the absence of any obstacle and/or

any reflection. The free field assumption may not always hold, because real environments contain

1As explained in Section 2.2, in this thesis, time variables (t, τ , TOF, etc.) are expressed in sampling periods, and can be
real-valued. The corresponding time value in seconds is t

fs
, where fs is the sampling frequency.
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surfaces that can be reflecting such as walls and human skin (Conti et al., 2006), or absorbing

such as clothes (Conti et al., 2006). However, modelling reverberations is still an open research

issue (Gannot et al., 2006), therefore the free field assumption is quite usual in many existing

localization studies (Krim and Viberg, 1996; DiBiase et al., 2001; Claudio and Parisi, 2001; Chen

et al., 2006). In this thesis, we thus use the free field assumption in most chapters, basing our work

on a reverberation-resistant use of the free field assumption (see the next subsection).

3.1.2 Microphone Arrays for Localization

In this thesis, we define “instantaneous localization” as the task to locate the various active acoustic

sources in physical space, from a single, short time frame on which speech is considered as station-

ary (typically about 20 to 30 ms). This implicitly means that we do not use time averaging across

multiple time frames, for example to estimate the instantaneous cross-correlation G(t)
x,y. This choice

is justified by the very dynamic natures of the speech signal and of the human motion, as already

shown in (DiBiase, 2000, Section 6.6). We will often abbreviate “instantaneous localization” as

“localization”. In most of the thesis, we focus on human speech, which is a wideband signal. In

spontaneous multi-party speech, overlaps occur often (Shriberg et al., 2001), and real indoor envi-

ronments also contain noise sources (computer, projector, etc.) as well as reverberant walls. Hence,

this subsection focuses on the localization of multiple concurrent wideband sources, from a single

time frame. “Concurrent” means “active at the same time”.

The speed of sound in the air being relatively low in an indoor environment (c ≈ 342 m/s),

most practical audio localization/tracking applications rely on the small differences between the

waves arriving at multiple microphones in multiple known locations, called microphone arrays (see

Figure 1.1a for an example). A three-fold inverse problem then arises: from the multiple recorded

signals, and their small differences:

• Detection: Infer the number of active acoustic sources at any given time (zero, one or more),

• Localization: Infer their instantaneous locations in the physical space,

• Segmentation/Tracking: Infer their spatio-temporal trajectories over time (tracking across

multiple time frames), including the determination of activity/silence periods (segmentation).

In addition to these three tasks, it is also desirable to separate acoustic sources into two groups:

speech sources and non-speech sources. As explained in Chapter 1, the main contributions of this
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thesis involve tasks associated to localization, such as detection and tracking. The rest of this

subsection reviews existing methods for localization, and clarifies which one is used in this thesis.

Detection and tracking are reviewed by Sections 3.1.3 and 3.1.4, respectively.

Given the signal model described by (3.2), (3.4) and (3.5), the above-mentioned “small differ-

ences” are tightly linked to the geometrical placement of the microphones. More precisely, the

differences are usually measured from several (non-exclusive) viewpoints:

1. Time asynchrony: the value of TOF (`ps, `m) for an acoustic wave travelling between the

mouth `ps and the microphone `m is different for different microphones, due to their differ-

ence in location `m. Audio localization/tracking methods relying on time asynchrony usually

require precise knowledge of the microphone array’s geometry. However, they do not require

any particular knowledge about the room, so they can be used in portable, easy-to-use sys-

tems. Omnidirectional microphones are used in most cases. Typical geometries include ULAs

and UCAs: a finite number of microphones equally spaced along a line or a circle, respec-

tively (Figures 2.1a and 2.1b). However, a solution particularly designed for meeting rooms is

the Huge Microphone Array (HMA) including a large number of microphones on a wall (Silver-

man et al., 2005). We chose to use UCAs because in the horizontal plane, their characteristics

are almost invariant with direction (Fuchs, 2001), therefore imposing no practical constraint

on the location of the source. UCAs have most of their discriminative power in azimuth space

(Figure 1.1a), but are much less precise in terms of elevation and radius.

2. Level difference: when an object is placed between two microphones – for example the head

of a binaural manikin –, the “shadow” cast by the object at higher frequencies – 1500 Hz and

above for a 20 cm inter-microphone spacing – determines a noticeable difference of amplitude

between the waves received at the two microphones. This is called the Interaural Level Differ-

ence (ILD), which is often used in binaural studies (Moore, 1997). However, in microphone ar-

rays there is no object placed between the microphones, so ILDs are out of scope of this thesis.

A review of the most important binaural cues, including ILD, can be found in (Baumgarte and

Faller, 2003; Faller and Baumgarte, 2003), along with their use in low-bitrate, high-fidelity

real-time coding of stereophonic and multichannel signals.

3. Impulse response: the path travelled by the sound from the mouth to the various micro-

phones will vary, depending on the speaker’s location and the reflecting/absorbing objects in
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TOF (`
ps

, `2)

τ`ps

TOF (`ps
, `1) `1

`2

Figure 3.2. Time Delay Of Arrival (TDOA) τ between two microphones at `1 and `2, of a spherical acoustic wave emitted
at `ps.

the room. Hence, the impulse response from mouth to microphone will vary as well. Assuming

the impulse response characteristics of the room to be perfectly known beforehand through a

calibration procedure, it is possible to deduce the position of the person. However, the tedious

calibration step is often undesirable in a practical application – as in a portable videocon-

ferencing system –, so the impulse responses need to be estimated in an online, automatic

fashion. This task is also called blind Multiple Inputs Multiple Outputs (MIMO) channel

identification (Chen et al., 2005; Buchner et al., 2004), where geometrical knowledge of the

microphone array is not required. This task is tightly linked to the Blind Source Separation

approaches (Buchner et al., 2005a). Solving the blind MIMO channel identification problem

amounts to retrieve a complete model of the meeting room, which would permit to jointly lo-

cate and separate the signals from the various acoustic sources. It is still a difficult, open

research issue. A preliminary test of such a method can be found in (Buchner et al., 2005b).

4. Microphone channel: recently, it was proposed to use several directional microphones placed

at the same location, but oriented towards different directions (Matsumoto and Hashimoto,

2005). The direction-dependent transfer function of each microphone is assumed to be known,

so that the speaker’s location can be reconstructed. This type of solution can also be combined

with time asynchrony solutions (Rui et al., 2005).

Asynchrony: In the following we focus on the first group of solutions, for which (Krim and

Viberg, 1996; Brandstein and Ward, 2001) provide comprehensive introductions. These methods

are typically linked, directly or indirectly, to the following observation. Let us consider a point

source at location `ps, and a pair of microphones at locations `1 and `2, whose continuous time

signals are denoted x1(t) and x2(t), respectively. Then (3.2) and (3.4) lead to:

x1 (t + TOF (`ps, `1)) ∝ x2 (t + TOF (`ps, `2)) (3.6)
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It follows that the continuous time domain cross-correlation function gx1,x2
(τ) =

∫
R

x1(ξ)x2(ξ − τ)dξ

has a maximum at τ = TOF (`ps, `1)− TOF (`ps, `2). See Figure 3.2 for an illustration.

For any pair q of microphones
(
`aq

, `bq

)
, we thus define the theoretical Time Delay Of Arrival (TDOA):

τ th
q (`ps)

def
= TOF

(
`ps, `aq

)
− TOF

(
`ps, `bq

)
(3.7)

Note that τ th
q (`ps) ∈ R is a continuous value expressed in sampling periods (not necessarily an

integer). Methods based on the asynchrony between the various microphones can be divided into

two types: TDOA methods, which use two steps, and direct methods, which use a single step.

The Time Delay of Arrival (TDOA) methods consist in first estimating the TDOA for each

pair of microphones through DFT analysis, second in deriving the location of the source(s) from

geometrical considerations, by inverting (3.7), e.g. using the Linear Intersection algorithm (Brand-

stein, 1995). The main bottleneck is the time delay estimation (TDE) step, which may be af-

fected by reverberations. Thus, TDE is often based on a modified cross-correlation function called

GCC-PHAT (Knapp and Carter, 1976), which has reverberation-resistant properties (Gustafsson

et al., 2003). For a time frame t, GCC-PHAT-based TDE consists in finding the value of τ that

maximizes the GCC-PHAT continuous time domain cross-correlation function ĝ
(t)
x,y (τ), as detailed

below.

In the frequency domain, for any two continuous signals x1 (t) and x2 (t), GCC-PHAT is defined

as the DFT-based instantaneous cross-correlation estimate divided by its own magnitude2:

G(PH,t)
x1,x2

(k)
def
=

G
(t)
x1,x2 (k)∣∣∣G(t)
x1,x2 (k)

∣∣∣
=

X
(zp,t)
1 (k) ·

[
X

(zp,t)
2 (k)

]∗
∣∣∣X(zp,t)

1 (k) ·
[
X

(zp,t)
2 (k)

]∗∣∣∣
(3.8)

The discrete time domain GCC-PHAT vector g
(PH,t)
x1,x2 ∈ R2NF is obtained through IDFT of G(PH,t)

x1,x2
∈ C2NF :

g(PH,t)
x1,x2

def
= F−1 ·G(PH,t)

x1,x2
(3.9)

2Zero-padding is used to avoid circularity issues, as explained in Section 2.2 and defined by (2.14).
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The GCC-PHAT continuous time domain cross-correlation function ĝ
(PH,t)
x1,x2 (τ) is defined as:

ĝ(PH,t)
x1,x2

(τ)
def
=





g
(PH,t)
x1,x2 (τ + 1) if τ ∈ {0, 1, · · · , NF}

g
(PH,t)
x1,x2 (τ + 1 + 2NF) if τ ∈ {−NF + 1,−NF + 2, · · · ,−1}

through upsampling if τ /∈ ZZ

(3.10)

In this thesis, an upsampling factor3 of 20 is used, unless stated otherwise. For a microphone

pair q of signals xaq
(t) and xbq

(t), GCC-PHAT-based TDE then consists in finding the peak of the

GCC-PHAT continuous time domain cross-correlation function:

τ̂ (t)
q

def
= arg max

τ

[
ĝ(t)

xaq ,xbq
(τ)
]

(3.11)

In fact, the GCC-PHAT time-delay estimator was shown to be highly advantageous over other

estimators, when reverberations are present, from both theoretical and experimental points of

view (Gustafsson et al., 2003). In the case of multiple sources and one microphone pair, an alterna-

tive method for the estimation of multiple time-delays is the Adaptive Eigenvalue Decomposition

Algorithm (Benesty, 2000), which relies on the eigenanalysis of the covariance matrix of the two

signals in one pair of microphones. However, in the case of multiple microphone pairs, multiple

sources and multiple sound paths (reverberations), it is not obvious how to pair the various time-

delays observed at the various pairs of microphones in order to deduce the exact location of the

acoustic sources.

In general, TDE constitutes a bottleneck in the sense that any wrong estimate τ̂
(t)
q leads to

increase the error in the subsequent location estimation, that is when inverting (3.7). As already

discussed in (DiBiase, 2000, Section 6.6), TDE from a single time frame is not advisable. On the

other hand, as explained above, using several consecutive time frames, e.g. through averaging

of (3.8), is precluded by the very dynamical natures of speech and of human motion.

The direct methods avoid this bottleneck by directly inferring the source(s) locations from

the measured signal. They can be divided into two groups: Coherent Signal Subspace Process-

ing (CSSP) and Steered Response Power (SRP). CSSP methods (Wang and Kaveh, 1985; Stoica and

Mose, 1997; Claudio and Parisi, 2001) are extensions of narrowband methods originated in the fields

3An upsampling factor N means that N-1 zeros are interleaved between any two consecutive samples. The upsampled
signal is always low-passed before any further use. The upsampling + low-pass operation approximates a sine cardinal
interpolation (Oppenheim et al., 1999).
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of radar and communications (Schmidt, 1986). Examples are the well-known MUSIC (Schmidt,

1986) and ESPRIT (Roy and Kailath, 1989) algorithms, which typically achieve higher resolu-

tion than SRP methods. However, these methods were originally designed for narrowband sig-

nals and Uniform Linear Arrays (ULAs). Previous work extended CSSP approaches from ULAs to

UCAs (Tewfik and Hong, 1992), from narrowband to wideband signals (Su and Morf, 1983), and

both (Friedlander and Weiss, 1993; Doron et al., 1993). Only the latter (Friedlander and Weiss,

1993; Doron et al., 1993) are relevant to our problem. Globally, coherent signals such as speech

and its reverberations still seem to be a problem with these methods, since reverberations have

to be modeled explicitly. Although they allow in theory to estimate jointly the number of sources

and their locations, they suffer from sensitivity to reverberant environments. Moreover, they need

sufficient amounts of data, which means either long time frames or averaging across several time

frames. This is fine with somewhat stationary signals such as vehicle noise (Pham and Fong, 1997),

but may be difficult with speech signals (DiBiase, 2000). Also, in the case of (Friedlander and

Weiss, 1993), steering matrices have to be defined for each sector of the space. For example, one

could define 18 sectors around a microphone array, each sector spanning a 20 degree-azimuth angle.

Finding which sector(s) of the space contain active acoustic source(s) is an open issue.

SRP localization methods, also known as beamforming localization methods, are a reasonable

alternative to CSSP methods. Indeed, SRP methods can work with a single time frame, and are

less sensitive to modelling assumptions (DiBiase et al., 2001). The drawback is a slight decrease

of localization precision with respect to CSSP methods. The idea is to estimate the power at any

location `ps in space by “steering the array”, that is to compensate for the corresponding differ-

ences of Time Of Flight TOF (`ps, `m) between the microphones {`1, · · · , `m, · · · , `Nm
} (Krim and

Viberg, 1996). Multiple simultaneous sources will be reflected by multiple power maxima across

the search space. However, reverberations will also appear as power maxima (“virtual sources”).

A partial solution to this issue is to combine the flexibility of SRP methods with the robustness

to reverberations of the PHAT: this is known as SRP-PHAT (DiBiase, 2000). Let us assume Nm

microphones, with frequency domain signals Xm (k), for m ∈ {1, · · · , Nm}, and a point source at an

unknown location `ps ∈ R3, emitting a wideband signal (speech). SRP-PHAT consists in finding the

location ˆ̀(t) ∈ R3 that maximizes the SRP-PHAT power (DiBiase, 2000, Section 6.5):

ˆ̀(t)
= arg max

`

[
PSRP-PHAT

(
`,X

(t)
1 , · · · ,X(t)

M

)]
(3.12)
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where the SRP-PHAT power is obtained by aligning (see (3.3)) and summing the magnitude-normalized

signals, in the frequency domain, on the strictly positive discrete frequencies {2, · · · , NF + 1}:

PSRP-PHAT
(
`,X

(t)
1 , · · · ,X(t)

M

)
def
=

NF+1∑

k=2

∣∣∣∣∣∣

Nm∑

m=1

X
(t)
m (k)∣∣∣X(t)
m (k)

∣∣∣
e
jπ k−1

NF
TOF(`,`m)

∣∣∣∣∣∣

2

(3.13)

An interesting comparison between time averaging – which improves the resolution of GCC-PHAT-

based TDOA methods – and spatial averaging – realized in SRP-PHAT is presented in (DiBiase,

2000, Section 6.6). In cases where the speakers may suddenly move a lot, it is preferable not to

average across consecutive time frames. In this thesis, we thus opted for the SRP-PHAT method.

Search space: In general, the main drawback of most direct methods – both CSSP and SRP –

is that the search space can be large (e.g. the whole room in the case of meetings). As suggested

in (Friedlander and Weiss, 1993; Fuchs, 2001), one could thus think of discretizing the search space

in a few volumes called “sectors”. Each sector could be classified as “active” or “inactive”, and precise

localization could then be applied within active sectors only, as in Double Hierarchical BeamForm-

ing (DHBF) (Duraiswami et al., 2001; Zotkin and Duraiswami, 2004). DHBF uses the spectral data

from all sources to take each sector-based decision (active or inactive), which may lead to some noisy

decisions. Section 5.2 investigates an alternative to DHBF, that is based on statistical observations

of human multi-party speech (Roweis, 2003): for a given discrete frequency, only one speech source

is assumed to be dominant in terms of magnitude, and other sources can be neglected.

Three points can summarize this review:

• When localizing acoustic sources from a single time frame, direct methods are more adequate

than TDOA methods.

• Within direct methods: although the CSSP methods and, more recently, the MIMO/Blind

Source Separation methods have seen very promising developments, they are still not as prac-

tically effective as the SRP methods. This thesis is based on the SRP-PHAT method.

• There is a need for a fast and effective search space reduction method, called “sector-based

detection-localization” in the following. Within each active sector S ⊂ R3 of space, a classical

“point-based” localization method can then be used to produce a point location estimate ` ∈ R3.
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Figure 3.3. SRP-PHAT point-based search on seq01 (single human speaker): (a) shows the histogram of azimuth errors;
(b) shows a zoom of (a); (c) shows the histogram of log energy values.

Consequently, Chapter 5 proposes a topological interpretation of SRP-PHAT that serves as a princi-

pled foundation for both sector-based detection-localization and point-based localization within the

active sectors.

The next two subsections review tasks associated with localization: detection for localization,

and tracking (usually viewed as the filtering of instantaneous location estimates).

3.1.3 Detection for Localization

In the above review of localization methods, we have implicitly assumed that we knew on which

time frames acoustic sources should be localized. Indeed, a received signal contains not only speech

but also silences, and it is preferable not to estimate any source location on mostly silent time

frames, because the resulting location estimate would be noisy or even completely meaningless. To

discriminate between speech time frames and silence time frames, traditional Voice Activity Detec-

tors (VADs) typically use single channel features, such as energy and zero-crossing rate. Although

well adapted to single channel tasks such as automatic speech recognition, they are suboptimal in

terms of localization precision. To highlight this fact, we ran a simple SRP-PHAT point-based single

source localization algorithm (detailed in (Gatica-Perez et al., 2003)) on all time frames of seq01 in

the AV16.3 Corpus (single human speaker). Figures 3.3a and Figure 3.3b show the distribution of

azimuth errors for frames labelled as “speech” in a ground-truth created by a human listener.
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These figures can be interpreted as follows:

• On frames containing speech strong enough to be localized, a maximum error of about 5 de-

grees is achieved, as compared with the true azimuth of the source.

• On frames containing silence or weak speech, the error can be seen as the result of a uniform

random process.

A commonly used strategy to select reliable frames for localization is to select frames with high

energy only, and to ignore other frames. However, we can see on Figure 3.3c that in terms of energy,

there is a large overlap between the two groups “correctly localized” and “incorrectly localized”.

Thus, energy is not necessarily adapted to the task of detection for acoustic source localization.

Alternative methods that rely on the cross-correlation between channels are investigated in Sec-

tion 5.2.

Let us now assume that we have selected a feature for detection, called “activeness” (energy or

other). For each time frame t, the activeness is a scalar value ζt > 0, where higher values indicate

that localizable acoustic activity is most likely, and lower values indicate that background noise is

most likely. In order to build an integrated system, evaluating the activeness ζt is not sufficient.

Indeed, an additional “hard decision” step is needed, which determines whether there is acoustic

activity or not, at each time frame t. This hard decision can be taken by comparing the activeness ζt

to a threshold Ψζ , set beforehand. For example, the end-user would like to have a fixed proportion

of falsely detected sound sources, while having a proportion of missed sound sources as small as

possible. This means that the False Alarm Rate (FAR, formally defined in Appendix A):

FAR
def
=

number of false alarms

number of silent time frames
(3.14)

should be constant and equal to a target value: FAR = FART. We will see in Chapter 5 that set-

ting the detection threshold Ψζ a priori, to optimize a desired detection performance metric, and

keeping it fixed thereafter, is not necessarily the best solution. Indeed, conditions may vary after

the threshold was set: there may be more or less background noise, more or less silence, several

speakers or a single one.

Instead, one could think of adapting the threshold value Ψζ to each condition separately. In

a probabilistic modelling context, let us assume perfect knowledge of the types of pdfs (Gaussian,
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Gamma, Rice etc.) for ζt on active periods, as well as on silence periods. A two-component modelM

of the observed ζt values can then be built, that has one component for silence and the other for

acoustic activity. On each condition separately, the parameters Λ (M) are estimated jointly with

the threshold value Ψζ , in order to fulfill a user-defined target (e.g. FAR (Λ (M) ,Ψζ) = FART).

If the types of pdf are perfectly known, then Λ (M) and Ψζ can be optimally selected with the

Neyman-Pearson and the competitive Neyman-Pearson approaches (Levitan and Merhav, 2002). In

practice, the types of pdfs are seldom perfectly known, therefore the true FAR (Λ (M) ,Ψζ) cannot

be estimated exactly, and correction procedures are needed, as investigated by Section 5.3.

Once a positive detection decision is taken for a time frame t, the instantaneous localization

methods reviewed in Section 3.1.2 can be applied to provide one or more instantaneous location

estimates (azimuth angles in the case of a UCA).

3.1.4 Tracking

Tracking can be viewed as the task of filtering instantaneous location estimates provided by the

methods mentioned in Section 3.1.2. The Kalman filter (Kalman, 1960; Welch and Bishop, 2004)

assumes dynamics to be linear and Gaussian. These assumptions become an issue when dealing

with human motion (non linearities such as sharp turns). Moreover, in spontaneous multi-party

speech, utterances are often short (typically less than a second), speaker turns are often short as

well, and overlaps represent a non-negligible portion of speech (Shriberg et al., 2001).

The Extended Kalman Filter (EKF) was proposed to accommodate non-linear dynamics through

a linearization step (Sorenson, 1985), however it is known to be practically difficult to tune its

parameters (Julier and Uhlmann, 1997). More recently, the Unscented Kalman Filter (UKF) was

proposed to avoid this linearization step and to accommodate non-Gaussian measurement noise

sources (Julier et al., 1995; Julier and Uhlmann, 1997; LaViola, 2003). For a recent application

of the UKF to acoustic source localization, see (Dvorkind and Gannot, 2005). However, these ap-

proaches may encounter difficulties when dealing with spontaneous multi-party speech, which is

both highly changing in space (speaker turns) and sporadic over time (short utterances).

As an alternative, Sequential Monte-Carlo (SMC) methods approximate the optimal Bayesian

filter by representing each probabilistic distribution through a finite set of particles, as in Particle

Filtering (PF) (Gordon et al., 1993). Applications to single acoustic source localization and tracking
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can be found in (Vermaak and Blake, 2001; Ward and Williamson, 2002; Ward et al., 2003), and a

comprehensive review in (Lehmann, 2004). However, the fast-changing speaker turns encountered

in spontaneous multi-party speech require either specific multisource models (Larocque et al., 2002)

or adapting the single-source model to “switching between speakers” situations (Lehmann, 2005).

Estimating the number of active speech sources is still an issue, tightly linked to the data asso-

ciation issue. Although Particle Filters can model multiple objects via multi-modal distributions,

deciding which modes are significant and which objects they belong to is an open issue (Vermaak

et al., 2003). Moreover, when the number of active objects varies very often along time, as in fast-

changing speaker turns, complex birth/death rules are needed.

Chapter 6 investigates an alternative approach called “short-term clustering”, where the num-

ber of active speech sources does not need to be known. Initial results were presented in (Lathoud

et al., 2004), on the multi-party speech segmentation and the multi-object tracking tasks.

3.2 Multi-Party Speech Segmentation

While many existing speaker segmentation/clustering works involve single-channel, broadcast-like

environments (Sugiyama et al., 1993; Chen and Gopalakrishnan, 1998; Ajmera and Wooters, 2003;

Galliano et al., 2005; Valente, 2006), there are less established standards to deal with spontaneous

multi-party speech. This section first defines what the “segmentation” task means within this

thesis, and describes the challenges inherent to multi-party spontaneous speech. Next, a review is

made of existing works within this scope. Finally, a preliminary meeting segmentation experiment

is summarized, which uses location to segment meeting speech.

3.2.1 The Task

One application of the techniques developed in this thesis is the segmentation of spontaneous multi-

party speech. In this thesis, by “segmentation” we mean, for each speaker, to determine the periods

of time when he is silent, and the periods of time when he is speaking. This thesis thus focuses on

speech/silence segmentation for each speaker, see Figure 3.4(top) for an example of such segmen-

tation. This thesis does not address higher-level annotation such as sentence boundaries, emotion,

interest level, meeting acts etc., as done for example in (Dielmann and Renals, 2004; McCowan
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Figure 3.4. Example of segmentation result (top) for a 4-people meeting (bottom). The top figure depicts a
speech/silence segmentation for each speaker, with sometimes multiple speakers active at the same time (overlaps).

et al., 2005). However, a precise speaker “segmentation” in terms of speech and silence can be a

useful platform for further, higher-level annotation, as in (McCowan et al., 2005).

At first glance, speech/silence segmentation may look like a simple task. Comparing the short-

term energy to a threshold comes to mind as an easy, efficient technique. However, speech/silence

segmentation is particularly difficult in real multi-party speech, because each speech utterance can

be very short (“sporadic” events), which makes “smoothing” difficult, and people often talk over each

other (“concurrent” events), as in overlapped speech. In (Shriberg et al., 2001) it was identified

that around 10-15% of words, or 50% of contiguous speech segments, in a meeting or telephone

conversation contain some degree of overlapping speech. These overlap segments are problematic

for speech recognition, producing an absolute increase in Word Error Rate of between 15-30% using

close-talking microphones for a large vocabulary task (Shriberg et al., 2001; Morgan et al., 2001;

Cetin and Shriberg, 2006). For applications that involve meetings or teleconferences, it is thus

important to not only segment the audio into single speaker turns, but also to identify segments of

overlapping speech along with their constituent speakers.
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Mean Std. dev.
Lapel SNR 18.7 2.36
Mic. array SNR 10.7 2.02

Table 3.1. Average SNR across meetings and speakers of the M4 Corpus (McCowan et al., 2005), in dB domain. The
lapels are worn by each speaker, below the throat. Each speaker is between 0.8 and 3 meters from the microphone
array. The average SNR is defined in Section 2.4.

The sporadic and concurrent nature of spontaneous multi-party speech utterances makes the

segmentation task different from other contexts, where each segment has a long duration, and

segments are assumed not to overlap, such as Speech/Music segmentation (Williams and Ellis,

1999; Ajmera et al., 2002) and speaker segmentation/clustering in broadcast news (Sugiyama et al.,

1993; Chen and Gopalakrishnan, 1998; Ajmera and Wooters, 2003; Galliano et al., 2005; Valente,

2006). The systems used for automatic speaker clustering and segmentation of broadcast news are

difficult to apply “as is” in a meeting situation because of the sporadic and concurrent nature of

utterances in spontaneous speech:

• Sporadic events: the creation of reliable speaker models, for example with Gaussian Mixture

Models (GMMs), is difficult to achieve with utterances shorter than 2 or 3 seconds. There-

fore, minimum duration constraints are often included in the modelling. Unfortunately, many

spontaneous speech utterances are shorter than 2 seconds.

• Concurrent events: in a lively conversation, not only speaker turns are very short, but they

also tend to talk over each other. This is known as “overlapped speech”. The above-mentioned

minimum duration constraint would lead to incorporate in a segment not only a short utter-

ance but also parts of other speakers’ utterances, just before and just after. In an agglomerative

speaker clustering framework such as (Ajmera, 2004; Galliano et al., 2005), this may well lead

to undesirable clusters containing speech from more than one speaker.

• Non-speech concurrent events are also received, including body noises from the participants

(body motion, chair motion, paper shuffling, breathing, etc.) and machine noises (fans, projec-

tor, etc.). These noises degrade the quality of the signals, therefore spurious clusters appear,

and errors are made during the agglomerative speaker clustering.
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“Invasive” methods can efficiently detect and segment spontaneous speech from multiple speak-

ers in a meeting (Wrigley et al., 2005), where “invasive” means that a close-talking microphone is

attached to each speaker (lapel near the throat, or headset near the mouth). Close-talking mi-

crophones permit to know precisely when each speaker is talking, because their signals are much

cleaner than those received by distant microphones, due to the difference of distance (see the dif-

ference in Signal-to-Noise Ratio (SNR) in Table 3.1). However, the range of applications permitted

by close-talking microphones is limited, because (1) they require each user to wear a microphone,

and (2) they practically provide no information about the location of each speaker. In this the-

sis, as explained in Chapter 1, the focus is rather on “non-invasive” methods, where only distant

microphones are used.

3.2.2 Location for Segmentation

For each pair q of microphones on a table, we can detect the peaks τ̂
(t)
q of the cross-correlation func-

tion between the two microphones
(
`aq

, `bq

)
, using (3.11). Each peak τ̂

(t)
q should be close to the theo-

retical TDOA τ th
q (`ps) between the two microphones, determined by the location of the speaker `ps,

as defined in (3.7) and illustrated by Figure 3.2 above. By combining the observed delays from mul-

tiple pairs of microphones, it is possible to efficiently detect who is speaking in a meeting, with prior

knowledge of the number of speakers Nps and their approximate locations
(
`
ps
1 , · · · , `ps

Nps

)
(Lathoud

and McCowan, 2003), or without this prior knowledge (Ellis and Liu, 2004). Such location-based

approaches for multi-party speech segmentation efficiently deal with the two difficulties mentioned

above: (1) short speech utterances are well detected and precisely segmented, (2) including on in-

tervals of overlap between two or more speakers.

However, a central assumption in these two works is that each speaker does not move much

around his/her location. Although this is generally a reasonable assumption in meetings, it is de-

sirable to allow speakers to change location over time, to permit a wider range of applications.

The speech segmentation task then becomes more difficult, as we cannot rely on a one-to-one map-

ping between speakers and locations. In general, location is thus not sufficient to determine who

spoke when, because a given speaker may move while being silent, or multiple speakers may share

locations over time4. Addressing this task in the context of moving speakers could be useful in

4Even in a meeting, a person is likely to stand up and move to a screen for a presentation. People may also swap seats.
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meetings themselves, as we would like to know for example when a given speaker stood up and

made a presentation, for enriched recording browsing experience. Surveillance applications could

also benefit from efficiently tracking a moving speaker. This versatility could not be achieved with

a purely static analysis of instantaneous location estimates for speech segmentation, as for exam-

ple K-means, or the static criteria used in (Lathoud and McCowan, 2003; Ellis and Liu, 2004). In

this context, Chapter 6 addresses speech segmentation and short-term tracking, and Chapter 7 ad-

dresses the determination of long-term speaker identities. Both rely on instantaneous localization

of multiple speakers, which is addressed by Chapter 5.

Segmenting meeting speech based on location is a relatively recent field, as compared to the

whole field of speech processing. Thus, the next section summarizes a preliminary experiment.

3.2.3 A Preliminary Experiment

This subsection summarizes a preliminary experiment that uses speaker location for meeting seg-

mentation, where we assume the number of speakers and their approximate location already known.

This was a joint work with Dr Iain McCowan, while he was at IDIAP. Full details can be found

in (Lathoud and McCowan, 2003). All test data and ground-truth annotations are freely available

at: http://mmm.idiap.ch/Lathoud/2003 locbasedseg/

and: http://mmm.idiap.ch/Lathoud/2003 locbasedseg-lpcc/

We propose a technique that segments a meeting into speaker turns based on their location,

essentially implementing a discrete source tracking system. In many multi-party conversations,

such as meetings or teleconferences, the location of participants is restricted to a small number

of regions, such as seats around a table. In such cases, segmentation according to these discrete

regions would be a reliable means of determining speaker turns. We propose a system that uses

microphone pair time delay estimates (τ̂ (t)
q ) as features to represent speaker locations. For each

pair q of microphones (`aq
, `bq

) of an array, and each time frame t, a single delay τ̂
(t)
q is estimated

from GCC-PHAT, as in (3.11). Each time delay estimate measures the difference in the time of

arrival between the signals on a microphone pair. Gaussian distributions are used to model the

behaviour of the observed features around a number of speaker locations. These then form the

state distributions in a Hidden Markov Model (HMM), which can be used to obtain a maximum
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likelihood segmentation into speaker turns. The discrimination provided by the location features,

coupled with the HMM’s ability to model sequences, makes it possible to extend the system to

segment the conversation in terms of higher level structure. To demonstrate this, we propose an

extension to handle the case of overlapping speech from multiple simultaneous speakers. As men-

tioned in Section 3.2.1, such speaker overlap has been identified as a significant problem for speech

segmentation and recognition of multi-party conversations (Shriberg et al., 2001). The proposed

location-based speaker segmentation system is assessed on real recordings from a 4-element micro-

phone array (Nm = 4, Nq = 6, see Figure 3.7) in a meeting room. Results are presented comparing

the performance of the location features to standard Linear Prediction Cepstral Coefficients (LPCC)

features for single speaker segments. In addition, experiments on overlapping speech segments

demonstrate the success of the proposed extension to handle dual-speaker overlap.

Assumption: As the basis of our model, we assume the number of speakers Nps known, where

each speaker n ∈ {1, · · · , Nps} is confined to a physical region centered at a known location `ps
n ∈ R3.

Feature Space: Each estimated time delay τ̂
(t)
q is given by (3.11). A feature space is defined

as the vector of GCC-PHAT TDOA estimates (expressed in sampling periods) across Nq pairs of

microphones, at time frame t:

τ̂ (t) def
=

[
τ̂

(t)
1 , · · · , τ̂ (t)

q , · · · , τ̂ (t)
Nq

]T
(3.15)

Theoretical Delays: Each theoretical time delay τ th
q (`ps

n ) is given by (3.7). For each speaker

location `ps
n , we define the associated vector of theoretical delays:

τ th (`ps
n )

def
=

[
τ th
1 (`ps

n ) , · · · , τ th
q (`ps

n ) , · · · , τ th
Nq

(`ps
n )
]T

(3.16)

Proposed Model: For each speaker location `ps
n , a Gaussian distribution is assumed:

τ̂ (t) |`ps
n ∼ Nτ th(`ps

n ),Σ (3.17)

where Σ is a diagonal covariance matrix, with a variance of 1 sampling period for each pair: Σ = I.

HMM Segmentation Framework: To segment the audio signal according to speaker turns, we

use a HMM framework similar to that proposed in (Ajmera et al., 2002) for speech/music segmen-

tation. We define a minimum duration left-to-right HMM for each speaker n ∈ {1, · · · , Nps}, where
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(a) Single Speaker HMM

Speaker 1 Speaker 2

Speaker 4Speaker 3

(b) HMM Topology for Segmentation System

SST 1 SST 1 SST 1

SST 2SST 2SST 2

(a) Short-term Speaker Turn (SST) HMM for one speaker

(b) Dual-speaker HMM (speakers 1 and 2)

Figure 3.5. Single speaker HMM topology. Figure 3.6. Dual-speaker HMM topology.

each state is modelled with the Gaussian pdf p ( τ̂ t | `ps
n ) defined by (3.17). This single speaker

HMM topology is shown in Figure 3.5a. A grammar is introduced that defines uniform transitions

between all speakers, and excludes self-loops. The resulting HMM for the segmentation system is

shown in Figure 3.5b for the case of Nps = 4 speakers. Given an observation sequence of feature

vectors τ̂ (1:T ) def
=
(
τ̂ (1), · · · , τ̂ (t), · · · , τ̂ (T )

)
, the optimal path through the HMM can be found using

Viterbi decoding, giving the maximum likelihood segmentation in terms of speaker locations.

Extension to Segments of Speaker Overlap: We propose a dual-speaker HMM topology

which can be used to extend the HMM segmentation framework to handle segments of overlapping

speech. If there are Nps individual speakers, an overlap segment may be defined as one in which

there are n active speakers, where 2 ≤ n ≤ Nps. We restrict this current work to the case of n = 2,

which we will refer to as dual-speaker overlap.

On segments of dual-speaker overlapped speech, empirical observation of TDOA estimates τ̂
(t)
q

shows an alternating sequence of Short-term Speaker Turns (SST’s). Each TDOA estimate τ̂
(t)
q

successively matches the theoretical TDOA τ th
q

(
`ps

n1

)
of a speaker n1 during a few frames (SST 1

in Figure 3.6b), then the theoretical TDOA τ th
q

(
`ps

n2

)
of the other speaker n2 during a few frames

(SST 2 in Figure 3.6b).

These SST’s are due to frame-by-frame variations in relative energy levels between the two

speakers, as the TDOA estimates are computed from the highest GCC-PHAT peak in each frame.

To model this behaviour, we first define a left-to-right HMM that represents a SST, shown in Fig-

ure 3.6a. This model imposes a minimum duration to exclude noise, as well as a maximum dura-

tion to exclude single-speaker segments. For a given pair of speakers, an alternation of two SST
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Speaker 1

o
62

68 cm

14 cm

14 cm

Speaker 3

Speaker 2Speaker 4

Figure 3.7. Experimental setup.

models forms a dual-speaker HMM, as shown in Figure 3.6b. Similarly to the left-to-right part of

the single speaker HMM, a minimum duration constraint is included to eliminate undesired short

overlapped speech segments (series of diagonal transition arrows). Similarly to the self-loop in the

single speaker HMM, the two vertical transition arrows on the right side of Figure 3.6b model a

variable total duration for the dual-speaker HMM.

Subsequently, an audio signal containing a series of single speaker and dual-speaker segments

may be segmented using :

• Nps single speaker HMMs, as shown in Figure 3.5a, and

• Nps (Nps − 1) /2 dual-speaker HMMs, as shown in Figure 3.6b.

These single and dual-speaker classes are combined in an inter-class grammar that forbids self-

loops, similar to that shown in Figure 3.5b for the single speaker case.

Experiments were conducted in a meeting room using a 4-element microphone array (Nm = 4 mi-

crophones, Nq = 6 pairs) placed in the center of a table, with speakers seated at 4 different locations

around the table, as shown in Figure 3.7. A test database was recorded simultaneously across all

microphones at a sampling rate fs = 16 kHz. The total database duration was 20 minutes, consist-
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system FA PRC RCL F
TDE features 99.1% 0.98 0.98 0.98
LPCC features 88.3% 0.81 0.73 0.77

Table 3.2. Results for the single speaker system (test set 1). FA stands for Frame Accuracy, PRC, RCL and F for Precision,
Recall and F-measure, respectively (the higher, the better for all metrics).

ing of 5 minutes of speech from each speaker/location.

These four 5-minute single speaker/location files were randomly recombined to form two sepa-

rate test sets. Test set 1 (non-overlap) contained only single speaker segments without any overlap

segments. Nine files containing 10 speaker turns were constructed in a random manner, with seg-

ments varying from 5 to 20 seconds in duration. Test set 2 (overlap) was constructed from the same

database in a similar manner, however this time a short overlap segment was included at each

speaker change. The test set consisted of six files, each containing 10 single speaker segments (of

between 5-17 seconds duration), interleaved with 9 segments of dual-speaker overlap (of between

1.5-5 seconds duration). The TDOA estimates were calculated on 32 ms time frames, every 16 ms.

Test Set 1: For the HMM we used a self-loop probability of 0.9, and a minimum duration

of 2 seconds. We also compared with a similar system using Linear Prediction Cepstral Coeffi-

cients (LPCC)5, by replacing the single Gaussian used for TDOA with a 8-mixture GMM, trained

on separate data, for each speaker.

Test Set 2: For this scenario, the HMM topology from the previous experiments was extended

by adding the 6 dual-speaker classes, as described earlier. Each short-term speaker turn (SST)

was constrained to a duration of 3 to 10 frames. These SST’s were then combined in a minimum

duration sequence of 1 second. Once again, transitions in the inter-class grammar were all equally

weighted. As this topology was designed directly from observations of the temporal behaviour of

the time delay features during overlap segments, direct comparison with the LPCC features was

considered inappropriate in this case.

Performance Metrics include Frame Accuracy (FA), the percentage of frames that were cor-

rectly labeled. We also evaluated correct and incorrect segment boundaries by calculating Preci-

sion (PRC), Recall (RCL) and F-measure (F), as defined in Appendix A. An estimated segment

boundary is deemed correct iff within ±1 second of a true segment boundary.

Results: Table 3.2 presents the results for the location- and LPCC-based single speaker sys-
5LPCC features are extracted from one microphone of the array.
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test set FA PRC RCL F
non-overlap (test set 1) 99.1% 0.98 0.98 0.98
overlap (test set 2) 94.1% (85.5%) 0.94 0.86 0.90

Table 3.3. Results for the extended system (test sets 1 and 2). The FA calculated only on actual overlap segments is
shown in parentheses.

tems. These results show the improved discrimination provided by the location-based features, as

well as the suitability of the proposed HMM framework for segmentation. The improved results

of the location-based system are achieved with lower model complexity (one component per GMM,

compared to 8 for LPCC’s), as well as simpler training, through direct calculation of the state dis-

tribution associated with each location.

Table 3.3 presents the results of the location-based dual speaker system. We first observe that

the results on test set 1 using the extended system are identical to those obtained using only the

4 single speaker classes, indicating that the addition of the 6 dual-speaker overlap classes does

not affect the system’s ability to discriminate single speaker segments. Secondly, we see that a

high frame accuracy and F -measure are obtained on the overlap test set. This indicates both the

suitability of the proposed overlap class topology, as well as the power of the HMM to represent

more complex segment structure. We note that part of the decrease in FA for overlap segments may

be attributed to the shorter segment duration and difficulty in defining a precise ground truth.

Conclusion: These results suggest that location information can be very helpful to precisely de-

tect speech and discriminate between speakers, including on overlapped speech. However, several

limitations arise in this preliminary work:

1. Only dual-speaker overlap is modelled. Following the same approach, 2Nps HMMs would be

needed, to model all possible combinations of active/silent speakers.

2. A 2-second minimum duration was used.

3. The number of speakers Nps, and their locations
(
`
ps
1 , · · · , `ps

Nps

)
, are known in advance.

4. Each speaker is associated with one location, and vice-versa. This assumption is violated as

soon as a speaker stands up and moves, or whenever speakers exchange chairs.

(Lathoud et al., 2003) addressed limitation 1. by segmenting each speaker independently, in a

lightweight, online manner. Limitations 2. to 4. are addressed by Chapters 5 to 7.
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Chapter 4

The AV16.3 Corpus

The objective announced in Section 1.1 includes an integrated system for multisource detection-

localization (“Where? When?” questions), that should be able to cope with spontaneous multi-party

speech, in both static scenarios (seated speakers) and moving scenarios (moving speakers). Such

an effort requires test data, along with precise speaker mouth location annotation. One possibil-

ity would be to use loudspeakers playing pre-recorded speech at known locations, or along known

trajectories. However, a recent study (Schwetz et al., 2004) has pointed out specificities of the hu-

man speech radiation, that suggest wide differences with loudspeaker radiation. Therefore, in the

“AV16.3” corpus described by the present chapter, almost all recordings were made with human

speakers, recorded in a meeting room context. “AV” stands for audio-visual, and “16.3” stands for

16 microphones and 3 cameras, recorded in a fully synchronized manner. The central idea is to

use calibrated cameras to provide a continuous 3-dimensional (3-D) speaker location annotation,

that can be used to evaluate the results of audio localization and tracking algorithms. Particular

attention is given to multiple moving speakers, and to overlapped speech – when several speakers

are simultaneously speaking. Overlap is indeed an important issue in multi-party spontaneous

speech (Shriberg et al., 2001), as discussed in Section 3.2.1. Moreover, since visual recordings are

available, video and audio-visual tracking algorithms can also be tested. We therefore defined and

recorded a series of scenarios so as to cover a variety of research areas, namely audio, video and

audio-visual localization and tracking of people in a meeting room. Possible applications range from

automatic analysis of meetings to robust speech acquisition and video surveillance, to name a few.

51
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To cover such a broad range of research topics, the “meeting room context” used here includes a

high variety of situations, from a single, static speaker, to multiple moving speakers and overlap-

ping speech. This departs from existing, related databases: for example the ICSI database (Janin

et al., 2003) contains audio-only recordings of natural meetings, the CUAVE database (Patterson

et al., 2002) does contain audio-visual recordings (close-ups) but focuses on multimodal speech

recognition. The CIPIC database (Algazi et al., 2001) focuses on Head-Related Transfer Func-

tions. The audio-only ShATR corpus (Crawford et al., 1994) includes close-talking microphones

and a binaural manikin. The ShATR corpus should be acknowledged as one of the earliest effort

on spontaneous multi-party speech. Although its focus on overlapping speech is relevant to the

present objective, it only contains seated speakers, without precise mouth location annotation.

Instead of focusing the entire database on one research topic, we chose to have a single, generic

setup, allowing for very different scenarios in the different recordings. The goal is to provide anno-

tation both in terms of “true” 3-D speaker location in the microphone arrays’ referent, and “true”

2-D head/face location in the image plane of each camera. Such annotation permits systematic

evaluation of localization and tracking algorithms, as opposed to subjective evaluation on a few

short examples without annotation. To the best of our knowledge, the AV16.3 corpus was the first

publicly available, annotated audio-visual corpus for speaker localization and tracking.

While investigating for existing solutions for speaker location annotation, we found various so-

lutions with devices to be worn by each person and a base device that locates each personal device.

However, these solutions were either very costly and extremely effective (high precision and sam-

pling rate, no tether between the base and the personal devices), or cheap but with poor precision

and/or high constraints (e.g. personal devices tethered to the base). We thus used calibrated cam-

eras, placed at optimized locations, to reconstruct the 3-D location of the speakers. A maximum

3-D error of 1.2 cm was achieved. Moreover, the proposed annotation solution is potentially non-

intrusive. Indeed, some recordings of the AV16.3 corpus do not have any marker on the actors.

This chapter is organized as follows: Section 4.1 describes the physical setup and the camera

calibration process. Section 4.2 describes the recorded sequences. Section 4.3 presents the annota-

tion interfaces, and details the available annotation. Section 4.4 describes additional loudspeaker

recordings. Section 4.5 concludes. The whole corpus, along with annotation tools, files, and Matlab

code for 3-D reconstruction, is available at: http://mmm.idiap.ch/Lathoud/av16.3 v6/
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Tables

C3

C2

C1
Speakers

Area

MA1

MA2

Figure 4.1. Physical setup: three cameras C1, C2 and C3 and two 8-microphone circular arrays MA1 and MA2. The
gray, L-shaped area is in the field of view of all three cameras.

4.1 Physical Setup and Camera Calibration

While designing the AV16.3 corpus, two contradicting constraints arose: 1) the area occupied by

speakers should be large enough to cover both “meeting situations” and “motion situations”, 2) this

area should be entirely visible by all three cameras. The second constraint allows for robust recon-

struction of 3-D location information, since information from all three cameras can be used. As a

compromise between the two constraints, we defined a L-shaped area of possible speakers’ locations

around the tables in a meeting room, as depicted in Figure 4.1. A general description of the meet-

ing room can be found in (Moore, 2002). The L-shaped area is a 3 m-long and 2 m-wide rectangle,

minus a 0.6 m-wide portion taken by the tables. Figure 4.2 contains views taken with the different

cameras.

The motivation for precise camera calibration is that if we can track the mouth of a person

in each camera’s image plane, then we can reconstruct the 3-D trajectory of the mouth using the

cameras’ calibration parameters. This can be useful as audio annotation, provided that the 3-D

mouth location is defined in the referent of the microphone arrays. We thus adopted a 2-step strat-

egy for placing the cameras and calibrating them. First, camera placement (location, orientation,

zoom) is optimized, using a looping process that includes sub-optimal calibration of the cameras

with 2-D image plane information only. Second, each camera is calibrated in a precise manner,

using both 2-D measurements in the image plane, and 3-D measurements in the referent of the

microphone arrays. We show that the 3-D reconstruction error is within a very acceptable range.
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Section 4.1.1 describes and motivates the choice of hardware. Section 4.1.2 describes the camera

placement step. Section 4.1.3 describes the precise camera calibration step. The data itself is

described further below, in Section 4.2.

4.1.1 Hardware

We used 3 cameras and two 10 cm-radius, 8-microphone Uniform Circular Arrays (UCA) from an

instrumented meeting room (Moore, 2002). The two microphone arrays are placed 0.8 m apart. The

motivation behind this choice is threefold:

• Recordings made with two microphone arrays provide test cases for 3-D audio source localiza-

tion and tracking, as each microphone array can be used to provide an (azimuth, elevation)

location estimate of each audio source.

• Recordings made with several cameras generate many interesting, realistic cases of visual

occlusion, viewing each person from several viewpoints.

• At least two cameras are necessary to compute the 3-D coordinates of an object from the

2-D coordinates in cameras’ image planes. The use of three cameras allows to reconstruct the

3-D coordinates of an object in a robust manner. Indeed, in most cases, visual occlusion occurs

in one camera only; the head of the person remains visible from the two other cameras.

Lapels were also worn by the speakers, whenever it was technically feasible.

4.1.2 Step One: Camera Placement

This subsection describes the looping process that optimizes cameras placement (location, orienta-

tion, zoom) using 2-D information only. We used a freely available Multi-Camera Self-Calibration

(MultiCamSelfCal) software (Svoboda, 2003). “Self-calibration” means that the 3-D locations of

the calibration points are unknown. The MultiCamSelfCal uses only the 2-D coordinates in the

image plane of each camera. It jointly produces a set of calibration parameters1 for each camera

and 3-D location estimates of the calibration points, by minimizing the “2-D reprojection error”.

For each camera, the “2-D reprojection error” is defined as the distance in pixels between the

recorded 2-D points and the projection of their 3-D location estimates back onto the camera image
1For a description of the camera calibration parameters see (Bouguet, 2004).
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camera 1 camera 1

camera 1 camera 1

camera 2 camera 3

Figure 4.2. Snapshots from the cameras at their final positions. “+” designate points in the calibration training set Xtrain,
“x” designate points in the calibration test set Xtest.
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plane, using the estimated camera calibration parameters. Although we used the software with

the strict minimum number of cameras (three), the obtained 2-D reprojection error was decent: its

upper bound was estimated as less than 0.17 pixels. The proposed camera placement procedure

consists in an iterative process with three steps: Place, Record and Calibrate:

1. Place the three cameras (location, orientation, zoom) based on experience in prior iterations.

In practice the various cameras should give views that are as different as possible (different

orientation angles), while having as much field of view in common as possible.

2. Record synchronously with the 3 cameras a set of calibration points, i.e. 2-D coordinates in

the image plane of each camera. As explained in (Svoboda, 2003), waving a modified laser

pointer in darkness is sufficient.

3. Calibrate the 3 cameras by running MultiCamSelfCal on the calibration points. MultiCam-

SelfCal finds the calibration parameters that minimize an upper bound of the 2-D reprojection

error, given the current camera placement.

4. To further decrease the 2-D reprojection error, loop to 1. Else go to 5. In practice, a 2-D repro-

jection error below 0.2 pixels is reasonable.

5. Over all iterations, select the camera placement that gave the smallest 2-D reprojection error.

Multi-camera self-calibration is generally known to provide less precision than manual calibra-

tion using an object with known 3-D coordinates. However, self-calibration is much faster, precisely

because it does not require any 3-D measurements, but only 2-D calibration points that are quickly

recorded with a modified laser pointer. One iteration of the Place/Record/Calibrate loop thus takes

about 1h30. This process converged to the positioning of the camera depicted in Figure 4.1. For

further information, including the multi-camera self-calibration problem statement, the reader is

referred to the documentation in (Svoboda, 2003).

4.1.3 Step Two: Camera Calibration

This subsection describes the precise calibration of each camera, assuming the cameras’ placement

fixed (location, orientation, zoom). This is done by selecting and optimizing the calibration pa-

rameters for each camera, with respect to a calibration object. For each point of the calibration
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object, both true 3-D coordinates in the microphone arrays’ referent and true 2-D coordinates in

each camera’s image plane are known. 3-D coordinates were obtained on-site with a measuring

tape (measurement error estimated below 0.005 m). Crosses in Figure 4.2 show the 3-D calibration

points. These points were splitted into two sets: Xtrain (36 points) and Xtest (39 points).

A critical issue was to select the distortion model, that is the type of non-linear distortions

assumed to be produced by the optics of each camera. An iterative process was used to select the

model, that minimizes the “3-D reconstruction error”. The 3-D reconstruction error is defined as the

Euclidean distance between the reconstructed 3-D location estimates of points visible from at least

two cameras, and their true 3-D location measured with the tape. The complete precise camera

calibration procedure can be detailed as follows:

1. Model selection: for each camera, select the set of calibration parameters based on experience

in prior iterations.

2. Model training: for each camera, estimate the selected calibration parameters on Xtrain using

the software available in (Bouguet, 2004), given the chosen model.

3. 3-D error: for each point in Xtrain, compute the Euclidean distance between the true 3-D co-

ordinates and the 3-D coordinates reconstructed from the 2-D coordinates in each camera’s

image plane, using the trained calibration parameters.

4. Evaluation: estimate the “training” maximum 3-D reconstruction error as µ + 3σ, where µ and

σ stand for mean and standard deviation of the 3-D error, across all points in Xtrain.

5. To try to decrease the training maximum 3-D reconstruction error, loop to 1. Else go to 6.

6. Over all iterations, select the set of calibration parameters and their estimated values, that

gave the smallest maximum 3-D reconstruction error.

The result of this process is a selected set of distortion calibration parameters and their values for

each camera. For all cameras the best set of parameters was focal center, focal lengths, r2 radial

and tangential distortion coefficients.

Once the training was over, we evaluated the 3-D error on the unseen test set Xtest. The max-

imum 3-D reconstruction error on this set was 0.012 m. This maximum error was deemed reason-

able, as compared to the diameter of an open mouth (about 0.05 m).
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4.2 Online Corpus

This section first motivates and describes the variety of recorded sequences, then describes in more

details the annotated sequences. “Sequence” means:

• 3 video DIVX AVI files (resolution 288x360), one for each camera, sampled at 25 Hz. Each AVI

file also includes one audio signal.

• 16 audio WAV files recorded from the two circular 8-microphone arrays, sampled at 16 kHz.

• When possible, audio WAV files recorded from lapels worn by the speakers, sampled at 16 kHz.

All files were recorded in a synchronous manner: video files carry a time-stamp embedded in the

upper rows of each image, and audio files always start at video time stamp 00:00:10.00. Com-

plete details about the hardware implementation of a unique clock across all sensors can be found

in (Moore, 2002). The various sequences of the corpus were recorded over a period of 5 days, in-

cluding 42 sequences overall, with sequence durations ranging from 14 seconds to 9 minutes (total

1h25). 12 different actors were recorded. Most of the recorded actors did not have any particu-

lar expertise in the fields of audio or video localization and tracking. Although only 10 sequences

have been annotated, the other 32 sequences are also available. The whole corpus, along with

annotation files, camera calibration parameters and additional documentation is accessible2 at:

http://mmm.idiap.ch/Lathoud/av16.3 v6

4.2.1 Motivations

A non-limiting list of relevant localization/tracking phenomena includes:

• Overlapped speech.

• Close and far locations, small and large angular separations.

• Object initialization.

• Variable number of objects.

• Partial and total occlusion.

• “Natural” changes of illumination.
2Both HTTP or FTP protocols can be used to browse and download the data.
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Accordingly, we defined and recorded a set of sequences that contains a high variety of test cases:

from short, very constrained, specific cases (e.g. visual occlusion), for each modality (audio or video),

to natural spontaneous speech and/or motion in much less constrained context.

Each sequence is useful for at least one of three fields of research: analysis of audio, video or

audio-visual data. Up to three people are allowed in each sequence. Human motion can be static

(e.g. seated persons), dynamic (e.g. walking persons) or a mix of both across persons (some seated,

some walking) and time (e.g. meeting preceded and followed by people standing and moving).

4.2.2 Sequence Names

A systematic coding was defined, such that the name of each sequence (1) is unique, and (2) contains

a compact description of its content. For example “seq40-3p-0111” has three parts:

• “seq40” is the unique identifier of this sequence. For convenience, we sometimes abbreviate

the names: “seq40” and “seq40-3p-0111” designate the same sequence.

• “3p” means 3 different persons in this sequence – but not necessarily all visible simultane-

ously.

• “0111” are four binary flags that summarize this sequence. From left to right:

bit 1: 0 means “very constrained”, 1 means “mostly unconstrained” (general behavior: al-

though most recordings follow some sort of scenario, some include very strong constraints

such as the speaker facing the microphone arrays at all times).

bit 2: 0 means “static motion” (mostly seated), 1 means “dynamic motion” (walking).

bit 3: 0 means “minor occlusion(s)”, 1 means “at least one major occlusion”: whenever some-

body passes in front of somebody else, with respect to one array or camera.

bit 4: 0 means “little overlapped speech”, 1 means “significant overlapped speech”. Overlap

involves all acoustic sources, including speakers and/or noise sources.
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Sequence Duration Modalities Nb. of Speaker(s)
name (seconds) of interest speakers behavior
seq01-1p-0000 217 A 1 S
seq02-1p-0000 189 A 1 S
seq03-1p-0000 242 A 1 S
seq11-1p-0100 30 A, V, AV 1 D
seq15-1p-0100 35 AV 1 S,D(U)
seq18-2p-0101 56 A(ov) 2 S,D
seq24-2p-0111 48 A(ov), V(occ) 2 D
seq37-3p-0001 511 A(ov) 3 S
seq40-3p-0111 50 A(ov), AV 3 S,D
seq45-3p-1111 43 A(ov), V(occ), AV 3 D(U)

Table 4.1. List of the annotated sequences. Tags mean: [A]udio, [V]ideo, predominant [ov]erlapped speech, at least
one visual [occ]lusion, [S]tatic speakers, [D]ynamic speakers, [U]nconstrained motion.

4.2.3 Annotated Contents

As mentioned above, the AV16.3 corpus comprises 10 annotated sequences plus 32 unannotated

sequences. The 10 annotated sequences were chosen so as to cover a large variety of situations that

fulfill interests from various areas of research. “Variety” means different modalities (audio or video)

and different speaker behaviors. Table 4.1 gives a synthetic overview.

seq01-1p-0000, seq02-1p-0000, seq03-1p-0000: A single speaker, static while speaking, at

each of 16 locations covering the shaded area in Figure 4.1. The speaker is facing the micro-

phone arrays. The purpose of this sequence is to evaluate audio source localization on a single

speaker case.

seq11-1p-0100: One speaker, mostly moving while speaking. The only constraint on the speaker’s

motion is to face the microphone arrays. The motivation is to test audio, video or audio-visual

(AV) speaker tracking on difficult motion cases. The speaker is talking most of the time.

seq15-1p-0100: One moving speaker, walking around while alternating speech and long silences.

The purpose of this sequence is to 1) show that audio tracking alone cannot recover from

unpredictable trajectories during silence, 2) provide an initial test case for AV tracking.

seq18-2p-0101: Two speakers, speaking and facing the microphone arrays all the time, slowly

getting as close as possible to each other, then slowly parting. The purpose is to test multi-

source localization, tracking and separation algorithms.
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seq24-2p-0111: Two moving speakers, crossing the field of view twice and occluding each other

twice. The two speakers are talking most of the time. The motivation is to test both audio and

video occlusions.

seq37-3p-0001: Three speakers, static while speaking. Two speakers remain seated all the time

and the third one is standing. Overall five locations are covered. Most of the time 2 or 3

speakers are speaking concurrently. (For this particular sequence only snapshot image files

are available, no AVI files.) The purpose of this sequence is to evaluate multi-source localiza-

tion and beamforming algorithms.

seq40-3p-0111: Three speakers, two seated and one standing, all speaking continuously, facing

the arrays. The standing speaker walks back and forth once, behind the seated speakers. The

motivation is both to test multi-source localization, tracking and separation algorithms, and

to highlight complementarity between audio and video modalities.

seq45-3p-1111: Three moving speakers, entering and leaving the scene, all speaking continu-

ously, occluding each other many times. Speakers’ motion is unconstrained. This is a very

difficult case of overlapped speech and visual occlusions. The motivation is to highlight the

complementarity between audio and video modalities.

4.3 Annotation

Three spatial annotation interfaces were developed, as detailed in Section 4.3.1: for the mouth, for

the head, and for an optional ball marker on the head of a speaker. Moreover, some of the sequences

were also annotated over time, in the form of a speech/silence segmentation. Section 4.3.3 details

the available annotation, and Section 4.3.2 explains the 3-D mouth reconstruction. Sections 4.3.4

and 4.3.5 give two examples of application of the available annotation.

4.3.1 Spatial Annotation Interfaces

BAI: the Ball Annotation Interface, to mark the location of a colored ball on the head of a person,

as an ellipse. Occlusions can also be marked, i.e. when the ball is not visible. The BAI includes

a simple tracker to interpolate between manual measurements.



62 CHAPTER 4. THE AV16.3 CORPUS

Figure 4.3. Snapshots of the two windows of the Head Annotation Interface.

HAI: the Head Annotation Interface, to mark the location of the head of a person, as a rectangular

bounding box. Partial or complete occlusions can also be marked.

MAI: the Mouth Annotation Interface, to mark the location of the mouth of a person as a point.

Occlusions can also be marked, i.e. when the mouth is not visible.

All three interfaces share very similar features, including two windows: one for the interface itself,

and a second one for the image currently being annotated (Figure 4.3). Each annotation file is

a numerical matrix stored in ASCII format3. All three interfaces are available and documented

online, within the corpus itself. We have already used them to produce continuous 3-D mouth

location annotation from sparse manual measurements, as described in Section 4.3.2.

4.3.2 3-D Mouth Annotation

From sparse 2-D mouth annotation on each camera we (1) reconstruct 3-D mouth location using

camera calibration parameters estimated as explained in Section 4.1.3, (2) interpolate 3-D mouth

location using the reconstructed ball marker 3-D location. The 3-D ball location itself is provided

by the 2-D tracker in the BAI interface (see Section 4.3.1), and 3-D reconstruction. The motivation

of this choice was twofold: first of all, using simple (e.g. polynomial) interpolation on mouth mea-

surements was not enough in practice, since human motion contains many complex non-linearities
3Each format is detailed in http://mmm.idiap.ch/Lathoud/av16.3 v6/FORMATS
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Sequence ball mouth head speech/silence
2-D 3-D 2-D 3-D 2-D segmentation

seq01-1p-0000 C C C C S(2 Hz) precise
seq02-1p-0000 S(1 per location) S(1 per location) undersegmented
seq03-1p-0000 S(1 per location) S(1 per location) undersegmented
seq11-1p-0100 C C C C S(2 Hz)
seq15-1p-0100 C C C C S(2 Hz)
seq18-2p-0101 C C C C S(2 Hz)
seq24-2p-0111 C C C C S(2 Hz)
seq37-3p-0001 C C C C undersegmented
seq40-3p-0111 C C C C S(2 Hz)
seq45-3p-1111 C C C C S(2 Hz)

Table 4.2. Available annotation, as of December 7th, 2006. “C” means continuous annotation: on all frames of each
25 Hz video. “S” means sparse annotation: on some of the video frames (annotation rate in brackets). “Underseg-
mented” means that some short silences are included in the segments marked as “speech”.

(sharp head turns and accelerations). Second, visual tracking of the mouth is a hard task in itself.

We found that interpolating measurements in the moving referent of an automatically tracked ball

marker is effective even at low annotation rates (e.g 2 Hz = 1 video frame out of 12), which is partic-

ularly important since the goal is to limit the time spent doing manual measurements. A complete

example with all necessary Matlab implementation can be found online4. This implementation was

used to create all 3-D files available within the corpus.

4.3.3 Available Annotation

Table 4.2 details the available 2-D and 3-D annotations for each of the 10 annotated sequences.

4.3.4 Example 1: Audio Source Localization Evaluation

The online corpus includes a complete example (Matlab files) of single source localization followed

by comparison with the annotation, for “seq01-1p-0000”. It is based on the Steered Response

Power method called SRP-PHAT (DiBiase, 2000), described earlier in Section 3.1.2. All necessary

Matlab code to run the example is available online5. The comparison shows that the SRP-PHAT

localization method provides a precision between -5 and +5 degrees in azimuth. Eight annotated

sequences are further evaluated in terms of both detection and localization, in Section 5.4.8.

4http://mmm.idiap.ch/Lathoud/av16.3 v6/EXAMPLES/3D-RECONSTRUCTION/README
5http://mmm.idiap.ch/Lathoud/av16.3 v6/EXAMPLES/AUDIO/README
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4.3.5 Example 2: Multi-Object Video Tracking

The video tracking results of three independent, appearance-based particle filters on 200 frames of

the “seq45-3p-1111” sequence, using only one of the cameras, are shown in Figure 4.4, and in a

video6. The sequence depicts three people moving around the room while speaking, and includes

multiple instances of object occlusion. Each tracker has been initialized by hand, and uses 500

particles. Object appearance is modeled by a color distribution (Perez et al., 2002) in RGB space.

In this particular example we have not done any performance evaluation yet. Suggestions for

evaluation can be found in (Smith et al., 2005).

4.4 Additional Loudspeaker Sequences

Spatial location can be precisely annotated using calibrated cameras, within the 1.2 cm maximum

3-D error mentioned above. On the contrary, the “true” speech/silence segmentation of human

speech is difficult to define in an exact manner. Inter-word silences may be extremely short, and

even inside a word, there may be parts with very low energy. For some performance metrics, this

precludes the exact evaluation of a speech detection system, as confirmed by the results in Sec-

tion 5.3.4. Therefore, we recorded three additional sequences, each containing three loudspeak-

ers playing constant-power synthesized vowels, around a circular microphone array. By construc-

tion, the speech/silence segmentation of each loudspeaker is exactly known, therefore any detec-

tion performance evaluation is exact. The sequences loud01-3p-0001, loud02-3p-0001 and

loud03-3p-0001 each contain 20 minutes of synthetic speech, as an alternation of 4 seconds of

stationary vowel sound followed by 2 seconds of silence. In each sequence, all 200 possible combina-

tions of 2 and 3 active loudspeakers and 5 different vowels are played sequentially. Vowels are syn-

thesized using a LPC vocoder7 and constant LPC coefficients, estimated from real speech. Figure 4.5

depicts the locations of the three loudspeakers A, B, C. Only A was moved between sequences, so

as to test equal distances (loud01-3p-0001), A further than B and C (loud02-3p-0001), and low

angular separation (loud03-3p-0001). The loudspeaker sequences are used in the detection tests

reported in Chapter 5.

6http://mmm.idiap.ch/Lathoud/av16.3 v6/EXAMPLES/VIDEO/av-video.mpeg
7Available at http://www.tcts.fpms.ac.be/cours/1005-08/speech/lpcvocoder.zip
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Figure 4.4. Snapshots from visual tracking on 200 frames of “seq45-3p-1111” (initial timecode: 00:00:41.17). Tracking
results are shown every 25 frames.
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Figure 4.5. Top view of the recording setup for loud01-3p-0001, loud02-3p-0001 and loud03-3p-0001: 3 loud-
speakers A,B,C. Loudspeaker A lies at 90o azimuth relative to the array in loud01-3p-0001 (radius 0.8 m) and
loud02-3p-0001 (radius 1.8 m), and at 0o azimuth in loud03-3p-0001 (radius 1.45 m). Loudspeakers B and C lie
respectively at +25.6o and -25.6o in all three sequences loud01-3p-0001, loud02-3p-0001 and loud03-3p-0001
(radius 0.8 m).

4.5 Conclusion

This chapter presented the AV16.3 corpus for speaker localization and tracking. AV16.3 focuses

mostly on the context of meeting room data, acquired synchronously by 3 cameras, 16 far-distance

microphones, and lapels. It targets various areas of research: audio, visual and audio-visual

speaker tracking. In order to provide audio annotation, camera calibration is used to generate

“true” 3-D speaker mouth location, using freely available software. To the best of our knowledge,

this is the first attempt to provide synchronized audio-visual data for extensive testing on a variety

of test cases, along with spatial annotation. AV16.3 is intended as a step towards systematic eval-

uation of localization and tracking algorithms on real recordings. Eight annotated sequences are

used in Chapter 5 to evaluate multisource detection-localization, and in Chapter 6 and Appendix D

to evaluate the speech/non-speech classification in the localization context.
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Chapter 5

Multisource Joint

Detection-Localization

This chapter focuses on instantaneous detection-localization of multiple acoustic sources, as an-

nounced in Chapter 1 (Figure 1.2b). The goal is to answer the “Where? When?” questions:

• Detect how many acoustic sources are active: zero, one or more.

• Locate in space the active acoustic source(s).

By instantaneous we mean static analysis of the signals, that is from a single time frame on which

speech is assumed quasi-stationary (20 to 30 ms). The dynamical analysis (on multiple consecutive

time frames) is addressed by Chapter 6.

As explained in Section 3.1.2, we have opted for Steered Response Power (SRP) localization,

where a source location estimate is obtained by finding a local maximum of the beamforming

power (Krim and Viberg, 1996; DiBiase, 2000). On one hand, Section 3.1.2 showed that a fast

search space reduction would be beneficial, where the active sectors of a discretized space are de-

tected. On the other hand, Section 3.1.3 showed that detection for localization may require different

approaches than detection in other contexts such as ASR. Following these two points, the present

chapter investigates the sector-based detection-localization task, where we try to determine –

to detect – which sectors – or discrete locations – are active. Classical point-based localization

is then applied within each active sector. This chapter describes each step of the proposed system:

67
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Figure 5.1. Proposed multisource detection-localization. The eight dots in the center represent the microphone array.
The three dots in the sectors represent point location estimates.

1. Section 5.1 proposes to view the maximization of the SRP as a minimization of an equiva-

lent metric, called Phase Domain Metric (PDM). The PDM interpretation of SRP serves as a

foundation for both sector-based detection-localization and point-based localization.

2. Figure 5.1a: Based on the PDM, Section 5.2 proposes a measure of “acoustic activeness” in

a sector of space. The search space R3 is divided into Nš sectors {S1, · · · , Sš, · · · , SNš
}. The

acoustic activeness is a value ζš,t ≥ 0, which becomes higher when a sector Sš ⊂ R3, at time

frame t, contains at least one active acoustic source.

3. Figure 5.1b: Sector-based detection-localization is a binary decision, for example by compar-

ing the activeness ζš,t to a threshold Ψζ : ζš,t ≷ Ψζ . Section 5.3 proposes to jointly model

the small magnitudes (background noise) and the large magnitudes (speech) of the acoustic

activeness ζš,t. No training data is required, so the method is adaptive and robust to environ-

mental variations. Based on this model, a generic method for the automatic selection of the

threshold Ψζ is proposed, which further improves the robustness to environmental variations.

4. Figure 5.1c: Based on the PDM, Section 5.4 describes a gradient descent implementation of

the point-based localization of the acoustic sources within the active sectors.

5. Figure 5.1d: Based on the PDM, Section 5.5 examines location-dependent measures for the

classification of the localized acoustic sources in two groups: speech sources and non-speech

sources (SNS classification).
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Comparative experiments on real multichannel recordings are included in items 2., 3. and 4. As

for the SNS classification (item 5.), it is presented in this chapter because of its link with the PDM.

However, comparative SNS experiments are included in Chapter 6, because we compared static and

dynamical analysis for SNS classification.

5.1 A Phase Domain Metric Interpretation of SRP

For a given spatial location ` ∈ R3, delay-sum beamforming consists in aligning the time domain

signals received at the various microphone locations {`1, · · · , `m, · · · , `Nm
}, by their theoretical de-

lays TOF (`, `m), and summing them:

xds (t, `)
def
= x1 (t) +

Nm∑

m=2

x (t + TOF (`, `m)− TOF (`, `1)) (5.1)

where Nm is the number of microphones and TOF (`, `m) is the Time Of Flight – expressed in

sampling periods – of an acoustic wave between locations ` and `m, as defined by (3.5). For a time

frame t containing 2 ·NF samples, SRP localization consists in finding the location ` that maximizes

the power
〈
xds (t + a, `)

2
〉
−NF<a≤NF

, where 〈·〉· is the average operator.

Section 5.1.1 shows that in the frequency domain, the power maximization is tightly related to

a minimization of the differences between the observed phases and the theoretical phases. Based

on this analysis, Section 5.1.2 formally introduces the proposed PDM, and Section 5.1.3 shows its

equivalence with SRP-PHAT (DiBiase, 2000, Sections 6.3 and 6.4). The PDM and its application

to sector-based detection-localization were originally introduced in (Lathoud and Magimai.-Doss,

2005; Lathoud et al., 2006a).

5.1.1 Motivation

Let q ∈ N be the microphone pair index: 1 ≤ q ≤ Nq, where Nq = Nm · (Nm − 1) /2 is the number of

microphone pairs. Let aq ∈ N and bq ∈ N be the indices of the two microphones in the q-th pair:

1 ≤ aq < bq ≤ Nm.

For the q-th pair of microphones
(
`aq

, `bq

)
, let us consider the received signals xaq

(t) and xbq
(t).

For a given time frame t, and a given discrete frequency k, the frequency domain delay-sum energy
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can be defined by aligning the two signals, with respect to the theoretical phase uth
q (k, `):

E(ds,t)
q (k, `)

def
=

∣∣∣X(t)
aq

(k) + X
(t)
bq

(k) · exp
[
j · uth

q (k, `)
]∣∣∣

2

=
∣∣∣X(t)

aq
(k)
∣∣∣
2

·

∣∣∣∣∣∣
1 +

∣∣∣∣∣∣
X

(t)
bq

(k)

X
(t)
aq (k)

∣∣∣∣∣∣
· exp

[
j
(
−u(t)

q (k) + uth
q (k, `)

)]
∣∣∣∣∣∣

2

(5.2)

where k ∈ {1, · · · , NF}, and the observed phase u
(t)
q (k) is defined as:

u(t)
q (k)

def
= ∠X(t)

aq
(k)− ∠X

(t)
bq

(k) (5.3)

and the theoretical phase uth
q (k, `) is defined as:

uth
q (k, `)

def
= −π · k − 1

NF
· τ th

q (`) (5.4)

where the theoretical TDOA τ th
q (`) is expressed in sampling periods, as defined by (3.7).

Assuming the received magnitudes to be similar
∣∣∣X(t)

aq (k)
∣∣∣ ≈

∣∣∣X(t)
bq

(k)
∣∣∣, (5.2) becomes:

E(ds,t)
q (k, `) ∝

∣∣∣1 + exp
[
j
(
−u(t)

q (k) + uth
q (k, `)

)]∣∣∣
2

∝
{

1 + cos
[
−u(t)

q (k) + uth
q (k, `)

]}2

+ sin2
[
−u(t)

q (k) + uth
q (k, `)

]

∝ 2 + 2 cos
[
−u(t)

q (k) + uth
q (k, `)

]

∝ 1− sin2

[
−u

(t)
q (k) + uth

q (k, `)

2

]
(5.5)

Therefore the maximization of the delay-sum energy at the discrete frequency k is equivalent to the

minimization of sin2

[
−u(t)

q (k)+uth
q (k,`)

2

]
, which can be seen as a “metric” in phase space. Section 5.1.2

formally defines the metric in the general case of multiple microphone pairs.

5.1.2 The Proposed Phase Domain Metric (PDM)

For speech array applications (DiBiase, 2000, Section 6.6), the highly dynamical natures of both

the speech signals and the human motion justify the preference for spatial averaging over time

averaging. The amount of data in a single time frame is limited, but this limitation is compensated

by spatial averaging across multiple microphone pairs.
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ej 1u

ej 2u

ej 3u

Figure 5.2. Illustration of the triangular inequality for the PDM in dimension 1: each point on the unit circle corresponds
to an angle value modulo 2π. From the Euclidean metric:

˛

˛eju3 − eju1
˛

˛ ≤
˛

˛eju3 − eju2
˛

˛ +
˛

˛eju2 − eju1
˛

˛.

Thus, for a given time frame t, we define the vector of observed phase values:

u(t) (k)
def
=

[
u

(t)
1 (k) , · · · , u(t)

q (k) , · · · , u(t)
Nq

(k)
]T

(5.6)

and we define the vector of theoretical phase values:

uth (k, `)
def
=

[
uth

1 (k, `) , · · · , uth
q (k, `) , · · · , uth

Nq
(k, `)

]T
(5.7)

We then propose the following function to compare two vectors of phase values:

d (u,u′)
def
=

√√√√ 1

Nq

Nq∑

q=1

sin2

(
uq − u′

q

2

)
(5.8)

d (·, ·) is similar to the Euclidean metric, except for the sine, which accounts for the “modulo 2π”

definition of angles. The 1/Nq normalization factor ensures that 0 ≤ d (·, ·) ≤ 1. d (·, ·) is a true

Phase Domain Metric (PDM), as defined in Appendix B.1. This is straightforward for Nq=1 by

representing any angle u with a point eju on the unit circle, as in Figure 5.2, and observing that
∣∣eju1 − eju2

∣∣ = 2 ·
∣∣sin

(
u1−u2

2

)∣∣ = 2 · d (u1, u2). Appendix B proves it for higher dimensions Nq > 1.

5.1.3 Equivalence with SRP-PHAT

Section 5.1.1 has indicated a rough equivalence between SRP maximization and PDM minimiza-

tion. Concerning SRP-PHAT, Appendix B proves the following exact result (B.14):

PSRP-PHAT
(
`,X

(t)
1 , · · · ,X(t)

Nm

)
= NF · (Nm + 2 ·Nq)− 4 ·Nq ·

NF+1∑

k=2

d2
(
u(t) (k) ,uth (k, `)

)
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Hence, maximizing SRP-PHAT is strictly equivalent to minimizing the squared PDM d2 (·, ·). This

strict equivalence with a metric can be seen as a topological interpretation of SRP-PHAT localiza-

tion. For sector-based detection-localization, this topological interpretation suggests and justifies

averaging the metric over a sector of space, as well as comparing various metric values for a given

frequency k (Section 5.2). For point-based localization, this topological interpretation suggests us-

ing gradient descent approaches for precise localization of a source within a sector (Section 5.4).

5.2 Sector-Based Activeness

The review conducted in Section 3.1.2 showed that a fast search space reduction could be beneficial

to localization, where the active sectors of a discretized space are detected. The active sources can

then be localized within the reduced space formed by the active sectors. Existing works going in that

direction include (Kellermann, 1991; Zotkin and Duraiswami, 2004). They essentially rely on the

beamformed power calculated at a point in the middle of each sector. This can be problematic when

a true source location is close to the limit between two sectors. As an alternative, the present section

proposes to evaluate the average acoustic activeness within a sector (volume of space). Experiments

confirm the advantage of the proposed approach.

The search space around the microphone array is partitioned into Nš connected volumes called

“sectors”. For example, the space around a horizontal UCA can be partitioned into Nš “pie slices”:

∀š ∈ {1, · · · , Nš} Sš =
{

(θ, ϕ, ρ) ∈ R3
∣∣∣ 2π š−1

Nš
≤ θ < 2π š

Nš
, 0 ≤ ϕ ≤ π

2 , ρ ≥ ρ0

}
(5.9)

where here θ, ϕ, ρ designate azimuth (in radians), elevation (in radians) and radius (in meters) with

respect to the microphone array center; microphones are all in the sphere ρ < ρ0. See Figure 5.3a.

This section proposes a measure of wideband acoustic activity – the activeness ζš,t ≥ 0 in a

given sector Sš, at a given time frame t (Figure 5.1a). The proposed activeness measure, called

SAM-SPARSE-MEAN1, is the number of discrete frequencies where a given sector is dominant

over other sectors. Based on an sector-based average of the PDM (Section 5.2.1) and a compar-

ison between sectors (Section 5.2.2), the SAM-SPARSE-MEAN activeness measure is defined in

Section 5.2.3. Experiments compare SAM-SPARSE-MEAN with other measures in Section 5.2.4.
1“SAM” stands for “Sector-based Activeness Measure”, “SPARSE” stands for “sparsity assumption”, and “MEAN” stands

for “average over a sector”.
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(a) Meeting room setup (Chapters 4 to 7)

• Uniform Circular Array (UCA)
• 8 microphones {`1, · · · , `m, · · · , `8}
• 18 sectors {S1, · · · , Sš, · · · , S18}
• Uniform prior Pš (ξ)

(b) In-car setup (Chapter 8)

• Uniform Linear Array (ULA)
• 4 microphones {`1, · · · , `m, · · · , `4}
• 5 sectors {S1, · · · , Sš, · · · , S5}
• Uniform or Gaussian prior Pš (ξ)

Figure 5.3. Two examples of microphone arrays and sector definitions. Each dot corresponds to a vš,n location. In (a)
the sectors are defined in 3-D, following (5.9), but for the sake of clarity, we have only represented the horizontal plane.
In (b) the sectors are defined in 2-D.

5.2.1 Averaging the PDM over a Sector

This subsection proposes to compute the Root Mean Square (RMS) of the PDM over each sector of

space. This operation is shown to be equivalent to calculate the average SRP-PHAT power over a

sector. A low-cost practical implementation is given.

RMS over a Sector: For a given sector Sš, a given time frame t and a given discrete frequency k,

let us express the root mean square (“MEAN”) of the PDM defined in (5.8), between the observed

phase vector u(t) (k) and all the theoretical phase vectors uth (k, ξ) associated with all points ξ ∈ Sš:

D
(t)

š (k)
def
=

{∫

Sš

[
d
(
u(t) (k) ,uth (k, ξ)

)]2
· Pš (ξ) · dξ

} 1
2

(5.10)

where Pš (ξ) is the prior distribution of the active source locations within sector Sš (for example a
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uniform or a Gaussian distribution, as in Figure 5.3). ξ can be expressed in any coordinate system

(Euclidean or spherical), as long as the expression of dξ is consistent with this choice.

Physical Interpretation: For a given sector Sš ⊂ R3, at a given time frame t:

•
(
D

(t)

š (k)
)2

is roughly equivalent to the average delay-sum energy over Sš, as shown by (5.5).

•
(
D

(t)

š (k)
)2

is strictly equivalent to the average SRP-PHAT over Sš, as shown by (B.14).

Practical Implementation: In general it is not possible to derive an analytical solution for

(5.10). It is therefore approximated with a discrete summation:

D
(t)

š (k) ≈ D̂
(t)

š (k) where D̂
(t)

š (k)
def
=

√√√√ 1

Nv

Nv∑

n=1

[
d
(
u(t) (k) ,uth (k,vš,n)

)]2
(5.11)

where {v} def
= {vš,1, . . . ,vš,n, . . . ,vš,Nv

} is a set of Nv locations in space (R3) drawn from the prior

distribution Pš(v), and Nv is the number of locations used to approximate the continuous distribu-

tion Pš(v). The sampling is not necessarily random, e.g. a regular grid for a uniform distribution

(Figure 5.3). The rest of this subsection separates the observed phases from the averaging opera-

tion. This permits a low-cost implementation.

First, let us expand (5.11) into:

(
D̂

(t)

š (k)

)2

=
1

Nv

Nv∑

n=1

1

Nq

Nq∑

q=1

sin2

(
û

(t)
q (k)− uth

q (k,vš,n)

2

)
(5.12)

Using the relation sin2 u = 1
2 (1− cos 2u) we can write:

(
D̂

(t)

š (k)

)2

=
1

2Nq

Nq∑

q=1

{
1− 1

Nv

Nv∑

n=1

cos
(
u(t)

q (k)− uth
q (k,vš,n)

)}
(5.13)

=
1

2Nq

Nq∑

q=1

{
1−<

[
1

Nv

Nv∑

n=1

ej(u(t)
q (k)−uth

q (k,vš,n))

]}
(5.14)

=
1

2Nq

Nq∑

q=1

{
1−<

[
eju(t)

q (k) 1

Nv

Nv∑

n=1

e−juth
q (k,vš,n)

]}
(5.15)

=
1

2Nq

Nq∑

q=1

{
1−<

[
eju(t)

q (k) Z∗
š,p (k, {v})

]}
(5.16)
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(
D̂

(t)

š (k)

)2

=
1

2Nq

Nq∑

q=1

{
1− |Zš,p (k, {v})| · cos

[
u(t)

q (k)− ∠Zš,p (k, {v})
]}

(5.17)

where Zš,p (k, {v}) ∈ C does not depend on the observed phases:

Zš,p (k, {v}) def
=

1

Nv

Nv∑

n=1

ejuth
q (k,vš,n) (5.18)

Hence, the approximation is wholly contained in the Z parameters, which need to be computed

only once. Any large number Nv can be used2, so the approximation D̂
(t)

š (k) can be as close to

D
(t)

š (k) as desired. During runtime, the cost of computing the sector-based average D̂
(t)

š (k) does

not depend on Nv: it is directly proportional to Nq, which is the same cost as for computing the

point-based d (·, ·). Thus, the proposed approach (D(t)

š (k)) does not suffer from its practical im-

plementation (D̂
(t)

š (k)), concerning both numerical precision and computational complexity. Note

that each Zš,p (k, {v}) value is nothing but a component of the average theoretical cross-correlation

matrix over all points vš,n for n ∈ {1, · · · , Nv}.

5.2.2 Comparing Sectors: the Sparsity Assumption

The previous subsection described the estimation of D
(t)

š (k), the RMS of the PDM, in a given sec-

tor Sš, at a given time frame t. Moreover, it was shown to be roughly equivalent to the average

delay-sum energy over the sector Sš. The directivity of the delay-sum beamforming is low for the

lower frequencies, therefore we can expect “spatial leakage”. Spatial leakage means that whenever

there is a source in sector Sš that is active at discrete frequency k, there will be an increase of

the sector-based average delay-sum power, not only for the “correct” sector Sš, but also for “wrong”

neighbouring sectors, such as Sš−1 and Sš+1. The spatial leakage induces a corresponding increase

phenomenon for the D
(t)

š (k) values, at least at low frequencies.

Spatial leakage thus prevents from using D
(t)

š (k) as a direct measure of acoustic activity in a

sector Sš, at a discrete frequency k. On the other hand, statistical observations of human multi-

party speech (Roweis, 2003) show that within a discrete frequency, only one speech source can

be assumed dominant in terms of magnitude, and other sources can be neglected. Therefore, we

2In all meeting room experiments reported in this thesis (setup described in Fig. 5.3a), we used Nv = 803 = 512000 points
in the approximation, for each sector (all possible combinations of 80 azimuth values, 80 elevation values and 80 radius
values).
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Figure 5.4. Example of sector-based activeness pattern (part of seq01-1p-0000). For each sector Sš and each time
frame t, a sector-based activeness value ζš,t ≥ 0 is represented, with larger values in white.

propose to determine, for each discrete frequency k, the sector to which the observed phase vector

is the closest:

šmin (k)
def
= arg min

š
D

(t)

š (k) (5.19)

This decision does not require any threshold. Finally, the posterior probability of having at least

one active source in sector Sšmin(k) and at frequency k is modeled with:

P
(

sector Sš active at discrete frequency k
∣∣∣ u(t) (k)

)
= δKr (š− šmin (k)) (5.20)

where δKr (ξ) is the Kronecker function, equal to 1 iff ξ = 0, and zero otherwise. This is a sparsity

assumption, similar to the one in (Roweis, 2003), which implies that all other sectors Sš, š 6= šmin (k)

are attributed a zero posterior probability of containing acoustic activity at the discrete frequency k.

5.2.3 Sector-Based Activeness: SAM-SPARSE-MEAN

To measure the wideband acoustic activity within each sector of space, we propose the following

activeness measure, called SAM-SPARSE-MEAN. For a given sector Sš and a given time frame t, it

is the number of strictly positive discrete frequencies where the sector is dominant:

ζš,t
def
=

NF+1∑

k=2

P
(

sector Sš active at discrete frequency k
∣∣∣ u(t) (k)

)
(5.21)

ζš,t =

NF+1∑

k=2

δKr (š− šmin (k)) (5.22)
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A sector containing a wideband acoustic source such as speech is expected to be dominant over other

sectors in many discrete frequencies, thus leading to a larger ζš,t value. Figure 5.4 shows an exam-

ple with a single speaker uttering two words from a given location. Note that ζš,t ∈ {0, 1, · · · , NF},

and that for any time frame t, the activeness values of all sectors sum to a constant:

∀t
Nš∑

š=1

ζš,t = NF (5.23)

5.2.4 Experiments

The task is to evaluate the wideband activeness ζš,t in each (sector Sš, time frame t) (Figure 5.4).

Ideally, ζš,t is large in a (sector, time frame) annotated as “active”, and small in an “inactive” one.

Methods: We oppose point-based activeness and sector-based activeness. Point-based active-

ness is evaluated at one point in the middle of each sector (Kellermann, 1991). Sector-based active-

ness is evaluated over the volume Sš ⊂ R3.

For point-based activeness, we selected two methods:

• SRP-PHAT (3.13), which is equivalent to a delay-sum after PHAT. For localization purposes,

(DiBiase, 2000) shows that it is superior to both SRP (classical delay-sum), and GCC-PHAT.

• SRP-PHAT (3.13), modified with a sparsity assumption similar to (5.20). For each point,

PSRP-PHAT is obtained by summing only over discrete frequencies where this point is domi-

nant over other points.

For sector-based activeness, we selected two methods:

• SRP-PHAT-DHBF (Zotkin and Duraiswami, 2004), which evaluates the activeness within a

sector by jointly restricting the volume of space and the bandwidth, based on an imprecision

heuristic. DHBF stands for Double Hierarchical BeamForming3.

• SAM-SPARSE-MEAN: The proposed activeness measure, as in (5.22).

Evaluation: For each method and each recording, we compute a Receiver Operating Charac-

teristic (ROC) curve by comparing the activeness values ζš,t to several threshold values. To each

3We tried to restrict the evaluation to sectors having a local maximum of SRP-PHAT-DHBF, but it brought a major
degradation to the results. Therefore results are reported using the raw SRP-PHAT-DHBF activeness.
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(a) one human speaker (b) three loudspeakers
Figure 5.5. Examples of logarithmic ROC curves for the sector-based activeness ζš,t.

Recording seq01 seq37 loud01 loud02 loud03
SRP-PHAT (point) 0.3957 0.5782 0.3739 0.4222 0.0735
SRP-PHAT (point, sparse) 0.3781 0.4806 0.1248 0.1169 0.1122
SRP-PHAT-DHBF (sector) 0.4571 0.6649 0.6248 0.6375 0.1217
SAM-SPARSE-MEAN (sector, sparse) 0.3005 0.4199 0.0322 0.0672 0.0323

Table 5.1. Average FRR for FAR in [0, 0.1] (the lower, the better). Bold face indicates the best result in each column. The
FRR values are larger in the case of humans (seq01 & seq37), because of the many short silences between words and
syllables that are marked as “speech” in the ground-truth segmentation (see the discussion in Section 5.3.4). On the
other hand, the ground-truth segmentation is exact in the case of loudspeakers (loud01, loud02 and loud03).

possible threshold value corresponds a (False Alarm Rate, False Rejection Rate4) point on the ROC

curve (Figure 5.5). From the ROC curve, we calculate the average FRR over a practical interval of

FAR (up to 0.1). FAR and FRR take values between 0 (best value) and 1 (worst value), as formally

defined in Appendix A.

Results: We ran the four approaches on five annotated recordings of the AV16.3 Corpus, in-

cluding a single speaker (seq01) and 3 simultaneous speakers (seq37, loud01, loud02, loud03).

Numerical results are reported in Table 5.1, with two illustrative ROC curves in Figures 5.5a and

5.5b. The two SRP-PHAT results clearly show the advantage of the sparsity assumption. Compar-

ing SAM-SPARSE-MEAN with the sparse SRP-PHAT, it is clear that averaging the SRP-PHAT over

a sector of space permits better sector-based detection-localization than measuring SRP-PHAT at a

single point only. The existing sector-based approach SRP-PHAT-DHBF provides a much lower per-

formance than all others. A possible reason is that the imprecision heuristic used in SRP-PHAT-DHBF

4FAR and FRR are formally defined in Appendix A. A False Alarm means that a truly inactive (sector, time frame) is
wrongly classified as active. A False Rejection means that a truly active (sector, time frame) is wrongly classified as inactive.
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for one time frame t for all time frames (5.24) A gray circle is a false alarm.

Figure 5.6. Sector-based detection-localization (20-degree sectors): multichannel waveforms from a microphone ar-
ray (dots in (a)) are transformed into “activeness” values (a,b), as in (5.22), which are thresholded to obtain the final
decision (c). A false alarm happens when the ground-truth is Bš,t = 0 and the final decision is B̂š,t = 1.

is based on a single microphone pair, which does not use the potential of multiple microphone pairs

to eliminate part of the spatial aliasing issues encountered at the higher frequencies. Moreover,

SRP-PHAT-DHBF does not make a sparsity assumption, which SAM-SPARSE-MEAN does. In all

cases, the proposed approach SAM-SPARSE-MEAN yields the best results. We will therefore use

SAM-SPARSE-MEAN in the following, whenever sector-based detection-localization is needed.

Implementation: An optimized C implementation of the extraction of the SAM-SPARSE-MEAN

values ζš,t from the multichannel signals {x1 (t) , · · · , xNm
(t)} is available at:

http://mmm.idiap.ch/Lathoud/2005-SAM-SPARSE-MEAN/

5.3 Threshold Selection for Sector-Based Detection-Localization

The proposed SAM-SPARSE-MEAN activeness ζš,t ∈ {0, 1, · · · , NF} estimates how much wideband

acoustic activity is contained in a given sector Sš ⊂ R3 and a given time frame t (Figure 5.6a).

Repeating the estimation over time frames t ∈ {t1, · · · , tn, · · · , tNt
} yields a spatio-temporal pattern

of activeness (Figure 5.6b), where tn ∈ N is the center time5 (in samples) of the n-th time frame, and

Nt is the number of time frames. For a given recording, the whole set of observed activeness values

is denoted:

{ζš,t} def
= {ζš,t | 1 ≤ š ≤ Nš and t ∈ {t1, · · · , tn, · · · , tNt

}} (5.24)

5Time frames are usually defined by a frame shift (e.g. 100 samples) and a frame length (e.g. 512 samples), as in
tn = 512

2
+ (n − 1) · 100.
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Figure 5.7. ROC curve. The task is to select a threshold Ψζ such that the obtained FAR (triangle) is as close as possible
to the target FART (dot). Ideally FAR = FART.

The Task: Sector-based detection-localization requires one more step: to take a binary deci-

sion B̂š,t ∈ {0, 1} (Figure 5.6d), for example by comparing each activeness value ζš,t to a thresh-

old Ψζ : ζš,t ≷ Ψζ (Figure 5.6c). Errors can be made such as False Alarms (Figure 5.6d) and False

Rejections, as formally defined in Appendix A. An optimal value of the threshold Ψζ should be se-

lected, to meet a user-defined performance target – for example FAR = FART (Figure 5.7). The goal

is not to improve the ROC curve. On the contrary, for a given recording, and for a given test – for

example ζš,t ≷ Ψζ , the goal is to choose a point on the ROC curve (triangle in Figure 5.7) that is as

close as possible to the user-specified target (dot in Figure 5.7). We thus propose to view sector-

based detection-localization as an automatic threshold selection task. The interest of the

approaches proposed further below is that the threshold value Ψζ is chosen without knowing the

true ROC curve.

The optimal threshold value depends on environmental variations of the distribution of the ζš,t

values: there could be one or multiple speakers, clean signals or background noise, etc. Thus, the

classical “training” approaches, where Ψζ is set on some training data, then kept fixed afterwards,

may well be inadequate when “training” and “testing” environmental conditions differ widely. This

section thus focuses on approaches that do not require training data. For each environmental condi-

tion – for example each recording, the optimal value of the threshold Ψζ is estimated automatically,

so that the performance metric is as close as possible to a user-specified constant.

Let us now assume that the structure of the observed data {ζš,t} is perfectly known, in the form

of a probabilistic modelM with known structure (pdf types etc.), but unknown parameters Λ (M).

In such a case, the model parameters Λ (M), the type of test and the threshold value can be opti-

mally selected with the Neyman-Pearson and the competitive Neyman-Pearson approaches (Levi-
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tan and Merhav, 2002). The “model+data” approach described below addresses a complementary

issue, where the types of pdfs are imperfectly known – as is often the case in practice. A correction

mechanism is proposed that is based on posterior probabilities.

The rest of Section 5.3 if organized as follows:

1. With Training Data: Section 5.3.1 describes the usual training/testing approach, where the

Ψζ value is set once, on a training set of data, and kept fixed afterwards.

2. Proposed Approaches: Without Training Data. As mentioned above, the optimal thresh-

old value very often depends on environmental variations. Thus, Section 5.3.2 investigates

alternative methods, where training data is not required. For each environmental condi-

tion, a probabilistic model M is fitted on the observed values {ζš,t} using the Expectation-

Maximization (EM) algorithm (Dempster et al., 1977). The optimal threshold value is then

estimated from M. In cases where M does not properly fit the observed data, a posterior-

based correction mechanism is proposed.

3. Experiments: Section 5.3.3 reports comparative experiments on real multichannel record-

ings, where Ψζ is selected with or without training data.

4. Openings: Section 5.3.4 tests the proposed approaches (“without training data”) with the

False Rejection Rate (FRR) metric. Moreover, theoretical investigations extend the above-

mentioned “correction mechanism” to multi-class classification tasks.

The proposed automatic threshold selection approaches, including the correction mechanism, are

fully generic (items 2. and 4. above). They can thus be applied to any detection task, as long as a

probabilistic model is available.

Data: Five real 16kHz audio sequences were taken from the AV16.3 Corpus (Chapter 4), recorded

with a horizontal circular 8-microphone array (10 cm radius) set on a table (Figure 1.1a). loud01 to

loud03 were recorded with either 2 or 3 simultaneously active loudspeakers, at various locations.

seq01 has a single human speaker at various locations. seq37 has multiple concurrent human

speakers. The total duration exceeds 1 hour. Activeness values {ζš,t} are extracted as in (5.22).

Time frames are 32 ms long, half-overlapping (one frame every 16 ms).
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5.3.1 “Training”: Threshold Selection with Training Data

One of the simplest detection strategies would be to compare the ζš,t values to a fixed threshold Ψζ :

ζš,t ≷ Ψζ (5.25)

where Ψζ is typically a preset, unique value, independent of the sector Sš or time frame t. In order to

have an autonomous detection system, this strategy requires to set the threshold in advance, that is

to train it on previously seen data. A classical approach is to use “training” data where the ground-

truth {Bš,t} is known, and to select a threshold Ψζ such that FAR(Ψζ) = FART. The threshold Ψζ

is then kept fixed and applied to any unseen “test” data. For “training” we used the first 3 minutes

of loud01, for “test” the remaining part of loud01, and the complete loud02, loud03, seq01 and

seq37. The “training” approach will fail when there is a mismatch between training conditions

and testing conditions, as confirmed by the experiments reported in Section 5.3.3. Although cross-

validation procedures can partially reduce the failure in mismatched conditions, their performance

is still intrinsically limited by the amount and the variety of the training data.

5.3.2 Threshold Selection without Training Data

Training data is not used, and a threshold value Ψζ is selected on each recording separately. The

hope is to better accommodate the environmental variations across recordings. A probabilistic

modelM is fitted on unseen test data using the EM algorithm (Dempster et al., 1977). The thresh-

old value Ψζ is derived fromM, such that an estimate F̂AR(M,Ψζ) is equal to the target value FART

(“model-only” approach below). The risk of this approach is to end up relying on a model M that

poorly fits the observed data. This issue is addressed by the “model+data” approach below.

Unsupervised Fit of a Model on the Test Data: For a given recording, the data set {ζš,t}

is collected into 1 dimension, irrespective of š or t (gray histogram in Figure 5.8a). As detailed in

Appendix C.1, this 1-D data can be fitted with a sensible probabilistic model with two components

f0 (“inactivity”) and f1 (“activity”). Each component is assumed to follow a Rice distribution (Rice,

1944, 1945). No manual tuning is needed and the EM cost is very small (Appendix C.1.2). The three

curves in Figure 5.8a show an example of fit.
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Figure 5.8. (a) Unsupervised fit of a 2-mixture model M with parameters Λ (M) = {w0, w1, f0, f1}. The histogram in (a)
is a 1-D view of all data {ζš,t}, irrespective of sector Sš or time t. w0 and w1 are the priors of inactivity and activity,
respectively. (b) “Model-only” threshold selection, using the model M to match the target FART.

“Model-only” Threshold Selection: Once the model M is fitted on the test data, an esti-

mate Ψζ of the optimal threshold value is determined using the model M alone (Figure 5.8b), so

that F̂AR1(M,Ψζ) = FART, where:

F̂AR1(M,Ψζ)
def
=

∫ +∞

Ψζ

f0(x) · dx (5.26)

Since a model is always a simplification of reality, in some cases it may not fit well the data {ζš,t},

and the F̂AR1 estimate will be very different from the actual FAR. The selected threshold Ψζ would

then lead to a FAR performance very different from the desired FART.

“Model+data” Threshold Selection: We propose to correct a possible bad fit of the modelM

by using the test data itself. Consider the definition of FAR (formally given in Appendix A):

FAR
def
=

Number of false alarms

Number of silent samples
(5.27)

Numerator and denominator can be approximated with their respective conditional expectations,

using posterior probabilities, as described in the following.
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Approximation of the numerator: For a given sample ζš,t, a false alarm happens when the detec-

tion decision is B̂š,t = 1 and the ground-truth is Bš,t = 0. Since the ground-truth Bš,t is unknown,

we estimate the probability of having a false alarm for sample ζš,t with a posterior probability:

P
(

B̂š,t = 1, Bš,t = 0
∣∣∣ ζš,t, M, Ψζ

)

= P
(
ζš,t > Ψζ , Bš,t = 0

∣∣ ζš,t, M, Ψζ

)

= P
(
ζš,t > Ψζ | Bš,t = 0, ζš,t, M, Ψζ

)
· P

(
Bš,t = 0

∣∣ ζš,t, M, Ψζ

)

= 1ζš,t>Ψζ
· P

(0)
š,t

(5.28)

where P
(0)
š,t is the posterior probability of inactivity, for sample ζš,t, as derived from the Bayes rule:

P
(0)
š,t

def
= P

(
Bš,t = 0

∣∣ ζš,t,M
)

=
w0 · f0(ζš,t)

w0 · f0(ζš,t) + w1 · f1(ζš,t)
(5.29)

From (5.28), the expected number of false alarms is:

∑

š,t

P
(

B̂š,t = 1, Bš,t = 0
∣∣∣ ζš,t, M, Ψζ

)
=

∑

š,t

ζš,t>Ψζ

P
(0)
š,t (5.30)

Approximation of the denominator: the expected number of silent samples (that is (š, t) such that

Bš,t = 0) is
∑

š,t

P
(0)
š,t .

Approximation of the FAR:

F̂AR2({ζš,t} ,M,Ψζ)
def
=

∑

š,t

ζš,t>Ψζ

P
(0)
š,t /

∑

š,t

P
(0)
š,t (5.31)

Implementation: Ψζ can be determined in an efficient manner, by first ordering samples {ζš,t} by

decreasing value, irrespective of š or t, and second computing cumulative sums of posteriors P
(0)
š,t .

The computational cost can be drastically decreased by ordering and reducing the data to a fixed,

small number of samples (e.g. 100), similarly to the data reduction described in Appendix C.1.2.

“Model+data (N-D)” Threshold Selection for Multidimensional Models: So far, the ob-

served values {ζš,t} were stacked in one dimension, and the same threshold value Ψζ was used

for all sectors and time frames, as in the test ζš,t ≷ Ψζ . However, we can use the prior knowl-

edge of (5.23): at any time frame t, the activeness values of the various sectors sum to a con-

stant NF. This prior knowledge justifies a multidimensional model, where the activeness val-
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Figure 5.9. Graphical model for the independence assumptions used in the multidimensional model. The r.v. A is the
frame state (inactive or active) and the r.v. B š is the state (inactive or active) of a given sector Sš. The r.v. ζ š ≥ 0 is the
activeness of sector Sš. On an active frame (A= 1) at least one sector is active (∃š B š = 1).
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Figure 5.10. Example of fit of the three main distributions used to define the multidimensional model.

ues of the various sectors {ζ1,t, · · · , ζš,t, · · · , ζNš,t} are modelled jointly, by the random variables
{

ζ
1
, · · · , ζ

š
, · · · , ζ

Nš

}
. The model is illustrated in Figure 5.9, and fully described in Appendix C.2,

along with its EM derivation. This model describes whether a time frame contains at least one

active sector or not (A = 0 or 1). In the case A = 0, all sectors are inactive by definition (∀š B š = 0).

In the case A = 1, each sector Sš can be active or not (B š = 0 or 1), and at least one sector is active.

This description results in three possible combinations, each modelled with a different pdf:

• Bš = 0 and A = 0: Gamma pdf Gγ00,β00
with parameters γ00 and β00.

• Bš = 0 and A = 1: Gamma pdf Gγ01,β01
with parameters γ01 and β01.

• Bš = 1 and A = 1: Shifted Rice pdf, where the shift is equal to the first moment γ01 · β01 of the

Gamma pdf Gγ01,β01
.

An example of fit of the three distributions after convergence of the EM algorithm is depicted in

Figure 5.10. The hope is that this multidimensional model will better fit the observed data than the

above-described 1-D model, thanks to a higher capacity and the incorporation of a prior knowledge.



86 CHAPTER 5. MULTISOURCE JOINT DETECTION-LOCALIZATION

In a multidimensional space, the 1-D thresholding strategy ζš,t ≷ Ψζ cannot be used anymore.

We propose to modify the above-described “model+data” approach to accommodate multidimen-

sional models, by taking the final binary decision based on posterior probabilities:

P
(1)
š,t ≷ ΨP (5.32)

where ΨP is an estimate of the optimal threshold on posteriors, such that F̂AR3({ζš,t},M,ΨP ) = FART,

where:

F̂AR3({ζš,t} ,M,ΨP )
def
=

∑

š,t

P
(1)
š,t >ΨP

P
(0)
š,t /

∑

š,t

P
(0)
š,t (5.33)

5.3.3 Experiments

The graphical results are given in Figure 5.11, in the form of “FAR curves” that compare the tar-

get FART ∈ [0, 0.1], and the obtained FAR, where the ideal curve would be Y = X. The correspond-

ing numerical statistics are given in Table 5.2 for a practical range of small FART values, between

0.001 and 0.05. Each numerical statistic is a Root Mean Square (RMS) error:



〈(

FAR

FART
− 1

)2
〉

FART∈[0.001, 0.05]




1
2

(5.34)

This numerical statistic was chosen to normalize results that have varying orders of magnitude

(from 0.001 to 0.05). Ideally it is equal to zero.

With Training Data: The training/testing process was repeated for various target values FART.

In Figure 5.11, FAR curves compare the target FART and the obtained FAR. The FAR curve is close

to ideal (Y = X) on loudspeaker data, but quite far from ideal on human data. Both can be ex-

plained by the big difference between the “human” condition (real speech from humans) and the

“loudspeaker” condition used during training (synthetic speech from loudspeakers). The thresh-

old Ψζ selected on the training condition does not generalize to the test condition.

With the 1-D Model: Two observations can be made about the RMS error:

• Compared to the “training” result, both “model only” and “model+data” approaches yield a

degradation on loudspeaker data, and an improvement on human data. A possible explana-
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Figure 5.11. FAR curves: comparison between target FART & obtained FAR. In seq37, the positive bias is due to body
noises (breathing, stomps, shuffling paper) marked as “inactivity” in the ground-truth, since their locations are unknown.

3 loudspeakers 1 human 3 humans
Recording (a) (b) (c) (d) (e)
training 0.109 0.142 0.154 1.898 3.929
model only 0.576 1.022 0.977 1.780 3.119
model+data 0.217 0.494 0.443 1.121 2.344
model+data (N-D) 0.117 0.078 0.121 0.452 1.846

Table 5.2. RMS error, as defined by (5.34), for FART ∈ [0.001, 0.05]. This is the RMS of (FAR/FART − 1): the lower, the
better. The best result for each recording is indicated in boldface.

tion is that no condition-specific tuning is made in the model-based approaches, while in the

“training” case, tuning was done on loudspeaker data.

• The “model+data” approach systematically reduces the RMS error, as compared with the

“model only” approach. This is also visible on the FAR curves.

Both points confirm previous expectations. It is important to bear in mind that all three approaches

“training”, “model only” and “model+data” have the exact same ROC curve (FRR as a function of

FAR), since the decision process is the same: ζš,t ≷ Ψζ .

Overall, although there is a major improvement over the “training” approach in terms of robust-

ness across conditions, especially visible in Figures 5.11b and 5.11c, we can see that the results are

sometimes suboptimal (loudspeaker data).

With the Multi-Dimensional Model: In all recordings, for larger values FART > 0.05, the

results are similar to those of the 1-D “model+data” approach. For lower values FART < 0.05, in all

recordings a systematic improvement is seen over the 1-D “model+data” approach. On the loud01

recording, results are similar to those of best one: “training”, which itself was tuned on part
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Figure 5.12. Logarithmic ROC curves on the loudspeaker recordings, for the 1-D approaches (“training”, “model only”,
“model+data”), and for the multidimensional approach (“model+data (N-D)”).

of loud01. This result is quite interesting given that the multidimensional approach does not

use any training data. On recordings loud02, loud03, seq01 and seq37 the multidimensional

approach yields the best results of all approaches.

However, Figure 5.11 and Table 5.2 only involve the FAR prediction performance. For the sake of

completeness, we also looked at the ROC curves. As explained earlier, the three 1-D methods share

the same ROC curve. On the contrary, the ROC curve of the multidimensional approach is different,

because the test (5.32) is different. In the case of loudspeaker recordings a systematic improvement

is seen as compared to the 1-D approaches (Figure 5.12). ROC curves on human recordings are not

reliable, because of ground-truthing issues related to the FRR, as explained in Section 5.3.4.

Comparison with Frame-Level Detection Features: In Section 3.1.3, a preliminary exper-

iment on frame-level detection for localization led us to reject traditional detection features, such

as frame energy. On a frame-level detection task, Appendix D compares the proposed approach

(SAM-SPARSE-MEAN + multidimensional model) with (1) frame energy, (2) a multimicrophone

estimate of frame SNR (Chen and Ser, 2000), (3) the maximum SRP-PHAT value. When the detec-

tion threshold is made more conservative (increased), the proposed approach leads to a decrease of

the localization error. This is not the case of the three other features. In all of the following, we

therefore use the (SAM-SPARSE-MEAN + multidimensional model) approach.

5.3.4 Openings

This subsection provides insights about future extensions of the proposed model-based threshold

selection approaches, from both practical and theoretical points of view.
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Figure 5.13. Threshold selection with and without training data, applied to loudspeaker recordings (a,b,c) and human
recordings (d,e): comparison between desired target and measured False Rejection Rate. Note that all FRRT values
are shown (from 0 to 1). (d) and (e) illustrate the ground-truthing issue with human data.

Experiments with FRR: Similarly to F̂AR1, a “model only” estimate of FRR can be proposed:

F̂RR1(M,Ψζ)
def
=

∫ Ψζ

0

f1 (x) · dx (5.35)

Similarly to F̂AR2, a “model+data” estimate of FRR can be proposed:

F̂RR2({ζš,t} ,M,Ψζ)
def
=

∑

š,t

ζš,t≤Ψζ

P
(1)
š,t /

∑

š,t

P
(1)
š,t (5.36)

Figure 5.13 shows FRR curves, that depict the resulting FRR, as a function of the target FRRT.

Note that the whole [0, 1] interval is shown. Two observations can be made:

• On loudspeaker recordings (Figures 5.13a,b,c), all the proposed model-based approaches pro-

vide a reasonable estimation of FRR, while the “training” approach fails – including on loud01,

on which “training” was tuned (Figure 5.13a). A possible reason is that FRR is by definition

linked to the distribution of “activity” (speech), which may be more variable than “inactiv-
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3 loudspeakers
Recording (a) (b) (c) Maximum
training 4.072 5.435 5.623 5.623
model only 0.400 2.356 0.846 2.356
model+data 0.279 2.759 0.783 2.759
model+data (N-D) 0.728 0.743 0.976 0.976

Table 5.3. RMS error over the interval FRRT = [0.001, 0.05]. This is the RMS of (FRR/FRRT − 1): the lower, the better. The
best result for each recording is indicated in boldface. The rightmost column shows the maximum over all 3 recordings.

ity” (background noise), hence the “training” results are much worse than in the FAR case.

• On human recordings (Figure 5.13d,e), for all approaches a large bias can be seen in the

region of small FRRT. The reason is most likely an issue with ground-truthing: for each

location, speech segments were marked as begin- and end-point, by listening to the signal.

Each speech segment very often contains many short silences and low energy speech frames,

and therefore possibly many frames with low values of ζš,t. This artificially lifts up the FRR

for conservative thresholds (low FRRT). Thus, in the human case, it is not possible to judge or

to compare the FRR prediction curves.

Table 5.3 shows the RMS error for loudspeaker recordings, on the FRRT ∈ [0.001, 0.05] range.

We can see that the “model+data” approach always performs best. The “maximum” column shows

that the multidimensional approach is the most robust.

Extension to Multiclass Classification: The proposed threshold selection approach can be

extended to a multi-class classification context. From an observed data sample ξ and a model M,

the Maximum A Posteriori (MAP) choice of a class QMAP from a set {Q1, · · ·Qn, · · ·QN} is:

QMAP (ξ,M)
def
= arg max

Q∈{Q1,··· ,QN}
P (Q | ξ,M) (5.37)

Intuitively, if all posteriors (P (Q1 | ξ,M) , · · · , P (QN | ξ,M)) have comparable values, selecting

the maximum is almost equivalent to a random choice. Thus, one may want to determine the

confidence of the decision QMAP (ξ,M). For example, a speaker recognition system would ask the

user to speak again, if the maximum posterior is below a threshold:





confident : P (QMAP (ξ,M) | ξ,M) > ΨP

not confident : P (QMAP (ξ,M) | ξ,M) ≤ ΨP

(5.38)
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Then again, the question of selecting the threshold ΨP for a given objective criterion (FAR = FART

or other) can be addressed. Indeed, (5.38) can be seen as a detection task, and by definition:

P (correct decision | ξ,M) = P (QMAP (ξ,M) | ξ,M) (5.39)

From (5.39), the objective criterion can be estimated and the threshold ΨP can be selected, exactly

as in the “model+data (N-D)” approach. For example, the threshold ΨP can be updated in an online

manner: in a mobile speaker recognition system, it would be desirable to adapt the threshold to

varying environmental conditions (clean, noisy, etc.).

5.4 Point-Based Localization

A fully integrated multisource detection-localization system needs to determine active time frames

and locations (“Where? When?” question in Figure 1.2b). Moreover, the review in Section 3.1.2

showed that many existing localization methods can benefit from a prior step that reduces the

search space to a limited volume of space. Thus, as a first step, we propose to restrict the search in

space and time jointly, through sector-based detection-localization. Section 5.2 proposed a measure

of wideband acoustic activity in a sector of space, called the SAM-SPARSE-MEAN activeness ζš,t

(Figure 5.1a). Section 5.3 investigated thresholding strategies, such as ζš,t ≷ Ψζ , for sector-based

detection-localization (Figure 5.1b). The present section investigates the point-based localization

of the active sources, in the active sectors (Figure 5.1c). A “point” means a precise point source

location `ps ∈ R3, e.g. within a sector Sš ⊂ R3. The rest of this section is organized as follows:

Section 5.4.1 describes the proposed 2-step approach: sectors, then points.

Section 5.4.2 derives the gradient expression for point-based localization.

Section 5.4.3 discusses the computational cost of the gradient descent.

Section 5.4.4 applies the approach to multiple arrays.

Section 5.4.5 details a low-cost implementation.

Section 5.4.6 introduces the evaluation method for detection and localization.

Section 5.4.7 describes the test recordings.

Section 5.4.8 provides the results and a discussion.



92 CHAPTER 5. MULTISOURCE JOINT DETECTION-LOCALIZATION

5.4.1 Proposed Multisource Detection-Localization

Step 1: Sector-Based Detection-Localization: After evaluating various performance targets

including FAR and FRR, we selected the following compromise. First, “conservative” detection

is realized by selecting a threshold corresponding to the target FAR = 0.005. Second, for each

active (sector, time frame) detected so far, within the same sector and within a window of time

frames, e.g. ±0.5 sec, a second threshold is applied, as determined by the “less conservative” target

FRR = 0.005. This compromise amounts to first select utterances that are detected almost for sure

(conservative FAR test), then to retrieve as many time frames as possible from each such utterance

(less conservative FRR test).

Step 2: Point-Based Localization within the Active Sectors: For each time frame t, within

each active sector of space (white squares in Figure 5.6d), produce an estimate ˆ̀(t) ∈ R3 of the most

likely point of origin of the sound. By locating a source within each active sector, we can poten-

tially achieve multisource localization, producing a set of location estimates
{
ˆ̀(t)

1 , · · · , ˆ̀(t)

Nloc(t)

}
. The

value of Nloc (t) can vary over time t: for instance Nloc (t) = 0 on silence periods, Nloc (t) = 1 on

single speaker periods, Nloc (t) > 1 on overlapped speech periods. As explained in Section 3.1.2,

we chose to use the SRP-PHAT localization approach (DiBiase, 2000), where each location estimate

is a local maximum of SRP-PHAT. To be consistent with the PDM interpretation of SRP-PHAT

presented in Section 5.1.3, we implemented the search through the minimization of a PDM-based

cost function ∆, within each active sector.

The issue of localization methods that try to find parameters that minimize a cost function ∆ is

the computational complexity of exploring the entire search space R3. Typically, a gradient descent

approach could require many steps to converge, depending on its initialization point. Our approach

reduces the cost in two ways: first, the search is limited to the active sectors. Second, the mini-

mization is done through the Scaled Conjugate Gradient (SCG) algorithm (Moller, 1993). The SCG

was chosen because of its speed efficiency, relative to other descent methods, due to its efficient

approximation of second order information (Hessian) using first order derivatives only (gradient).

In our case, the SCG descent only requires a few iterations to converge (typically 5 to 10). More-

over, although SCG does have numerical parameters, in practice they do not require tuning. The

paper (Moller, 1993) contains very clear step-by-step instructions describing its implementation.

The critical point is to express the gradient of the cost function ∆ with respect to location pa-
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rameters. We are using a UCA (Figure 1.1a), which is known to realize most spatial discrimination

in terms of direction, especially azimuth (direction angle in the horizontal plane), while having very

poor resolution in terms of radius. Therefore, spherical coordinates [θ, ϕ, ρ]
T are preferred. More-

over, in order to enforce the ρ > 0 constraint without adding any specific constraint to the gradient

descent framework, we introduce “logspherical” coordinates [ θ, ϕ, Lρ ]
T ∈ R3 where:

• θ is the azimuth angle in radians,

• ϕ is the elevation angle in radians,

• Lρ
def
= log ρ, and ρ > 0 is the radius in meters,

of the hypothesized source location, relative to the center of the microphone array, whose geometry

is known. On the other hand, we will see that the expression of the PDM cost ∆ and its gradient

involve the expression and the derivation of Euclidean distances. We therefore express the gradi-

ent of ∆ in Euclidean space [X , Y, Z]
T, then convert it to logspherical space using the following

formula:




∂∆
∂θ

∂∆
∂ϕ

∂∆
∂Lρ




=




−Y X 0

−Z cos θ −Z sin θ ρ cos ϕ

X Y Z




·




∂∆
∂X

∂∆
∂Y

∂∆
∂Z




(5.40)

which is obtained from the decomposition:

∂∆

∂θ
=

∂∆

∂X
∂X
∂θ

+
∂∆

∂Y
∂Y
∂θ

+
∂∆

∂Z
∂Z
∂θ

(5.41)

and similar decompositions for ϕ and Lρ. From (5.40), we can see that the additional computational

complexity of using logspherical coordinates is very small, as compared to Euclidean coordinates.

Moreover, in a sanity check experiment, we verified that the SCG takes less iterations to converge

in logspherical coordinates, than in Euclidean coordinates.
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5.4.2 The Cost Function and its Gradient in Euclidean coordinates

This subsection gives the mathematical definition of ∆, then expresses its gradient in Euclidean

coordinates. It is presented in a general case where only a subset of the strictly positive dis-

crete frequencies {2, · · · , NF + 1} is used to define ∆. Note that microphone pairs
(
`aq

, `bq

)
, where

q ∈ {1, · · · , Nq}, can be placed anywhere in the room. In particular, this allows for the use of multi-

ple microphone arrays with exactly the same mathematical development, as long as the distances

involved are reasonable.

For a given time frame t:

• Let ˆ̀(t)
n

def
=

[
X̂ (t)

n , Ŷ(t)
n , Ẑ(t)

n

]T
be an instantaneous location estimate in an active sector, in

3-D Euclidean coordinates.

• Let
{
u(t) (k)

} def
=
{
u(t) (2) , · · · ,u(t) (k) , · · · ,u(t) (NF + 1)

}
be the set of vectors of observed phase

values, one vector u(t) (k) ∈ RNq for each strictly positive discrete frequency k ∈ {2, · · · , NF + 1}.

Each vector u(t) (k) ∈ RNq is defined by (5.3) and (5.6).

• Let uth

(
k, ˆ̀

(t)

n

)
∈ RNq be a vector of theoretical phase values for location ˆ̀(t)

n and discrete

frequency k. uth

(
k, ˆ̀

(t)

n

)
∈ RNq is defined by (5.4) and (5.7).

• Let Υ ⊂ {2, · · · , NF + 1} be a subset of the strictly positive discrete frequencies, of cardinal NΥ

(NΥ ≤ NF).

We define the cost function ∆, to be minimized with respect to ˆ̀(t)
n :

∆
({

u(t) (k)
}

,Υ, ˆ̀
(t)

n

)
def
=

1

NΥ

∑

k∈Υ

d2
[
u(t) (k),uth

(
k, ˆ̀

(t)

n

)]

=
1

NΥ

∑

k∈Υ

1

Nq

Nq∑

q=1

sin2




u
(t)
q (k)− uth

q

(
k, ˆ̀

(t)

n

)

2




(5.42)

Using the sin2 u = 1
2 (1− cos 2u) equality, we obtain:

∆ =
1

2
− 1

2 NΥ Nq

∑

k∈Υ

Nq∑

q=1

∆k,q (5.43)

where:

∆k,q
def
= cos

[
u(t)

q (k)− uth
q

(
k, ˆ̀

(t)

n

)]
(5.44)
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We now express the derivative of ∆ with respect to one parameter X̂ (t)
n :

∂∆

∂X̂ (t)
n

= − 1

2 NΥ Nq

∑

k∈Υ

Nq∑

q=1

∂∆k,q

∂X̂ (t)
n

(5.45)

Since ∂
∂u

(cosu) = − sin u, each term of the sum in (5.45) develops into:

∂∆k,q

∂X̂ (t)
n

=
∂

∂X̂ (t)
n

[
uth

q

(
k, ˆ̀

(t)

n

)]
· sin

[
u(t)

q (k)− uth
q

(
k, ˆ̀

(t)

n

)]
(5.46)

From the definitions (5.4), (3.7) and (3.5) we obtain:

∂

∂X̂ (t)
n

[
uth

q

(
k, ˆ̀

(t)

n

)]
= −π · k − 1

NF
· fs

c
· ∂

∂X̂ (t)
n

[
‖ˆ̀(t)n − `aq

‖ − ‖ˆ̀(t)n − `bq
‖
]

(5.47)

Using the relation ∂b
∂a

= 1
2b

∂
∂a

[
b2
]
, we can write, for each microphone index m = aq or bq:

∂

∂X̂ (t)
n

[
‖ˆ̀(t)n − `m‖

]
=

1

2‖ˆ̀(t)n − `m‖
· ∂

∂X̂ (t)
n

[
‖ˆ̀(t)n − `m‖2

]
=

X̂ (t)
n −Xm

‖ˆ̀(t)n − `m‖
(5.48)

For each point source location estimate ˆ̀(t)
n (1 ≤ n ≤ Nloc (t)), (5.45) thus becomes:

∂∆

∂X̂ (t)
n

=
1

2 NΥ Nq

· π

NF
· fs

c

·
∑

k∈Υ

Nq∑

q=1



(k − 1) · sin

[
u(t)

q (k)− uth
q

(
k, ˆ̀

(t)

n

)]
·


 X̂

(t)
n −Xaq

‖ˆ̀(t)n − `aq
‖
− X̂

(t)
n −Xbq

‖ˆ̀(t)n − `bq
‖







(5.49)

The exact same derivation can be conducted with Ŷ(t)
n and Ẑ(t)

n .

Comparison with SRP-PHAT: Appendix B.3 shows that in the case where all strictly positive

discrete frequencies are used (Υ = {2, · · · , NF + 1}), minimizing ∆ is strictly equivalent to maxi-

mizing PSRP-PHAT. For both PSRP-PHAT and ∆, most of the computational complexity of the

gradient descent lies in the gradient expression. Indeed, we derived the gradient of PSRP-PHAT,

and obtained the exact same pairwise comparisons (sine term in (5.49)). So the computational com-

plexity of the SRP-PHAT gradient is also proportional to Nq, and there is little difference between

the two complexities.

Choice of the frequency subset Υ: The sparsity assumption (5.20) led to successful sector-

based detection-localization results. However, once an active sector is detected, using a similar
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Figure 5.14. Example of frequency selection (dots): we select only the discrete frequencies with magnitude above the
geometric mean (horizontal dashed line), and at or next to a magnitude peak.

assumption to define Υ tends to bias the point-based location estimate towards the middle of the

sector. An alternative approach is proposed in Section 5.4.3.

5.4.3 Optimization of the Computational Complexity

The computational complexity of computing ∆ (5.42) and all coordinates of its gradient (5.49) is

directly proportional to the product NΥ ·Nq. In this subsection, we examine each of these factors.

NΥ: We propose to only use “active” frequencies – typically spectral peaks – to define the sub-

set Υ. Inspired from the Unsupervised Spectral Subtraction (USS) approach presented in Sec-

tion 8.2, we propose the following restriction (illustrated in Figure 5.14). For each time frame t,

for each discrete frequency k ∈ {2, · · · , NF + 1}, the geometrical mean M (t) (k) of the magnitudes is

computed, across all microphones of an array: M (t) (k)
def
= exp

〈
log M

(t)
m (k)

〉
m

. The proposed sub-

set Υ contains only the discrete frequencies k that verify the following two conditions:

• k is at a peak of magnitude (M (t) (k) > max
(
M (t) (k − 1) , M (t) (k + 1)

)
), or right next to a peak

(k − 1, k + 1).

• k has its magnitude M (t) (k) above the geometrical mean exp
〈
log M (t) (k)

〉
k
.

Nq: since we need to work on a single short time frame (e.g. 32 ms), where both speech signal

and location can be assumed stationary, a large enough number of microphone pairs is required to

achieve a decent spatial resolution. This is well explained in (DiBiase, 2000, Section 6.6). We veri-
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fied this in practice, by reducing the number of microphones in the array (and thus the total number

of pairs). In our setup, using less than 6 microphones did not provide usable localization results.

All results presented in this thesis use, for each microphone array, all microphones (Nm = 8), and

the full number of microphone pairs Nq = Nm (Nm − 1) /2.

Active sectors: Finally, it is also possible to limit the maximum number of active sectors to

be searched, to a “reasonable” value. For example, with 20-degree azimuth sectors, the whole 360-

degree range is spanned with 18 sectors. Thus, one can limit the search to the Nmax = 6 most active

sectors, for example according to the posteriors P
(1)
š,t .

SCG iterations: In practice, we found that 5 to 6 iterations are enough for the SCG descent to

converge, when using the proposed cost function ∆, in logspherical coordinates.

5.4.4 Multiple Microphone Arrays

The PDM cost function ∆ defined by (5.42) puts no constraint on the placement of microphone pairs.

Thus, the SCG descent can be applied to multiple microphone arrays. Spatial resolution is then

much finer than with one array (at least in the near-field area defined by the multiple microphone

arrays), so ∆ and its gradient are better expressed using Euclidean coordinates [X ,Y,Z]
T ∈ R3.

However, without prior information, a complete search through the entire R3 space would be in-

tractable in real-time. We thus propose to apply the same 2-step approach as in Section 5.4.1 to

the case of multiple microphone arrays. In the first step, for each array independently, each sector

is determined to be active or inactive (Figure 5.15a). The intersections of active sectors are then

limited volumes of space in which to search for the location(s) of the source(s), through SCG descent

in terms of 3-D location (Figure 5.15b)6.

One advantage of this 2-step, sector-based approach is that these volumes, determined by the

intersection of any pair of sectors, can be precomputed once for all, and stored in memory. As for

the second step (SCG descent), the implementation for multiple microphone arrays is exactly the

same as for a single microphone array, as already mentioned in Section 5.4.2.

We implemented the proposed technique for two arrays, and tested it on seq01 of the AV16.3 Cor-

pus. The two arrays are depicted in Figure 4.1. Whenever the speaker was in the near-field defined

6In the case that the active sectors do not intersect, we run the SCG descent on each array separately, as previously
described.
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⇒

(a) (b)
Sector-based Gradient descent

detection-localization (SCG)

Figure 5.15. Proposed 2-step approach, with two microphone arrays.

by the two arrays, we obtained a localization error of about 10 cm in the horizontal plane [X ,Y].

Moreover, a majority of location estimates were produced by the combination of the two arrays

(when the active sectors actually intersect, as in Figure 5.15a). We concluded that the approach is

working decently. An extensive evaluation would require additional data, with slightly more dis-

tributed geometries, so that the whole room is in the “near-field” of the two arrays. Therefore, all

results presented below use one microphone array only.

5.4.5 “FULL”, “FAST” and “FASTTDE” Implementations

This subsection describes three different implementations of the 2-step approach for detection-

localization presented in Section 5.4.1. The goal is to compare the performance of a full-search

implementation with that of low-cost, near real-time implementations. As previously mentioned,

for the SCG descent we use only one location per active sector. All implementations are done in

a fully online manner: the data is processed by blocks (e.g. 10 seconds), and model parameters

for sector-based detection-localization (Appendix C) are updated at the end of each block. Finally,

concerning sector-based detection-localization, the Shifted Rice (Appendix C) used in offline analy-

sis was replaced with with a Shifted Erlang (Section 8.2) for greater stability, because each block

contains less data than tested previously in the offline case (Section 5.3.3).
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“FULL” implementation: In the following, the abbreviation “FULL” refers to the original,

unconstrained implementation described in Sections 5.4.1 and 5.4.2, that is:

• SCG is applied within all active sectors.

• For each SCG descent, at most 30 iterations. The search is initialized in the middle of the

corresponding active sector.

• All strictly positive discrete frequencies are used: Υ = {2, · · · , NF + 1}.

• The frame shift is 10 ms, the frame length is 32 ms.

“FAST” implementation: On the contrary, in the following, “FAST” refers to a low-cost imple-

mentation of Sections 5.4.1 and 5.4.2, using the following constraints:

• SCG is applied within, at most, the Nmax = 6 most active sectors, according to the posterior

probability of activity P
(1)
š,t .

• For each SCG descent, at most 10 iterations.

• The subset Υ of the strictly positive discrete frequencies is defined as in Section 5.4.3.

• The frame shift is 16 ms, the frame length is 32 ms.

“FASTTDE”: Finally, we also implemented a variant called “FASTTDE”, where the SCG de-

scent in “FAST” is replaced with a (very fast) direct method based on time-delay estimation:

• From the 8-microphone circular array, two square subarrays are defined: {`1, `3, `5, `7} and

{`2, `4, `6, `8} in Figure 2.1b.

• The time domain GCC-PHAT function (3.10) is estimated for the two diagonal pairs of each

subarray: (`1, `5), (`3, `7), (`2, `4) and (`6, `8) in Figure 2.1b.

• For each active sector of space, and for each microphone pair, the Time-Delay Estimation (TDE)

is implemented by finding the maximum (3.11) of the time domain GCC-PHAT function within

the range of time-delays corresponding to this sector.7

• For each active sector of space and for each subarray, the direction of the source is estimated as

an azimuth8, from the two time-delays, as in (Brandstein, 1995, Section 7.2). It is considered
7This range can be estimated once, offline, from the geometry of the array and the sectors. It is then stored for all further

computations.
8Note that elevation is also estimated during this process, but it is not very precise with UCAs.
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as valid only if within the active sector. Since there are two subarrays, there may be two valid

direction estimates, in which case we average them. We thus end up with zero or one azimuth

direction estimate per active sector.

In FASTTDE, the sector-dependent range of permitted time-delays implicitly allows to have differ-

ent time-delay values for different sectors, for the same pair of microphones. It can be seen as a

principled way to apply the single-source GCC-PHAT method to a multisource problem.

Code optimization: all approaches are available in a Matlab implementation that includes C

functions for GCC-PHAT, SAM-SPARSE-MEAN, SCG descent and TDE, through the MEX inter-

face: http://mmm.idiap.ch/Lathoud/2006-multidetloc

5.4.6 Evaluation Method

We proposed an integrated multisource detection-localization system, so we need to jointly evaluate:

• Localization: The spatial precision resulting from the 2-step approach. The goal is to check

whether the system is providing decent localization or not, across various test cases.

• Detection: The number of correctly localized speakers at each time frame. The goal is to

check whether the sector-based detection-localization step is able to (1) detect when nobody

can be correctly localized (e.g. on silences), (2) detect when an active speaker can be correctly

localized (as exposed in Section 3.1.3 and Appendix D, this task differs from the single channel

speech/silence discrimination task), (3) detect multiple speakers active at the same time.

While spatial precision can be defined in terms of bias and standard deviation, it is not clear what

“correctly localized” means. Usually a threshold is arbitrarily defined on the localization error (e.g.

5 degrees). This is subject to caution, since the localization error may vary across test cases, so

defining a single threshold for all test cases may not be the best choice. On the other hand, defining

a separate threshold for each test case does not permit to compare results between test cases.

Thus, we propose to avoid the use of a threshold, replacing it with a statistical approach. In-

stead of first estimating the localization precision, then estimating the number of correctly localized

speakers, both are estimated jointly, as mathematical expectation quantities, based on a simple

Gaussian + Uniform model (N + U), which can be fitted on the localization error θERR using the

EM algorithm (Dempster et al., 1977). An example of fit of this model is shown in Figure 5.16.
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−20 −10 0 10 20
azimuth error (degrees)

seq11

Figure 5.16. Example of fit of the Gaussian + Uniform model (N + U) on the localization error θERR. (N + U) is used for
evaluation of the detection-localization. seq11 is a recording with a single moving speaker, from the AV16.3 Corpus
(Chapter 4). The gray histogram represents the distribution of localization errors. The dark curve represents the Gaussian
pdf, modelling “correct” location estimates. The uniform pdf is not represented.

Formally, let θERR be an azimuth error in degrees, that is the difference between a given result

location estimate and its closest location in the ground-truth, between -180 and +180 degrees. The

probability density function (pdf) of the (N + U) model is defined as a mixture of two components:

p
(
θERR

∣∣ (N + U)
) def

= PN · fN
(
θERR

)
+

PU

360
(5.50)

where PN and PU are the priors of “correctly localized” and “incorrectly localized”, and fN is as-

sumed to be a Gaussian pdf with parameters µN and σN :

fN
(
θERR

) def
= NµN ,σN

(
θERR

)
(5.51)

Then the desired quantities for performance evaluation of localization and detection can all be

directly estimated from the (N + U) model:

• µN and σN are the proposed estimates of the bias and standard deviation of the localization

error, for an audio source that was detected and “correctly localized”.

• PN is the proportion of location estimates that are correct.

• In a given time frame t, the number of correctly located speakers n̂C (t) is estimated as a
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0 1 2 3

seq18

Figure 5.17. Histogram of n̂C (t), the estimated number of correctly localized speakers in the 2-speaker sequence seq18.
Note that n̂C (t) ∈ R can take non-integer values.

conditional expectation:

n̂C (t)
def
= E

{
nC

∣∣∣ (N + U) ,
{

θERR
1 (t) , · · · , θERR

n (t) , · · · , θERR
Nloc(t)

(t)
}}

(5.52)

=

Nloc(t)∑

n=1

P
(
correctly localized | (N + U) , θERR

n (t)
)

(5.53)

=

Nloc(t)∑

n=1

PN · fN
(
θERR

n (t)
)

PN · fN (θERR
n (t)) + PU

360

(5.54)

where Nloc (t) is the number of location estimates at time frame t, given by the detection-localization

system (0, 1 or more),
{

θERR
1 (t) , · · · , θERR

n (t) , · · · , θERR
Nloc(t)

(t)
}

the corresponding azimuth errors,

assumed independent. An example of histogram of all n̂C (t) values for all time frames t is shown

in Figure 5.17. To summarize this result, we discretize n̂C (t) into integer bins, counting the values

n̂C (t) such that: 0 ≤ n̂C (t) < 0.5, 0.5 ≤ n̂C (t) < 1.5, 1.5 ≤ n̂C (t) < 2.5, etc.

A complete Matlab code to conduct the evaluation, along with examples, is available at:

http://mmm.idiap.ch/Lathoud/2006-multidetloc
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5.4.7 Experimental Protocol

The three implementations FULL, FAST and FASTTDE were run on 8 recordings of the AV16.3 Cor-

pus. We present azimuth results obtained with one 8-microphone circular array9. 3 cameras were

used to reconstruct the “true” 3-D mouth location of each speaker, relative to the microphones, as

described in Section 4.3.2 (with an error less than 1.2 cm). We summarize here the contents of the

8 recordings (Section 4.2.3).

Two recordings contain mostly static speakers:

• seq01: 1 speaker at 16 different locations, facing the arrays,

• seq37: 3 simultaneous speakers, 2 seated and 1 standing at 5 different locations, facing the

arrays.

Six recordings contain mostly moving speakers:

• seq11: 1 moving speaker, speaking continuously, facing the arrays.

• seq15: 1 moving speaker, speaking discontinuously, with long silences.

• seq18: separation test: 2 moving speakers getting as close to each other as possible, facing

the arrays.

• seq24: crossing test: 2 moving speakers passing in front of each other, facing the arrays.

• seq40: partial occlusion: test similar to seq37, except that the standing speaker is continu-

ously moving.

• seq45: motion & full occlusion: 3 moving speakers, walking around while speaking continu-

ously.

In all cases, after running multisource detection-localization (FULL, FAST or FASTTDE), we re-

moved noisy location estimates, using short-term clustering (Chapter 6) followed by the cheap

SNSLOW Speech/Non-Speech discrimination (Section 5.5.2). The focus here is the quality of the

detection-localization ; please refer to Sections 5.5 and 6.4.2 for more details on SNS.

9This is “array one” in the AV16.3 Corpus.
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5.4.8 Results and Discussion

Figure 5.18 depicts examples of localization results, along with the ground-truth locations of the

various speakers. Table 5.4 presents localization results on all 8 recordings, in terms of bias, stan-

dard deviation and percentage correct, as given by the (N + U) evaluation (Section 5.4.6). As for

detection, Table 5.5 presents the distribution of n̂C (t), the number of speakers correctly detected

and located, estimated as described in Section 5.4.6. Table 5.6 shows the effective computational

complexity.

Global results: In all cases, speakers appear to be detected and located in a seamless manner,

while they move from one sector to the next. For all eight recordings except seq40, visual inspec-

tion of the location estimates against the ground-truth confirms that FULL, FAST and FASTTDE

(1) effectively detect and locate multiple sources, (2) exhibit a low number of spurious location esti-

mates. (1) is confirmed by the distributions shown in Table 5.5, which have significant components

with 2 or more speakers. (2) is confirmed by the “percentage correct” in Table 5.4, which is often

between 95 % and 100 %. The failure on seq40 (Figure 5.18) is reflected by the high standard

deviation values in Table 5.4. This may have two possible (non-exclusive) explanations: (1) strong

interference between the three speech signals, due to partial occlusions, (2) low power received at

the microphone array, due to the downward orientation of the speakers’heads (Chu and Warnock,

2002), because they are reading books aloud. It contrasts with the success on seq45 (Figure 5.18),

which also contains three simultaneous speakers, but full occlusions. For all three methods, the

standard deviation on seq45 is within the range of other, “easier” recordings.

Comparison between FULL and FAST: Looking at the averages in Table 5.4, two observa-

tions can be made. The FAST implementation exhibits a localization precision similar to that of

the FULL implementation, but a higher percentage of correct location estimates. This is possibly a

positive impact of the discrete frequency selection strategy used in FAST (Figure 5.14). The total

duration of correct location estimates (not reported) is lower for FAST than for FULL, by 4.2 %.

This can be explained by the limit on the number of active sectors, in the case of FAST. Finally,

the computational complexity of FAST is much lower, in fact close to real-time speed (Table 5.6),

although part of the implementation is still in Matlab. Overall, we can state that FAST is an effec-

tive multisource implementation of a parametric search for multiple local maxima of SRP-PHAT.

Various possibilities arise to achieve real-time implementation, including:
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• Parallelization of the SCG descent over several dedicated CPUs (one per active sector).

• Integration within a tracking framework (use past knowledge through an update mechanism).

• Implementation in C of the remaining Matlab code (see the “Input” column in Table 5.6).

Comparison between FAST and FASTTDE: In the case of FASTTDE, the localization cost

becomes negligible (“TDE” column in Table 5.6), but the localization precision is degraded (standard

deviation in Table 5.4). This degradation confirms the extensive study in (DiBiase, 2000), that

compares GCC-PHAT and SRP-PHAT. Also, some noisy location estimates appear, as shown by the

“2” column in Table 5.5, for the single-speaker sequences seq01, seq11 and seq15.

Specific multispeaker case: seq37 is a case with only simultaneous speakers (2 or 3), for

extended periods of time (about one minute for each combination of speakers and locations). We

compared visually the location estimates with the ground-truth. On the positive side, the 2 or 3

speakers are correctly detected and located over a long run (e.g. a minute), as long as they are

at comparable distances from the array. On the other hand, whenever one speaker was standing

about two times further from the array than the other two (seated) speakers, he was nearly com-

pletely missed10. Further analysis showed that this is because the “missed” speaker is dominant in

fewer discrete frequencies, because of his/her further distance from the array. This induces a low

SAM-SPARSE-MEAN value ζš,t, and therefore a low posterior probability of activity P
(1)
š,t .

To conclude, we can state that the proposed detection-localization system was proved able to

detect and correctly locate up to 3 simultaneous speakers, including on a highly dynamic 3-speaker

case (e.g. FAST on seq45). On the other hand, the failure observed on the “partial occlusion” case

seq40 suggests that to investigate joint spectrum-location estimation. Work going in that direction

includes a signal subspace microphone array approach relying on a frequency-dependent model for

each source (Grenier, 1994), a joint separation of the spectra from known locations (Sekiya and

Kobayashi, 2004), and a data-driven approach for binaural localization (Nix and Hohmann, 2006).

The computational complexity of the gradient descent was effectively reduced by using only

the selected set Υ of discrete frequencies (Figure 5.14). A further reduction of the computational

complexity may be obtained by reducing the number of discrete frequencies in a uniform manner.

Indeed, within each active sector, one could combine several consecutive discrete frequencies into a

single band, through array interpolation, similarly to (Friedlander and Weiss, 1993).
10A similar phenomenon appears in loud02, in the loudspeaker experiments reported in Section 5.3.3.
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Figure 5.18. Result (red dots) of the detection-localization (“FAST” implementation, followed by short-term clustering
and SNSLOW). The ground-truth (black curves) is derived from the cameras, including on silences. Gaps are due to the
mouth of a person being occluded on at least one camera (gaps are not related to silences).
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FULL FAST FASTTDE
(all active sectors) (up to 6 sectors) (up to 6 sectors)

Recording µN σN PN µN σN PN µN σN PN

Bias Std % Bias Std % Bias Std %
dev. corr. dev. corr. dev. corr.

seq01 (1, static) -0.47 2.65 96.4 -0.33 2.60 97.6 0.38 3.46 98.7
seq37 (3, static) -0.05 2.63 90.3 0.63 2.68 95.8 2.75 6.57 97.4
seq11 (1, moving) 1.18 2.78 87.3 1.29 2.67 92.6 2.36 5.69 97.3
seq15 (1, moving) 0.30 1.76 79.1 0.17 1.77 89.3 1.19 5.30 88.0
seq18 (2, moving, separation test) 0.32 2.09 93.4 0.39 2.06 96.2 0.61 3.18 98.1
seq24 (2, moving, crossing test) 0.16 2.99 90.4 0.22 2.99 96.3 -0.00 4.04 98.6
seq40 (3, moving, partial occlusion) -1.31 5.37 100 -1.94 6.02 99.7 -0.16 6.44 100
seq45 (3, moving, full occlusion) 0.36 3.30 91.3 0.38 2.46 88.3 0.16 3.65 93.7
Average 0.06 2.95 91.0 0.10 2.91 94.5 0.91 4.79 96.5

Table 5.4. Localization precision, in degrees, along with the percentage of correct location estimates.

FULL FAST FASTTDE
Recording 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
seq01-1p-0000 1.4 98.3 0.4 0.0 0.0 1.2 98.5 0.3 0.0 0.0 0.1 89.3 10.5 0.0 0.0
seq37-3p-0001 0.6 62.9 35.2 1.3 0.0 0.4 68.0 30.4 1.3 0.0 0.2 50.7 40.7 8.2 0.1
seq11-1p-0100 3.7 95.3 1.1 0.0 0.0 2.1 97.1 0.8 0.0 0.0 0.6 82.2 17.2 0.0 0.0
seq15-1p-0100 2.4 97.1 0.5 0.0 0.0 2.1 97.7 0.2 0.0 0.0 2.2 78.9 18.3 0.6 0.0
seq18-2p-0101 0.6 65.7 33.5 0.2 0.0 0.6 72.2 27.1 0.1 0.0 0.5 56.2 34.2 9.1 0.0
seq24-2p-0111 1.6 73.4 24.1 0.9 0.0 0.5 76.9 21.9 0.7 0.0 0.3 76.7 21.1 1.9 0.0
seq40-3p-0111 0.0 51.7 40.4 7.5 0.5 0.0 54.5 38.7 6.4 0.5 0.0 41.1 41.8 15.6 1.5
seq45-3p-1111 0.3 57.2 30.4 12.1 0.0 0.6 66.9 28.7 3.9 0.0 0.0 74.7 19.0 5.2 1.1

Table 5.5. Distribution of the number of correct simultaneous location estimates (percentage of frames). For recordings
with multiple simultaneous speakers, the multispeaker cases are in bold face.

FULL FAST FASTTDE
Recording Input SCG Total Input SCG Total Input TDE Total
seq01-1p-0000 0.70 9.56 13.29 0.28 0.42 1.54 0.43 0.07 1.29
seq37-3p-0001 0.68 20.93 26.93 0.27 0.91 2.84 0.43 0.12 2.15
seq11-1p-0100 0.69 19.04 24.39 0.27 0.73 2.21 0.41 0.10 1.76
seq15-1p-0100 0.69 9.68 14.10 0.27 0.43 1.65 0.42 0.06 1.46
seq18-2p-0101 0.70 25.50 31.52 0.25 1.02 2.82 0.42 0.12 1.94
seq24-2p-0111 0.69 19.02 24.43 0.28 0.76 2.37 0.42 0.11 1.78
seq40-3p-0111 0.67 27.19 33.55 0.28 0.97 2.76 0.43 0.11 1.96
seq45-3p-1111 0.67 22.71 28.71 0.28 0.85 2.53 0.43 0.11 1.91
Average 0.69 19.20 24.62 0.27 0.76 2.34 0.42 0.10 1.78

Table 5.6. Effective computational complexity: computation duration divided by recording duration (real time = 1). We
used a Matlab/C implementation on a Pentium 4, with 3.2 GHz CPU speed and 1 GB of RAM. “SCG” is the time spent
doing SCG descent only. “TDE” is the time spent doing TDE-based localization only. “Input” is the time spent reading
and buffering wave files (variations due to Matlab). The cost of FFT and GCC-PHAT is very small (around 0.003 real time
duration).
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5.5 Speech/Non-Speech (SNS) Classification

In an environment with human sound sources only, relying on the SAM-SPARSE-MEAN detection-

localization approach, as in the above sections, may be sufficient to discriminate speech from silence,

as illustrated by the experiments reported above. However, the type of sound source may well be

less constrained, even indoors: for example, machines such as a beamer and laptops may be used

in a meeting. In such a case, a “wideband source = speech source” assumption is not enough to

discriminate between speech and non-speech.

This section thus proposes a further extension of SAM-SPARSE-MEAN to the Speech/Non-

Speech (SNS) classification task. The spectrum is filtered in a location-dependent manner, thus

producing “Sector-Based MFCCs”. Two SNS classifiers are proposed: SNSLOW and SNSGMM.

SNSLOW uses a fixed threshold on the Sector-Based MFCC0, for virtually no cost. SNSGMM mod-

els Sector-Based MFCCs in an unsupervised manner, with a full covariance matrix GMM. This

model is then splitted in two, to discriminate between speech activity and machine activity. Chap-

ter 6 shows that it is highly beneficial to integrate SNSLOW or SNSGMM within a dynamical

analysis, therefore all comparative SNS experiments are included in Chapter 6.

5.5.1 Sector-Based MFCCs

We propose to filter the spectrum of a single microphone `m, prior to MFCC extraction, in a location-

dependent manner. Based on the sparsity assumption defined in (5.20), for each sector, the fre-

quency spectrum is filtered in a binary manner, setting to zero the magnitude at a discrete fre-

quency if a sector is not dominant in that frequency, as in the expression M
(t)
m (k) · δKr (š− šmin (k)).

However, since setting magnitude to zero may introduce artificial dynamics in the cepstrum do-

main, the spectrum is floored to a non-zero value σ corresponding to the average background noise

level, as in USS (Section 8.2). We define the sector-based magnitude spectrum as:

M (t)
m (k, š)

def
= max

(
1,

M
(t)
m (k)

σ
· δKr (š− šmin (k))

)
(5.55)

where σ is the Rayleigh parameter in the Rayleigh + Shifted Erlang model described in Section 8.2.

Sector-based MFCC coefficients can then be extracted from M
(t)
m (k, š). This way of “separating”

spectra from different sources is very approximate for two reasons. First, it does not use the precise
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spatial location of each source, but only their sector index. Second, the magnitude spectrum of only

one microphone is used. Nevertheless, it is sufficient to build an unsupervised speech/non-speech

classifier, as described in Section 5.5.2. The effective computational complexity is negligible. A

complete Matlab implementation of sector-based MFCC extraction is available at:

http://mmm.idiap.ch/Lathoud/2006-multidetloc

5.5.2 Low-Cost Speech/Non-Speech Classifier (SNSLOW)

As a baseline system, we propose to use measures of non-stationarity and wideband activeness: the

Sector-Based MFCC0 coefficient and SAM-SPARSE-MEAN, respectively. All non-speech segments

are discarded, only speech segments are kept. A speech segment is defined as a segment that has:

standard deviation of Sector− Based MFCC0 > 0.6 (5.56)

and at least two “wideband (sector, frame)”. A wideband (sector, frame) (Sš, t) must verify:

P
(1)
š,t > ΨP (FAR = 0.001) (5.57)

The threshold ΨP (FAR = 0.001) is determined in an automatic manner, without training data, fol-

lowing (5.33). It corresponds to a target FART of 0.001. The fixed threshold value of 0.6 on the

sector-based MFCC0 coefficient is justified by the fact that sector-based MFCCs are derived from a

normalized spectrum (5.55).

5.5.3 Full Covariance GMM Speech/Non-Speech Classifier (SNSGMM)

One approach for Speech/Non-Speech (SNS) classification is to train a model on a set of recordings,

against a known ground-truth segmentation, and to test on another set of recordings, where the

unknown segmentation is to be estimated (Lu and Zhang, 2002). However, this type of approach

runs the risk of “overfitting” the data seen during training, thus not performing well on unseen data

that widely differs from the training data, as for example, different microphone characteristics,

different types of noises, different types of room reverberation, etc. We thus opted for an approach

that does not need training data. This approach relies on the following assumption: in spite of the

Discrete Cosine Transform, the various dimensions of the MFCC features of speech signals are still



110 CHAPTER 5. MULTISOURCE JOINT DETECTION-LOCALIZATION

correlated, while for machines such as a projector, there is much less correlation (in particular, if

the machine noise is stationary). This leads to the following approach. For a given recording:

• Fit a full covariance matrix GMM on the sector-based MFCC features of active sectors, using

the EM algorithm (Dempster et al., 1977).

• During EM, some of the components of the GMM may need to be constrained. This typically

happens when a full covariance matrix becomes badly conditioned, thus not invertible within

the numerical limits of the computer. In such a case, we chose to constrain the covariance

matrix to be diagonal, and the EM algorithm continues with the newly constrained model.

• The number of GMM components is chosen by trying various numbers, from 2 to 10, and

picking the fitted GMM with the maximum Bayesian Information Criterion (Schwartz, 1978).

• The selected GMM is then separated into two GMMs: diagonal components in one GMM, to

model noise sources, non-diagonal components in the other GMM, to model speech sources.

Final decision: All non-speech segments are discarded, only speech segments are kept. A

speech segment is defined as a segment that has:

standard deviation of Sector− Based MFCC0 > 0.6 (5.58)

and at least two “speech (sector, frame)”. A speech (sector, frame) (Sš, t) must verify:

P (wideband and non− noisy) > ΨP (FAR = 0.01) (5.59)

where a simplifying independence assumption gives the posterior probability:

P (wideband and non− noisy) = P
(1)
š,t · P (non− noisy) (5.60)

and ΨP (FAR = 0.01) is a threshold on the posteriors. ΨP (FAR = 0.01) is determined automatically,

without training data, to correspond to a target FART of 0.01, following (5.33). P (non− noisy) is

the posterior probability of “non-noisiness”, as given by the two-GMM SNS model. A Matlab imple-

mentation of the final SNS decision is available at:

http://mmm.idiap.ch/Lathoud/2006-multidetloc
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Both SNSLOW and SNSGMM are tested in Chapter 6, using a short-term clustering algorithm

to produce the candidate speech and non-speech segments.

5.6 Conclusion

Section 3.1.3 presented a preliminary experiment, which suggested to avoid traditional single-

channel features, in the context of detection for localization. Following this suggestion, the present

chapter addressed the multisource detection-localization task, which amounts to detect and lo-

cate multiple acoustic sources, often moving, from a single time frame of multichannel signals.

A 2-step approach has been proposed and evaluated. The first step is a fast search space reduction,

called sector-based joint detection-localization. The second step is a gradient descent localization

within each active sector. Both steps rely on a topological interpretation of SRP-PHAT. Both steps

were integrated into a multisource detection-localization system, with a fully available, near real-

time implementation. Experiments on real indoor recordings showed that the integrated system is

able to detect and locate three simultaneously speaking, moving speakers. Finally, location-based

Speech/Non-Speech classifiers were proposed, that do not need training data. For future work on

multisource detection-localization, joint spectrum-location estimation may be a relevant direction,

for example based on (Grenier, 1994; Sekiya and Kobayashi, 2004; Nix and Hohmann, 2006). One

contribution of the present chapter that goes beyond microphone arrays is the automatic selection

of a detection threshold, without training data.

To conclude, the present chapter has investigated the static analysis of each recording, where

each time frame is processed independently. Although a global model and a strategy to select

the detection threshold were introduced, they did not take into account the correlation between

consecutive time frames. This is the object of Chapter 6, where a dynamical model is proposed.
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Chapter 6

Short-Term Spatio-Temporal

Clustering

Distant microphones permit to process spontaneous multi-party speech with very little constraints

on speakers, as opposed to close-talking microphones. Minimizing the constraints on speakers per-

mits a large diversity of applications, including meeting summarization and browsing, surveillance,

hearing aids, and more natural human-machine interaction (Section 1.1). When using distant mi-

crophones, a basic requirement of such applications is to determine where and when the speakers

are talking (Figure 6.1a). This is inherently a multisource problem, because of background noise

sources, as well as the natural tendency of the multiple speakers to talk over each other (Sec-

tion 3.2.1). Chapter 5 investigated the instantaneous localization of multiple speech sources, that

is from a single time frame (Figure 6.1b). The present chapter investigates the dynamical analysis

of the resulting location estimates, across consecutive time frames (Figure 6.1c).

As exposed in Section 3.1.4, spontaneous speech utterances are highly discontinuous, which

makes difficult to track the multiple speakers with classical filtering approaches, such as Kalman

filtering or Particle Filters. As an alternative, this chapter proposes a probabilistic framework to

determine the trajectories of multiple moving speakers in the short-term only – that is only while

they speak. Instantaneous location estimates (dots in Figure 6.1b) that are close in space and

time are grouped into “short-term clusters” (round lines in Figure 6.1c) in a threshold-free, princi-

113
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Figure 6.1. The goal (a) and the proposed approach (b)(c). Dots depicts instantaneous location estimates ri
def
= (θi, Ti).

Dashed lines depict trajectories of the sources (true in (a), estimated in (c)). Square brackets depict the beginning and
the end of each speech utterance. Round, continuous lines depict the short-term clusters ω1, · · · , ω10.

pled manner. As a by-product, the start and end times of each utterance are precisely determined

(square brackets in Figure 6.1c). Contrastive experiments clearly show the benefit of using short-

term clustering, on real indoor recordings with seated speakers in meetings, as well as multiple

moving speakers.

The rest of this chapter is organized as follows:

• Section 6.1 presents an assumption on the local dynamics of the location estimates – over time

periods of about 250 ms – and derives a principled, threshold-free Short-Term spatio-temporal

Clustering (STC) framework.

• Section 6.2 presents online and offline optimization algorithms to implement STC.

• Section 6.3 illustrates the flexibility of the STC framework with experiments on synthetic
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data, showing that STC permits to detect trajectory crossings in a threshold-free manner.

• Section 6.4 applies STC to Speech/Non-Speech (SNS) classification in the case of multiple

moving, overlapping speakers. An experimental evaluation is conducted on the AV16.3 Cor-

pus, comparing frame-level SNS classification and cluster-level SNS classification.

• Section 6.5 applies STC to a more static case, where a speech/silence time segmentation is

produced for each speaker seated in a meeting.

• Section 6.6 concludes.

As announced in Section 1.1, our underlying aim is to have a single system that copes with both

moving and seated speakers. Therefore, both dynamic and static experimental evaluations (Sec-

tions 6.4 and 6.5, respectively), use as input the instantaneous multisource location estimates of

Chapter 5. Similarly, both use the same STC implementation (Section 6.2). Dr Jean-Marc Odobez

from IDIAP contributed to the simulated annealing part (Section 6.2.2).

This chapter does not attempt to determine the identities of the speakers, but only where and

when they are active in the form of segments of trajectories (brackets and dashed lines in Fig-

ure 6.1c), as defined by each short-term cluster (round lines in Figure 6.1c). This implies to exclude

non-speech clusters (crosses in Figure 6.1c). The resulting speech segments are used as a starting

point for speaker clustering in Chapter 7.

6.1 Short-Term Spatio-Temporal Clustering

This section presents the proposed short-term spatio-temporal clustering approach. The context

is multiple moving sources: for each source and for each time frame, an instantaneous location

estimate ri
def
= (θi, Ti) may or may not be available, where i is an integer index, θi denotes the

spatial location of the source, and Ti ∈ N \ {0} denotes a time frame index1. For each possible time

frame index T ∈ N \ {0}, there can be zero, one or multiple location estimates ri = (θi, Ti), such

that Ti = T . The proposed approach relies on a threshold-free criterion to cluster these location

estimates into short-term trajectories.

1Following the frame-based analysis presented in Chapter 5, the present chapter uses integer time frame in-
dices Ti ∈ N \ {0} (Figure 6.1b). However, the short-term clustering approach defined in the present chapter could be
formulated very similarly without time frames, using instead time values ti expressed in sampling periods.
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Although the approach is fully generic, throughout this chapter the practical context will be one

8-microphone 10 cm-radius Uniform Circular Array (UCA) of microphones on a table (Figure 1.1a),

recording multi-party speech in a meeting room (Figure 6.9). It is used to provide instantaneous

location estimates of the multiple audio source, as described in Chapter 5. The spatial location θi is

for example an azimuth value in degrees. Our ultimate goal in this chapter is to cluster the correct

location estimates into speech utterances, and to discard the incorrect location estimates.

6.1.1 Assumptions on Local Dynamics

Let ri = (θi, Ti) for i ∈ {1, . . . , Nr} be all instantaneous location estimates of events emitted by the

various sources, over an entire recording. This includes the desired events (speech sounds) as well

as noise. θi ∈ RD is a location in space, while Ti ∈ N \ {0} is a time frame index: Ti ∈ {1, 2, 3, . . .}.

The notation r1:Nr
designates the set of all location estimates: r1:Nr

def
= {r1, r2, · · · , rNr

}. For conve-

nience, without loss of generality, we assume the location estimates ordered in time (Figure 6.1b):

T1 ≤ T2 ≤ · · · ≤ TNr
(6.1)

Note that there can be multiple location estimates per time frame, i.e. Ti = Ti+1.

For any pair of location estimates (ri, rj), we define the two hypotheses:

• H0(i, j)
def
= “ri and rj correspond to different sources”

• H1(i, j)
def
= “ri and rj correspond to the same source”

The two hypotheses are complementary: H1(i, j) = H0(i, j). As a preliminary experiment, we ran

instantaneous audio source localization with a UCA on real data (seq01 from the AV16.3 Corpus),

using the SRP-PHAT approach (DiBiase, 2000). For each location estimate ri = (θi, Ti), θi is an

estimate of the direction of an active acoustic source (azimuth angle in the horizontal plane). We

observed the values of the difference θi − θj for short delays |Ti − Tj | up to Tshort, where Tshort is a

small number of time frames (e.g. 2). Figure 6.2 displays a typical histogram of location variations

θi − θj (in gray). Our interpretation is as follows: two location estimates ri and rj either correspond

to the same source or not. In the first case (H1) the difference θi − θj is small: a source does not

move a lot during a short time period. Hence the zero-mean central peak in the histogram. In the
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Figure 6.2. Histogram of azimuth angle variations θi − θj over a 2-frame delay (|Ti − Tj | = 2), on real data (recording
seq01 from the AV16.3 Corpus, see Chapter 4). The super-imposed curves depict the bi-Gaussian mixture model
obtained through EM training.

second case (H0) the difference θi − θj is random: the trajectories of two sources are independent,

at least in the short-term. We therefore propose the following model for local dynamics, i.e. for

|Ti − Tj | ≤ Tshort:





p (θi − θj | H0(i, j)) = N0,σdiff

|Ti−Tj |
(θi − θj)

p (θi − θj | H1(i, j)) = N0,σsame

|Ti−Tj |
(θi − θj)

(6.2)

where ∀T ≤ Tshort σsame
T < σdiff

T , and Nµ,σ (·) denotes the Gaussian pdf with mean µ and standard

deviation σ. Although an intuitive choice in the case of H0 would be a uniform distribution, we

opted for a Gaussian in order to capture the dependency of σdiff
T on the delay T . This dependency

was observed on real data, examples can be found in (Lathoud et al., 2004).

The standard deviation σsame
T accounts for short-term variations of location estimates due to

both local motion and measurement imprecision. We argue that there is no need to distinguish

between the two, as long as the analysis is restricted to short delays T ≤ Tshort. For each de-

lay T ≤ Tshort, σsame
T and σdiff

T can be estimated simply, through EM training (Dempster et al.,

1977) of a bi-Gaussian mixture model, either on the entire data {θi − θj} such that |Ti − Tj | = T ,

or in a blockwise fashion when the data is processed online, as in Section 6.2.1. The mean of each

Gaussian is fixed to zero. Although the weights are also trained during EM, they are not used in

the rest of the process. See Figure 6.2 for an example of bi-Gaussian mixture model.
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Figure 6.3. The two types of clusters. This chapter focuses on short-term clusters (a), obtained with location cues only.
Long-term clustering (b) requires additional cues, as investigated in Chapter 7.

We note that the model allows for location differences θi − θj to be close to zero, while ri and

rj belong to two different sources: H0 (i, j). Such a situation may happen in reality, whenever two

sources’ trajectories cross each other. Section 6.3 provides a discussion on this topic.

The present chapter reports tests in 1-D space (azimuth angle). For higher dimensions, e.g.

in spherical or Euclidean coordinates, one could simply replace σsame and σdiff with covariance

matrices (diagonal should be sufficient). The rest of the approach presented below is unaffected by

such a modification, because it relies on probabilities only (6.2).

6.1.2 Short-Term Clustering (STC)

Given a value of Tshort, a cluster ω ⊂ r1:Nr
is “short-term” iff it has “time gaps” of at most Tshort (Fig-

ure 6.3a). All other clusters are called “long-term clusters” (Figure 6.3b). This subsection formally

defines a short-term cluster of location estimates, as well as a short-term partition of r1:Nr
.

Formally, a cluster ω is “short-term” iff:

∀T ∈
[
min
ri∈ω

Ti, max
ri∈ω

Ti

]
∃rj ∈ ω s.t. |Tj − T | ≤ Tshort

2
(6.3)

A partition Ω = {ω1, · · · , ωn, · · · , ωNΩ
} of the data r1:Nr

is then “short-term” iff all clusters ωn ∈ Ω

are “short-term”. We denote this property with:

Ω ∈ OST (6.4)

where OST is the set of all possible short-term partitions Ω of the data r1:Nr
, for a given value

of Tshort.
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6.1.3 Threshold-Free Maximum Likelihood Clustering

Given the local dynamics (6.2), we propose to detect and track events as follows: find a partition Ω

of r1:Nr
(round lines in Figure 6.1c) that maximizes the likelihood of the observed data r1:Nr

:

ΩML def
= arg max

Ω∈OST

p (r1:Nr
| Ω) (6.5)

Note that the number of clusters NΩ has to be estimated as well. Each cluster ωk ⊂ r1:Nr
contains

locations for one event, e.g. a speech utterance. We are not trying to produce a single trajectory

per source, but rather an oversplitted solution where NΩ >> 1 is the number of individual events,

for example speech utterances. The exact value of NΩ is thus not important: we rather want to

be sure that all location estimates within each cluster ωk correspond to the same source. Defining

one cluster per location estimate obviously fulfills this constraint, although it is of little practical

interest. Therefore, within each cluster, we would also like to have as many location estimates as

possible, that belong to the same source. In other words, a criterion should be derived from the

data-driven dynamical constraints 6.2, that also minimizes NΩ as much as possible.

Over time, a source may move while being unobservable (e.g. silent, moving speaker). Using

location cues alone, it is impossible to determine whether location estimates before and after the

“silence” period belong to the same source. Thus, we can relate location cues in the short-term

only (Figure 6.3a). We therefore propose to maximize the following “short-term criterion”, using a

simplifying independence assumption between all pairwise differences θi − θj :

pST (r1:Nr
| Ω) ∝

∏

0 ≤ i < j ≤ Nr

0 ≤ |Ti − Tj | ≤ Tshort

p
(
θi − θj | HΩ(i, j)

)
(6.6)

where HΩ(i, j) is either H0(i, j) or H1(i, j), depending on whether or not ri and rj belong to the

same cluster ωn in the candidate partition Ω, as depicted by Figure 6.4. Each term of the product

is expressed using (6.2). One important characteristic of this approach is that it does not need

to explicitly model the true number of sources whose events are observed. Therefore, complex

dynamical constraints and associated birth/death rules are not needed.
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estimates (dots) are within Tshort time frames of each other.

The proposed task, to cluster observations, fundamentally differs from Kalman filtering or Par-

ticle Filtering, which estimate a hidden state variable from the observations. In addition, filtering

usually relies on a conditional independence assumption between consecutive observations, given

the state values (Odobez et al., 2006). On the contrary, the proposed STC precisely consists in

modelling dependencies between several consecutive observations, up to the order Tshort.

6.2 Optimization Algorithms

The goal is to find a short-term partition Ω of the observed location estimates r1:Nr
that maximizes

the criterion (6.6). Even short recordings contain thousands of location estimates: Nr >> 1, for

example Nr = 50000 for a 5-minute recording. It is thus untractable to try all possible short-term

partitions Ω ∈ OST. Sections 6.2.1 and 6.2.2 propose tractable, suboptimal implementations (online

and offline).

6.2.1 Online: Sliding Window (SW)

We propose to find a suboptimal solution Ω̂ML by using a sliding analysis window, shifted at each

iteration by Nfuture location estimates, where location estimates r1:Nr
are ordered by increasing

times:

T1 ≤ T2 ≤ · · · ≤ TNr
(6.7)
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(Step 1) Initialization: For T ∈ {0, · · · , Tshort}, initialize
standard deviations σsame

T and σdiff
T , with unsupervised

EM training on the beginning or all of r1:Nr
.

n← 1.

(Step 2) F ← rn:n+Nfuture−1.
Define all possible partitions of location estimates in F .
Choose the most likely partition Ω̂ML

F .

(Step 3) P ← {ri = (θi, Ti) | Tn − Tshort ≤ Ti < Tn}.
Define all possible merges between Ω̂ML

P and Ω̂ML
F .

Choose the most likely merged partition and update Ω̂ML
P∪F .

(Step 4) Optionally, update σsame
T and σdiff

T using
recently seen data (EM training, as in Step 1).

(Step 5) n← n + Nfuture and loop to Step 2.

Table 6.1. The online Sliding Window (SW) maximum likelihood algo-
rithm. The likelihood of a partition is estimated with (6.6). Location esti-
mates are ordered by increasing times (∀n Tn ≤ Tn+1).

Number of Number of
elements possible partitions:
Nfuture Bell number

(Weisstein, 2006a)
1 1
2 2
3 5
4 15
5 52
6 203
7 877
8 4 140
9 21 147
10 115 975
11 678 570

>11 prohibitive

Table 6.2. SW algorithm: Number of pos-
sible partitions, for each possible number
of elements (Step 2 in Table 6.1).

Table 6.1 describes the algorithm. Step 1 is the initialization: for each delay T ≤ Tshort, a bi-Gaussian

model is fitted on azimuth differences {θi − θj} such that |Ti − Tj | = T , as in Section 6.1.1. Steps 2, 3,

and the optional Step 4 constitute one iteration of the algorithm. Step 2 selects the Maximum Like-

lihood (ML) partition of the Nfuture location estimates in the future set F , independently of all other

data. The future set F has a fixed size (Nfuture), given by the user. Step 3 merges some clusters of

the partition of F selected at Step 2, with some clusters in the past set P , again maximizing the

likelihood (6.6). P contains all location estimates within Tshort time frames in the past. There can

be a variable number of location estimates for each time frame, therefore the set P has a variable

size. The optional Step 4 updates the bi-Gaussian models with recently seen data. The result of

this algorithm is an estimate Ω̂ML ∈ OST of the ML short-term partition ΩML ∈ OST of all observed

data r1:Nr
. The entire process is online, threshold-free and can be fully deterministic2. As discussed

in Section 6.1.3, this process fundamentally differs from Kalman filtering or Particle Filtering. In

particular, the proposed approach models observation dependencies (6.2) up to the order Tshort, even

in the case Nfuture = 1.

One of the advantages of this approach is the bounded computational load. Indeed, evaluating

2A deterministic initialization of the EM training of the bi-Gaussian model can be used, similarly to Appendix C.1.2.
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a candidate partition (Step 2) or a candidate merge (Step 3) following (6.6) is easily implemented

through a sum in the log domain over location estimates within F (Step 2) or P ∪ F (Step 3). In

both cases, to determine the computational load, we need to determine the maximum number of

partitions that are evaluated.

The total number of partitions evaluated at Step 2 is shown in Table 6.2. For Nfuture ≤ 7, there

are at most 877 such partitions. As for Step 3, the worst case computational complexity was in-

vestigated in (Lathoud et al., 2004), in the special case where there is only one location estimate

per time frame: for Tshort = 6, there are at most 13 327 possible merges. However, in the general

case investigated here, there can be multiple location estimates per time frame, thus many more

possible merges. In practice, the worst case situation is rarely encountered, as it corresponds to a

case where most location estimates in P ∪ F are unrelated to each other. Two practical solutions

can be used, favoring oversplitting. First, one could set a hard limit on the number of partitions

that are constructed at Step 3 (e.g. 10 000), always including at least the case without any merge.

Second, a heuristic can be used to prune out most of the “unlikely” merges, by forbidding short-term

partitions Ω of the analysis window, that include “new” decisions HΩ(i, j) = H1(i, j) whenever

p (θi − θj | H1(i, j))

p (θi − θj | H0(i, j))
≤ ε (6.8)

where ε is a small value, e.g. 10−10. On tests with synthetic data (Section 6.3.2) we obtained exactly

the same results with pruning or without pruning.

In the following, SW-Nfuture denotes the Sliding Window algorithm with a particular Nfuture

value: for example SW-1 or SW-7.

6.2.2 Offline: Simulated Annealing Optimization (SA)

Alternatively, the proposed modeling can be cast into a Markov Random Field (MRF) framework

(Li, 1995), by defining a label field E = {Ei, i = 1 . . . Nr}, where Ei is the label associated with

the observed location estimate ri, and Ei is the r.v. associated with Ei. The actual label values are

not important and can be e.g. integers. We define a graph 〈E, G〉, where E represents the set of

nodes, and G denotes the neighborhood system. Ei is a neighbor of Ej iff |Ti − Tj | ≤ Tshort. A graph

〈E, G〉 uniquely defines a short-term partition Ω ∈ OST. Given the observations r1:Nr
, the goal is to
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1) Initialization:
Temperature: η ← η0

Label field: E ← Einit

2) Do
E ← SA(E, η)
η ← η ∗ λ

While η > ηend

3) Iterated Conditional Mode (ICM) op-
timization steps until there is no label
change:

Do
E′ ← E
E ← SA(E′, 0)

While E 6= E′

Table 6.3. SA algorithm: The MRF optimization (in
practice λ = 0.97). SA(E, η) is described in Table 6.4.

1) Initialization: I ← {1, ..., Nr}

2) While I 6= ∅

• sample i ∈ I uniformly.
• define candidate labels Li ← EGi

∪
{NewLabel} where EGi

is the set of cur-
rent labels from the Ej ’s in the neigh-
borhood of Ei.

• compute the posterior probabili-
ties Pi,n

def
= P (Ei = ln | E \ Ei) over

the candidate labels ln ∈ Li:

Pi,n ∝ exp


−

1

η

∑

j

〈i,j〉∈C

βpotts
ij · δKr (ln − Ej)




• sample Ei ∼Multinomial(Pi,n).
• remove i from I.

Table 6.4. SA algorithm: One simulated annealing
step SA(E, η).

estimate the label field E that maximizes the ML criterion (6.6) or, equivalently, that maximizes

the following Potts field (Geman and Geman, 1984):

Ppotts(E)
def
=

1

Z
· e−U(E) (6.9)

where U (E) is the following energy function:

U(E)
def
=

∑

〈i,j〉∈C

Vij(E)
def
=

∑

〈i,j〉∈C

βpotts
ij · δKr (Ei − Ej) (6.10)

where C is the set of pairwise cliques of the neighborhood system G, Z is the partition function

(normalization factor), and δKr (ξ) is the Kronecker function, the value of which is 1 when ξ = 0,

and 0 otherwise. The βpotts
ij are called the Potts coefficients, the values of which depend on the

observations and can be derived from (6.2) and (6.6):

βpotts
ij = log

[
p (θi − θj | H0(i, j))

p (θi − θj | H1(i, j))

]
(6.11)
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The maximization of the probability Ppotts (E) with respect to the label field E is equivalent to

the minimization of the energy function U (E) and can be conducted using standard techniques.

We adopted a simulated annealing approach (Geman and Geman, 1984; van Laarhoven and Aarts,

1987), with Gibbs sampling and an exponentially decaying temperature, followed by an Iterated

Conditional Mode (ICM) procedure (Geman and Geman, 1984; van Laarhoven and Aarts, 1987), as

described in Tables 6.3 and 6.4. Note that any short-term partition configuration (Ω ∈ OST) can be

reached with a non-zero probability, which is a requirement of simulated annealing.

We consider three different alternatives for the label field initialization Einit:

• SA(1): The initial label field Einit has a single label shared by all nodes.

• SA(Nr): The initial label field Einit has one different label per node.

• SA(SW-1): The initial label field Einit is constructed in a sequential and causal fashion: for

each new observation, we select the label that minimizes U (E) given all previous observations.

This is strictly equivalent to SW-1: the SW algorithm with Nfuture = 1.

Section 6.5.5 discusses the outcome of these alternatives and on their impact on the criterion (6.6),

the number of short-term clusters NΩ, and the performance.

6.3 Application: Threshold-Free Detection of Trajectory

Crossings

This section defines a confidence measure for each possible individual decision Ha(i, j) (a ∈ {0, 1}),

and uses this confidence measure to detect and deal with low confidence situations such as trajec-

tory crossings. The goal is to illustrate the flexibility of the proposed probabilistic framework (6.6).

It is relevant to contexts where the events emitted by the various sources are somewhat “contin-

uous”, such as acoustic signals from vehicles (Pham and Fong, 1997). In the present section, we

investigate the extraction of trajectory segments, where each segment belongs for sure to a single

source. Achieving this task would be useful as a first step, for instance prior to agglomerating the

trajectory segments that belong to the same source, as in Bayesian Network tracking (Jorge et al.,

2004).
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Figure 6.5. Example of low confidence decision H0(i, j) at a trajectory crossing. Each dot is a location estimate. A
continuous line depicts each short-term cluster ωn.

For a ∈ {0, 1}, we propose to use the posterior probability P (Ha(i, j) | r1:Nr
) as a confidence mea-

sure for a given local decision Ha(i, j). Assuming equal priors for all possible short-term partitions

Ω ∈ OST of the observed data r1:Nr
, the posterior probability of the local decision can be expressed

as follows, for a ∈ {0, 1}:

P (Ha(i, j) | r1:Nr
) ∝

∑

Ω ∈ OST

HΩ(i, j) = Ha(i, j)

p (r1:Nr
| Ω) (6.12)

where P (H0 (i, j) | r1:Nr
) + P (H1 (i, j) | r1:Nr

) = 1. Section 6.3.1 proposes to use this confidence

measure in order to modify the ML optimization procedure.

6.3.1 Threshold-Free Confident Clustering

We would like to determine when trajectories cross, and to split short-term clusters accordingly.

Figure 6.5a gives an example of ML partition. ri and rj are very close, it is thus not clear which

short-term cluster, ri and rj should ideally belong to. In such a case, there may exist a different

partition with a close-to-optimal likelihood (Figure 6.5b). We propose here to break each short-term

cluster that contains ri or rj into two “confident” parts, and to create two separate one-element

clusters {ri} and {rj} (Figure 6.5c).

Let us assume that the ML criterion (6.6) leads to the decision H Ω̂ML

(i, j) = H0 (i, j), as illus-

trated in Figure 6.5a. Let us assume a low “confidence” in the decision H0 (i, j), in the sense that

there is at least one close-to-ML partition Ω′ with HΩ′

(i, j) = H1 (i, j), as illustrated in Figure 6.5b.

This implies not only a low posterior probability (6.12) for H0 (i, j), but also that in Ω′, several other
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decisions H0 and H1 involving ri or rj are the opposite of the corresponding ML decisions. This

in turn implies that several ML decisions H0 and H1 involving ri and/or rj have a low posterior

probability (6.12).

We propose to detect “low confidence” in a ML decision H0(i, j), by comparing it to all ML de-

cisions H1(n1, n2) in the same analysis window W ⊂ r1:Nr
. Formally, a “low confidence” H0 (i, j)

decision is defined as verifying:

P (H0 (i, j) | r1:Nr
) < M1

(
Ω̂ML

W

)
(6.13)

where:

M1

(
Ω̂ML

W

)
def
= max

n1 < n2

(rn1
, rn2

) ∈W ×W

HΩ̂ML
W (n1, n2) = H1(n1, n2)

P (H1 (n1, n2) | r1:Nr
) (6.14)

For the Sliding Window (SW) algorithm, “confident clustering” is implemented by modifying

Steps 2 and 3 in Table 6.1 as follows:

• For all (ri, rj) in the analysis window W = F (Step 2) or W = P ∪ F (Step 3), estimate

P
(

HΩ̂ML
W (i, j)

∣∣∣ W
)

using (6.12). For OST, we use the set of all candidate partitions in W .

• Step 2: whenever a decision H0(i, j) given by the ML algorithm has “low confidence” (6.13),

split in two parts the short-term cluster containing ri, at time Ti. Idem for rj . Additional

one-element clusters {ri} and {rj} are created (Figure 6.5c).

• Step 3: whenever a decision H0(i, j) given by the ML algorithm has “low confidence” (6.13),

forbid any merge between each of the two short-term clusters containing ri (resp. rj), and any

other short-term cluster.

Confident clustering requires Nfuture > 1. Indeed, with Nfuture = 1, cancellation of a single ML

merge (Step 3) is most often replicated in the future, resulting in an unnecessarily long series of

one-element clusters. This was verified on the same synthetic data as the one used in Section 6.3.2.

In the case of simulated annealing (SA), only some of the partitions are explored, therefore a

different implementation may be needed to detect trajectory crossings.



6.3. APPLICATION: THRESHOLD-FREE DETECTION OF TRAJECTORY CROSSINGS 127

1 200 400 600 800 1000 1200
0

20

40

60

80

100

120

time frame index T
i
 (integer)

az
im

ut
h 

an
gl

e 
θ i (d

eg
re

es
)

seq. #1 − ML clustering

r
i
=(θ

i
,T

i
)

ω
k

ω2
ω4

ω1

ω3

1 200 400 600 800 1000 1200
0

20

40

60

80

100

120

time frame index T
i
 (integer)

az
im

ut
h 

an
gl

e 
θ i (d

eg
re

es
)

seq. #2 − ML clustering

r
i
=(θ

i
,T

i
)

ω
k

1 200 400 600 800 1000 1200
0

20

40

60

80

100

120

time frame index T
i
 (integer)

az
im

ut
h 

an
gl

e 
θ i (d

eg
re

es
)

seq. #3 − ML clustering

r
i
=(θ

i
,T

i
)

ω
k

1 200 400 600 800 1000 1200
0

20

40

60

80

100

120

time frame index T
i
 (integer)

az
im

ut
h 

an
gl

e 
θ i (d

eg
re

es
)

seq. #1 − confident clustering

r
i
=(θ

i
,T

i
)

ω
k

ω2

ω3

ω4

ω6

ω7

ω8

ω5ω1

1 200 400 600 800 1000 1200
0

20

40

60

80

100

120

time frame index T
i
 (integer)

az
im

ut
h 

an
gl

e 
θ i (d

eg
re

es
)

seq. #2 − confident clustering

r
i
=(θ

i
,T

i
)

ω
k

1 200 400 600 800 1000 1200
0

20

40

60

80

100

120

time frame index T
i
 (integer)

az
im

ut
h 

an
gl

e 
θ i (d

eg
re

es
)

seq. #3 − confident clustering

r
i
=(θ

i
,T

i
)

ω
k

Figure 6.6. Comparison ML clustering / confident clustering on multiple source cases, where the number of active
sources varies over time. Gray dots: location estimates ri = (θi, Ti). Black lines: clusters ωk. The ML clustering algorithm
takes arbitrary decisions at trajectory crossings. On the contrary, the confident clustering correctly splits the short-term
clusters at each trajectory crossing.

6.3.2 Multi-Source Tracking Examples

To compare the ML clustering with the confident clustering, we generated data that simulates “spo-

radic” and “concurrent” events by restricting r1:Nr
to have at most only one location estimate per

time frame (∀i Ti < Ti+1), yet with trajectories that look continuous enough so that it is still a track-

ing problem. In all test sequences, the number of active sources varies over time, and trajectories

cross several times. The task is twofold:

• Task 1: From instantaneous location estimates r1:Nr
, build the various trajectories accurately.

• Task 2: Extract pieces of trajectory (clusters), where each piece belongs for sure to a single

source. This implies that no short-term cluster extends beyond any trajectory crossing.

Figure 6.6 compares the result of ML clustering (SW implementation, with Tshort = 7 and Nfuture = 1)

with the result of the confident clustering described in Section 6.3.1. Although the ML clustering

correctly builds the various trajectories (task 1), it produces arbitrary decisions around the points

of crossing. On the contrary, confident clustering correctly splits the trajectories at all crossing
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points (task 2). Thus, confident clustering could be particularly useful to create reliable pieces of

trajectories, which do not include any crossing point. These pieces of trajectories can then be linked

using approaches such as Bayesian Networks (Jorge et al., 2004).

A Matlab implementation of short-term clustering (ML and confident, SW implementation) can

be found on the following website, along with 10 synthetic data examples:

http://mmm.idiap.ch/Lathoud/2006-short-term-clustering/

6.4 Application to Detection-Localization of Multiple Speakers

This section presents an integrated system for detection and localization of multiple speakers, along

with experimental results on recordings with multiple moving speakers. We show that the use of

STC for Speech/Non-Speech (SNS) classification permits to achieve substantial improvements over

frame-level approaches. The resulting integrated system is used as a platform for multispeaker

segmentation, in Section 6.5.

Since the focus of this chapter is STC, the part of the system that implements instantaneous

multisource detection-localization is summarized as much as possible (Section 6.4.1). A detailed

description of this implementation was given in Chapter 5.

6.4.1 Instantaneous Multisource Detection-Localization

Zero, one or more location estimates ri = (θi, Ti) are produced at each time frame, where θi is the

azimuth of an audio source with respect to a microphone array (Figure 1.1a), and Ti ∈ N \ {0} is the

time frame index. “Instantaneous” means that each time frame is processed individually. A 2-step

approach is used, as illustrated by Figure 6.7. First, the sector-based detection-localization (Fig-

ure 6.7a, Section 5.3) limits the search space to zero, one or more sectors of space around the mi-

crophone array. Second, the SRP-PHAT local maximum is found within each active sector, through

Scaled Conjugate Gradient descent (Moller, 1993), as in Figure 6.7b and Section 5.4. The reader

is referred to Chapter 5 for full details, freely available code, and tests on real data that show

that this part of the system achieves detection-localization of up to three multiple simultaneous

speakers, with near real-time performance (implementation called “FAST” in Chapter 5). We used

a 32 ms frame length with 50 % overlap (16 ms frame shift).
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Figure 6.8. Detection-localization of multiple speakers, us-
ing microphone arrays (systems SW-1, SW-7 and SA).

6.4.2 Speech/Non-Speech (SNS) Classification

Let us assume that we have a system for instantaneous detection and localization of multiple au-

dio sources, as described above. “Audio sources” include not only human speakers, but also noise

sources such as a projector, a laptop and the various reverberations, as shown in Figure 6.10a. But

our final task is multi-speaker detection-localization, so it is needed to remove the non-speech lo-

cation estimates (see the result in Figure 6.10b). In other words, each location estimate must be

classified as speech or non-speech. In this chapter, two systems are investigated: the SNS decision

is taken either at the location estimate level (ri) – not using the context – or at the short-term

cluster level (ωn) – using the context.

“Individual SNS”: SNS decision for each individual location estimate ri separately:

As detailed in Section 5.5.3, we compare to a threshold the posterior probability (5.60) of having

a wideband, non-noisy signal emitted by the source at location θi and time frame index Ti. The

threshold is determined without tuning, as in (5.33), in order to match a user-defined target FART

of detection False Alarm Rate, for example FART = 0.01.

“Cluster SNS”: SNS decision per short-term cluster ωn: As detailed in Section 5.5.3,

when a short-term cluster contains more than one location estimate, it is possible to estimate the

non-stationarity of the received signal across the whole short-term cluster, based on a location-

dependent way of extracting MFCC, as in (5.58). As detailed in Section 5.5.3, a “speech cluster” ωn

must verify the two following conditions:
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Figure 6.9. Recording seq45 from the AV16.3 Corpus (Chapter 4), with three moving speakers. The 8-microphone array
is marked with an ellipse. The ball markers on the heads were used to construct the ground-truth location of each
speaker with respect to the array.

1. At least two location estimates (ri, rj , i 6= j) corresponding to a wideband, non-noisy source.

(Individual SNS decisions.)

2. Non-stationarity above a threshold (global SNS decision). In practice, this threshold is fixed

and does not require tuning, due to an underlying spectrum normalization (Section 5.5.3).

Two advantages can be expected from “Cluster SNS” over “Individual SNS”. First, weak but correct

location estimates that do not pass the “Individual SNS” test may still be part of a speech cluster,

and thus be correctly detected by the “Cluster SNS” test. Thus, more speech should be retrieved by

“Cluster SNS”, as verified in Section 6.4.4. Second, the non-stationarity measure allows to exclude

machine noise sources such as a projector or a laptop. As shown in Section 6.5.4, this is particularly

useful in a meeting environment.

6.4.3 Experimental Protocol

To assess whether STC is beneficial to the detection decision, we compared the two SNS decision

granularities (individual vs. cluster) using the same “FAST” underlying instantaneous multisource

detection-localization implementation (Section 6.4.1, top block in Figure 6.8). We ran the two sys-

tems on eight real indoor recordings from the freely available AV16.3 Corpus (Chapter 4). Multiple

simultaneous speakers are moving around a table, with a 8-microphone, 10-cm radius, UCA on its

top (Figures 1.1a and 6.9). Three cameras were used to reconstruct the 3-D ground-truth location

of each speaker, with an error inferior to 1.2 cm (Chapter 4). In the “Cluster SNS” case, we used

the SW algorithm with Nfuture = Tshort = 7.
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Figure 6.10. Comparison between audio location estimates (dots) and the ground-truth location(s) obtained with three
cameras (black lines, when all three cameras are available: gaps in the ground-truth do not correspond to silences),
on the AV16.3 Corpus (Chapter 4). (a) Raw azimuth estimates for a single moving speaker, result of the multisource
detection-localization, (b) After STC and removal of non-speech clusters. (c) Example with three simultaneous speakers.

SNS decision granularity Total Correctly Precision (deg.)
detected localized bias std

Individual SNS: Xi 284.9 s 91.85% 0.335 2.158
Cluster SNS: ωk (STC with SW-7) 699.0 s 92.05% 0.381 2.542

Table 6.5. Comparison between the two types of SNS decision, on the AV16.3 Corpus (Chapter 4), including real
recordings with multiple moving speakers, simultaneously speaking. Bias and standard deviation (std) are expressed in
degrees.

The focus here is the correct detection-localization of multiple moving speakers. For both sys-

tems, speech location estimates are compared with the closest ground truth speaker location. As in

Section 5.4.6, we derive the following performance metrics on intervals on which the ground-truth

locations of all speakers are known:

• Bias and standard deviation in degrees, to assess the precision of the localization.

• The percentage of detected speech that was correctly localized, i.e. within a small error mar-

gin. The margin is derived from the bias and the standard deviation, as detailed in Sec-

tion 5.4.6.

6.4.4 Results and Discussion

From Figures 6.10a and 6.10b, one can see that the SNS decision using short-term clusters permits

to remove most of the incorrect location estimates, while keeping most of the correct location esti-

mates. This is also visible on Figure 6.10c, which presents a 3-speaker case. Note that the gaps in
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the ground-truth do not mean that a speaker is silent, but simply that the mouth was not visible

on a camera – and thus the ground-truth location is unavailable.

Table 6.5 presents the overall detection-localization results. The percentage of correct location

estimates is very similar for both “Individual SNS” and “Cluster SNS”, but STC clearly retrieves

much more speech signal3. Indeed, as discussed in Section 6.4.2, each short-term speech cluster

contains some “weak but correct” location estimates, which would not pass the “Individual SNS”

test. This confirms the interest of grouping location estimates before rejecting noise. The price to

pay is a slight decrease in localization precision, probably due to those “weak” location estimates.

This loss of precision can anyway be compensated for by smoothing the trajectory described by

each short-term cluster, e.g. using Kalman filtering Kalman (1960); Welch and Bishop (2004) or

RTS smoothing Rauch et al. (1965), but this is out of the scope of this thesis. Overall, the proposed

“Cluster SNS” approach yields a much larger total amount of detected location estimates (from

284.9 sec to 699.0 sec), but keeps the same proportion of correct ones as in the “Individual SNS” case

(from 91.85 % to 92.05 %). The “Cluster SNS” result can thus be seen as a significant improvement

over the “Individual SNS” result. The proposed “Cluster SNS” approach could be useful as a prior

step to trajectory analysis, as done in (Jorge et al., 2004). The next section uses the proposed

approach for meeting segmentation.

6.5 Meeting Segmentation Application

In this section we report experiments conducted on real meeting data recorded with a UCA, the

M4 Corpus (McCowan et al., 2005). We use the system described in Section 6.4, with cluster-level

SNS classification. A comparison with close-talking lapel microphones is given. These experiments

can be seen as a more static counterpart to the moving speaker experiments reported above. We

want to determine whether the same system can cope with both static and dynamical contexts. In

the previous section, the focus was on correct detection for precise localization of multiple moving

speakers. In this section, we focus on the speech segmentation task: we have a precise time-domain

ground-truth, but an approximate spatial ground-truth.

3To obtain the same “Total detected” duration as for the cluster SNS method (699.0 s), the individual SNS method can be
made less conservative. The percentage correct then falls to 62.28%, with precision bias 0.375, std 2.869.
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“Speech segmentation” means that we are only trying to separate the different speakers in the

short-term (where? when?). The target is one short-term cluster per speech utterance. Results

reported in Chapter 7 show that the proposed speech segmentation system forms a strong basis for

long-term speaker clustering (who?) with distant microphones, where the goal is to obtain only one

cluster per speaker. However, this is out of the scope of the present chapter.

The proposed approach departs from a previous work (Ajmera et al., 2004) that essentially ex-

tended a MFCC-GMM/HMM speaker clustering approach (Ajmera and Wooters, 2003) to include

location information. The approach proposed here exhibits several differences:

• We are focusing on the speech segmentation task only, not on the speaker clustering task.

• We use distant microphones only (no lapel).

• We segment each meeting independently.

• The proposed approach does not rely on a Hidden Markov Model (HMM).

On the contrary to the preliminary results reported in (Lathoud et al., 2004), all systems pre-

sented here perform automatic removal of non-speech sources (e.g. projector).

6.5.1 Test Data

The test corpus includes 21 short meetings from the publicly available M4 Corpus4. The total

amounts to about 2h of multichannel speech data. 3 meetings were used as a development set to

tune post-processing parameters (Section 6.5.4), and after that, 18 meetings were used as a test set

to evaluate performance metrics.

In the data, people are seated around a table, and sometimes stand up and move to the screen

for a presentation using a projector, or to the whiteboard. In all meetings, an independent observer

provided a very precise speech/silence segmentation4. Because of this high precision, the ground-

truth includes many very short segments. Indeed, more than 50% of the speech segments are

shorter than 1 second, as depicted in Figure 6.11.

4http://mmm.idiap.ch
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Figure 6.11. Histogram of speech segment durations in the ground-truth (M4 Corpus (McCowan et al., 2005)).

6.5.2 Proposed Systems

We tested several variants of the system described in Section 6.4, corresponding to the different

optimization algorithms introduced in Section 6.2. The online systems SW-1 and SW-7 use the slid-

ing window algorithm, both with Tshort = 7 (maximum interval in which a local decision is defined).

As defined in Section 6.2.1, in the case of SW-1 we have Nfuture = 1, which means that the sliding

window is shifted by only one location estimate at a time. On the contrary, in the case of SW-7, the

sliding window is shifted by steps of Nfuture = 7 location estimates each. Nfuture = 7 was not tuned,

it was only chosen to keep the computational cost low (Table 6.2). We also tested the offline systems

based on simulated annealing (SA(1), SA(Nr) and SA(SW-1)).

In all cases we use Maximum Likelihood clustering (Section 6.1.3) for this application. The

confident clustering described in Section 6.3.1 is not necessary in the case of speech, since trajectory

crossings are rarely seen due to the sporadicity of speech. Confident clustering is more relevant to

cases where the signals are more continuous in time, such as vehicles (Pham and Fong, 1997).

6.5.3 Baseline System using Lapels

The proposed systems use distant microphones only. We compared them to a lapel-only baseline.

The latter is an energy-based technique that selects the lapel with the most energy at each frame,

and applies energy thresholding to classify the frame as speech or silence. We tried to use Zero-

Crossing Rate (ZCR) as well, but it degrades significantly the segmentation performance. Indeed,

ZCR appeared very sensitive to some noises found in meetings, such as writing on a sheet of paper.

Therefore, results are reported with energy only. Note that lapels have a SNR around 18.7 dB,

while distant microphones have a SNR around 10.7 dB (Table 3.1).
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6.5.4 Performance Measures

We evaluated the result of each system as follows. For each of the proposed systems (SW-1, SW-7,

SA(1), SA(Nr) and SA(SW-1))5, for each speech location estimate, the corresponding time frame

(32 ms segment) is attributed to the closest human speaker in space (the ground-truth location(s) of

each speaker are known). Similarly, in the case of the lapel baseline, for each lapel, each speech time

frame is attributed to the speaker wearing the lapel. For each speaker, the resulting speech/silence

segmentation is further post-processed with basic morphological operators (Smith, 1999): dilation,

erosion, closure and opening, as in (Lathoud et al., 2003). For each system, the post-processing pa-

rameters are tuned to maximize the F-measure on the development set (3 meetings). Each system is

then applied on the test set (18 meetings). The performance metrics described in the following were

evaluated for each meeting separately. Averages across all meetings are reported in Tables 6.6, 6.7,

and 6.8. As opposed to previous results (Lathoud et al., 2004), all systems must include automatic

removal of non-speech sources such as the projector.

For each meeting, evaluation was performed as follows. For each speaker, the resulting speech/silence

segmentation is compared to the ground truth. Following Appendix A, four types of durations (in

seconds) are calculated:

• DTP: total duration of all segments in a meeting where a speaker is speaking in both result

and ground-truth.

• DTN: total duration of all segments in a meeting where a speaker is silent in both result and

ground-truth.

• DFP: total duration of all segments in a meeting where a speaker is speaking in the result,

but silent in the ground-truth.

• DFN: total duration of all segments in a meeting where a speaker is silent in the result, but

active in the ground-truth.

and similarly to Appendix A, six metrics FAR, FRR, HTER, PRC, RCL, F are defined using the four

durations. For example FAR
def
=

DFP

DFP + DTN
. In the optimal case, FAR, FRR and HTER are all

5In order to have a fair comparison between online and offline implementations, in all cases we used the same σdiff and
σsame values for each recording, obtained offline, through EM fitting on the whole recording data r1:Nr

.
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equal to 0, and PRC, RCL and F are all equal to 1. The F-measure is a harmonic mean of PRC and

RCL, therefore, a large value of F-measure requires a large value for both PRC and RCL.

We also report results in terms of Diarization Error Rate (DER), a percentage metric defined

by NIST (NIST, 2003). As opposed to the PRC/RCL/F results, DER excludes part of the data from

the evaluation: within a collar of 0.25 seconds around each speech segment end-point, results are

not evaluated. Moreover, silences of less than 0.300 seconds are removed from both result and

ground-truth. Within the remaining segments, the DER is then defined as the percentage of speech

that was wrongly attributed: DER = MISS + FA + SPKR, where MISS and FA are the percentages

of missed speech and false alarms, respectively, and SPKR is the percentage of speech attributed

to the wrong speaker. In the present chapter, the true number of speakers is already known so

a low DER only indicates that the estimated speaker segmentation is close to the true speaker

segmentation. Full details on the DER can be found in (NIST, 2003).

In any case (PRC/RCL/F or DER), it is important to bear in mind that in this chapter we are

only evaluating the speech segmentation quality (one cluster per utterance). Evaluation of the

application of STC to speaker clustering (one cluster per speaker) is found in Chapter 7.

6.5.5 Results and Discussion

Choice of an Optimization Method: Figure 6.12 presents a comparison of various instances of

simulated annealing (SA), where different initializations and different values of the initial temper-

ature η0 are tried. Results are reported in terms of energy U (E) (6.10), final number of clusters NΩ̂,

and segmentation performance F. In order to accommodate the various lengths of the meetings, we

have normalized all three measures with respect to a reference method (SW-1):

• Normalized energy: for each meeting, U(E)−U(E(SW−1))
Nterms

, where Nterms is the number of terms

in the sum in (6.10).

• Normalized log number of clusters: for each meeting, log NΩ̂ − log N
(SW−1)

Ω̂
.

• Normalized F: for each meeting, F − F (SW−1).

Figure 6.12a shows that the proposed criterion is effectively related to the final segmentation per-

formance: the lower the energy, the higher the performance. All lowest energies lead to very similar
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Figure 6.12. Simulated Annealing (SA): Comparison between different initialization methods (Sections 6.2.2 & 6.5.5). In
(a) and (b), each point represents a result for one meeting and one initialization method (SA(1), SA(Nr) or SA(SW-1)).
For each meeting, all results are normalized through subtraction with respect to the reference SW-1 (Section 6.5.5). In
(c), η0 is the initial temperature. In the case η0 = 0, only the ICM optimization is used, without simulated annealing.

performances. It could be concluded that the dynamics (6.2), in conjunction with the proposed cri-

terion (6.6), constrain the type of solution that can be obtained. Figure 6.12b shows that minimiz-

ing U (E) is highly correlated with minimizing NΩ̂, which was one of the objectives announced in

Section 6.1.3. Figure 6.12c shows that a high initial temperature η0 leads to a result independent

from the initialization. This is similar to the well-known property of simulated annealing when

temperature decreases in a logarithmic fashion (Geman and Geman, 1984).

The diversity of behaviors observed for a lower initial temperature η0 can be explained as fol-

lows: when the initial labeling is rather bad (SA(1) and SA(Nr)), since the local optimization is

pointwise and points are visited at random (see Table 6.4), the procedure tends to accept too often

the NewLabel tag, which ultimately results in an oversplitted solution. This effect does not appear

when using the SA(SW-1) solution, because the labels are much more stable, due to a lower local

posterior probability of the NewLabel tag. Overall, results with the lowest energies are obtained

using a somewhat low initial temperature η0, and SA(SW-1). SW-1 alone provides close-to-optimal

results, in terms of energy. Thus, in the following, results are reported for SW-1 only.

Comparison with lapels: Table 6.6 gives the segmentation performance on the test set for

SW-1 and the lapel baseline. The proposed approach SW-1 compares well with the lapel baseline,

both in terms of F-measure and DER. SW-1 also yields a major improvement on overlapped speech.

These results are particularly significant, given the high precision of the ground-truth and the fact

that we use distant microphones only. Indeed, close-talking lapel signals are about 8 dB cleaner

than distant microphone array signals, due to the difference of distance (Table 3.1). The decrease
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Lapel baseline SW-1 SW-7
PRC 89.3 ( 67.8 ) 83.8 ( 71.8 ) 83.9 ( 71.7 )
RCL 90.4 ( 63.8 ) 90.9 ( 82.0 ) 90.6 ( 81.6 )
F 89.8 ( 64.6 ) 87.2 ( 75.7 ) 87.0 ( 75.5 )
DER 8.2 ( 34.9 ) 11.8 ( 19.7 ) 12.0 ( 20.0 )

Table 6.6. Segmentation results on the M4 Corpus. SW-1 and SW-7 use distant microphones only. Values are percent-
ages, results on overlaps only are indicated in brackets. PRC, RCL, F: the higher the better. DER: the lower, the better.

in precision may be due to the automatic SNS decision leading to more False Positives (DFP) as

compared to lapels, because the decision is taken without knowledge of the number of speakers. On

the contrary, the number of speakers is implicitly known in the lapel baseline.

Comparison with a previous speaker clustering work: We also compared SW-1 to a HMM-

based previous work (Ajmera et al., 2004), on a different task: only 6 meetings are segmented, and

the task excludes silences smaller than 2 seconds. Results are reported in Table 6.7. There is a clear

improvement. However, the previous work was attacking a wider task: speech segmentation and

speaker clustering. This comparison shows that we can obtain a very good speech segmentation

with location cues. Chapter 7 builds a speaker clustering approach based on this segmentation.

Window size: In Table 6.6, the two results SW-1 and SW-7 show that Nfuture, the size of the

“future” window, has little impact in the framework of the meeting application. However, this may

not be the case in other contexts: for example, the confident clustering approach introduced in

Section 6.3.1 requires Nfuture > 1.

Interest of STC: As in Section 6.4.3, the same segmentation experiments were also conducted

with the Speech/Non-Speech decision taken for each location estimate ri individually – without

STC. Results reported in Table 6.8 clearly show that the proposed STC method leads to the best

results, and is a lot less dependent on segmentation post-processing. Finally, we observed on the

raw results that the non-stationarity test mentioned in Section 6.4.2 effectively removes all short-

term clusters belonging to the projector.

Overall, STC permits to fulfill two goals of the segmentation application: to obtain with distant

microphones a segmentation performance comparable to that obtained with close-talking micro-

phones, and to handle multiple simultaneous speakers in an appropriate manner. It can serve as

a strong starting point for unsupervised speaker clustering with distant microphones only: Chap-

ter 7 reports results superior to that of a state-of-the-art approach.
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SW-1 HMM-based
HTER 4.3 17.3

Table 6.7. Comparison with a previous speaker clustering work: segmentation results on 6 meetings, with a silence
minimum duration of 2 seconds. Values are percentages: the lower, the better.

SNS decision granularity Result without Result with
post-processing post-processing

Individual: ri 48.1 84.6
Cluster: ωn (STC with SW-1) 83.1 87.2

Table 6.8. F-measure on the M4 Corpus with SW-1, for two types of speech/non-speech decisions. The segmentation
post-processing is detailed in Section 6.5.4.

6.6 Conclusion

Accurate segmentation and tracking of speech in a meeting room is critical for a number of tasks, in-

cluding speech acquisition and recognition, speaker tracking, and recognition of higher-level events.

In this chapter, we first described a generic, threshold-free scheme for Short-Term Cluster-

ing (STC) of sporadic and concurrent events. The motivation behind this approach is that with

highly sporadic modalities such as speech, it may not be relevant to try to output a single tra-

jectory for each source over the entire data, which would lead to complex data association issues.

We proposed here to track speakers in the short-term only, thus avoiding such issues. The core

of our approach is a threshold-free probabilistic criterion. We described an algorithm based on a

sliding-window analysis, spanning a context of several time frames at once. It is online, can be fully

deterministic and can function in real-time when using reasonable context durations (Nfuture). It

is unsupervised: local dynamics are extracted from the data itself, and the STC is threshold-free.

We also presented investigations on the problem of trajectory crossings, useful for example in the

context of acoustic vehicle tracking (Pham and Fong, 1997) or visual tracking (Jorge et al., 2004).

Second, we described speech specific applications of this algorithm. STC was used to build a

multispeaker detection-localization system with microphone arrays, which was then successfully

applied to both dynamic and static recordings with multiple simultaneous speakers. In both cases,

STC permits to discriminate between speech and non-speech in a much more advantageous man-

ner, as compared to an individual decision for each location estimate. Highly dynamic, non-linear

human motions are well handled by the STC algorithm. In particular, a comparison with offline

simulated annealing optimization shows that the proposed online implementation is sufficient. In



140 CHAPTER 6. SHORT-TERM SPATIO-TEMPORAL CLUSTERING

addition, experiments on synthetic data highlighted the benefit of processing several time frames

at once (Nfuture > 1).

In terms of final performance, STC leads to a meeting segmentation performance, with distant

microphones only, close to that obtained with close-talking microphones. This result can already

be considered as a success, since distant microphones are much more noisy than close-talking mi-

crophones. Moreover, since multiple speech sources are effectively “tracked in the short-term”, a

dramatic improvement is observed in the case of overlapped speech, which is often found in sponta-

neous multi-party speech. These results validate the STC algorithm, as well as the idea of relying

on location cues to obtain high precision short-term tracking and speech segmentation of multiple

moving speakers. This in turn permits a much wider range of applications than with close-talking

microphones, due to the non-intrusive aspect of distant microphones. Investigations on the unsu-

pervised speaker clustering task with distant microphones in Chapter 7 show that STC can serve

as a foundation for a speaker clustering approach that has a performance superior to that of a

state-of-the-art approach.



Chapter 7

Speaker Clustering with Distant

Microphones

As explained in Section 1.1, the global objective of this thesis is to determine who spoke where and

when (Figure 7.1a), in the context of spontaneous speech and varying, possibly distant, speakers.

Chapter 6 addressed the “Where? When?” questions, producing short-term speech clusters of loca-

tion estimates (Figure 7.1b). This chapter addresses the remaining question “Who?” in the general

case where enrollment data is not available: this is the speaker clustering task. We propose to

group the short-term speech clusters to form longer-term speaker clusters (Figure 7.1c).

Section 3.2.1 explained why the speaker clustering task is difficult in the present context, giving

three main reasons that we summarize here. First, spontaneous speech utterances are sporadic and

can be very short, whereas MFCC/GMM-based speaker modelling requires a minimum amount of

data for each speech utterance (2 or 3 seconds). Second, speakers spontaneously tend to talk over

each other, so using a minimum duration constraint would lead to incorporate in each segment

not only the speech from a given speaker, but also from the speech from overlapping speakers.

Third, only distant microphones are used, which have a lower SNR than close-talking microphones

(Table 3.1).

In the context of spontaneous multi-party speech, and if only acoustic information (MFCC) is

used, one possible solution is to use post-processing steps (Anguera et al., 2005). On the other

141
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Figure 7.1. The goal (a) and the proposed approach (b)(c). Dots depicts instantaneous location estimates ri
def
= (θi, Ti).

Dashed lines depict trajectories of the sources (true in (a), estimated in (b) and (c)). Square brackets depict the
beginning and the end of each speech utterance. Round, continuous lines depict the short-term clusters ω1, ω2, ω3.

hand, Chapter 6 showed that microphone arrays allow for a precise speech/silence time segmen-

tation, using Short-Term Clustering (STC) of microphone array-based speaker location estimates

(Figure 7.1b). The goal of the present chapter is to exploit the complementarity of the two modalities

(location and MFCC) in a principled manner, for speaker clustering with distant microphones:

• Location cues permit excellent short-term discrimination between speakers, but provide no

speaker identity information (a speaker can move while silent, then speak again elsewhere).

• Acoustic cues (MFCC) carry long-term speaker identity information, but a minimum duration

is needed to build reliable speaker models.
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The rest of this chapter is organized as follows:

• Section 7.1 proposes to combine the location and acoustic modalities for speaker clustering,

through a Bayesian Information Criterion modified for multiple modalities. Experimental re-

sults on the M4 Corpus (McCowan et al., 2005) are provided, showing a performance superior

to that of a state-of-the art approach.

• The proposed approach correctly groups in one speaker cluster, the speech utterances from

the same speaker located at different azimuth directions. However, it fails when the speaker

increases his/her distance from the array. Possible causes include specificities of the human

acoustic radiation characteristics (Schwetz et al., 2004).

• When available, the visual modality can help to circumvent the audio shortcomings. However,

audio-visual speaker tracking necessitates a relative calibration of microphones and cameras.

Section 7.2 proposes two unsupervised audio-visual calibration methods.

• Section 7.3 concludes.

7.1 Speaker Clustering with Audio Modalities

Chapter 6 proposed to estimate the speech segments in both time and space, through Short-Term

Clustering (STC), thus answering the “Where? When?” questions (Figure 7.1b). The present sec-

tion addresses the “Who?” question, where the speaker identity needs to be determined for each

speech utterance. More precisely, we investigate the speaker clustering task, where no enrollment

data is available. Many works (Sugiyama et al., 1993; Chen and Gopalakrishnan, 1998; Ajmera

and Wooters, 2003; Galliano et al., 2005; Valente, 2006) examined the single, close-talking audio

channel, in constrained environments such as broadcast news data. In contrast, the present sec-

tion investigates multichannel recordings of highly dynamic, spontaneous multi-party speech. The

main contribution presented here is a method that combines location cues from a microphone array,

and acoustic cues, e.g. represented by MFCC parameters from one of the microphones, to obtain

a more robust speaker clustering result. This is particularly challenging given that only distant

microphones are used. The underlying motivation is to provide an automatic system that does not

force participants to wear any device at all (Section 1.1).
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This section is structured as follows. Section 7.1.1 introduces the Bayesian Information Crite-

rion (BIC) for the speaker clustering task. Section 7.1.2 proposes a multimodal BIC criterion for

speaker clustering, that merges location cues and acoustic cues (MFCC). Section 7.1.3 evaluates

the proposed multimodal BIC criterion on the M4 Corpus. Section 7.1.4 contains a discussion and

suggestions for future directions.

The author would like to acknowledge the help of Dr Fabio Valente from IDIAP, for the experi-

ments with the “GMM/HMM” method.

7.1.1 The Bayesian Information Criterion (BIC) for Speaker Clustering

This subsection summarizes the BIC approach for speaker clustering, that was initially introduced

by (Chen and Gopalakrishnan, 1998). Let us assume an ordered sequence ξ1:Nξ
of Nξ observed

samples:

ξ1:Nξ

def
=

(
ξ1, · · · , ξn, · · · , ξNξ

)
(7.1)

where each observed sample ξn can be any measurement giving some indication about the identity

of the current speaker, for example a feature vector (MFCC, location, or other). The goal of speaker

clustering is to split the data ξ1:Nξ
into NΩ long term clusters, defining a long-term partition Ω:

Ω
def
= {ω1, ω2, · · · , ωNΩ

} (7.2)

where each long-term speaker cluster ωn ⊂ ξ1:Nξ
can span several segments of data, possibly

separated by long “durations”. See for example the cluster ω3 in the four-cluster long-term partition

depicted in Figure 7.2. Formally, in the case of location estimates, long-term clusters include the

short-term clusters defined in Chapter 6 (which verify (6.3)) as well as clusters “distributed along

time”, that do not verify (6.3). We thus permit Ω /∈ OST, as defined by (6.4).

Ideally, the estimated NΩ is equal to the true number of speakers, and each long-term cluster ωn

contains all the data from one and only one speaker. One solution is to optimize the long-term

partition Ω and its number of clusters NΩ, with respect to a criterion. In this chapter we opted for

the Bayesian Information Criterion (BIC), which permits to evaluate a probabilistic representation

of the data, so that the likelihood of the data is maximized while keeping the complexity of the model
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Figure 7.2. Example of speaker clustering: a long-term partition Ω. In this example the data samples ξ1:Nξ
are splitted

into NΩ = 4 long-term speaker clusters ω1, ω2, ω3 and ω4.

as low as possible. In practice, there are two cases: either we have built a complete probabilistic

modelM (Ω) of the long-term partition Ω, or we only have local models (M (ω1) , · · · ,M (ωNΩ
)), one

for each cluster ωn. A modelM (ωi) can be a GMM trained on ωi, for example.

Complete model: For a given long-term partition Ω and its associated modelM (Ω):

BIC (Ω)
def
= log p

(
ξ1:Nξ

∣∣∣ M (Ω)
)
− λ

2
· κ (M (Ω)) · log Nξ (7.3)

where p
(

ξ1:Nξ

∣∣∣ M (Ω)
)

is the likelihood of the observed data ξ1:Nξ
, given the modelM (Ω). λ is an

adjusting parameter (in the original BIC definition λ = 1). BIC allows to compare various models

with different number of free parameters κ (M), by selecting the model with the maximum BIC

value. If the values of the model parameters are selected in an optimal manner, the first term in

(7.3) is supposed to increase when the number of free parameters κ (M) increases. The second term

in (7.3) is often called the “penalty term”, as it penalizes models that have too many free parameters.

Local models: In the case of acoustic speaker clustering (Chen and Gopalkrishnan, 1998), a

global model M (Ω) may not be available. The data in each cluster ωn is represented by a local

modelM (ωn) with κ (M (ωn)) free parameters. For a given partition Ω, a commonly used criterion

is a sum of “local” BICs (LBIC):

LBIC (M (ω1) , · · · ,M (ωNΩ
))

def
=

NΩ∑

n=1

BIC (ωn) (7.4)

=

NΩ∑

n=1

[
log p (ωn | M (ωn))− λ

2
· κ (M (ωn)) · log (cardωn)

]

To determine a partition Ω that maximizes LBIC, an iterative merging approach can be used. A

typical merging iteration is to test all possible pairs of clusters (ωi, ωj), where 1 ≤ i < j ≤ NΩ, and
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to merge the pair of clusters that yields the maximum increase of LBIC, as long as it is positive.

Convergence is reached when it is no longer possible to increase LBIC.

To implement iterative merging, only local comparisons are required. In each comparison, the

possibility of merging two clusters ωi and ωj into a merged cluster ωi ∪ ωj is evaluated by computing

the difference ∆BIC
i,j of the two LBIC scores (before and after merge):

∆BIC
i,j

def
= BIC (ωi ∪ ωj)− BIC (ωi)− BIC (ωj)

= log p (ωi ∪ ωj | M (ωi ∪ ωj))− log p (ωi | M (ωi))− log p (ωj | M (ωj))

−λ

2
· κ (M (ωi ∪ ωj)) · log (cardωi + cardωj)

+
λ

2
· [κ (M (ωi)) · log (cardωi) + κ (M (ωj)) · log (cardωj)] (7.5)

At a given iteration, if max
i<j

∆BIC
i,j is positive, then the corresponding merge is applied. If it is

negative, then the iterative process is stopped.

7.1.2 Combining Two Modalities: Location Cues and Acoustic Cues

Let us now consider the problem at hand. The goal is to merge the (small) speech segments pro-

duced by the STC1, using two modalities: acoustic cues (MFCC vectors) and location cues (azimuth

direction estimates). An iterative merging approach is considered, as described in Section 7.1.1. We

start with the result of the STC1 (Figure 7.1b), that is NΩ = N init
Ω , where N init

Ω is the number of

short-term speech clusters produced by the STC1. The N init
Ω value can be quite large: for example

3700 for a five-minute meeting. We thus opted for simple modelling approaches for both acoustic

and location cues. We first review each modality in more details, then propose the fusion criterion.

Acoustic cues: MFCC vectors

For each instantaneous location estimate rn = (θn, Tn), where θi is an azimuth value in radians,

and Tn ∈ N \ {0} an integer time frame index2, we extract an acoustic observation ξ(ac)
n , which is a

1We use the short-term speech clusters produced by SW-1 in Section 6.5.2, with “Cluster SNS” classification (Sec-
tion 6.4.2). Since time constraints are not considered in the present chapter, we chose SNSGMM (Section 5.5.3).

2Following the frame-based analyses presented in Chapters 5 and 6, the present chapter uses integer time frame in-
dices Ti ∈ N \ {0}. However, the speaker clustering approach defined in the present chapter could be formulated very
similarly without time frames, using instead time values ti expressed in sampling periods.
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MFCC vector from a single microphone3 (delay-sum4 did not bring any improvement, as confirmed

by the results reported below). So the total number of acoustic observations N
(ac)
ξ is equal to the

total number of instantaneous location estimates in all short-term speech clusters Nr:

N
(ac)
ξ = Nr (7.6)

As mentioned above, we start with one speaker cluster per short-term speech cluster produced by

the STC (Figure 7.1b): NΩ = N init
Ω . There can be many of them, so we opted for a simple modelling

approach, with one “local” modelM(ac) (ωn) for each cluster ωn. The clusters are merged iteratively

until LBIC
(
M(ac) (ω1) , · · · ,M(ac) (ωNΩ

)
)

reaches a maximum. For each cluster we use a single

Gaussian model with a full covariance matrix (instead of a GMM). Indeed, the merge of two single

Gaussians into one single Gaussian can be done analytically, as summarized in Appendix E. The

cost is thus small, as opposed to the somewhat time-consuming EM fitting of a GMM.

Location cues: azimuth differences

In this case, a global model M(loc) is available, as defined below. The idea is to use the same

criterion as in the Short-Term Clustering (STC, Section 6.1.2). The only difference is that instead of

modelling the azimuth difference θi − θj between two individual location estimates, we model here

the azimuth difference ξ
(loc)
n between two short-term speech clusters of location estimates.

Location observations: ξ
(loc)
n is the azimuth difference between two short-term clusters produced

by the STC (in radians, between −π and +π). This location observation ξ
(loc)
n is equal to the dif-

ference between the respective average azimuths of the two short-term speech clusters. The total

number of such location observations ξ
(loc)
n is thus:

N
(loc)
ξ

def
=

N init
Ω ·

(
N init

Ω − 1
)

2
(7.7)

Global location model M(loc): The optimization process amounts to select an optimal coherent

graph that links any two short-term speech clusters (vertices) with a relationship “same” or “dif-

ferent” (edges), similarly to STC (Figure 6.4). Initially, all edges are set as “different” (H0 (ωi, ωj),
3In this case (single microphone channel), the MFCC vector is not location-dependent, which implies that two location

estimates ri and rj with the same time Ti = Tj have the same MFCC vector: ξ(ac)
i = ξ

(ac)
j .

4In this case (delay-sum beamforming), the MFCC vector is location-dependent, which implies that two location estimates
ri and rj with the same time Ti = Tj but different locations θi 6= θj have different MFCC vectors: ξ(ac)

i 6= ξ
(ac)
j .
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Figure 7.1b). “Merging” is done by setting an edge of the graph as “same” (H1 (ωi, ωj), Figure 7.1c).

When a pair of short-term speech clusters is separated by a small time duration (e.g. 5 sec), we

model the azimuth difference ξ
(loc)
n using a bi-Gaussian model5, similarly to (6.2) in the STC. Oth-

erwise, we assume a uniform distribution for ξ
(loc)
n . Thus,M(loc) has a fixed number of parameters6

κ
(
M(loc)

)
= 2, so that only the likelihood term is relevant:

BIC
(
M(loc)

)
= log p

(
ξ
(loc)

1:N
(loc)
ξ

∣∣∣∣ M(loc)

)
+ const (7.8)

Maximizing BIC
(
M(loc)

)
is thus similar to the maximum likelihood scheme in STC (6.6).

Fusion of Acoustic Cues and Location Cues: Multimodal BIC

In practice, location cues are very useful to separate fast changing speaker turns, but carry no

reliable long-term information (speakers can move while silent). On the other hand, acoustic cues

such as MFCC carry long-term speaker identity information, but a minimum amount of speech

is required to build a reliable speaker model (at least 2 or 3 seconds). In spontaneous multi-party

speech, many speech segments are short so it is not always possible to build reliable speaker models.

Given these considerations, it would be desirable to combine the strengths of both location and

acoustic modalities, in order to build a reliable speaker clustering system, for spontaneous multi-

party speech. More specifically, the location cues could help to prevent merging two speech clusters

that are very close in time but very far in space, as observed in fast-changing speaker turns.

An existing combination approach (Ajmera et al., 2004), which was successful on a limited

amount of data (6 meetings from the M4 Corpus (McCowan et al., 2005)), was tested on a larger

amount of data (12 meetings from the same corpus). Unfortunately, it failed to produce meaningful

speaker clusters, most likely because of the uniform initialization of the clusters (many speakers

would fall into the same cluster). Alternatively, we propose here to initialize the clusters using the

N init
Ω speech segments provided by the STC (Figure 7.1b and Chapter 6). The clusters are then

5One Gaussian for “same” (H1 (ωi, ωj)), the other Gaussian for “different” (H0 (ωi, ωj)). Both are zero-centered, and their
standard deviations are the means

˙

σdiff
T

¸

T
and

˙

σsame
T

¸

T
, respectively. σdiff

T and σsame
T are defined in (6.2).

6The parameters of M(loc) are the standard deviations of 2 zero-centered Gaussians (one for “same”, one for “different”).
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iteratively merged (as in Section 7.1.1) to maximize the following “multimodal” BIC:

LBIC
(
M(ac) (ω1) , · · · ,M(ac) (ωNΩ

)
)

N
(ac)
ξ

+
BIC

(
M(loc) (Ω)

)

N
(loc)
ξ

(7.9)

where Ω = {ω1, · · · , ωNΩ
} is a candidate partition of the location estimates r1:Nr

and their associated

MFCC vectors ξ
(ac)

1:N
(ac)
ξ

(N (ac)
ξ = Nr). The normalizations by N

(ac)
ξ and N

(loc)
ξ factor out the number

of terms in the log likelihood term of each BIC score. The idea is to add values that are somewhat

comparable. Note that this “multimodal” BIC approach can potentially be used with any number

or types of modalities.

Implementation

The initial short-term clusters are very often much shorter than the minimum required to build

reliable MFCC speaker models. The first term in (7.9) may thus be very noisy at first. We thus first

run a location-only iterative merging, maximizing only the second term of (7.9) until it cannot be

increased anymore (order of magnitude for a 5-minute meeting: from 3000 clusters to 300 clusters).

Then only, we run the acoustic + location iterative merging, where the complete criterion (7.9) is

maximized (order of magnitude for a 5-minute meeting: from 300 clusters to 4 clusters).

7.1.3 Experimental Results

Methods

“GMM/HMM” and “lapelmix-GMM/HMM” start with NΩ = 10 clusters, and all other methods start

with NΩ = N init
Ω clusters, one per speech cluster given by the STC (Figure 7.1b). Note that we used

24-dimensional MFCC vectors as acoustic cues: ξ(ac)
n ∈ R24. Five clustering methods use distant

microphones only:

“GMM/HMM”: Acoustic cues only, where ξ
(ac)

1:N
(ac)
ξ

are single channel MFCCs from one microphone

in the array – not to be confused with Sector-Based MFCCs. The speaker clustering algorithm

is described in (Ajmera and Wooters, 2003). For each meeting, we started the merging process

with NΩ = 10 clusters.
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“ac only”: Acoustic cues only, where ξ
(ac)

1:N
(ac)
ξ

are single channel MFCCs from one microphone in

the array. Each local modelM(ac) (ωn) is a single Gaussian with full covariance matrix. The

speaker clusters are iteratively merged to maximize LBIC
(
M(ac) (ω1) , · · · ,M(ac) (ωNΩ

)
)

with

a tunable λ, as described in Section 7.1.1.

“ac + loc”: Acoustic + location (7.9), also using single channel MFCCs for ξ
(ac)

1:N
(ac)
ξ

.

“ds, ac + loc”: Acoustic + location (7.9), where each ξ(ac)
n is a MFCC vector extracted from the

delay-sum beamformed signal. The beamforming direction is the azimuth θn associated with ξ(ac)
n .

“loc. only (cheating)”: Location only (7.8), MFCCs are not used. It is “cheating”, in the sense that

the speaker identity of each speech segment is given by the prior knowledge of the locations

of all speakers.

For comparison, two other methods use close-talking microphones only (lapel worn near the throat):

“lapels-seg (cheating)”: The multichannel segmentation baseline described in Section 6.5.3.

The word “cheating” means that the true number of speakers and the speaker identities are

known by construction (one lapel per person).

“lapelmix-GMM/HMM”: The single channel iterative speaker clustering scheme described in

(Ajmera and Wooters, 2003). For each meeting, the single channel is formed by first adding

the four lapel signals. For each meeting, we started the merging process with NΩ = 10 clusters.

Performance Metrics

For each method, we report the results using the Diarization Error Rate (DER) and the Speaker

Activity Detection (SAD) metrics, both expressed in percentage (the lower, the better), as defined

in (NIST, 2003). DER and SAD exclude part of the data from the evaluation: within a collar of

0.25 sec around each speech segment end-point, results are not evaluated. Moreover, short silences

are removed from both ground-truth and result. These short silences are defined as less than

0.3 second (as in the NIST specification (NIST, 2003)) or less than 2.0 seconds, thus defining two

subtasks called “0.3 task” and “2.0 task”, respectively.

Within the remaining segments, the DER is then defined as the percentage of speech that was

wrongly attributed (the lower, the better): DER = MISS + FA + SPKR, where MISS and FA are the
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Microphones Method 0.3 task 2.0 task
DER SAD DER SAD

GMM/HMM 37.6 (63.9) 14.4 32.2 (68.6) 4.6
Distant ac only 51.7 (77.5) 11.4 48.9 (76.7) 4.4
( mic. array ) ds, ac + loc 27.8 (40.4) 11.1 24.8 (35.6) 4.3

ac + loc 18.1 (37.4) 9.7 15.2 (30.0) 4.0
loc. only (cheating) 12.5 (19.7) 8.2 10.4 (17.9) 4.1

Close-talking lapelmix-GMM/HMM 29.7 (66.0) 14.4 24.0 (65.1) 4.5
lapels-seg (cheating) 8.2 (34.9) 4.7 9.1 (27.2) 2.1

Table 7.1. Speaker clustering results on 18 meetings of the M4 Corpus (McCowan et al., 2005) (the lower, the better).
Brackets indicate results on overlapped speech only. “ds” stands for delay-sum beamforming. “GMM/HMM” is the
speaker clustering algorithm described in (Ajmera and Wooters, 2003).

percentages of missed speech and false alarms, respectively, and SPKR is the percentage of speech

attributed to the wrong speaker. Overall, a low DER implies (1) that the estimated number of

speakers is close to the true number of speakers, and (2) that the estimated speaker segmentation

is close to the true speaker segmentation. The SAD metric (NIST, 2003) is defined similarly to

DER, but using only two classes (speech and silence), instead of speaker labels. Full details on the

DER can be found in (NIST, 2003).

Test Data and Protocol

Speaker clustering experiments were conducted on the M4 Corpus of meetings (McCowan et al.,

2005). We used the 21 short meetings – about 5 minutes each – with ground-truth speech/silence

segmentation for each speaker, and 4 participants in each meeting. For a given method, speaker

clustering was applied on each meeting separately, then the overall DER and SAD performance

metrics were evaluated, as in (NIST, 2003). From the 21 meetings, 3 were used to tune λ and

the post-processing parameters, and 18 were used for performance evaluation. In most cases post-

processing only meant dropping short silences, for example less than 0.25 sec. We tuned λ and the

post-processing parameters in order to achieve equal MISS and FA (NIST, 2003).

Results

From the results reported in Table 7.1, several observations can be made. First, the methods rank in

similar orders, whether the task is the “0.3 task” (precise segmentation) or the “2.0 task” (rough seg-

mentation). Second, for all metrics, the proposed combination “ac + loc” significantly improves over
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both “GMM/HMM” and “ac only” results. The “ac + loc” results are in fact close to the “loc. only

(cheating)” results, i.e. the best that can be obtained based on the underlying multispeaker segmen-

tation method. Finally, delay-sum beamforming does not seem to help, as already noted in (Anguera

et al., 2005).

When comparing “loc. only (cheating)” with “lapels-seg (cheating)” in terms of DER, it appears

that the microphone array-based methods can potentially bring a large improvement on overlapped

speech (10 to 15 % absolute) at the cost of a slight overall degradation (3 or 4 % absolute). So

they can indeed be used for speaker clustering in meetings. The single channel speaker cluster-

ing scheme “lapelmix-GMM/HMM” does not seem to yield effective results. In fact, compensation

heuristics such as the “purification” step proposed in (Anguera et al., 2005) are necessary for this

scheme to be effective on spontaneous multi-party speech.

7.1.4 Future Directions

Overall, the results presented here show that the proposed “ac + loc” combination brings significant

improvement over “ac only”. This validates the proposed “multimodal” (location + acoustic) BIC

criterion (7.9), in so far as it combines complementary strengths from two modalities. It would be

interesting to test a similar fusion of acoustic and location information in the framework of more

flexible modelling approaches such as Variational Bayes learning (Valente, 2006). In particular,

this would help to model clusters with very heterogeneous lengths.

A closer look at the results may suggest future directions of research. We tested “ac + loc” on

a concatenation of three meetings, in which some people appear at different locations: different

seats around the microphone array, and some standing locations when doing a presentation (fur-

ther from the array). The same person seated at different locations tends to be clustered correctly

(1 cluster). On the contrary, people who stand up and move away to do a presentation systemati-

cally end up being clustered into 2 different clusters, depending on the distance (close or far). We

tested low-level signal processing methods that have proved useful to improve MFCC-based Au-

tomatic Speech Recognition (ASR) results in such cases, hoping that they would also improve the

speaker clustering results. The tested techniques included delay-sum beamforming, dereverbera-

tion (Gelbart and Morgan, 2001) and spectral subtraction (as in Section 8.2). Unfortunately, all

these techniques resulted in absolutely no performance improvement, with respect to the present
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issue. Therefore, it seems that feature variability between close and distant locations is a bot-

tleneck to speaker clustering with distant microphones, which suggests some basic research. This

feature variability at higher distances may be linked to specificities of the human acoustic radiation

characteristics (Schwetz et al., 2004).

On the practical side, a speaker recognition study proposed a location-dependent Cepstral Mean

Normalization (Wang et al., 2005), which aims to remove the location-dependent transmission chan-

nel distortions, without removing speaker-specific characteristics. However, this requires training

data with multiple speakers at multiple locations for each different room, which could limit the ease

of use for end-users. An alternative direction would be to modify existing, larger speaker clustering

systems such as (Anguera et al., 2005), by integrating the use of the joint BIC criterion (7.9).
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7.2 Automatic Audio-Visual Calibration

The previous section gave some insights on successes and limits of audio-only speaker clustering,

concerning spontaneous multi-party speech within an indoor environment. To compensate short-

comings of the audio-only approach in its present state, an additional modality could be used: visual

information from cameras. The advantage of the visual modality is that identity cues such as faces

are visible at almost all times. Therefore, even if a person moves in silence, Audio-Visual (AV)

speaker tracking such as (Gatica-Perez et al., 2006) should permit to determine that it was the

same speaker before and after the motion. This visually-inferred knowledge would help to circum-

vent location-dependent variabilities of the audio channel, such as those characterized in (Schwetz

et al., 2004).

However, AV speaker tracking requires some AV calibration information, which relates the lo-

cations of the microphones to the locations of the cameras. (Gatica-Perez et al., 2006) includes a

review of existing AV tracking works, with respect to the AV calibration task. It appears that so far,

there is either automatic calibration of colocated sensors, or manual calibration of non-colocated

sensors. For example, a short sequence can be recorded with a single speaker moving around the

room, while speaking, and a visual tracker can be run. One practical issue of schemes such as the

codebook approach proposed in (Gatica-Perez et al., 2006) is the need for manual initialization of the

visual tracking, to start the AV calibration procedure. Moreover, the codebook approach represents

a one-to-one mapping, which does not model a variable depth at a given location in the image plane.

Sections 7.2.1 and 7.2.2 respectively address each of these two issues, by proposing two alternative

schemes that do not require manual initialization. As announced in Section 1.1, the underlying

aim is to put the least possible constraints on often non-technical end-users. Therefore, for both

proposed schemes, unsupervised calibration experiments are reported that use only 30 seconds of

recording, made with a single speaker moving around a room (seq11 of the AV16.3 Corpus).

7.2.1 Calibration between Discrete Spaces

Both audio and video spaces are discretized, as depicted in Figure 7.3. For each camera, the visual

space is discretized into blocks, e.g. 24 blocks vertically and 32 blocks horizontally (Figure 7.3a).

The audio space, for example an azimuth direction θ from a microphone array, is discretized into
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sectors, as in the SAM-SPARSE-MEAN approach (Chapter 5). Figure 7.3b shows an example where

18 sectors, each spanning 20 degrees, cover the entire 360-degree space around a circular micro-

phone array. The discretization of both audio and video spaces permits to estimate the correlation

between all locations from each modality. For example, by finding peaks of covariance7, we could

determine that having a speaker in a given audio sector is highly correlated with having a speaker

in a given video block of a camera (the two fat arrows in Figure 7.3). This type of information can

in turn be used for initialization of more complex, model-based parametric AV calibration schemes,

that could be inspired from (Svoboda, 2003; Bouguet, 2004).

We tested the proposed AV calibration on the short recording seq11 from the AV16.3 Cor-

pus (Chapter 4), obtained from an 8-microphone array in the middle of a room, and 3 cameras

on the surrounding walls (Figure 7.4, top row). The “audio activity indicator” is the posterior prob-

ability P
(11)
š,t of having speech activity within a given sector Sš (event Bš = 1) and a given time

frame t (event A = 1), given the observed wideband activeness values {ζš,t} defined in (5.24), and

the multidimensional model briefly described in Section 5.3.2, and detailed in Appendix C.2:

P
(11)
š,t

def
= P

(
Bš = 1, A = 1

∣∣∣ ζ
1:Nš

= [ζ1,t, · · · , ζNš,t]
T

,ΛND

)
(7.10)

where the RHS is calculated using (C.65).

The “video motion indicator” is defined as the average 〈P (motion | pixel x, y, t)〉(x,y)∈block ∈ [0 1]

across all pixels in a given block, at a given time frame t, of the pixel-wise posterior probabil-

ity P (motion | pixel x, y, t) of having motion in all three components R, G, B. Based on a simplifying

independence assumption between R, G, and B, for each pixel-time frame (x, y, t):

P (motion | pixel x, y, t) = P (motion | vmfR (x, y, t)) · P (motion | vmfG (x, y, t)) · P (motion | vmfB (x, y, t))

where each video motion feature vmfR, vmfG, vmfB, is defined using 3 consecutive frames t− 1, t, t + 1:

vmfR (x, y, t)
def
=

√
|cR (x, y, t + 1)− cR (x, y, t)| · |cR (x, y, t)− cR (x, y, t− 1)| (7.11)

where cR (x, y, t) is the color value (e.g. from 0 to 255) for color R at the pixel-time frame (x, y, t)

(similarly for G and B). Each posterior P (motion | vmfR (x, y, t)) is estimated from a 2-component

7We used the covariance in this initial study. Future investigations may use the Mutual Information.
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Figure 7.3. Unsupervised AV calibration in discrete space. The covariance is calculated between each video motion
indicator (block of pixels) and each audio activity indicator (sector of space around the microphone array). Numbers
represent indices of video blocks and audio sectors.
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Figure 7.4. Unsupervised AV calibration in discrete space. Top row: snapshot of the seq11 recording (microphone
array indicated by a black ellipse). Middle row: AV covariance between the audio activity of sector S18 and the video
motion of each camera. Bottom row: global result of the AV covariance analysis. For each block of pixels, the index
(1 to 18) of the audio sector with the highest covariance is represented by a gray level (colorbar on the right side). The
black background color (“none”) appears whenever all audio sectors have a covariance inferior to e−6.
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1-dimensional model similar to the one described in Appendix C.1.2, fitted in an unsupervised

manner on vmfR (x, y, t), using EM, exactly as in Appendix C.1.2. The two components are a Gamma

pdf (not moving) and a Shifted Rice pdf (moving), exactly as Gα01,β01
and Rσ11,V11

in Appendix C.2.1.

Covariance analysis for calibration: we compute the covariance over time t between each

“audio activity indicator” P
(11)
š,t and each “video motion indicator” 〈P (motion | pixel x, y, t)〉(x,y)∈block,

as illustrated in Figure 7.3. This approach is justified as long as the short calibration recording

contains a single moving speaker, in a fixed indoor environment (as in seq11): there is no data

association ambiguity between motion in a region of the video image and speech activity in a sector

of space. An appropriate downsampling technique was used to have the same sampling rates for

audio and video8,9. The middle row of Figure 7.4 depicts an example of AV covariance pattern:

between the audio activity of sector S18 and the video motion of each camera. The body of the

speaker is clearly marked by higher covariance values. After having computed the AV covariance

pattern for each sector, it is possible to determine, for each block of pixels of a camera, which

audio sector corresponds the most. The result of this analysis is the one-sector-to-many-pixel-blocks

AV mapping depicted in the bottom row of Figure 7.4. Although rough, this AV mapping depicts

quite accurately the various locations of the body of the human speaker. This is interesting, given

that only 30 seconds of data were used. Note that the same type of covariance analysis could be

conducted between cameras.

To conclude, the proposed discretized scheme builds an AV mapping without explicit geometri-

cal model, and without manual intervention. This AV mapping could directly be used within an

AV tracking scheme. So far, we only permitted a single depth for each location in the image plane.

This limitation is addressed by Section 7.2.2.

7.2.2 Calibration without Discretization

In this section, no discretization is used, and the relationship between audio and video is estimated

for each pixel in the image plane, using continuous azimuth audio measurements and pixel-wise

video background subtraction. As in the previous subsection, we assume that only one speaker is

8The original audio frame rate was 62.5 Hz, more than twice the video frame rate 25 Hz. Frame-level (C.64) and sector-
level (C.65) posterior estimates of audio activity were downsampled using the max and mean operators, respectively.

9The covariance needs to be calculated “on speech only”. We implemented this by weighting each video frame with the
downsampled frame-level posterior estimate (C.64) of audio activity.
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being recorded in the sequence. We propose to turn the video-only adaptive background subtraction

approach from (Stauffer and Grimson, 2000), into an AV calibration procedure (step 2 below).

Step 1: Each modality is processed separately to extract measurements:

• The audio speaker detection-localization system described in Chapters 5 and 6 produces zero,

one or more speech azimuth measurements at each audio time frame. For each video time

frame (25 Hz), the corresponding speech azimuth measurements (62.5 Hz) are grouped.

• The video measurements are binary images: each pixel is classified as foreground or back-

ground. The binary decision (Figure 7.7a) is taken for each pixel independently, using adaptive

background subtraction (Stauffer and Grimson, 2000). For each pixel, it consists in the online

update of a GMM in the video color space, denoted “V-GMM”, using all past data, then in

deciding which Gaussian components in the V-GMM correspond to the foreground, and which

Gaussian components correspond to the background. We used K = 3 components, α = 0.01 as

the learning factor, and T = 0.66 to discriminate between background and foreground. This

choice of parameters was motivated by the possible multimodality of the background color in

an indoor environment, where objects such as chairs and laptops can punctually be moved.

We did not do any extensive tuning.

Step 2: Based on the audio and video measurements extracted in Step 1, we estimate the links

between audio azimuth locations and video pixel locations. We propose a GMM framework inspired

from the one used for video background subtraction (Stauffer and Grimson, 2000). At a given time t,

for each foreground pixel we update a GMM in the audio azimuth space, denoted “A-GMM”, with

the current speech azimuth measurements. For each pixel, we then select the “speech” components

of the A-GMM that have large weights and small standard deviations, similarly to (Stauffer and

Grimson, 2000). The selected A-GMM components define the audio locations associated with this

pixel location. Having potentially multiple selected Gaussians for a given pixel permits to model

depth indeterminations in the image. These indeterminations are due to the fact that the micro-

phone array and the camera are not colocated.

Calibration experiment: we applied the two steps on seq11 of the AV16.3 Corpus. The ex-

periment was performed three times: once for each camera. For camera #1, Figures 7.5a,b,c show

the means µ1, µ2 and µ3 of the three components in the A-GMM: for each pixel, the mean speech
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Figure 7.5. Unsupervised AV calibration without discretization, camera #1. (a)(b)(c) For each pixel, the means µ1, µ2

and µ3 (in degrees) of the three components of the A-GMM. For each pixel, speech components appear first in (a),
then possibly in (b), then possibly in (c), followed by non-speech components in the remaining pictures. For each pixel,
the number B of speech components of the A-GMM is shown in Figure 7.6a.
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Figure 7.6. Unsupervised AV calibration without discretization, cameras #1, #2, #3. Each pixel depicts the number B of
speech components in the corresponding A-GMM.

azimuth µn of one Gaussian component is represented. For each camera #1, #2, #3, Figures 7.6a,b,c

show the number B of selected “speech” components in the A-GMM. The parts of the image where

B > 1 effectively correspond to locations in the image plane, where speech azimuth may vary, de-

pending on the depth. This result is quite interesting, given that only 30 seconds of data were used,

without any manual intervention.

Improved Subtraction Experiment: To illustrate the effectiveness of the proposed AV cal-

ibration procedure, we generated a second series of “improved” foreground/background decisions.

Indeed, using video-only background subtraction, whenever the speaker stops moving, his/her body

is eventually absorbed by the background model, after about 1/α video frames (4 seconds in our

case). This is visible in Figure 7.7a. A partial solution to this issue is to prevent the weight adap-
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(a) (b)

Figure 7.7. Unsupervised AV calibration without discretization, camera #3. Example of binary decision on frame #189.
Black: background, white: foreground. (a) Video-only adaptive background subtraction (Stauffer and Grimson, 2000).
(b) Same, where the weight adaptation is restricted, based on the A-GMM.

tation of the video-only V-GMM, on any pixel-time frame (x, y, t) where a current speech azimuth

measurement matches a speech component of the A-GMM10. This effectively prevents a speaker

that does not move anymore, from being absorbed in the video background, as long as he speaks.

Figure 7.7b shows that more of the speaker’s body is retained as foreground.

Future work: One could think of joint tracking and calibration, in the AV space. This may

require to use more complex models than the one proposed here, for example by adding local con-

tinuity constraints between neighbouring pixels. The challenge would be to have a system that is

robust to a large variety of data, with possibly several speakers at the same time. The gain would be

automatic, joint calibration, of several sensors, without explicit geometrical models. At this point of

time, from an applicative point of view, it seems reasonable to ask a non-technical user to walk and

speak around a meeting room once at the beginning, to initialize the calibration process without

any manual intervention.
10See (Stauffer and Grimson, 2000) for the definition of a “match” between a measurement and a GMM component.
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7.3 Conclusion

Chapters 5 and 6 investigated the “Where? When?” questions, where speech segments are de-

tected and located in both space and time, without determining the speaker identity. This chapter

examined the remaining question ”Who?”, in the form of a speaker clustering task, where the pre-

viously detected speech segments are iteratively merged into speaker clusters – ideally one cluster

per “true” speaker. This task is particularly difficult, (1) because of the spontaneous multi-party

speech context, and (2) because only distant microphones are used. A multimodal generalization

of BIC was proposed, to exploit the complementarities of long-term acoustic information (MFCCs)

and short-term location information (speaker direction). Speaker clustering experiments were car-

ried on the M4 Corpus of meetings. With distant microphones only, the proposed multimodal BIC

approach yielded a major improvement over a state-of-the-art acoustic-only approach. The results

also show that the speaker clustering performance of the multimodal BIC is close to the optimum

that could be obtained with the underlying multispeaker detection-localization system. Results also

compare well with those of a close-talking multimicrophone speech segmentation technique.

A closer look at the speaker clustering results revealed one success and one failure. The success

is that data from a given speaker, seated at various azimuth angles but constant distance from

the microphone array, would be correctly clustered into one speaker cluster. The failure is that

when a speaker moves a few meters away from the microphone array, an incorrect second speaker

cluster always appears. Signal normalization methods such as dereverberation and denoising did

not provide any improvement. Further basic research is needed to explain the underlying distance-

dependent acoustic feature variability.

Finally, audio-visual alternatives were investigated, where visual speaker tracking can help to

circumvent the audio-only, location-dependent acoustic feature variabilities. Initial investigations

on unsupervised audio-visual calibration were conducted. An approach was proposed that automat-

ically detects the speaker depth variabilities in the image plane, based on the audio measurements.

Such unsupervised audio-visual calibration could be useful as part of an audio-visual tracking sys-

tem. This solution is particularly adapted to non-technical end-users, because the only requirement

is to record one sequence where a person walks around the room while speaking.
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Chapter 8

Applications to Other Domains

This chapter illustrates the genericity of the techniques developed in this thesis, with two applica-

tions outside the meeting room domain.

In the previous chapters, the sector-based joint detection-localization was used with UCAs of

omnidirectional microphones, permitting reliable detection-localization of multiple speakers, in a

meeting room context. Section 8.1 summarizes an in-car hands-free speech enhancement applica-

tion of sector-based detection-localization, using Uniform Linear Arrays (ULAs) of omnidirectional

microphones (Lathoud et al., 2006a)1. Although the task and the physical context differ from pre-

viously, this chapter shows that sector-based detection-localization permits to reliably control the

adaptive filtering process. Experiments are conducted on real recordings made in a Mercedes S320

car, including 100 km/h background noise.

Section 8.2 summarizes a work on single-channel noise-robust ASR task (Lathoud et al., 2006b).

In standard spectral subtraction (Boll, 1979; Berouti et al., 1979), the noise energy is estimated,

then subtracted from the speech energy, using an independence assumption. This 2-step approach

requires tuning parameters such as the spectral floor (Berouti et al., 1979). We propose an alterna-

tive, single-step approach that jointly estimates both speech and noise powers. As in Appendix C.1,

the EM algorithm (Dempster et al., 1977) is used to fit a two-component model (speech and noise) on

the observed data, thus determining the spectral subtraction floor in a fully unsupervised manner.

1This work was conducted with Julien Bourgeois in the framework of the European HOARSE Research Training Network.
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Figure 8.1. Entire acquisition process, from the emitted signals to the enhanced signal (Section 8.1). The focus is on the
adaptive filtering block h(t), so that SIRimp (t) is maximized when the interference is active (interference cancellation).
The s and i subscripts designate contributions of target and interference, respectively. The whole process is supposed
to be linear. σ2 [x(t)] is the variance or energy of a speech signal x(t), estimated on a short time frame (20 or 30 ms)
around t, on which stationarity and ergodicity are assumed.

8.1 Sector-Based Detection for Hands-Free Speech Enhance-

ment in Cars

This section summarizes an application of the sector-based activeness estimation (Chapter 5) to

hands-free speech acquisition. The focus is on the separation of the driver’s speech (the target)

from the codriver’s speech (the interference). This work is the result of a collaboration with Julien

Bourgeois (while at Daimler-Chrysler), who is responsible for the adaptive filtering part, and the

implicit adaptation control. Full details are available in (Lathoud et al., 2006a). An additional

analysis on the stability of the implicit adaptation control can be found in (Bourgeois et al., 2005).

As speech-based command interfaces are becoming more and more common in cars, for example

in automatic dialog systems for hands-free phone calls and navigation assistance, the ASR perfor-

mance becomes critical. However, the ASR performance can be greatly hampered by interferences

such as speech from a codriver. Moreover, spontaneous multi-party speech contains lots of over-

laps between participants (Shriberg et al., 2001). A directional microphone oriented towards the

driver provides an immediate hardware enhancement, by lowering the energy level of the codriver

interference (Figure 8.1). In the Mercedes S320 setup used in the present section, a 6 dB relative

difference is achieved. However, an additional software improvement is required to fully cancel

the codriver’s interference, for example with adaptive techniques, where a time-varying linear fil-

ter (h(t) in Figure 8.1) enhances the Signal-to-Interference Ratio (SIR).
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Figure 8.2. Proposed explicit and implicit adaptation control. x (t) = [x1 (t) · · ·xNm
(t)]T are the signals captured by the

Nm microphones, and h (t) = [h1 (t) · · ·hNm
(t)]T are their associated filters. Double arrows denote multiple signals.

As explained in (Lathoud et al., 2006a, Section 1), we selected the Generalized Sidelobe Can-

celler (GSC) structure. In practice, it is required to adapt only when the interferer is dominant,

by varying the adaptation speed in a binary manner (explicit control), or in a continuous manner

(implicit control). As detailed in (Lathoud et al., 2006a, Section 1), most existing explicit methods

rely on prior knowledge of the target location only. There are few implicit methods, such as (Gannot

et al., 2001), which varies the adaptation speed based on the input signal itself.

The contribution of (Lathoud et al., 2006a) is twofold, as summarized in the present section.

First, an explicit method (Figure 8.2a) is proposed. It relies on a novel input SIR estimate, which

itself extends the sector-based detection-localization defined above (5.20). Few works investigated

input SIR estimation for non-stationary, wideband signals such as speech. In (Herbordt et al.,

2003, 2004), spatial information of the target only is used, represented as a single direction. On

the contrary, the proposed approach (1) defines spatial locations in terms of sectors, (2) uses both

target’s and interference’s spatial location information. This is particularly relevant in the car

environment, where both driver and co-driver locations are known, but only approximately. In

the framework of this thesis, the proposed explicit method illustrates the genericity of the sector-

based detection-localization approach proposed in Chapter 5, because it is applied on a different

task (Figure 8.1) and different microphone array geometries (Figure 8.3).

The second contribution of (Lathoud et al., 2006a) is an implicit adaptation method (Bourgeois

et al., 2005), where the adaptation speed (step-size) is determined from the output signal z(t) (Fig-

ure 8.2b), with theoretically-proven robustness to target cancellation issues. Estimation of the

input SIR is not needed, and there is no additional computational cost. In the framework of this

thesis, the implicit method is used for comparison purposes, thus briefly summarized below.

The rest of this section is organized as follows. Section 8.1.1 defines the two physical setups
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Figure 8.3. Physical setups I (2 mics) and II (4 mics).

as well as the sectors in space. Section 8.1.2 explains how the sector-based detection-localization

method can be used to estimate the input SIR, and validates the proposed method with experiments

on real in-car data, including in 100 km/h background noise. Section 8.1.3 uses the estimated input

SIR to explicitly control the step-size of the adaptive filter. Experiments on real in-car data show

that the SIR improvement provided by the proposed explicit method is superior to that of a state-

of-the-art implicit adaptation control method, including in 100 km/h background noise.

8.1.1 Physical Setups, Recordings and Sector Definition

Two setups are considered for acquisition of the driver’s speech in a car. The general problem is to

separate the speech of the driver from interferences such as codriver speech.

Physical Setups

Figure 8.3 depicts the two setups, denoted I and II. Setup I has 2 directional microphones on the

ceiling, separated by 17 cm. They point to different directions: driver and codriver, respectively.

Setup II has 4 directional microphones in the rear-view mirror, placed on the same line with an

interval of 5 cm. All of them point towards the driver.

Recordings

Data was not simulated, we opted for real data instead. Three 10-second long recordings sampled

at 16 kHz, made in a Mercedes S320 vehicle, are used in the experiments reported below:

train: Mannequins playing pre-recorded speech. Parameter values are selected on this data.

test: Real human speakers, for testing only: all parameters determined on trainwere “frozen”.

noise: Both persons silent, the car running at 100 km/h.
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Figure 8.4. Sector definition. Each dot corresponds to a vš,n location, as defined in Section 5.2.1.

For both train and test, we first recorded the driver, then the codriver, and added the two

waveforms. Having separate recordings for driver and codriver permits to compute the true input

Signal-to-Interference Ratio (SIR) in the microphone signal x1(t), as the ratio between the instan-

taneous frame energies of each signal. The true input SIR is the reference for the evaluations

presented in Sections 8.1.2 and 8.1.3. The noise waveform is then added to repeat speech en-

hancement experiments in a noisy environment, as reported in Section 8.1.3.

Sector Definition

Figures 8.4a and 8.4b depict the way we defined the sectors for each setup. In both cases, sec-

tors are defined in 2-D space, because the conformation of the array is linear. We used the prior

knowledge of the locations of the driver and the codriver with respect to the microphones. The

prior distribution Pš (v) (defined in Section 5.2.1) was chosen to be a Gaussian in Euclidean co-

ordinates for the 2 sectors where the people are, and uniform in polar coordinates for the other

sectors: Pš (v) ∝ ||v||−1. Each distribution was approximated with Nv=400 points. The motivation

for using Gaussian distributions is that we know where the people are on average, and we allow

a slight motion around the average location. The other sectors have uniform distributions because

reverberations may come from any of those directions.



168 CHAPTER 8. APPLICATIONS TO OTHER DOMAINS

8.1.2 Input SIR Estimation

We describe here a method to estimate the input SIR SIRin(t), which is the ratio between driver and

codriver energies in signal x1(t) (Figure 8.1). This input SIR estimate relies on the SAM-SPARSE-MEAN

sector-based detection-localization (5.20). The proposed input SIR estimate is used by the “explicit”

adaptation control method described in Section 8.1.3. As discussed above, the proposed input SIR

estimate is a priori well adapted to the car environment, as it uses approximate knowledge of both

driver and codriver locations.

Method

For a microphone `1, for each time frame t, DFT is applied to the time domain samples x
(t)
1 ∈ R2NF to

estimate the local spectral representation X
(t)
1 ∈ C2NF . The energy spectrum for each time frame t

is then defined by E
(t)
1 (k) = |X(t)

1 (k) |2, for each discrete frequency k (1 ≤ k ≤ 2NF).

In order to estimate the input SIR, we propose to estimate the proportion of the overall frame

energy
∑

k E
(t)
1 (k) that belongs to the driver, and to the codriver, respectively. Then the input SIR

is estimated as the ratio between the two. Within the sparsity assumption context of Section 5.2.2,

the following two estimates are proposed:

ŜIR1
def
=

∑
f E

(t)
1 (k) · P

(
sector Sdriver active at discrete frequency k

∣∣ u(t)(k)
)

∑
f E

(t)
1 (k) · P

(
sector Scodriver active at discrete frequency k

∣∣ u(t)(k)
) , (8.1)

ŜIR2
def
=

∑
f P

(
sector Sdriver active at discrete frequency k

∣∣ u(t)(k)
)

∑
f P

(
sector Scodriver active at discrete frequency k

∣∣ u(t)(k)
) , (8.2)

where u(t)(k) ∈ RNq is the vector of observed relative phases between pairs of microphones, at time

frame t, as defined in (5.3), and P
(
· | u(t)(k)

)
is the posterior probability given by (5.20). Both

ŜIR1 and ŜIR2 are a ratio between two mathematical expectations over the whole spectrum. ŜIR1

weights each frequency with its energy, while ŜIR2 weights all frequencies equally. In the case of a

speech spectrum, which is wideband but occupies the low frequencies (up to 4 kHz) more often than

the high frequencies (above 4 kHz), this means that ŜIR1 gives more weights to the low frequencies,

while ŜIR2 gives equal weights to low and high frequencies. From this point of view, it can be

expected that ŜIR2 provides better results as long as microphones are close enough to avoid spatial

aliasing effects.
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Setup Dynamic Method Results on test (10 seconds)
range (best on train) %: RMS error divided by dynamic range

(·): correlation true/estimated input SIR
clean test+noise

I 71.6 dB ŜIR1 All frames: 14.0% (0.77) 15.1% (0.73)
True input SIR > 6 dB: 16.1% (0.25) 17.8% (0.27)
True input SIR < -6 dB: 12.4% (0.71) 16.3% (0.63)

II 70.2 dB ŜIR2 All frames: 9.3% (0.90) 11.4% (0.84)

Table 8.1. Results on test and test+noise. Methods and parameters were selected on train. The RMS error of the
input SIR estimation was calculated in log domain (dB). Percentages (the lower, the better) indicate the ratio between
the RMS error and the dynamic range of the true input SIR (max - min). Values in brackets (the higher, the better)
indicate the correlation between the true and the estimated input SIR.

Note that ŜIR2 seems less adequate than ŜIR1 in theory: it is a ratio of numbers of discrete

frequencies, while the quantity to estimate is a ratio of energies. However, in practice it follows

the same trend as the input SIR: due to the wideband nature of speech, whenever the target is

louder than the interference, there will be more discrete frequencies where it is dominant, and

vice-versa. This is supported by experimental evidence in the meeting room domain (Section 5.2.4).

To conclude, we can expect a biased relationship between ŜIR2 and the true input SIR, that can be

compensated with an affine scaling in log domain, as detailed in (Lathoud et al., 2006a). For each

setup and for each input SIR estimation method (ŜIR1 and ŜIR2), the parameters of the scaling are

tuned on train, then kept fixed and applied on the other recordings test and test+noise.

Experiments

For each setup I and II, a time plot of the results of the best method is available: Figures 8.5a

and 8.5b. The estimate follows the true value very accurately most of the time. Errors happen

sometimes when the true input SIR is high. One possible explanation is the directionality of the

microphones, which is not exploited by the sector-based detection-localization. Also the sector-

based detection-localization gives equal role to all microphones, whereas for setup I we are mostly

interested in x1(t). In spite of these limitations, we can safely state that the obtained SIR curve is

very satisfying for triggering the adaptation, as verified in Section 8.1.3.

As it is not sufficient to evaluate results on the same data that was used to select the SIR esti-

mation method and parameters, results on the test recording are also reported in Table 8.1 and

Figures 8.5c and 8.5d. Overall, all conclusions made on train still hold on test, which tends to
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Figure 8.5. Estimation of the input SIR for setups I (left column) and II (right column). Beginning of recordings train (top
row), test (middle row), test+noise (bottom row).
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prove that the proposed approach is not too dependent on the training data. However, for Setup I, a

degradation is observed, mostly on regions with high input SIR, possibly because of the low coher-

ence between the two directional microphones, due to their very different orientations. However, an

interference cancellation application with Setup I mostly needs accurate detection of periods of neg-

ative input SIR, rather than positive input SIR. On those periods the RMS error is lower (12.4%).

Section 8.1.3 confirms the effectiveness of this approach in a speech enhancement application. For

Setup II, the results on test are quite similar to those on train.

Results in 100 km/h noise (test + noise) are also reported in Table 8.1 and Figures 8.5e and

8.5f. The curves and the relative RMS error values show that the resulting estimate is more noisy,

but still follows the true input SIR quite closely in average, and correlation is still high. The es-

timated ratio still seems accurate enough for adaptation control in noise, as confirmed by Sec-

tion 8.1.3. This can be contrasted with the fact that the car noise violates the sparsity assumption

with respect to speech. A possible explanation is that in both (8.1) and (8.2), numerator and denom-

inator are equally affected, so that the ratio is not biased too much by the presence of noise.

To conclude, the proposed methodology for input SIR estimation gives acceptable results, includ-

ing in noisy conditions. The estimated input SIR curve follows the true curve accurately enough to

detect periods of activity and inactivity of the driver and the codriver2. This method is particularly

robust since it does not need any thresholding or temporal integration over consecutive frames.

2With respect to the speech enhancement application, only one parameter is used (Lathoud et al., 2006a), and the affine
scaling in log domain has no impact on the results presented in Section 8.1.3.
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Figure 8.6. Linear models for the acoustic channels and the adaptive filtering.

8.1.3 Speech Enhancement

Adaptive Interference Cancellation Algorithms

Setup I provides an input SIR of about 6 dB in the driver’s microphone signal x1(t). An estimate of

the interference signal is given by x2(t). Interference removal is attempted with the linear filter ĥ

of length L depicted by Figure 8.6b, which is adapted to minimize the output power E
{
z2(t)

}
, using

the NLMS algorithm (Widrow and Stearns, 1985) with step size µ:

ĥ(t + 1) = ĥ(t)− µ
E
{
z(t) · x(t)

}
∥∥∥x(t)

2

∥∥∥
2 (8.3)

where x
(t)
2 ∈ R2NF is a time frame of 2NF samples from microphone `2, ĥ(t) =

[
ĥ0(t), ĥ1(t), . . . , ĥL−1(t)

]T

is the impulse response of the adaptive filter ĥ at time t, and E {·} denotes expectation, taken over

realizations of stochastic processes, as implemented in (Lathoud et al., 2006a).

To prevent instability, adaptation of ĥ must happen only when the interference is active:
∥∥∥x(t)

2

∥∥∥
2

6= 0,

which is assumed true in the rest of this section. In practice, a fixed threshold on the variance of

x2(t) can be used. Moreover, to prevent target cancellation, adaptation of ĥ must happen only when

the interference is active and dominant.

In setup II, Nm = 4 directional microphones are in the rear-view mirror, all pointing at the

target. It is therefore not possible to use any of them as an estimate of the codriver interference

signal. A suitable approach is the linearly constrained minimum variance beamforming (Griffiths

and Jim, 1982) and its robust GSC implementation (Hoshuyama and Sugiyama, 1996). It includes

two filters bm and am for each input signal xm(t), with m ∈ {1, · · · , Nm}, as depicted by Figure 8.6c.

Each filter bm (resp. am) is adapted to minimize the output power of y
(bm)
m (t) (resp. z(t)), as in (8.3).
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To prevent leakage problems, the bm (resp. am) filters must be adapted only when the target (resp.

interference) is active and dominant.

Implicit and Explicit Adaptation Control

For both setups I and II, an adaptation control is required that slows down or stops the adaptation

according to target and interference activity. Two methods are proposed: “implicit” and “explicit”.

The implicit method introduces a continuous, adaptive step-size µ(t), whereas the explicit method

relies on a binary decision, whether to adapt or not. The reader is referred to (Lathoud et al., 2006a)

for the implementation details of both methods.

• Implicit Method: We briefly present the method for Setup I. The implicit method also applies

to Setup II, as described in (Lathoud et al., 2006a). The goal is to increase the adaptation step-size

whenever possible, while not turning (8.3) into an unstable, divergent process. With respect to

existing implicit approaches, the novelty is a well-grounded mechanism to prevent instability while

using the filtered output. Based on analyses conducted in (Mader et al., 2000) and (Widrow and

Stearns, 1985), the theoretical analysis conducted in (Lathoud et al., 2006a) justifies the following

“implicit” adaptive step-size control. In (8.3), the constant step-size µ is replaced with a variable,

time-dependent step-size µ(t), as follows:

• µ(t) =





µimpl(t) if µimpl(t) < 2 (stable case)

µ0 otherwise (unstable case),

• 0 < µ0 ¿ 1 is a small constant.

• µimpl(t)
def
= µ0

‚

‚

‚x
(t)
2

‚

‚

‚

2

‖z(t)‖2

(8.4)

This effectively reduces the step-size when the current target power estimate is large (
∥∥z(t)

∥∥2
>>

∥∥∥x(t)
2

∥∥∥
2

)

and conversely it adapts faster in absence of the target (
∥∥z(t)

∥∥2
<<

∥∥∥x(t)
2

∥∥∥
2

). This was theoretically

proved in (Lathoud et al., 2006a), in the case where sources s1 and s2 are assumed to be uncor-

related, blockwise stationary white sources. A further theoretical stability analysis of the implicit

control method is available in (Bourgeois et al., 2005).

• Explicit method: For both setups I and II, the sector-based method described in Section 8.1.2

is used to directly estimate the input SIR at x1(t). Two thresholds are set to detect when the
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target (resp. the interference) is dominant, which determines whether or not the fixed step-size

adaptation of (8.3) should be applied. The threshold values are tuned on train, then kept fixed for

performance evaluation on test and test+noise.

Performance Evaluation

For both setups I and II, we measured the instantaneous SIR improvement on the real 16kHz

recordings, with respect to the output when no adaptation is performed. Thus, the reference in

Setup I is the true input SIR at microphone x1, and the reference in Setup II is the SIR at the

output of the delay-and-sum beamformer W0. “Instantaneous” means on half-overlapping, short

time-frames – where speech can be safely considered as stationary. We used 32 ms-long time-

frames. Section 8.1.1 describes the recordings and the method of computation of the true input SIR.

Five seconds of the train recording were used to tune all parameters. Then the entire test

recording (real human speakers, 10 seconds) was used to test the methods. It contains a signifi-

cant degree of overlap between the two speakers (56% of speech frames). Three adaptation control

methods are tested:

1. No control (baseline): Adaptation (8.3) with a fixed step-size µ, on all time frames (including

silences, noise and overlaps).

2. Implicit method: Adaptation (8.4) with a variable, automatically controlled step-size µ(t).

3. Explicit method: Same as “No control”, except that the adaptation is applied only on frames

with an estimated input SIR above a threshold. As detailed in Section 8.1.2, the input SIR is

estimated based on the sector-based detection-localization introduced in Chapter 5.

For each method, based on the instantaneous SIR improvement, the segmental SIR improvement3

is computed in three cases: whether the true input SIR is low, close to 0 dB or high.

3“Segmental” means that only frames containing speech from either driver or codriver or both are considered, as detailed
in (Lathoud et al., 2006a).
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Below is a description of the 3 cases that were evaluated:

1. True input SIR < -6 dB: when the energy of the codriver is dominant in signal x1. This

quantifies how much of the interference signal is canceled during silences of the driver: a

significantly positive value. All three methods can be expected to perform well in this case.

2. True input SIR in [-6 +6] dB: when both driver and codriver are comparatively active. This

quantifies how much of the interference signal is cancel-led during overlap periods (both per-

sons speaking): a positive value. We can expect a slight degradation in the case of the “No

control” baseline method, because of leakage issues.

3. True input SIR > +6 dB: when the energy of the driver is dominant in signal x1. No improve-

ment is expected here: a value around zero. If this value is markedly negative, it means that

a given method is suffering from target cancellation issues – as expected for “No control”.

Experiments: clean data

The first 3 seconds of test are depicted by Figure 8.7a. The periods where the SIR improvement is

consistently close to 0 dB correspond to silences of both speakers. Average SIR improvement over

the entire recording is given in Table 8.2a. The result of the “no control” baseline method highlights

the target cancellation problem and confirms the necessity of adaptation control. In both setups,

both “implicit” and “explicit” methods are robust against this problem, and the explicit method

provides the best results. Overall, all above-mentioned expectations are verified.

Experiments with 100 km/h noise

The same experiments were conducted again, after adding the background road noise waveform

noise. The resulting wave files have an average segmental SNR of 11.6 dB in setup I, and 9.6 dB

in setup II. The goal of this experiment is to determine whether the proposed approaches can cope

with background noise. It is not obvious, since they do not explicitly model background noise, which

may be incoherent, or localized outside of the defined sectors. To that purpose the adaptation step µ0

was reduced, while keeping all other parameters unchanged (Lathoud et al., 2006a).

The result is given in Figure 8.7b and Table 8.2b. The behaviour in terms of SIR improvement,

both over time and in average, is very similar to the clean case. Thus, we can state that both implicit
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Setup I (2 mics, reference: x1) Setup II (4 mics, reference: W0)
Range of the No control Implicit Explicit No control Implicit Explicit
true input SIR (baseline) (baseline)
< -6: (codriver) 6.5 5.9 10.7 10.4 6.1 10.5
[−6,+6]: (both) -0.6 1.2 5.8 0.6 2.3 3.3
> +6: (driver) -7.7 -0.2 2.6 -10.0 0.0 -0.8

(a) test (clean data)

Setup I (2 mics, reference: x1) Setup II (4 mics, reference: W0)
Range of the No control Implicit Explicit No control Implicit Explicit
true input SIR (baseline) (baseline)
< -6: (codriver) 6.4 7.1 7.4 7.9 3.8 10.3
[−6,+6]: (both) 1.0 2.7 3.5 1.2 1.6 3.2
> +6: (driver) -4.7 0.4 1.9 -6.3 0.2 -2.4

(b) test+noise
Table 8.2. Average segmental SIR improvement in dB. In Setup I, the reference is the output x1 of microphone `1.
In Setup II, the reference is the output of the delay-sum W0. (W0 brings a SIR improvement over x1 of 0.1, 1.6, 2.2 dB
respectively in the “codriver”, “both” and “driver” cases.)

and explicit approaches also work in a realistic case of a moving car. The only negative result is

“explicit” in the “setup II, driver” case, although it is still no degradation compared to the input SIR

of x1(t). For both setups I and II, the best results on “codriver” and “both” are given by the “explicit”

method. This is interesting, given that the thresholds of the “explicit” method were not changed.
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(b) Noisy conditions.
Figure 8.7. Improvement over input SIR (100 ms moving average, first 3 seconds shown). Column (a) shows results on
clean data (test), whereas column (b) shows results on noisy data (test+noise: 100km/h background road noise).
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n(t)

x(t)s(t)

Figure 8.8. Model of the problem: recognize speech from the observed signal x(t) = s(t) + n(t), where s(t) is the clean
speech signal and n(t) is the additive acoustic noise signal.

8.2 Noise-Robust ASR: Unsupervised Spectral Subtraction

Let us now assume that we have a single channel noisy speech signal x(t). Application domains

such as in-car human-machine interaction require noise-robust front-ends in order to cope with the

noisy situations encountered in practice, as depicted in Figure 8.8. It is thus desirable to estimate

and remove the time-varying ambient noise (n(t) in Figure 8.8), in an online manner. In classical

spectral subtraction (Boll, 1979; Berouti et al., 1979), the noise energy is estimated, then subtracted

from the speech energy, using an independence assumption. This 2-step approach requires tuning

parameters (Berouti et al., 1979). We propose an alternative, single-step approach that jointly esti-

mates both speech and noise powers, called Unsupervised Spectral Subtraction (USS). The purpose

of the present section is to highlight the versatility of the joint modelling proposed in Appendix C.1.

In Appendix C.1, a two-component model was used to model sector-based activeness (5.22), thus

permitting to classify each sector of space as active or silent. In the present section, a very similar

two-component model is used to model the single-channel magnitude spectrogram, thus permitting

to determine the noise level for the subsequent spectral subtraction. Experiments on the Aurora 2

setup (Hirsch and Pearce, 2000) show that with only two equations and no parameter tuning, the

ASR results are very similar to those of the ETSI Advanced Front-End (AFE) (ETSI, 2003a).

The present section only reports what is related to two-component joint modelling, and its use

in USS. Although used in the experiments, the cellphone CHannel Normalization (CHN) is out of

scope of this thesis, thus voluntarily de-emphasized. Full details on both USS and CHN can be

found in (Lathoud et al., 2005b, 2006b). The rest of the present section is organized as follows. Sec-

tion 8.2.1 derives a 2-component mixture model from observations on real magnitude spectrograms,

(similarly to Appendix C.1). Section 8.2.2 uses the 2-component mixture model to propose a tuning-

free USS method. Section 8.2.3 reports noise-robust ASR experiments on the Aurora 2 setup. USS

is also used somewhere else in this thesis, to define the sector-based MFCCs (Section 5.5.1).
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Figure 8.9. Observations on real meeting room data (seq01 in the AV16.3 Corpus, Chapter 4) of a pre-emphasized

waveform y(t)
def
= x(t) − 0.97 · x(t − 1). (a),(c): histograms, (b),(d): phase plots.

This work was done in collaboration with Dr Mathew Magimai.-Doss, Bertrand Mesot and

Prof. Hervé Bourlard. Two demos are available on the Internet, with all necessary Matlab code

for Unsupervised Spectral Subtraction (USS): http://mmm.idiap.ch/Lathoud/USS-EXAMPLE

and for CHannel Normalization (CHN): http://mmm.idiap.ch/Lathoud/2006-CHN-USS

8.2.1 Proposed 2-Component Mixture Model

In this subsection, the commonly used Rayleigh silence model is justified on real data, and com-

pleted with an ad-hoc “activity” model. The main difference with existing, related models such

as in (Ephraim and Malah, 1984; Martin and Breithaupt, 2003; Gemello et al., 2004), is that we

do not address the complete probabilistic modeling of speech activity, but limit ourselves to large

magnitudes only.

Observations on Real Waveforms

Simple observations on silence periods of a pre-emphasized waveform y(t)
def
= x(t)− 0.97 · x(t− 1)

and its covariance matrix, as partially illustrated by Figures 8.9a and 8.9b, show that it is very

reasonable to model {y(t)} as a series of i.i.d, zero-centered Gaussian processes. Under such as-

sumption, the real and imaginary part of the DFT are independent Gaussian distributed variables,

as shown in Appendix F. (Note that this derivation is exact and does not rely on asymptotical con-

siderations such as the central limit theorem.) Thus, the magnitude r.v. M (t) (k) has a Rayleigh

pdf (Rice, 1944, 1945). This type of assumption is used in several existing works (Martin and Brei-

thaupt, 2003; Chen and Loizou, 2005).

On the other hand, speech waveforms are clearly not Gaussian distributed, and not i.i.d., as
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shown by Figure 8.9c and 8.9d. As mentioned previously, finding a fully-justified pdf for speech

magnitude is still an open research subject. Hence, as shown below, we propose to model large

magnitudes of speech only.

Proposed Mixture Model

The proposed pdf for M is f (M)
def
= PI·fI(M)+PA·fA(M), where PI and PA are the priors for “silence”

and “activity”, respectively. Although the model is independent of k and t, slowly time-varying

ambient noise can be accommodated through blockwise-processing of the magnitude spectrogram.

fI is the Rayleigh pdf of parameter σI (Section 2.4) and fA is a pdf that models magnitudes

M > ΨM , where ΨM is a threshold defined with respect to fI. Formally, we impose that:

∀M ≤ ΨM fA (M) = 0 (8.5)

As a starting point, we use ΨM = σI, which is the mode of the Rayleigh pdf. The reasoning is that

values below the mode of the Rayleigh fI can safely be assumed to be background noise.

Moreover, we constrain fA to fulfill two practical constraints. First, the derivative f ′
A(M) of the

chosen “activity” pdf should not be zero when M is just above ΨM , otherwise the threshold ΨM will

loose its meaning, as it may be set to an arbitrarily low value. Second, the decay of fA(M) when M

tends towards infinity should be lower than the decay of the Rayleigh, in order to make sure that

fA will capture data with large magnitudes, and not fI. A pdf that fulfills the two criteria above is

a “shifted Erlang” pdf with h=2 (the Erlang pdf belongs to the Gamma family (Grinstead and Snell,

1997)):

fA(M)
def
= 1M>σI

· λ2
A · (M − σI) · e−λA(M−σI) (8.6)

where 1M>σI
is equal to 1 if M > σI, and zero otherwise. Note the implicit stationarity assumption:

the 4 parameters Λ = {PI, σI, PA, λA} are assumed to be independent of t. Furthermore, indepen-

dence of k is also assumed; it is justified by the pre-emphasis, which whitens the spectrum.
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EM training of Λ (Dempster et al., 1977): Both “E” and “M” steps involve simple mathematical

expressions. In the “E” step, posteriors can be estimated as follows:

P
(
sil
∣∣∣M (t) (k) , Λ

)
=

PI · fI(M
(t) (k))

PI · fI(M (t) (k)) + PA · fA(M (t) (k))
(8.7)

P
(
act
∣∣∣M (t) (k) , Λ

)
= 1− P

(
sil
∣∣∣M (t) (k) , Λ

)
(8.8)

In the “M” step, exact maximization of the likelihood is difficult, so a moment-based approximation

is used to update the (σI, λA) parameters (Lathoud et al., 2005b, 2006b).

Data representation: Similarly to Appendix C.1, one spectrogram is reduced to only 100 rep-

resentative samples through a deterministic sampling method. Therefore the cost of the EM fitting

is very small. An example of fit on one file taken from the OGI Numbers 95 database (Cole et al.,

1994) can be seen in Figures 8.10a, 8.10b and 8.10c.

8.2.2 Application to Unsupervised Spectral Subtraction (USS)

A 2-step approach is used:

1. EM fitting of the 2-mixture model, as described in Section 8.2.1.

2. Spectral subtraction using the parameter σI as a floor:

M
(t)
USS (k)

def
= max

(
1,

M (t) (k)

σI

)
(8.9)

Note that the flooring to a non-zero value (max (1, . . .)) is necessary in the MFCC context. Indeed,

leaving zero magnitude values after spectral subtraction would lead to undesirable dynamics in

cepstral coefficients. An example of result of (8.9) is shown in Figure 8.10d.

This approach can be compared to previous works. We can note common points “in spirit”

with (Van Compernolle, 1989) and to a lesser extent with (Cohen, 1989): adaptation to non-stationary

noises is possible both in (Van Compernolle, 1989) and in our approach through block-wise process-

ing. Moreover, on the modeling side, parameters of the “noise” distribution (i.e. silence) are more

important than those of the “speech” distribution (i.e. activity) in both approaches, as they are used

to floor the magnitude values (max operator in our approach).
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Figure 8.10. Example of fit of the 2-mixture model on noisy data taken from the OGI Numbers 95 database (Factory 0dB
condition). All plots show magnitude data in the frequency domain. On spectrogram plots (a) and (d), the largest
magnitudes are white, the smallest magnitudes are black. f = k−1

NF
· fs

2
and fs = 8 kHz.

However, here the modeling is made directly at the magnitude spectrogram level, with a single

model for all frequencies, while in (Van Compernolle, 1989) modeling was made after mel filterbank

computation, and a model was defined for each critical band separately. Moreover, the approach

proposed here is one-pass, fully unsupervised, without any “feedback” loop, without any tunable

threshold, without histogram. In (Van Compernolle, 1989), multiple stages are involved, includ-

ing histograms, band-specific parameters, short-term and long-term adaptation, a “feedback” loop,

tunable parameters that have to be trained and (optionally) injection of an artificial white noise.

Finally, note that all posterior-based filtering approaches previously proposed in (Lathoud et al.,

2005a) yielded inferior ASR results, as compared to the simple spectral subtraction approach of (8.9).

A consequence is that posterior computation for spectrogram filtering is not necessary anymore,

only comparing magnitude values M (t) (k) to the σI parameter is needed, as in (8.9). The computa-

tional cost is therefore reduced.

8.2.3 Noise-Robust ASR Experiments

The Aurora 2 task was designed to evaluate the front-end of ASR systems in noisy conditions (Hirsch

and Pearce, 2000). The task is speaker-independent connected digit recognition. The database com-

prises isolated digits and sequences of up to 7 digits from the TIDigits database (Leonard, 2004)

spoken by male and female US-American adults. The original 20 kHz data was downsampled to

8 kHz, in order to obtain a telephone bandpass between 0 and 4 kHz. The resulting data constitutes

the clean speech data (clean condition). Noises were then added artificially at different SNR levels
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SNR -5 0 5 10 15 20 clean
MFCC baseline 91.6 85.2 65.6 38.6 17.2 6.1 0.9
CHN-USS 70.0 38.2 16.2 7.1 3.5 2.1 1.1
AFE 69.9 38.1 15.8 7.0 3.4 1.9 0.8

Table 8.3. Word Error Rate results on Aurora 2 (the lower, the better), per SNR level, averaged on the three noisy test sets
A, B and C. Training is done on clean signals.

(20 dB to -5 dB). The noises were recorded at different places: suburban train, crowd of people

(babble), car, exhibition hall, restaurant, street, airport, and train station. Some noises are fairly

stationary, for instance car noise and exhibition noise. Others contain non-stationary segments, as

in street noise, babble noise and airport noise. Three test sets A, B, C were built by adding the

various noise conditions to the original clean signals (Hirsch and Pearce, 2000). In this section we

report averages across the three sets. Individual results can be found in (Lathoud et al., 2006b).

We ran three different feature extractor on the Aurora 2 task:

• MFCC: the baseline ETSI Mel-Cepstrum Front-End (ETSI, 2003b).

• CHN-USS: CHannel Normalization to accommodate various cellphone channels (Lathoud

et al., 2006b, Section 4), followed by USS (8.9). Overall, only two equations are needed, as

explained in (Lathoud et al., 2006b), and no parameter tuning is involved. We used 1-second

blocks to accommodate time-varying background noises.

• AFE: the ETSI Advanced Front-End (AFE) for noise-robust ASR (ETSI, 2003a). The ETSI

AFE includes many steps and parameters.

In all three cases, the frame length was 25 ms and the frame shift was 10 ms4, and the Au-

rora 2 (Hirsch and Pearce, 2000) training/testing setup was used. Moreover, in all experiments,

training was always done using clean data only, because the task is precisely to remove as much

noise from the noisy signal as possible. Next, performance evaluation was done on all available

noise conditions, and we report the average across the three test sets A, B and C in Table 8.3. It

can be seen that the proposed CHN-USS provides results very close to those of the ETSI AFE.

CHN-USS can thus be seen as a drastic simplification of the ETSI AFE, and (Lathoud et al., 2006b)

suggests that a further improvement can be obtained by merging the two methods.

4Further details on feature post-processing can be found in (Lathoud et al., 2006b).
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With respect to the present thesis, the CHN-USS results validate the 2-component, joint mod-

elling of background noise and large magnitudes in the noisy speech spectrogram. This shows that

the type of model used in Appendix C.1 for sector-based activeness, can effectively be used in a very

different context.

8.3 Conclusion

The purpose of the present chapter was to highlight the versatility of some of the methods proposed

in this thesis. At the signal processing level, Section 8.1 showed that the SAM-SPARSE-MEAN

sector-based detection-localization previously used for speaker detection-localization in real meet-

ing room recordings made with a UCA, is also effective for hands-free speech enhancement on real

in-car recordings made with a ULA. At the probabilistic modelling level, Section 8.2 showed that

the type of 2-component mixture model used to model sector-based activeness, can be used on a

very different task: speech+noise modelling of a single-channel, noisy speech magnitude spectro-

gram. In each application, as opposed to a sequential, 2-step implementation, we focussed on a

joint implementation:

• Detection and localization in terms of sectors (Section 8.1).

• Speech and noise modelling in terms of magnitude (Section 8.2).

Both aspects are used to define the sector-based MFCC (Section 5.5.1).



Chapter 9

Conclusion

The subject of this thesis was to determine who spoke where and when, in multi-party spontaneous

speech. A wide context of applications motivated this choice: automatic summarization of meetings,

surveillance, smart offices and homes, autonomous robots, etc. Means were thus restricted to be

non-invasive, that is using distant microphones only. This choice can be opposed to very efficient

but invasive methods that require each speaker to wear a close-talking microphone (lapels), as

in (Wrigley et al., 2005). Solutions were aimed to be as unsupervised as possible, that is ideally

(1) devoid of large training data sets and/or manual threshold tuning procedures that are difficult

for non-technical users, (2) adaptive to varying conditions: for example single or multiple speakers,

static or moving speakers.

The methodology adopted in this thesis was to build an integrated system in a bottom-to-top

approach, starting with “signal-level” tasks such as detection and localization of multiple concur-

rent speakers from a single time frame, and finishing with long-term speaker clustering, resulting

in a high-level annotation in terms of speaker identities and locations. We argue that addressing

low-level “signal” issues can strongly benefit the performance of high-level integrated systems, and

that the analysis of the high-level output can lead to reveal interesting low-level “signal” issues.

Building such a system led to address several research issues, as summarized below. The central

concept is that speaker location information is particularly well adapted to the spontaneous multi-

party speech context involved here. Some of the proposed methods – especially concerning detection

– are generic and can be applied to other tasks, as illustrated in Chapter 8.
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9.1 Data Acquisition

At least one corpus of spontaneous speech with static speakers was already available (McCowan

et al., 2005), that was precisely annotated along the time axis, in terms of speaker turns. On the

contrary, we could not find a publicly available corpus of audio data that would include precise 3-D

annotation of the mouths’locations. This is necessary to evaluate the instantaneous detection and

localization of multiple speakers. A first contribution of this thesis is thus the AV16.3 Corpus, that

contains both static and dynamic scenarios, with multiple (moving) speakers occupying a variety

of locations in an indoor environment. The preference was given to real human speakers, since

loudspeakers do not necessarily reflect humans’ speech radiation characteristics, especially non-

linearities (Schwetz et al., 2004). A strong emphasis was given to overlapped speech and non-linear

motions. Three calibrated cameras were used to estimate the ground-truth 3-D mouth location of

each speaker, with an error inferior to 1.2 cm. To the best of our knowledge, the AV16.3 Corpus is

the first publicly available audio-visual corpus that includes precise 3-D mouth location annotation.

9.2 Multispeaker Detection-Localization

From an instantaneous time frame (20 to 30 ms) of a recording made with multiple microphones

synchronized in time, and the knowledge of the relative microphones locations, the task is to detect

and locate multiple simultaneous speakers, as often encountered in spontaneous speech (Shriberg

et al., 2001). We selected the framework of Steered Response Power approaches, were the location(s)

with maximum beamforming output are located in the space around the microphone array (Krim

and Viberg, 1996; DiBiase, 2000). A literature review showed that being able to quickly detect which

region(s) of space contain active speakers would greatly speedup the search, which is otherwise

prohibitive (entire 3-D space). The key idea of this part of the thesis is that detection for localization

has specific requirements, which differ from speech detection for Automatic Speech Recognition,

where a threshold on energy-based features can be used. In particular, we investigated whether

joint detection-localization could be beneficial, as opposed to detection followed by localization. The

main conclusions of this part are as follows.
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• An existing beamforming method for localization, called SRP-PHAT (DiBiase, 2000), was

shown to be strictly equivalent to a Phase Domain Metric (PDM). The PDM simply compares

frequency-domain phase information between multiple pairs of microphones, with all the prop-

erties of a standard metric. Based on the PDM, the search space for subsequent multisource

localization was greatly reduced, through a virtually costless evaluation of the average acous-

tic activeness in a sector of space. A major improvement was shown, over an existing approach

that compares beamforming values at a few points in space. Sector-based activeness was also

used on a different task (in Chapter 8), to control the adaptation of speech enhancement filters

in hands-free, in-car speech acquisition.

• For the sector-based detection-localization step, two-component probabilistic models were pro-

posed that model the average sector activeness with one component for background noise, and

another component for audio source activity. They are fitted in a fully unsupervised manner,

therefore training data is not necessary. This implicitly permits to adapt the parameters of a

model to varying conditions. Such an approach is also used in Chapter 8, to separate speech

from noise on a completely different task (noise-robust ASR).

• Adapting the parameters is not sufficient, when the chosen structure of the probabilistic model

(which types of pdfs, how they are tied) is not capable to properly fit the observed data.

A generic correction procedure was proposed, where the final detection threshold is selected

using not only the fitted model but also the data again, through posterior probabilities of si-

lence and activity. Experiments on the sector-based detection-localization task show that the

proposed correction procedure yields a dramatic improvement over classical training/testing

approaches. This correction procedure can be applied to any other detection task, as long as a

probabilistic model is used. Theoretical investigations show that the correction procedure can

also be applied to multiclass classification tasks.

• Scaled Conjugate Gradient descent (Moller, 1993) permits fast localization of the individual

acoustic sources. The SCG finds local minima of the PDM, within each active sector of space.

• A location-dependent way of extracting MFCCs is proposed, that permits to separate acoustic

activity into speech and non-speech. It separates slightly correlated (speech) MFCCs from

uncorrelated (noise) MFCCs through full-covariance GMM modelling.
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To summarize, this part investigated static analysis, which means analysis of each time frame sep-

arately. The result is zero, one or more audio source location estimates, for each time frame. Each

audio source location estimate is then classified as speech or non-speech, using location-dependent

MFCCs.

9.3 Short-Term Clustering

This part investigates dynamical analysis of the location estimates, that is across several time

frames. The applicative target is the speech segmentation task in meetings, where a sequence of

silence and speech segments has to be marked along the time axis, for each speaker. The main

conclusions of this part are as follows.

• Location information can be used to segment speech from each speaker with distant micro-

phones, with a performance comparable to that of close-talking microphones, and a major

improvement on overlapped speech.

• To take the Speech/Non-Speech (SNS) decision for each location estimate independently leads

to speech segmentation results that are very sensitive to post-processing parameters. In prac-

tice, post-processing means grouping the “speech” segments together, and eliminating the

small ones.

• On the other hand, tracking a speech source over time and space is difficult, due to the sporadic

nature of speech: utterances are short, discontinuous, and interspersed with long silences. We

thus proposed an intermediary approach called “short-term clustering” of location estimates,

where the location estimates that are close in space and time are grouped into clusters. To take

the SNS decision in terms of short-term clusters leads to speech segmentation results that

are (1) better than with individual SNS decisions, (2) much less sensitive to post-processing

parameters.

• Short-term clustering was realized with a novel, principled probabilistic framework, which

is threshold-free. It thus requires neither training data nor parameter tuning. A fully de-

terministic implementation is proposed that processes each recording in an online manner.

Short-term clustering can also be used for threshold-free detection of trajectory crossings.
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To summarize this part, the integration of the research solutions proposed so far permitted to

develop an efficient, non-invasive multispeaker segmentation system. It is particularly efficient on

overlapped speech. The result is an answer to the two questions: “where? when?”, as a set of speech

segments, each segment being defined as a piece of trajectory in both time and space.

9.4 Speaker Clustering with Distant Microphones

Based on the previous parts, the remaining task is to determine the identity of the speaker, for each

speech segment. More specifically, we address the unsupervised speaker clustering task, where no

enrollment data is available. The goal is twofold: (1) to produce a set of labels, with ideally one

label per speaker, and (2) to give the correct label to each speech segment. Both goals are met when

NIST’s Diarization Error Rate (DER) reaches 0%. The main conclusions of this part are as follows.

• The fast-changing speaker turns encountered in spontaneous multi-party speech are diffi-

cult to model with the GMM/HMM methods that were developed for broadcast news speech,

typically through maximization of the Bayesian Information Criterion (BIC). Indeed, GMMs

require each speech segment to have a sufficient length (2-3 seconds), which is often not the

case in spontaneous multi-party speech.

• We proposed to complement the MFCC information with location information, in order to ac-

commodate the fast speaker turns. An extension of the BIC was proposed, that fuses informa-

tion from multiple modalities. A major reduction of the DER was obtained on the M4 Corpus,

as compared to a state-of-the-art approach that uses MFCCs alone.

• A closer analysis of the results highlights one success and one failure. First, the success: the

proposed multimodal BIC criterion effectively led to give the same label to speech segments

from the same speaker, but seated at different places around the microphone array. Second,

the failure: when the speaker would stand up and move away to do a presentation, we always

ended up with two clusters for the same speaker. One cluster contained speech spoken at the

seated location, the other cluster contained speech spoken at the distant, standing location.

• Standard linear dereverberation/denoising methods, often used in ASR, did not yield any im-

provement with respect to this issue. Further research is needed to explain the underlying

feature variability, possibly extending the study presented in (Schwetz et al., 2004).
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• Initial investigations were conducted on audio-visual unsupervised calibration, as a possible

alternative to audio-only speaker clustering. An extension of Stauffer’s adaptive background

subtraction (Stauffer and Grimson, 2000) was proposed to model geometrical ties between

non-colocated audio and video sensors.

To summarize this part, an effective speaker clustering scheme was proposed, that uses distant

microphones only. The result identifies who spoke where and when. The key concept was to merge

MFCC and location information, by means of a multimodal BIC. A clear advantage is obtained

over MFCC-only speaker clustering. Analysis of the failures revealed that fundamental signal

processing issues need to be addressed to explain the distance-dependent MFCC feature variability.

9.5 Self-Criticism and Future Directions

The various parts of this work suggest several lines of work. One can build new systems on top

of the successful parts, but also research the causes of the failures, and propose solutions. In my

opinion, the failures are in fact quite interesting, because searching for their explanation(s) often

leads to new, powerful signal processing methods, that are invariant to a larger set of undesired

variabilities in the data.

Speech/Non-Speech classification: We briefly mentioned that the correlation that remains in

MFCCs extracted from human speech, in spite of DCT, can be opposed to the uncorrelated MFCCs

extracted from fairly stationary machine noises. The main interest is that training data is not

used at all. However, we only tested this approach on the M4 Corpus (static speakers) and the

AV16.3 Corpus (moving speakers). Although the two environments differ in terms of noise sources,

objects in the room and speaker locations/behaviors, the same room (Moore, 2002) was used in both

corpora. It is thus highly desirable to test and generalize the proposed approach on other data sets,

and to modify it if required.

Speaker Clustering: We did investigate the issue of the often short, fast-changing speaker

turns encountered in spontaneous multi-party speech. However, there are also a few long speaker

turns – for example monologues such as presentations. Therefore, the speech utterances have

very variable lengths. This would require probabilistic models with adaptive capacity, as opposed

to the full-covariance single Gaussian used in this thesis. Mixtures of Dirichlet processes seem
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to be an interesting direction to follow, as already shown in Broadcast News speaker clustering

experiments (Valente, 2006).

Unsupervised Audio-Visual Calibration: Although many audio-visual speaker tracking so-

lutions exists, they often presuppose calibration information to be known either precisely or ap-

proximately, as shown by the review in (Gatica-Perez et al., 2006). A non-technical user may not

want to go through a possibly complex calibration procedure, which motivated the two approaches

proposed in Section 7.2. One could try to merge AV calibration and AV tracking, thus having a

continuously updated calibration model. The challenge would be to get the system working on data

with multiple moving speakers, as encountered for example in crowded areas (surveillance, guide

robots etc.).

Distant Processing of Audio Signals: A distance-dependent variability of acoustic features

was identified and characterized, that appears to be detrimental to the use of MFCCs for speaker

clustering at variable distances. Further research is needed to explain this variability, possibly

extending the research conducted in (Schwetz et al., 2004). One could speculate that invariance

to these distance-dependent variabilities would not only help speaker clustering, but also speech

recognition, and possibly speaker localization.
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Appendix A

Performance Metrics for Detection

For each sector Sš and each time frame t:

• The ground-truth is Bš,t ∈ {0, 1}.

• The decision taken by the system is B̂š,t =∈ {0, 1}.

Thus, following (Bengio et al., 2005), four types of cases happen, including correct classifications

TP, TN and wrong classifications FP, FN, as defined in Table A.1. The corresponding number of sam-

ples NTP,NTN,NFP,NFN are counted over all (sector, frame) pairs: {(š, t) | 1 ≤ š ≤ Nš and t1 ≤ t ≤ tNt
}.

The False Alarm Rate (FAR) is defined as follows:

FAR
def
=

NFP

NFP + NTN
(A.1)

The False Rejection Rate (FRR) is defined as follows:

FRR
def
=

NFN

NFN + NTP
(A.2)

Ground-truth
Bš,t = 0 Bš,t = 1

Detection B̂š,t = 0 TN FN
decision B̂š,t = 1 FP TP

Table A.1. The four types of results. TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative.

193



194 APPENDIX A. PERFORMANCE METRICS FOR DETECTION

The Half Total Error Rate (HTER) is the arithmetic mean of FAR and FRR:

HTER
def
=

FAR + FRR

2
(A.3)

All three metrics FAR, FRR and HTER take values between 0 and 1 (the lower, the better).

As an alternative to FAR/FRR/HTER, another triplet of metrics is commonly used.

The Precision (PRC) is defined as follows:

PRC
def
=

NTP

NTP + NFP
(A.4)

The Recall (RCL) is defined as follows:

RCL
def
=

NTP

NTP + NFN
(A.5)

The F-measure is the harmonic mean of PRC and RCL:

F
def
=

2× PRC× RCL

PRC + RCL
(A.6)

All three metrics PRC, RCL and F-measure take values between 0 and 1 (the higher, the better).

Note that maximing F means maximizing both PRC and RCL.



Appendix B

Multidimensional Phase Domain

Metrics

Section B.1 defines a Phase Domain Metric (PDM). Section B.2 proves that any 1-dimensional PDM

can be composed into a multidimensional function which is also a PDM. Section B.3 proves the

strict equivalence between SRP-PHAT and the PDM-based cost function ∆.

B.1 Definition of a PDM

Similarly to the classical metric definition, we define a PDM as a function g (x,y) on RN × RN

verifying all of the following conditions, for all (x,y, z) ∈ RN × RN × RN :

g (x,y) ≥ 0 (B.1)

g (x,y) = g (y,x) (B.2)

g (x,y) = 0 iff ∀n ∈ {1, · · · , N} xn ≡ yn (B.3)

g (x, z) ≤ g (x,y) + g (y, z) (B.4)

It is the same as a classical metric, except for (B.3) which reflects the “modulo 2π” definition of

angles.
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B.2 Property

Let g1 be a 1-dimensional PDM (on R× R). For λ > 1 and N ∈ N \ {0}, let Gλ,N be defined as:

∀ (x,y) ∈ RN × RN Gλ,N (x,y)
def
=

{
1

N

N∑

n=1

[g1 (xn, yn)]
λ

} 1
λ

(B.5)

The rest of this Section shows that all Gλ,N functions are also PDMs. (B.1), (B.2) and (B.3) are

trivial to demonstrate. (B.4) is demonstrated for Gλ,N in the following.

Let (x,y, z) ∈ RN × RN × RN . From (B.4) applied to g1, and (B.5) we obtain:

Gλ,N (x, z) ≤
{

1

N

N∑

n=1

[g1 (xn, yn) + g1 (yn, zn)]
λ

} 1
λ

(B.6)

For any λ > 1, αn > 0 and βn > 0, the Minkowski inequality (Moon and Stirling, 2000) is written:

[
N∑

n=1

(αn + βn)
λ

] 1
λ

≤
[

N∑

n=1

(αn)
λ

] 1
λ

+

[
N∑

n=1

(βn)
λ

] 1
λ

(B.7)

We now apply (B.7) to the RHS of (B.6), with αn = g1 (xn, yn) and βn = g1 (yn, zn):

Gλ,N (x, z) ≤
{

1
N

∑N
n=1 [g1 (xn, yn)]

λ
} 1

λ

+
{

1
N

∑N
n=1 [g1 (yn, zn)]

λ
} 1

λ

(B.8)

Gλ,N (x, z) ≤ Gλ,N (x,y) + Gλ,N (y, z) (B.9)

Therefore (B.4) is verified by Gλ,N , and Gλ,N is a PDM1. 2

Application: In the case λ = 2, this property proves that the d function defined in (5.8) is a PDM.

B.3 Equivalence Between SRP-PHAT and ∆

The cost function ∆ defined by (5.42) is a sum, where each term is written with the squared PDM d2

defined by (5.8). This section shows that PSRP-PHAT and ∆ are linearly related. In particular,

minimizing ∆ is strictly equivalent to maximizing PSRP-PHAT.

1The exact same demonstration is also valid for classical metrics (replace “PDM” with “metric”).
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Let us write the SRP-PHAT sum defined in (3.13), for a location ` ∈ R3:

PSRP-PHAT
(
`,X

(t)
1 , · · · ,X(t)

Nm

)
=

NF+1∑

k=2

pSRP-PHAT
(
k, `,X

(t)
1 , · · · ,X(t)

Nm

)
(B.10)

where each term of the sum is defined as:

pSRP-PHAT
(
k, `,X

(t)
1 , · · · ,X(t)

Nm

)
def
=

∣∣∣∣∣∣

Nm∑

m=1

X
(t)
m (k)∣∣∣X(t)
m (k)

∣∣∣
e
jπ k−1

NF
TOF(`,`m)

∣∣∣∣∣∣

2

(B.11)

=

∣∣∣∣∣
Nm∑

m=1

exp

[
j

(
∠X(t)

m (k) + π
k − 1

NF
TOF (`, `m)

)]∣∣∣∣∣

2

(B.12)

Using the |z|2 = z · z∗ decomposition we obtain:

pSRP-PHAT
(
k, `,X

(t)
1 , · · · ,X(t)

Nm

)

= Nm +

Nm∑

m=1

·
Nm∑

m′ 6=m
m′=1

exp

{
j

[
∠X(t)

m (k)− ∠X
(t)
m′ (k) + π

k − 1

NF
(TOF (`, `m)− TOF (`, `m′))

]}

Using the z + z∗ = 2 · < (z) equality we obtain:

pSRP-PHAT
(
k, `,X

(t)
1 , · · · ,X(t)

Nm

)

= Nm + 2 ·
Nm∑

m=1

·
Nm∑

m′=m+1

cos

[
∠X(t)

m (k)− ∠X
(t)
m′ (k) + π

k − 1

NF
(TOF (`, `m)− TOF (`, `m′))

]

= Nm + 2 ·
Nq∑

q=1

cos


∠X(t)

aq
(k)− ∠X

(t)
bq

(k)
︸ ︷︷ ︸

+π
k − 1

NF

(
TOF

(
`, `aq

)
− TOF

(
`, `bq

))

︸ ︷︷ ︸




= Nm + 2 ·
Nq∑

q=1

cos
[

u(t)
q (k) − uth

q (k, `)
]

Using the cos u = 1− 2 · sin2
(

u
2

)
equality, and (5.8), we obtain:

pSRP-PHAT
(
k, `,X

(t)
1 , · · · ,X(t)

Nm

)
= Nm + 2 ·Nq − 4 ·

Nq∑

q=1

sin2

(
u

(t)
q (k)− uth

q (k, `)

2

)

= Nm + 2 ·Nq − 4 ·Nq · d2
(
u(t) (k) ,uth (k, `)

)
(B.13)
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Summing over the strictly positive discrete frequencies k ∈ {2, · · · , NF + 1}, we obtain:

PSRP-PHAT
(
`,X

(t)
1 , · · · ,X(t)

Nm

)
= NF ·(Nm + 2 ·Nq)−4 ·Nq ·

NF+1∑

k=2

d2
(
u(t) (k) ,uth (k, `)

)
(B.14)

Let us now consider the case where all strictly positive discrete frequencies are used to define the

cost function ∆ in (5.42): Υ = {2, · · · , NF + 1}. We can then write:

PSRP-PHAT
(
`,X

(t)
1 , · · · ,X(t)

Nm

)
= NF · (Nm + 2 ·Nq)− 4 ·Nq ·NF ·∆

({
u(t) (k)

}
,Υ, `

)
(B.15)

In this case, there is a linear relationship between PSRP-PHAT and the cost function ∆. In partic-

ular, the location ˆ̀that minimizes the cost function ∆ also maximizes PSRP-PHAT. 2



Appendix C

Sector-Based Activeness Models

and their EM Derivations

This appendix describes the two models used in Section 5.3.2 to model the activeness values ζš,t,

where š is the sector index and t the time frame center (expressed in sampling periods). Section C.1

describes the 1-dimensional model, where all activeness values are stacked in one dimension, irre-

spective of š or t. Section C.2 describes the multidimensional model, where the activeness values of

all sectors in the same time frame {ζ1,t, · · · , ζš,t, · · · , ζNš,t} are modelled jointly.

In each section, a description of the model is provided, followed by the complete Expectation-

Maximization (EM) derivation (Dempster et al., 1977). For both models, implementation details

are also provided, including data reduction and automatic initialization. The latter makes the

EM fitting process an adaptive and fully deterministic process. Section C.1 is somewhat detailed.

Some of the results in Section C.1 are reused in Section C.2, which is therefore less detailed.

We recall the notation {ζš,t}, which means the whole set of activeness values on which we want

to fit a model (for example one recording):

{ζš,t} def
= {ζš,t | (š, t) ∈ {1, · · · , Nš} × {t1, · · · , tNt

}} (C.1)

where Nš is the number of sectors in space, and Nt is the number of time frames.

199



200 APPENDIX C. SECTOR-BASED ACTIVENESS MODELS AND THEIR EM DERIVATIONS

All probabilities and likelihood are conditioned by a modelM and its parameter values Λ (M).

In this appendix, we abbreviate p (ζš,t | M,Λ (M)) with p (ζš,t,Λ) or p (ζš,t), whenever possible.

Moreover, we recall that p (ζš,t) is an abbreviation for p
(
ζ = ζš,t

)
, as defined in (2.17). On the

other hand, any equation written using random variables without realization means that the equa-

tion is valid for any realization of the set of random variables. For example:

p (a) = p (b) (C.2)

is strictly equivalent to:

∀a, b p (a = a) = p (b = b) (C.3)

As for probability distributions, the reader is referred to Section 2.4 for the definitions of the

Dirac pdf δ0 (ξ), the Gamma pdf Gα,β (ξ) and the Rice pdf Rσ,V (ξ) (Rice, 1944, 1945).

C.1 1-dimensional Model

This section describes the 1-dimensional probabilistic model used to model the distribution of {ζš,t}

in Section 5.3.2, and derives the EM algorithm for it. The set of all observed activeness values is

stacked onto one dimension, irrespective of š or t. The corresponding graphical model is shown in

Figure C.3. The space and time indices (š, t) are irrelevant for the random variables B

and ζ, because the whole data set {ζš,t} was staked onto one dimension. This is an i.i.d.

assumption across both space and time. The proposed model is thus a 2-component mixture:

p
(
ζ
)

= w0 · f0(ζ) + w1 · f1(ζ) where:

f0

(
ζ
) def

= p
(
ζ
∣∣ B = 0

)
(C.4)

f1

(
ζ
) def

= p
(
ζ
∣∣ B = 1

)
(C.5)

w0
def
= P (B = 0) (C.6)

w1
def
= P (B = 1) (C.7)

The priors w0 and w1 are, by definitions, values in [0 1].
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ζ

B

0 or 1

continuous

Figure C.1. Graphical model for the 1-dimensional model. The r.v. B∈ {0, 1} is the sector state (inactive or active). The
r.v. ζ≥ 0 is the sector activeness.

C.1.1 Description

As defined in (5.22), the activeness feature ζš,t ∈ {0, 1, · · · , NF} is the number of discrete frequencies

where acoustic sources in sector Sš are dominant over the sources in other sectors, at time frame t.

In the case that there is a speech source in a sector of space, the corresponding value ζš,t will be

large because speech is wideband.

Inactivity: Dirac + Rice

In the case that there is no active coherent source at all in a particular discrete frequency k, the

frequency domain signals (X1 (k) , · · · , XNm
(k)) are uncorrelated, and the choice (5.20) of the domi-

nant sector is random, with equal probability 1/Nš for each sector. Consequently, in the case that a

sector Sš is completely inactive at time t, the number ζš,t of discrete frequencies attributed to this

sector is a sum of realizations of such uniform random processes. It is therefore expected that ζ

follows a binomial pdf.

However, in real cases, even for a sector Sš that does not contain any active coherent source,

ζš,t will not only result from purely random decisions, but it will also capture acoustic activity due

to background noise (e.g. computer fan) and reverberations. We found visually, on some inactive

sectors in a separate set of development data, that the Gamma pdf has a better fit than the binomial

pdf. The Gamma pdf can therefore be used to model inactive sectors.

Moreover, the parameters of the Gamma pdf used to model inactive sectors vary greatly between

conditions, which can be roughly divided into two cases: whether at least one sector is active in a

given frame or not. Therefore, ideally, two different pdfs should be used. This is the issue addressed

by the multidimensional model in Section C.2.
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In the case of a 1-dimensional model, we need to model a mixture of all inactive sectors (whether

the frame is active or not) with a single pdf. We found visually that the Rice pdf provides a better

fit than the Gamma.

Finally, since some (rare) values of ζš,t are zeroes, the inactive data is modelled by a mixture of

a Dirac pdf at zero and a Rice pdf:

f0(ζ) = wD
0 · δ0(ζ) + wR

0 · Rσ0,V0
(ζ) (C.8)

where wD
0 and wR

0 are the priors of each pdf (values in [0 1]).

Activity: Shifted Rice

The distribution of ζš,t for acoustic activity (especially speech) follows a distribution that is quite

complex, varying over time and not known a priori. We therefore chose to use the Rice pdf for

activity, because it is a flexible way to model a distribution of positive values. The shape of the Rice

can vary from a pointy, Dirac-like pdf to a Gaussian-like pdf or a Rayleigh pdf.

Furthermore, it is reasonable to assume that in a small range of values around the background

noise level, ζš,t does not give any information to discriminate between activity and inactivity. Hence,

we only model values above the mean square value
√

2 · σ2
0 + V 2

0 (Greenstein et al., 1999) of the

silence pdf Rσ0,V0
. Hence the “Shifted Rice” pdf for active sectors:

f1(ζ) = Rσ1,V1

(
ζ −

√
2 · σ2

0 + V 2
0

)
(C.9)

Mixture of Inactivity and Activity

The likelihood p
(
ζ
∣∣ B

)
is expressed as:

p
(
ζ
∣∣ B

) def
= δKr(B − 0) · f0(ζ) + δKr(B − 1) · f1(ζ) (C.10)

where δKr(ζ) = 1ζ=0 is the Kronecker function, (not to be confused with the zero-centered Dirac

pdf δ0). 1proposition is the indicator function: 1proposition = 1 if proposition is true, 0 otherwise.
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The mixture model is then written:

p
(
ζ
)

= P (B = 0) · p
(
ζ
∣∣ B = 0

)
+ P (B = 1) · p

(
ζ
∣∣ B = 1

)
(C.11)

= w0 · f0(ζ) + w1 · f1(ζ) (C.12)

The complete list of parameters for the 1-dimensional model is:

Λ1D
def
=

(
w0, w1, w

D
0 , wR

0 , σ0, V0, σ1, V1

)
(C.13)

C.1.2 EM Derivation

General

In the E-step, the posteriors are computed using the Bayes rule, for example, for a given set of

parameter values Λ1D and a given observed activeness value ζš,t:

P
(0)
š,t (Λ1D)

def
= p (B = 0 | ζš,t,Λ1D) =

w0 · f0(ζš,t)

w0 · f0(ζš,t) + w1 · f1(ζš,t)
(C.14)

P
(1)
š,t (Λ1D)

def
= p (B = 1 | ζš,t,Λ1D) = 1− P

(0)
š,t (Λ1D) (C.15)

Let us assume that we have parameter values Λ1D, in the M-step we look for new values Λ̂1D

that will increase the likelihood of the observed data {ζš,t}. Let us write the KL divergence between

the two pdfs1 associated with current parameters Λ1D and new parameters Λ̂1D, conditionally to ζ:

KL
[
P
(
B | ζ,Λ1D

)
, P̂
(

B | ζ, Λ̂1D

)]
def
=

〈
log P

(
B | ζ,Λ1D

)〉
P(B | ζ,Λ1D)

−
〈
log P̂

(
B | ζ, Λ̂1D

)〉
P(B | ζ,Λ1D)

(C.16)

where letters P and P̂ represent the same function: they are only used to clarify where current

parameters Λ1D or new parameters Λ̂1D are used. In the following, Λ1D and Λ̂1D are thus omitted

whenever possible. The mean 〈·〉· is calculated over all possible values of B (0 or 1). For example:

〈
log P̂

(
B | ζ

)〉
P(B | ζ)

=

1∑

B=0

P
(
B = B | ζ

)
· log P̂

(
B = B | ζ

)
(C.17)

1In this particular case the conditional pdf of B is written as a posterior, because B is a discrete r.v.



204 APPENDIX C. SECTOR-BASED ACTIVENESS MODELS AND THEIR EM DERIVATIONS

The KL divergence is always positive, therefore (C.16) can be rewritten (omitting Λ1D and Λ̂1D):

〈
log P

(
B | ζ

)〉
P(B | ζ)

−
〈
log P̂

(
B | ζ

)〉
P(B | ζ)

≥ 0 (C.18)

Using Bayes rule to decompose the second term we obtain:

log p̂
(
ζ
)
≥ −

〈
log P

(
B | ζ

)〉
P(B | ζ)

+
〈
log p̂

(
ζ,B

)〉
P(B | ζ)

(C.19)

The first term in the RHS 〈log P 〉P does not depend on Λ̂1D, therefore, one way to increase the

likelihood log p̂
(
ζ
)

is to find Λ̂1D that maximizes the second term on the RHS
〈
log P̂

〉
P

. The latter

can be decomposed into:

〈
log p̂

(
ζ,B

)〉
P(B | ζ)

=
〈
log p̂

(
ζ
∣∣ B

)〉
P(B | ζ)

+
〈
log P̂ (B)

〉
P(B | ζ)

(C.20)

In the M-step our purpose is to find the parameter values Λ̂1D that maximize the likelihood of

the observed data {ζš,t}:

∑

š,t

log p̂
(
ζ = ζš,t

)
(C.21)

which, using (C.19) and (C.20), can be done by maximizing Ξ1 + Ξ2, where:

Ξ1
def
=

∑

š,t

〈
log p̂

(
ζ = ζš,t

∣∣ B
)〉

P(B | ζ=ζš,t)
(C.22)

Ξ2
def
=

∑

š,t

〈
log P̂ (B)

〉
P(B | ζ=ζš,t)

(C.23)

Specific

Let us express both terms Ξ1 and Ξ2 as a function of the new parameters Λ̂1D =
(
ŵ0, ŵ1, ŵ

D
0 , ŵR

0 , σ̂0, V̂0, σ̂1, V̂1

)
.

Ξ1 =
∑

š,t

1∑

B=0

P
(B)
š,t · log p̂

(
ζ = ζš,t

∣∣ B = B, Λ̂1D

)
(C.24)

From (C.10) we obtain:

Ξ1 =
∑

š,t

1∑

B=0

P
(B)
š,t · log fB

(
ζš,t, Λ̂1D

)
(C.25)
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From (C.8) and (C.9) we obtain:

Ξ1 =
∑

š,t

P
(0)
š,t · log

(
ŵD

0 · δ0(ζš,t) + ŵR
0 · Rσ̂0,V̂0

(ζš,t)
)

(C.26)

+
∑

š,t

P
(1)
š,t · log

(
Rσ̂1,V̂1

(
ζš,t −

√
2 · σ̂2

0 + V̂ 2
0

))
(C.27)

Ξ1 =
∑

š,t
ζš,t=0

P
(0)
š,t · log ŵD

0 +
∑

š,t
ζš,t>0

P
(0)
š,t · log ŵR

0 (C.28)

+
∑

š,t
ζš,t=0

P
(0)
š,t · log δ0(ζš,t) (C.29)

+
∑

š,t
ζš,t>0

P
(0)
š,t · logRσ̂0,V̂0

(ζš,t) +
∑

š,t

ζš,t>
√

2·σ̂2
0+V̂ 2

0

P
(1)
š,t · logRσ̂1,V̂1

(
ζš,t −

√
2 · σ̂2

0 + V̂ 2
0

)
(C.30)

The term in log δ0(·) is not finite, but does not involve any parameter in Λ̂1D. In the M-step, we

therefore maximize the “partial likelihood”, which is the sum of all other (finite) terms.

From (C.6) and (C.7):

Ξ2 =
∑

š,t

1∑

B=0

P
(B)
š,t · log P̂ (B = B) (C.31)

Ξ2 =
∑

š,t

P
(0)
š,t · log ŵ0 +

∑

š,t

P
(1)
š,t · log ŵ1 (C.32)

Our goal is to find Λ̂1D that maximizes Ξ1 + Ξ2. From (C.28), (C.30) and (C.32), we can see that:

• The priors ŵ0 and ŵ1 only appear in Ξ2 (C.32).

• The weights ŵD
0 and ŵR

0 of the silence mixture only appear in Ξ1, in (C.28).

• The remaining parameters
(
σ̂0, V̂0, σ̂1, V̂1

)
are tied in a non-linear fashion through (C.30).

Finding their value can be done through joint, numerical optimization (e.g. simplex search, as

in fminsearch in Matlab) of the corresponding sum (C.30).

Since ŵ1 = 1− ŵ0, we have:

∂Ξ2

∂ŵ0
=

∑

š,t

(
1

ŵ0
· P (0)

š,t −
1

1− ŵ0
· P (1)

š,t

)
(C.33)
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The new parameter ŵ0 does not appear in Ξ1, it is therefore the maximum of Ξ2 with respect to ŵ0,

which necessitates ∂Ξ2
∂ŵ0

= 0, therefore:

ŵ0 =

∑

š,t

P
(0)
š,t

1∑

B=0

∑

š,t

P
(B)
š,t

=
1

Nš ·Nt

·
∑

š,t

P
(0)
š,t and ŵ1 = 1− ŵ0 (C.34)

This is the update of the priors of inactivity and activity.

Similarly, ŵR
0 = 1 − ŵD

0 , and the new parameter ŵD
0 only appears in (C.28), it is therefore the

maximum of (C.28) with respect to ŵD
0 , which yields:

ŵD
0 =

∑

š,t
ζš,t=0

P
(0)
š,t

∑

š,t
ζš,t=0

P
(0)
š,t +

∑

š,t
ζš,t>0

P
(0)
š,t

and ŵR
0 = 1− ŵD

0 (C.35)

This is the update of the “inactivity” mixture weights.

Implementation Details

EM Implementation: in practice, we observed that the possibly large amount of data {ζš,t} can

be conveniently reduced to a very small number of samples (e.g. 100) with approximately the same

pdf. This is done by ordering the samples (from min to max) and picking 100 samples at regular

intervals along the ordered list. This way, the cost of each EM iteration is drastically reduced, and

is independent of the amount of data (e.g. 20 minutes of recording are reduced to 100 samples).

An additional speedup can be obtained by replacing, in the M-step, the numerical optimization

of
(
σ̂0, V̂0, σ̂1, V̂1

)
with a moment-based update similar to the initialization described below. This

way, the numerical optimization, which is itself a many-step process, is replaced with a direct,

1-step analytical update. Although this is an approximation, we observed in practice that after

convergence of EM, the model parameters are almost the same as with the numerical optimization.

All results reported in the article for the 1-dimensional models use both simplifications. An

example of data distribution fitted with the 1-dimensional model is depicted in Figure C.2b.
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Figure C.2. Fit of the 2-component mixture model described in Section C.1: (a) automatic initialization, (b) final
model p(ζ= ζ) after convergence of EM.

Automatic Initialization: Using a given threshold value Ψ, the data {ζš,t} is splitted between

Nlow (Ψ) low values and Nhigh (Ψ) high values. The non-zero low values are used to initialize the

“inactivity” Rice pdf using the analytical moment-based approximation from (Greenstein et al.,

1999). This is done by first computing the mean Ga and standard deviation Gv:

Ga =
1

Nlow (Ψ)

∑

š,t
0<ζš,t<Ψ

ζš,t (C.36)

Gv =




1

Nlow (Ψ)

∑

š,t
0<ζš,t<Ψ

(ζš,t −Ga)
2




1
2

(C.37)

and the parameters of the “inactivity” Rice pdf are initialized as follows:

V
(init)
0 ←

[
max

(
0, G2

a −G2
v

)] 1
4 (C.38)

σ
(init)
0 ←

[
1

2
·max

(
0, Ga −

(
V

(init)
0

)2
)] 1

2

(C.39)

The “activity” Shifted Rice pdf is initialized similarly, using data above:

max

(
Ψ,

√
2 ·
(
σ

(init)
0

)2

+
(
V

(init)
0

)2
)

(C.40)

The mixture weights wD
0 and wR

0 are initialized by counting the number of zero samples.
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The priors w0 and w1 are initialized as follows:

w
(init)
0 ← max

(
0.1, min

(
0.9,

Nlow (Ψ)

Nlow (Ψ) + Nhigh (Ψ)

))
(C.41)

w
(init)
1 ← 1− w

(init)
0 (C.42)

where the restriction to the [0.1, 0.9] interval avoids a “wrong” local maxima such as w
(init)
0 = 0.

In order to have a fully automatic initialization process, a series of thresholds {Ψ1, · · · ,ΨNΨ
} are

derived from the data {ζš,t} itself (e.g. NΨ = 30: 15 equal-interval percentiles and 15 equal intervals

between minimum and maximum). For each threshold Ψn, the moment-based initialization is done

as explained above and the likelihood of the whole data is computed. The initialization yielding

the maximum likelihood is selected, as depicted in Figure C.2a. This way, we avoid starting from a

“wrong” local maxima (e.g. the “inactive” component capturing all data and the “active” component

capturing none, or vice-versa). Moreover, this automatic initialization is deterministic, therefore

the whole EM fitting process is also deterministic. This means that for a given set of data {ζš,t}, the

EM fitting process always yields the same values for model parameters Λ1D.

C.2 Multidimensional Model

This section describes a multidimensional model that models activeness for all sectors (ζ1,t, · · · , ζš,t)

jointly, at any given time frame t. It is used in Section 5.3.2. In many places, reasoning exposed in

details in the 1-dimensional case (Section C.1) is reused here in a brief form.

C.2.1 Description

A property of the SAM-SPARSE-MEAN activeness is (5.23): for a given time frame t, the activeness

values of all sectors sum to a constant:
∑

š

ζš,t = NF. This knowledge is enough to expect two cases:

• At a given time frame t, there is no activity. Then, as explained in C.1.1, the NF discrete

frequencies of the frequency spectrum are attributed to the various sectors in a uniformly

random fashion. It is therefore expected that ζš,t will be NF/Nš in average. As mentioned

in C.1.1, the Gamma pdf Gγ,β fits well (visual trials on real data). In this case, we could expect

the first moment of the Gamma pdf to be equal to the average activeness value: γ · β = NF

Nš
.
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• At a given time frame t, at least one sector contains at least one active wideband source (e.g.

speech source). In such a case, the ζš,t values corresponding to active sector(s) will be larger

than the average NF/Nš, thus leaving less discrete frequencies to be randomly attributed to

inactive sectors. We propose to model this case with a ( Gamma + Shifted Rice ) mixture,

similarly to Section C.1.1. For the Gamma pdf, we could expect that γ · β < NF

Nš
.

At this point we need to incorporate these two frame-level cases into the model. Thus, we define

the sector state binary random variables
(
B1, · · · , Bš, · · ·BNš

)
, and the frame state random vari-

able A ∈ {0, 1} which indicates whether or not at least one sector is active in a given time frame:

A
def
= max

1≤š≤Nš

Bš (C.43)

and a realization At of A is defined by:

At
def
= max

1≤š≤Nš

Bš,t (C.44)

Next, we define the sector activeness random variables
(
ζ
1
, · · · , ζ

š
, · · · , ζ

Nš

)
associated with the

activeness values of each sector, for any time frame. Let us define the joint random variables:

ζ
1:Nš

def
=

[
ζ
1
, · · · , ζ

Nš

]T
and B1:Nš

def
=

[
B1, · · · , BNš

]T (C.45)

We assume that the knowledge of the frame state A (the two cases mentioned above) is sufficient

to determine the pdf of ζ
š
, and that further interdependences between the activeness values of the

various sectors need not to be modelled. This amounts to the following assumption:

p
(
ζ

1:Nš
, B1:Nš

, A, ΛND

)
=

1

Z
·

Nš∏

š = 1

p
(
ζ

š
, Bš, A, ΛND

)
(C.46)

where the normalization factor is Z = [P (A, ΛND)]
Nš−1. A graphical model is shown in Figure C.3.

The independence between sectors is somewhat realistic, because the sparsity assumption (5.20)

eliminates a lot of the spatial leakage between neighboring sectors – as compared to delay-sum

beamforming, for example. ΛND denotes a set of parameter values of the multidimensional model,

as formally defined further below, after the model is fully described.
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Figure C.3. Graphical model for the independence assumption (C.46) used in the multidimensional model. The r.v. A is
the frame state (inactive or active) and the r.v. B š is the state (inactive or active) of a given sector Sš. The r.v. ζ š ≥ 0 is
the activeness of sector Sš. On an active frame (A= 1) at least one sector is active (∃š B š = 1).

From (C.46), the following results can be shown without any additional assumption:

p
(

ζ
1:Nš

∣∣∣ A, ΛND

)
=

Nš∏

š = 1

p
(

ζ
š

∣∣∣ A, ΛND

)
(C.47)

P
(

Bš | ζ
1:Nš

, A, ΛND

)
= P

(
Bš | ζ

š
, A, ΛND

)
(C.48)

P
(
B1:Nš

∣∣ A, ΛND

)
=

Nš∏

š = 1

P (Bš | A, ΛND) (C.49)

(C.47), (C.48) and (C.49) are used further below, in the EM derivation (Section C.2.2).

Inactive sector: Dirac + Gamma

Similarly to C.1.1, we model an inactive sector B š = 0 with a (Dirac + Gamma) mixture. Two such

mixtures g00 and g01 are defined, depending on the state of the frame: inactive frame A = 0 or active

frame A = 1:

g00

(
ζ

š

)
def
= p

(
ζ

š

∣∣∣ Bš = 0, A = 0, ΛND

)
(C.50)

def
= vD

00 · δ0(ζ š
) + vG

00 · Gγ00,β00

(
ζ

š

)
(C.51)

g01

(
ζ

š

)
def
= p

(
ζ

š

∣∣∣ Bš = 0, A = 1, ΛND

)
(C.52)

def
= vD

01 · δ0(ζ š
) + vG

01 · Gγ01,β01

(
ζ

š

)
(C.53)

We further constrain γ00 > 1 and γ01 > 1 so that Gγ00,β00
(0) = 0 and Gγ01,β01

(0) = 0. This way, zero

values and strictly positive values are separately modelled by the Dirac and Gamma functions.
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Active sector: Shifted Rice

Similarly to Section C.1.1, on an active frame A = 1, we model an active sector with a shifted Rice

pdf, where the shift is equal to the first moment γ01 · β01 of the Gamma pdf G01:

p
(

ζ
š

∣∣∣ Bš = 1, A = 1, ΛND

)
def
= g11

(
ζ

š

)
(C.54)

def
= Rσ11,V11

(
ζ

š
− γ01 · β01

)
(C.55)

Complete model

Let v0 and v1 denote the frame-level priors (v0 + v1 = 1):

v0
def
= P (A = 0 | ΛND) (C.56)

v1
def
= P (A = 1 | ΛND) (C.57)

Let v01 and v11 denote the sector-level conditional priors (v01 + v11 = 1), given that a frame is active:

v01
def
= P (Bš = 0 | A = 1, ΛND) (C.58)

v11
def
= P (Bš = 1 | A = 1, ΛND) (C.59)

The set of parameters of the multidimensional model is:

ΛND
def
=

(
v0, v1, v01, v11, vD

00, vG
00, γ00, β00, vD

01, vG
01, γ01, β01, σ11, V11

)
(C.60)

From (C.47), (C.51), (C.53), (C.55), (C.56), (C.57), (C.58) and (C.59), the complete model can be

written as follows.

The priors of the frame state:

P (A) = v
δKr(A−0)
0 · vδKr(A−1)

1 (C.61)

where δKr is the Kronecker function (not to be confused with the Dirac pdf δ0).

The conditional priors of the sector state, for one sector Sš:

P (Bš | A) = δKr (Bš − 0) · δKr (A− 0) + v
δKr(Bš−0)
01 · vδKr(Bš−1)

11 · δKr (A− 1) (C.62)
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The likelihood of the data ζ
š

for one sector Sš, given the frame and sector states:

p
(

ζ
š

∣∣∣ Bš, A
)

= δKr (Bš − 0) · δKr (A− 0) ·
[
vD
00 · δ0

(
ζ

š

)
+ vG

00 · Gγ00,β00

(
ζ

š

)]

+ δKr (Bš − 0) · δKr (A− 1) ·
[
vD
01 · δ0

(
ζ

š

)
+ vG

01 · Gγ01,β01

(
ζ

š

)]

+ δKr (Bš − 1) · δKr (A− 1) ·
[
Rσ11,V11

(
ζ

š
− γ01 · β01

)]

(C.63)

C.2.2 EM Derivation

E step

In the E-step, we need to estimate the posteriors of the (A = 1) and (B š = 1, A = 1) events. The

posteriors of the other events (A = 0) and (B š = 0, A = 1) are their respective 1-complements.

The first posterior is directly obtained from the Bayes rule:

P
(

A = 1 | ζ
1:Nš

, ΛND

)
=

p
(

ζ
1:Nš

∣∣∣ A = 1, ΛND

)
· v1

p
(

ζ
1:Nš

∣∣∣ A = 0, ΛND

)
· v0 + p

(
ζ

1:Nš

∣∣∣ A = 1, ΛND

)
· v1

(C.64)

and each of the 3 terms p
(

ζ
1:Nš

∣∣∣ A, ΛND

)
expands as a product of individual likelihoods, given by

(C.47). Note that in the case of a zero value ζ
š

= 0, an (indefinite) Dirac term will appear in all 3

terms, hence it simplifies out and only the corresponding (finite) Dirac weights remain.

The second posterior can be obtained from the following decomposition:

P
(

Bš, A | ζ
1:Nš

, ΛND

)
= P

(
Bš | A, ζ

1:Nš
, ΛND

)
· P
(

A | ζ
1:Nš

, ΛND

)
(C.65)

which, using (C.48), becomes:

P
(

Bš, A | ζ
1:Nš

, ΛND

)
= P

(
Bš | A, ζ

š
, ΛND

)
· P
(

A | ζ
1:Nš

, ΛND

)
(C.66)
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The last term of the RHS of (C.66) is given by (C.64), and the first term develops into:

P
(

Bš | ζ
š
, A, ΛND

)
=

p
(

ζ
š
, Bš, A

∣∣∣ ΛND

)

p
(

ζ
š
, A

∣∣∣ ΛND

) (C.67)

=
p
(

ζ
š

∣∣∣ Bš, A, ΛND

)
· P (Bš | A, ΛND) · P (A | ΛND)

p
(

ζ
š
, A

∣∣∣ ΛND

) (C.68)

=
p
(

ζ
š

∣∣∣ Bš, A, ΛND

)
· P (Bš | A, ΛND)

p
(

ζ
š

∣∣∣ A, ΛND

) (C.69)

This decomposition is valid for both (B š = 0, A = 1) and (B š = 1, A = 1) events, hence:

P
(

Bš = 1 | ζ
š
, A = 1, ΛND

)
(C.70)

=
p
(

ζ
š

∣∣∣ Bš = 1, A = 1, ΛND

)
· P (Bš = 1 | A = 1, ΛND)

1∑

B=0

p
(

ζ
š

∣∣∣ Bš = B, A = 1, ΛND

)
· P (Bš = B | A = 1, ΛND)

(C.71)

=
g11

(
ζ

š

)
· v11

g01

(
ζ

š

)
· v01 + g11

(
ζ

š

)
· v11

(C.72)

M step

To derive the M-step, the KL divergence

KL
[
P
(

Bš, A | ζ
1:Nš

, ΛND

)
, P̂

(
Bš, A | ζ

1:Nš
, Λ̂ND

)]
(C.73)

can be written similarly to (C.16), where ΛND and Λ̂ND are the current parameters and new pa-

rameters, respectively. As in Section C.1.2, from now on we omit ΛND whenever possible, using

the P and P̂ notations to distinguish between current parameter values ΛND and new parameter

values Λ̂ND. Similarly to Section C.1.2, a lower bound on the likelihood of the observed data can be

found using the fact that the KL divergence is always positive:

∑

t

log p̂
(
ζ

1:Nš
= ζt

)
≥

∑

t

〈
log p̂

(
ζ

1:Nš
= ζt, B1:Nš

, A
)〉

P
“

B1:Nš
, A | ζ

1:Nš
=ζt

” (C.74)

where ζt
def
= [ζ1,t, · · · , ζNš,t]

T is the vector of activeness values for all sectors, in the time frame t.
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From the decomposition:

p̂
(
ζ

1:Nš
, B1:Nš

, A
)

= p̂
(

ζ
1:Nš

∣∣∣ B1:Nš
, A
)
· P̂
(
B1:Nš

∣∣ A
)
· P̂ (A) , (C.75)

the RHS of (C.74) can be decomposed into a sum of 3 terms Ξ3 + Ξ4 + Ξ5, where:

Ξ3
def
=

∑

t

〈
log p̂

(
ζ

1:Nš
= ζt

∣∣∣ B1:Nš
, A
)〉

P
“

B1:Nš
, A | ζ

1:Nš
=ζt

” (C.76)

Ξ4
def
=

∑

t

〈
log P̂

(
B1:Nš

∣∣ A
)〉

P
“

B1:Nš
, A | ζ

1:Nš
=ζt

” (C.77)

Ξ5
def
=

∑

t

〈
log P̂ (A)

〉
P
“

B1:Nš
, A | ζ

1:Nš
=ζt

” (C.78)

The aim of the M-step is to find new parameter values Λ̂ND that will maximize the sum Ξ3 + Ξ4 + Ξ4,

in order to increase the overall likelihood of the observed data {ζš,t}. From (C.47) we obtain:

Ξ3 =
∑

š,t

〈
log p̂

(
ζ

š
= ζš,t

∣∣∣ Bš, A
)〉

P
“

B1:Nš
, A | ζ

1:Nš
=ζt

” (C.79)

which can be shown to be equal to:

Ξ3 =
∑

š,t

〈
log p̂

(
ζ

š
= ζš,t

∣∣∣ Bš, A
)〉

P
“

Bš, A | ζ
1:Nš

=ζt

” (C.80)

As for Ξ4, from (C.49) we obtain:

Ξ4 =
∑

š,t

〈
log P̂ (Bš | A)

〉
P
“

Bš, A | ζ
1:Nš

=ζt

” (C.81)

As for Ξ5, it is directly equal to:

Ξ5 =
∑

t

〈
log P̂ (A)

〉
P
“

A | ζ
1:Nš

=ζt

” (C.82)

Considering the definition of the model (C.61), (C.62) and (C.63), it can be shown that:

• The priors v0 and v1 only appear in Ξ5, under a form similar to w0 and w1 in Ξ2 (Section C.1.2).

• The conditional priors v01 and v11 only appear in Ξ4, similarly to w0 and w1 in Ξ1 (Sec-

tion C.1.2).

• The weights
(
vD
00, vG

00

)
,
(
vD
01, vG

01

)
only appear in Ξ3, similarly to

(
wD

0 , wR
0

)
in Ξ1 (Section C.1.2).
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• The parameters γ00, β00 appear only in Ξ3, not tied to any other parameter.

• The parameters γ01, β01, σ11, V11 appear only in Ξ3 and are tied together in a non-linear

fashion, similarly to the Rice and the Shifted Rice in Section C.1.2.

Therefore, a reasoning similar to Section C.1.2 leads to the following update equations.

For the frame-level priors:

v̂0 =

∑

š,t

P
(0)
š,t

∑

š,t

P
(0)
š,t +

∑

š,t

P
(1)
š,t

=
1

Nš ·Nt

·
∑

š,t

P
(0)
š,t and v̂1 = 1− v̂0 (C.83)

For the sector-level conditional priors:

v̂01 =

∑

š,t

P
(01)
š,t

∑

š,t

P
(01)
š,t +

∑

š,t

P
(11)
š,t

and v̂11 = 1− v̂01 (C.84)

For the “inactive frame, inactive sector” (Dirac + Gamma) mixture weights:

v̂D
00 =

∑

š,t
ζš,t=0

P
(00)
š,t

∑

š,t
ζš,t=0

P
(00)
š,t +

∑

š,t
ζš,t>0

P
(00)
š,t

and v̂G
00 = 1− v̂D

00 (C.85)

Replacing “00” with “01” in (C.85) gives the update equations for v̂D
01 and v̂G

01.

Parameters γ00 and β00 are updated within the {γ00 > 1, β00 > 0} space through numerical opti-

mization, by maximizing the following sum (e.g. using the simplex method):

∑

š,t
ζš,t>0

P
(00)
š,t · log Gγ00,β00

(ζš,t) (C.86)

Parameters γ01, β01, σ11 and V11 are updated within the {γ01 > 1, β01 > 0, σ11 > 0, V11 ≥ 0} space,

through numerical optimization, by maximizing the following sum:

∑

š,t
ζš,t>0

P
(01)
š,t · log Gγ01,β01

(ζš,t) +
∑

š,t
ζš,t>γ01β01

P
(11)
š,t · logRσ11,V11

(ζš,t − γ01 · β01) (C.87)
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Figure C.4. Fit of the multidimensional model described in Section C.2: (a) automatic initialization, (b) final pdfs
G00,G01,R11 and the mixture, after convergence of EM.

Implementation Details

EM Implementation: similarly to Section C.1.2, the possibly large data {ζš,t} (e.g. 70000 frames

for 20 minutes) is reduced to a fixed, small number of frames (e.g. 1000), by first ordering the

frames (ζ1, · · · , ζt, · · · , ζT ) by their maximum value max
š

(ζš,t), and second picking 1000 frames at

equal intervals along the ordered list. This way the computational cost of each EM iteration is

drastically reduced, and the cost is independent of the size of the data.

As for the M-step, contrary to the 1-dimensional case, we found in practice that a moment-based

approximation produces quite different results after the convergence of EM, than the numerical

optimization of the exact sums (C.86) and (C.87). Therefore, the above-described data reduction and

the numerical optimization are used for all multidimensional results reported in this thesis.

Initialization: an approach similar to Section C.1.2 is used. For the initialization only, all data

is stacked into 1-dimension, and considered as a mixture of a Gamma with parameters γ (init), β(init)

and a Shifted Rice with shift γ(init) · β(init). As in Section C.1.2, moment-based methods are used

to initialize the Gamma, then the Shifted Rice, within an automatic, multiple initialization ap-

proach. Finally both G00 and G01 are initialized with the same parameters γ(init), β(init). As in the

1-dimensional case, this automatic initialization makes the whole EM fitting process fully deter-

ministic. Figures C.4a and C.4b respectively depict an example of automatic initialization, and the

final pdfs after convergence of EM.



Appendix D

Comparison of Detection Features

for Localization

This appendix presents an experimental comparison of four different features for speech detec-

tion. This task differs from the usual speech/silence classification task, because the purpose is to

determine, for each time frame, whether an active speaker can be correctly localized or not. The

evaluation is conducted using two different azimuth localization methods, GCC-PHAT (Knapp and

Carter, 1976) and SRP-PHAT (DiBiase, 2000). Ideally, a “good” feature for localization-oriented

speech detection would exhibit smaller localization errors when the detection threshold is more

conservative. In the following, we first describe the four detection features and their usage, then

the two localization methods GCC-PHAT and SRP-PHAT. The single source recording seq01 from

the AV16.3 Corpus (Chapter 4) was used for evaluation, using the first circular 8-microphone array.

In both GCC-PHAT and SRP-PHAT cases, we are not only evaluating each detection feature, but

rather its complete integration within an automatic threshold selection system, as in Section 5.3.2.

The goal is to determine whether a feature that allows for good classification of all time frames

(speech and silence) also allows for good localization precision (azimuth error on speech frames

only). The selected range of threshold values corresponds to target False Alarm Rate values FART

from 1e-14 % to 99.0%. As explained in Section 5.3.2, no training data is needed for this automatic

threshold selection strategy. For each of the SNR, energy and SRP-PHAT features, we tried several

217
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types of models, and picked the one providing a decent fit to the data, as described below. For the

SAM-SPARSE-MEAN feature we used the multidimensional approach introduced in Section 5.3.2.

SNR estimate for frame-level detection: The multimicrophone SNR estimate presented

in (Chen and Ser, 2000) was implemented to evaluate the instantaneous SNR within each time

frame (a non-negative value). The probabilistic model described in Section C.1 is fitted in an un-

supervised manner on all SNR estimate values, where silence and speech are each modelled with

a Rice pdf. Using the fitted model, the posterior probability of having speech is then estimated for

each time frame. Based on all estimated posteriors, a threshold on the posterior probability is then

selected, corresponding to a given target FART, as in (5.32) and (5.33). Finally, each time frame is

classified as “silence” or “speech” by comparing the posterior probability of activity to the threshold.

Energy for frame-level detection: The same type of approach is used as for the SNR estimate.

The feature is the log frame energy. Speech and silence are each modelled with a Gaussian pdf.

SRP-PHAT value for frame-level detection: The same type of approach is used as for the

SNR estimate. Within each time frame, the multimicrophone location-dependent SRP-PHAT metric

defined in (DiBiase, 2000) is maximized, by searching through locations in space. If negative, the

obtained maximum value is replaced with zero, thus yielding a feature value between 0 and 1.

Speech and silence are each modelled with a Rice pdf, as detailed in Section C.1.

SAM-SPARSE-MEAN for frame-level detection: We used the multidimensional sector-based

detection-localization approach described in Section 5.3.2. The frame-level posterior probability of

activity was extracted using (C.64), and the threshold was selected as in (5.32) and (5.33).

Localization methods: In order to evaluate the four detection features, we test them as a

prior detection step for two different localization methods: GCC-PHAT (Knapp and Carter, 1976)

and SRP-PHAT (DiBiase, 2000). GCC-PHAT is implemented using the two squares of microphones

defined by the array, as in the FASTTDE implementation described in Section 5.4.5. Whenever

none of the two squares produces solvable equations, or when they produce two resulting direction

estimates differing by more than 90 degrees, the time frame is dropped. This happened in 13.4 % of

the time frames. The SRP-PHAT method (DiBiase, 2000) uses all 8 microphones to find the location

in space that maximizes the SRP-PHAT metric. It is always solvable, thus no frame is dropped.

Results are reported in Figures D.1 and D.2. “RMS” stands for Root Mean Square azimuth error.

From Figures D.1a and D.2a, energy appears not to be an adequate measure for speech detection
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in the localization context, because increasing the energy threshold to high values does not permit

to reach a RMS localization error smaller than 10 degrees. This confirms the study conducted

in Section 3.1.3. The other three measures exhibit decent behaviour: in both GCC-PHAT and

SRP-PHAT cases, increasing the detection threshold permits to reach a precision below 10 degree

in terms of RMS error.

A more detailed analysis is presented in Figures D.1b and D.2b, where only results below 10 de-

gree RMS error are considered. It appears clearly that only SAM-SPARSE-MEAN allows to reduce

the RMS error, as the detection threshold is increased. A possible reason for this success is that a

high SAM-SPARSE-MEAN value corresponds to a large bandwidth occupied by the speech source.

This in turn directly impact on the precision of both GCC-PHAT and SRP-PHAT location estimates.
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Figure D.1. GCC-PHAT localization: Variation of the RMS azimuth error (in degrees) when the detection threshold is
varied. “% of frames” is the proportion of active frames that are above a given value of the detection threshold. In (b),
only frames with a localization error below 10 degrees are considered.
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Figure D.2. SRP-PHAT localization: Variation of the RMS azimuth error (in degrees) when the detection threshold is varied.
“% of frames” is the proportion of active frames that are above a given value of the detection threshold. In (b), only
frames with a localization error below 10 degrees are considered.



Appendix E

Some Analytical Formulas for

Single Gaussians

All formulas in this Appendix are valid in any dimensionality D ∈ N \ {0}. Assume that N data

samples in RD, denoted ξ1:N
def
= (ξ1, · · · , ξN ), are modeled with a single Gaussian of mean µ ∈ RD

and covariance matrix Σ ∈ RD×D. For the covariance matrix Σ, we use the best unbiased estimate

(normalization by N−1). The log likelihood of the N data samples, given the single Gaussian model

Nµ,Σ, can be computed without the data, by using the analytical formula:

log p (ξ1:N | Nµ,Σ ) = − N ·D
2
· log 2π − N

2
· log |Σ| − (N − 1) ·D

2

Similarly, assume two data sets of N1 and N2 samples, each modelled with a single Gaussian, of

respective parameters (µ1, Σ1) and (µ2, Σ2). The merge of the two data sets can be modelled with

a single Gaussian, whose parameters
(
µ1+2, Σ1+2

)
can be calculated without the data, using the

analytical formulas:

µ1+2 =
N1 · µ1 + N2 · µ2

N1 + N2

Σ1+2 =
(N1 − 1) ·Σ1 + N1 · µ1 · µT

1 + (N2 − 1) ·Σ2 + N2 · µ2 · µT
2 − (N1 + N2) · µ1+2 · µT

1+2

N1 + N2 − 1
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Appendix F

Proof of the Rayleigh-Distributed

Magnitude Spectrum

In this section we derive the Rayleigh magnitude-domain silence model of |X (t) (k) | (Section 8.2.1),

from a white Gaussian assumption on the pre-emphasized signal x(t)− 0.97 · x(t− 1).

First, let us recall a result from (Rice, 1944, 1945). Rice showed that given two zero-mean

Gaussian, uncorrelated r.v.s A and B with same standard deviation σ, and R
def
= |A + jB|, the r.v. R

has a Rayleigh pdf:

p (R) =
R

σ
· e− R2

2σ2 for R > 0. (F.1)

Let us now define x
def
= [x (1) , · · · , x (2NF)]

T, a vector of 2NF uncorrelated1 zero-mean Gaus-

sian r.v.s x (1) , · · · , x (2NF) with same standard deviation σ. The DFT of x is: X
def
= F · x,

where the matrix F is defined by (2.7).

For k ∈ {1, · · · , 2NF}, let us define the two r.v.s A (k) and B (k):





A (k)
def
= < (X (k)) =

2NF∑

n=1

x (n) · cos
(
−π · (k − 1) · n− 1

NF

)

B (k)
def
= = (X (k)) =

2NF∑

n=1

x (n) · sin
(
−π · (k − 1) · n− 1

NF

) (F.2)

1Uncorrelation and independence are equivalent for Gaussian r.v.s.
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For k = 1 and k = NF + 1 we obtain:

A (1) =
∑2NF

n=1 x (n) and B (1) = 0

A (NF + 1) =
∑2NF

n=1 x (n) · (−1)
n−1

and B (NF + 1) = 0

For k ∈ {2, · · · , NF, NF + 2, · · · , 2NF}: the r.v. A (k) (resp. B (k)) is a weighted sum of zero-mean,

single Gaussian r.v.s, therefore (Delmas, 1993, p. 99) it is also a zero-mean, single Gaussian r.v.

with variance:





σ2
A(k) = σ2 ·

2NF∑

n=1

cos2
(

π · (k − 1) · n− 1

NF

)

σ2
B(k) = σ2 ·

2NF∑

n=1

sin2

(
π · (k − 1) · n− 1

NF

) (F.3)

Given that cos2 u = 1
2 · (1 + cos 2u) and sin2 u = 1

2 · (1− cos 2u) we can write:





σ2
A(k) =

σ2

2

(
2NF +

2NF∑

n=1

cos

(
2π · (k − 1) · n− 1

NF

))

σ2
B(k) =

σ2

2

(
2NF −

2NF∑

n=1

cos

(
2π · (k − 1) · n− 1

NF

)) (F.4)

Let us now define α (k)
def
= e

j2π k−1
NF . For k ∈ {2, · · · , NF, NF + 2, · · · , 2NF} we have α (k) 6= 1.

We also have [α (k)]
2NF = 1. Hence:

2NF∑

n=1

e
j2π(k−1) n−1

NF =

2NF−1∑

n=0

[α (k)]
n

=
1− [α (k)]

2NF

1− α (k)
= 0 (F.5)

From (F.4), and the real part of (F.5), we conclude that: σA(k) = σB(k) = σ
√

NF. Similarly,

the cross-correlation σA(k)B(k)
def
= E {A (·) kB (k)} can be shown to be zero, using the imaginary

part of (F.5) and the uncorrelation hypothesis on the r.v.s x (1) , · · · , x (2NF) . To conclude, we

have shown that the r.v.s A (k) and B (k) are zero-mean, uncorrelated single Gaussian r.v.s of same

standard deviation σ
√

NF, therefore the result of Rice applies to |X (k)| = |A (k) + jB (k)|:

For k ∈ {2, · · · , NF, NF + 2, · · · , 2NF}, |X (k)| has a Rayleigh pdf of parameter σ
√

NF. 2
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