
TROPER
NOITA CI

N
U

M
MOC

P AID I

MULTIMODAL DATA FLOW CONTROLLER

Danil Korchagin

Idiap-Com-01-2009

NOVEMBER 2009

Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny
T +41 27 721 77 11 F +41 27 721 77 12 info@idiap.ch www.idiap.ch

Multimodal Data Flow Controller

Danil Korchagin

Idiap Research Institute,

P.O. Box 592, CH-1920 Martigny, Switzerland
Danil.Korchagin@idiap.ch

Abstract. In this paper, we describe a multimodal data flow controller capable

of reading most multichannel sound cards and web cameras, synchronising

media streams, being a server to stream captured media over TCP in raw

format, being a client to receive media streams over TCP in raw format and

using unified interface for online transmission.

Keywords: audio capturing, video capturing, synchronisation, transmission.

1 Introduction

The generic scenario of multimodal processing implies the use of one video capture

device and multiple audio capture devices in a single room. The present software

implementation concerns the simplification of using multiple capture devices for

following multimodal analysis. This implies capturing, synchronisation and

transmission via network of raw media streams. The graphical user interface (GUI) of

corresponding software is shown on figure 1. It has video (left side) and audio (right

side) related controls with preview windows. The software was developed and

compiled under Microsoft Visual Studio 2008 for Windows platform.

Fig. 1. Data flow controller GUI.

2 Audio Capturing

Real-time mono/stereo audio capturing is relatively easy task due wide

standardisation and compatibility of available consumer sound cards and media

libraries. Nevertheless in case of multiple channel use (4, 8, or even 26) we are

restricted to the choice of professional sound cards. Official support for most

professional sound cards is normally restricted to Microsoft Windows and Mac OS X.

In Windows series preceding Widows Vista high latency audio mixing kernels

(KMixer) were used. In Windows Vista, KMixer has been removed and replaced by a

new WaveRT port driver. WaveRT is also known to be high latency port, which

cannot provide synchronised audio from multiple devices and does not support

external clocks. In addition, none of KMixer/WaveRT provides direct access to more

than 2 input channels. To access more than 2 channels ASIO (Audio Stream

Input/Output) protocol is the best choice for Windows platform.

ASIO [1] is a computer soundcard driver protocol for digital audio specified by

Steinberg, providing a low-latency and high fidelity interface between a software

application and a computer's sound card. ASIO bypasses the normal audio path from

the user application through layers of intermediary Windows operating system

software, so that the application connects directly to the soundcard hardware. Each

layer that is bypassed means a reduction in latency, the delay between input signals

from the soundcard being available to the application. In this way ASIO offers a

relatively simple way of accessing multiple audio inputs and outputs independently.

Its main strength lies in its method of bypassing the inherently high latency of

Windows audio path, allowing direct, high speed communication with audio

hardware.

ASIO interface support is normally restricted to Microsoft Windows, since other

operating systems (e.g. Mac OS X or Linux) do not have such mixer latency problems

(Core Audio and ALSA). As of 2007 there is also an experimental ASIO driver for

Wine, a Windows layer for Linux. All ASIO interfaces are written in pure C.

Another known issue – Microsoft Windows, Linux and Mac OS X are based on

multitasking. A multitasking works by running lots of separate programs or tasks in

turns, each one consuming a share of the available CPU (processor) and I/O

(Input/Output) cycles. To maintain a continuous audio stream, small amounts of

system RAM (buffers) are used to temporarily store a chunk of audio at a time. If the

buffers are too small and the data runs out before Windows can empty them, we get a

glitch in the audio stream that sounds like a click or pop. If the buffers are far too

small, these glitches occur more often, firstly giving rise to occasional crackles and

eventually to almost continuous interruptions that sound like distortion as the audio

starts to break up regularly. Making the buffers a lot bigger immediately solves the

vast majority of problems with clicks and pops, but has an unfortunate side effect –

the big latency. A typical ASIO buffer size of 256 samples at 48 kHz results in

latency of 5.3 ms (43.7 ms for the buffer size of 2048 samples).

3 Video Capturing

One of the ways to implement video capturing is based on Microsoft DirectShow [2],

an architecture for streaming media on the Windows platform. DirectShow supports

capture from digital and analogue devices based on the Windows Driver Model

(WDM) or Video for Windows. It automatically detects and uses video acceleration

hardware when available, but also supports systems without acceleration hardware.

DirectShow is based on the Component Object Model (COM) and designed for

C++. Microsoft does not provide a managed API for DirectShow. DirectShow

simplifies capturing tasks, format conversion and media playback. At the same time,

it provides access to the underlying stream control architecture for applications that

require custom solutions.

DirectShow is known to be more complex architecture than the standard Windows

AVICap class implemented in AVICAP32 dynamic library (Windows platform),

which provides applications with a message-based interface to access video

acquisition hardware and to control the process of streaming video capture to a disk.

AVICAP32 exports capCreateCaptureWindow function which is used for creating

AVICap window. It encapsulates standard AVICap window and also gives

independent interface to WDM drivers for USB devices.

The initialisation of most of the cameras is relatively easy and requires few lines of

code in C#:

// Setup a capture window

mCapHwnd = capCreateCaptureWindowA("WebCap", 0, 0, 0,

 mWidth, mHeight,

 this.Handle.ToInt32(), mDeviceID);

// Connect to the capture device

SendMessage(mCapHwnd, WM_CAP_CONNECT, 0, 0);

SendMessage(mCapHwnd, WM_CAP_SET_PREVIEW, 0, 0);

The grabbing new frame and copying it to the clipboard requires two extra line of

code:

SendMessage(mCapHwnd, WM_CAP_GET_FRAME, 0, 0);

SendMessage(mCapHwnd, WM_CAP_COPY, 0, 0);

Disconnection from the video source is performed via corresponding message:

SendMessage(mCapHwnd, WM_CAP_DISCONNECT, 0, 0);

The described interface can be used in C++ as well with implications of the C++

rules. The frame rate can be user driven, timer driven or device driven.

The data flow controller is based on AVICAP32 dynamic library, though for low-

latency streaming and high fps we recommend to use DirectShow as more appropriate

architecture.

4 Synchronisation

Audio/video synchronisation is essential not only to reproduce the audio/video

streams in remote location, but also for joint audio/video analysis algorithms, results

interpretation and composition. In a professional setup, one might expect to be

synchronised via a common clock or similar [3]. Consumer level devices, however,

do not normally provide such capabilities. The only exception is usage of daisy

FireWire chain, though it restricts all devices to be FireWire compatible and all

captured streams to be within FireWire bandwidth. In the data flow controller the

synchronisation is achieved by time-stamping all streams inside software main

process MasterController, responsible for inter-process synchronisation and

interactions. We use the 64-bit timestamps that represent the numbers of 100-

nanosecond intervals that have elapsed since 12:00 midnight, January 1, 1601 A.D.

(C.E.) Coordinated Universal Time (UTC).

Inter-process interactions are shown on figure 2. The process MasterController

(C#) is responsible for all interactions including asynchronous data transmission. The

process Microphone (C#) and the process MicArray (C/C++) are KMixer and ASIO

implementations for capturing audio streams. The process WebCam (C#) is

responsible for capturing images from web camera. The inter-process dataflow is

event driven and thus does not restrict us from use of different programming

languages within multimodal data flow controller.

MasterController

Microphone

MicArray

Net.Sockets

WebCam

N

E

T

W

O

R

K

Fig. 2. Inter-process interactions.

In case multimodal capturing is done on different computers additional

synchronisation of corresponding computers should be done, e.g. via Network Time

Protocol [4]. The Network Time Protocol (NTP) is a protocol for synchronising the

clocks of computer systems over packet-switched, variable-latency data networks.

NTP uses UDP on port 123 as its transport layer. It is designed particularly to resist

the effects of variable latency by using a jitter buffer. NTPv4 can usually maintain

time within 10 milliseconds (1/100 s) over the public Internet, and can achieve

accuracies of 200 microseconds (1/5000 s) or better in local area networks under ideal

conditions.

5 Transmission

The transmission between different computers is done via stream sockets using TCP

protocol and based on InterNetwork address family. Each block of raw data is

prefixed by the header with additional information:

 header_size – size of the header, 22 for current version, though can be

dynamic in the future, if required;

 flags – extra information concerning data (0x1 – end of data/utterance, 0x2 –

big endian);

 time_stamp – 64-bit value that represents the number of 100-nanosecond

intervals that have elapsed since 12:00 midnight, January 1, 1601 A.D.

(C.E.) Coordinated Universal Time (UTC);

 dim1_size – width of the image or length of the signal;

 dim2_size – height of the image or number of channels;

 dim3_size – bytes per each sample (3 for 24bit images, 2 for 16bit audio).

The corresponding C++ structure:

struct PacketHeader

{

 unsigned char header_size;

 unsigned char flags;

 long long time_stamp;

 unsigned int dim1_size;

 unsigned int dim2_size;

 unsigned int dim3_size;

}

The special mode without header transmission is also available and can be

activated via specifying the command line argument /rawstream (the command

line argument /store enables dumping all streams to the files in raw format). The

required bandwidth for different types of supported data is shown in the table 1.

Table 1. Required bandwidth for different types of data.

Type Resolution Bandwidth

Audio Mono, 16bit, 16 kHz 0.24 Mbps

Audio Stereo, 16bit, 32 kHz 0.98 Mbps

Audio 4 channels, 16bit, 48 kHz 2.93 Mbps

Audio 8 channels, 16bit, 96 kHz 11.7 Mbps

Audio 24 channels, 16bit, 192 kHz 70.3 Mbps

Video 320x240, 24bit, 1 fps 1.76 Mbps

Video 512x384, 24bit, 3 fps 13.5 Mbps

Video 640x480, 24bit, 5 fps 35.2 Mbps

Video 960x540, 24bit, 15 fps 178 Mbps

Video 1920x1080, 24bit, 30 fps 1.42 Gbps

6 Performance

The performance for capturing and transmission within the same computer (Intel Core

2 Quad 2 GHz) or via direct Ethernet cable is shown in the table 2.

Table 2. CPU load during capturing and transmission.

Type Resolution CPU usage

Audio Mono, 16bit, 16 kHz 1%

Audio Stereo, 16bit, 32 kHz 2%

Audio 4 channels, 16bit, 48 kHz 6%

Video 320x240, 24bit, 1 fps 2%

Video 512x384, 24bit, 3 fps 5%

Video 640x480, 24bit, 5 fps 8%

There is also strong dependency between packet/buffer size, latency and CPU load.

Smaller packets have lower latency and higher CPU load. Bigger packets have higher

latency and lower CPU load. In our measurements we were using packetisation per

video frame and per 128 ms audio window at 16 kHz (64 ms at 32 kHz, 43 ms at 48

kHz).

7 Conclusion

In this paper, we have described a multimodal data flow controller capable of reading

most multichannel ASIO-compatible sound cards and web cameras, synchronising

media streams, being a server/client to stream/receive captured media streams over

TCP in raw formats and using unified interface for online transmission. The

performance shows acceptable CPU load for SD resolution raw video stream and CD

quality multichannel raw audio streams, which is enough for research purpose. For

industrial purpose we strongly recommend to use more appropriate industrial

standards, which have better performance, though more difficult to use.

References

1. Steinberg Third-Party Developer,

http://www.steinberg.net/en/company/3rd_party_developer.html

2. Microsoft DirectShow,

http://msdn.microsoft.com/en-us/library/dd375454(VS.85).aspx

3. Verrier, Jean-Marc: Audio Boards and Video Synchronisation. AES UK 14th Conference:

Audio - The Second Century (1999)

4. Network Time Protocol,

http://en.wikipedia.org/wiki/Network_Time_Protocol

