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Abstract [6, 7]). One of the main goals of this work is to extend the o tf

We describe a new method for phoneme sequence recognitiordiscriminative learning to the complex task of phoneme eeqe
given a speech utterance, which is not based on the HMM. In con Prediction.

trast to HMM-based approaches, our method uses a disctimgna Our proposed method is based on recent advances in kernel
kernel-based training procedure in which the learning @seds ~ Machines and large margin classifiers for sequences [8,r8¢hw
tailored to the goal of minimizing the Levenshtein distaiee in turn build on the pioneering work of Vapnik and colleagues

tween the predicted phoneme sequence and the correct sequen [6, 7]. The phoneme sequence recognizer we devise is based on
The phoneme sequence predictor is devised by mapping teelspe  Mapping the speech signal along with the target phonemesequ
utterance along with a proposed phoneme sequence to a-vectorinto a vector-space endowed with an inner-product that fisete
space endowed with an inner-product that is realized by aéer by a kernel operator. One of the well-known discriminatiearh-
kernel. Building on large margin techniques for predictinigole ing algorithms is the support vector machine (SVM), whicls ha
sequences, we are able to devise a learning algorithm wiich d ~@lréady been successfully applied in speech applicatbms[1].

tills to separating the correct phoneme sequence from aérot ~ Building on techniques used for learning SVMs, our phoneeie s
sequences. We describe an iterative algorithm for learttieg guence recognizer distills to a classifier in this vectaegpwhich

phoneme sequence recognizer and further describe an effitie is aimed at separating correct phoneme sequences fronreéacor
plementation of it. We present initial encouraging experital ~ Ones. The classical SVM algorithm is designed for simplesie
results with the TIMIT and compare the proposed method to an tasks such as binary classification and regression. Hetscexd
HMM-based approach. ploitation in speech systems so far has also been resttiztgth-
Index Terms: speech recognition, phoneme recognition, acoustic Pl decision tasks such as phoneme classification. The piene
modeling, support vector machines. sequence recognition problem is more complex, since we teeed

predict a whole sequence rather than a single number. R=evio
: kernel machine methods for sequence prediction [12, 8,rt&}-
1. Introduction duce optimization problems which require long run-time high
Most previous work on phoneme sequence recognition haségcu  memory resources, and are thus problematic for the largeselest
on Hidden Markov Models (HMM). See for example [1, 2, 3] and that are typically encountered in speech processing. Wegean

the references therein. Despite their popularity, HMMedahap- alternative approach which uses an efficient iterativerétyo for
proaches have several drawbacks such as convergence dfithe E learning a discriminative phoneme sequence predictorawets-
procedure to local maximum and overfitting effects due tdatge ing the training set a single time.

number of parameters. Moreover, HMMs do not faithfully refle This paper is organized as follows. In Sec. 2 we formally in-

the underlying structure of speech signals as they assundi-co  troduce the phoneme sequence recognition problem. Nekt, ou
tional independence of observations given the state segquéh specific learning method is described in Sec. 3. Our method is

and often require uncorrelated acoustic features [5]. Aeroprob- based on non-linear phoneme recognition function usingchter
lem with HMMs is that they do not directly address discrintive kernels. A specific kernel for our task is presented in SedVvd.
tasks. In particular, for the task of phoneme sequence gifed; present preliminary experimental results in Sec. 5 and lodec

HMMs as well as other generative models, are not trained td-mi  with a discussion in Sec. 6.
mize the Levenshtein distance between the model-baseit{aed

phoneme sequence and the correct one. 2. Problem Setti ng
In this paper we propose an alternative approach for phoneme - _
sequence recognition that builds upon recent work on aisos- In the problem of phoneme sequence recognition, we are given

tive supervised learning and overcome the inherent prabteithe speech utterance and our goal is to predict the phonemerszjue
HMM approaches. The advantage of discriminative learnigg-a corresponding to it. We represent a speech signal as a sexjaén

rithms stems from the fact that the objective function usexding acoustic feature-vectoss = (xi, ..., xr), wherex; € R for

the learning phase is tightly coupled with the decision task all1 <t < T. We denote the domain of the acoustic feature-
needs to perform. In addition, there is both theoretical @mgir- vectors byX ¢ R?. Each utterance corresponds to a sequence
ical evidence that discriminative learning algorithms kiely to of phoneme symbols. Formally, we denote each phoneme symbol

outperform generative models for the same task (see faarinst by p € P, whereP is a set of phoneme symbols, and we denote



the sequence of phoneme symbolsiy= (p1,...,px). Fur-
thermore, we denote by, € N the start time of phonemg;, (in
frame units) and we denote By= (s1,..., sx) the sequence of
all phoneme start-times. Naturally, the length of the shesg-

nal and hence the number of phonemes varies from one uteeranc

to another and thu§ and K are not fixed. We denote bp*
(and similarly X* and N*) the set of all finite-length sequences
over P. Our goal is to learn a functioyf that predicts the cor-
rect phoneme sequence given an acoustic sequence. TlHfasis,
a function fromX™ to the set of finite-length sequences over the
domain of phoneme symbolB,". We also refer tgf as a phoneme
sequence recognizer or predictor.

The ultimate goal of the phoneme sequence prediction is usu-

ally to minimize the Levenshtein distance between the ptedi
sequence and the correct one. Throughout this paper weedeyot

to theith example inS as we now describe. Denote ky;_; the
value of the weight vector before tlith iteration. Let(p}, 5;) be
the predicted phoneme sequence foritheexample according to
Wi-1,

)

(P, 57) = argmax Wiy - o (%:,P,5) .

We set the next weight vectar; to be the minimizer of the fol-
lowing optimization problem,

. 1

w0 3 ®)

[w — wia|* + C¢

whereC serves as a complexity-accuracy trade-off parameter as in

~(p, ') the Levenshtein distance between the predicted phonemethe SVM algorithm (see [7]) anglis a non-negative slack variable,

sequencep’ and the true phoneme sequenteln the next sec-
tion we present an algorithm which directly aims at minimgi
the Levenshtein distance between the predicted phonemerses
and the correct phoneme sequence.

3. TheLearning Algorithm

In this section we describe a discriminative supervisedniag
algorithm for learning a phoneme sequence recognfzgom a
training set of examples. Each example in the training sebiis-
posed of an acoustic signa| a sequence of phonemes,and a
sequence of phoneme start-times,

Our construction is based on a predefined vector feature func
tion¢ : X* x (P x N)* — H, whereH is a reproducing kernel
Hilbert space (RKHS). Thus, the input of this function is anws-
tic representationx, together with a candidate phoneme symbol
sequence and a candidate phoneme start time sequencehe
feature function returns a vector i, where, intuitively, each
element of the vector represents the confidence in the steghes
phoneme sequence. For example, one element of the featare fu
tion can sum the number of times phonep@mes after phoneme
p’, while other element of the feature function may extracippro
erties of each acoustic feature veckarprovided that phonemg
was pronounced at time The description of the concrete form of
the feature function is differed to Sec. 4.

Our goal is to learn a phoneme sequence recogtfizetich
takes as input a sequence of acoustic featkraad returns a se-
guence of phoneme symbgis The form of the functiory we use
is

1)

wherew € H is a vector of importance weights that should be

f(%) = arg max (H@X w - P(X,P, 5)) )

which indicates the loss of th#h example. Intuitively, we would
like to minimize the loss of the current example, i.e., theckl
variable ¢, while keeping the weight vectow as close as pos-
sible to our previous weight vectev;_1. The constraint makes
the projection of the correct phoneme seque(xe p;, 5;) onto

w higher than the projection of the predicted phoneme seguenc
(p;, 5;) ontow by at least the Levenshtein distance between them.
It can be shown (see [14]) that the solution to the above dptim
tion problem is

Wi = Wi—1 + oA, 4)

whereA¢, = ¢ (%, pi, 5:)—¢(Xi, p;, 5;). The value of the scalar
«; is based on the Levenshtein distang@;, p;), the different
scores thap; andp; received according tes;—1, and a parameter
C. Formally,

The optimization problem given in Eg. (3) is based on ongo-
ing work on online learning algorithms appearing in [14, 8].1
These papers demonstrated that, under some mild techoical ¢
ditions, the cumulative Levenshtein distance of the iteegpro-
cedure, """ | v(ps, pi), is likely to be small. Moreover, it can be
shown [16] that if the cumulative Levenshtein distance & ith
erative procedure is small, there exists at least one wegttor
among the vector§wy, ..., wy,,} which attains small averaged
Levenshtein distance on unseen examples as well. To find this
weight vector we simply calculate the averaged Levensidiin
tance attained by each of the weight vectors on a validagtn s

To conclude this section, we extend the family of linear

max{y(pi, p;) — Wi-1 - Ag,,0}
|Ag,I2

o = min {C’ , (5)

learned. In wordsf returns a suggestion for a phoneme sequence Phoneme sequence recognizers given in Eq. (1) to non-linear

by maximizing a weighted sum of the scores returned by the fea
ture function elements. Learning the weight veatois analogous

to the estimation of the parameters of the local probabilityc-
tions in HMMs. Our approach, however, does not requir¢o
take a probabilistic form. The maximization defined by Eq. (1
is over an exponentially large number of all possible phamest
guences. Nevertheless, as in HMMs, if the feature funcigris
decomposable, the optimization in Eq. (1) can be efficierdlgu-
lated using a dynamic programming procedure.

We now describe a simple iterative algorithm for learning th
weight vectorw. The algorithm receives as input a training set
S = {(x1,p1,51),- .-, (Xm, Pm, 5m) } Of examples. Initially we
setw = 0. At each iteration the algorithm updatesaccording

recognition functions. This extension is based on Mercer ke
nels often used in SVM algorithms [6]. Recall that the update
rule of the algorithm isw; = w;_1 + a;A¢,; and that the ini-
tial weight vector iswg 0. Thus,w; can be rewritten as,
w; = Z;:l a;A¢,; and f can be rewritten as

f(®) = argmax max Y a,(Ae; - @(%,5,9) . (6)

=1

By substituting the definition ofA¢; and replacing the inner-
product in Eq. (6) with a general kernel operatof-, -) that sat-
isfies Mercer’s conditions [6], we obtain a non-linear phoee



recognition function,

f(®)=a arg max max Za]( (%i,Pi,5i; %, P, 5)—

j=1

K(xi, 555 %,5,5)) . ()
Itis easy to verify that the definition @f; given in Eq. (5) can also
be rewritten using the kernel operator.

4. Non-Linear Feature Function

In this section we describe the specific feature function sedu
As mentioned in the previous section, our goal is to desigora n
linear phoneme sequence recognizer using Mercer kernie¢éseT
fore, rather than describing the feature functibnwe describe
a kernel operator, which computes implicitly the inner¢arct
o(%,p,3) - p(X',p',5). To simplify our notation we denote k&
the triplet(x, p, 5) and similarlyz’ denotegx’, p’, ). The kernel
operatorsk(z, z') we devise can be written as a weighted sum of
three kernel operatoi§(z,z’) = 22:1 BiKi(z,Z'), whereg; are
positive parameters. In the following we describe the tharael
operators we use.

The first kernel operatoifC;, is reminiscent of the acoustic
model, which appears in HMMs. First, for each phoneme P,
let T),(z) be the set of all frame times in which the phonepis
uttered. ThatisT,(z) = {t : Fk, pr =p A sk <t < Spt1}-
Using this definition, the first kernel operator is defined¢o b

S XY Y ()

PEP teTy(z) T€TH(2")

whereo is a predefined constant. We would like to note in passing

that the termiC (z;,z) — K1(z;, z) in Eq. (7) can be rewritten in
the following more compact form

S S

pEP LteTy(z;) T€TY(Z)
i — XTH
% .

-2 D e
Rewriting the term in the big brackets in a more compact form,

tET, () TETH(2)
exp (e =<
Zi 202

1 te Tp(ii) A
-1 t¢Tp(zi) A
0 otherwise

1%

D D D vlhEE)

PEP 7€T)(2z) t=1

(8)
where

In particular, for all frames; : such thatz; andz; agree on the
uttered phoneme, the value ¢it; z;, z;) is zero, which means
that framex; , does not effect the prediction.

Before describingC2 and s, we give a simple example of
the calculation ofC;. Assume that the phoneme sequepgis /f
aa r/ with the corresponding start-time seque¢e= (0, 3,7)

frame| 0 1 2 3 4 5 6 7 8 9
P f f f aa aa aa aa r r r
P foff f ih ih ih r r r
Table 1: Calculation ofC;: only the bold lettered phonemes are
taken into account.

and the phoneme sequengas /f ih 1/ with the start-time se-
quences; = (0, 4, 7). Expanding and comparing these sequences,
we see that frames 0-2 and 7-9 match while frames 3—-6 mismatch
(see Table 1). Note that the matched frames do not effectdq. (
in any way. In contrast, each mismatched frame influences two
summands in Eq. (8): one with a plus sign corresponding to the
sequence; (the phonemeaa/ ) and one with a minus sign cor-
responding to the sequengg(phonemesdf/ and/ih/ ).

The second kernel operat#ii; is reminiscent of a phoneme
duration model and is thus oblivious to the speech sigrelfigmd
merely examines the duration of each phoneme. D etenote a
set of predefined thresholds. For eache P andd € D let
N,.q(z) denote the number of times the phonepregopeared ip
while its duration was at leasgt, that is,N, 4(z) = |{k : pr =
P A (Sk+1 — sk) > d}|. Using this notationK; is defined to be

Z) = > > Npa(@) Nypa(Z) .

pEP deD

The last kernel operatd€s; is reminiscent of a phoneme tran-
sition model. LetA(p’, p) be an estimated transition probability
matrix from phoneme’ to phonemep. Additionally, let© be a
set of threshold values. For eaghe © let Ny(z) be the number
of times we switch from phonems,_, to phonemep,, such that
A(pr—1,pk) is at leas?, that is,No(z) = |{k : A(pr—1,px) >
6}]. Using this notationiCs is defined to be

Z) = > No(z) No(z

6co

We conclude this section with a brief discussion on
the practical evaluation of the functiory. Recall that
calculating f requires solving the optimization problem
f(x) arg maxp maxs Y70, o; (K(2;,2) — K(25,2)). A
direct search for the maximizer is not feasible since the lvem
of possible phoneme sequences is exponential in the lefigitie o
sequence. Fortunately, the kernel operator we have pezbént
decomposable and thus the best phoneme sequence can be found
in polynomial time using dynamic programming (similarlytte
Viterbi procedure often implemented in HMMs [17]).

5. Experimental Results

To validate the effectiveness of the proposed approach we pe
formed experiments with the TIMIT corpus. All the experirten
described here have followed the same methodology. Weativid
the training portion of TIMIT (excluding the SA1 and SA2 utte
ances) into two disjoint parts containing 3600 and 96 utteza.
The first part is used as a training set and the second paréis us
as a validation set. Mel-frequency cepstrum coefficientE Q@)
along with their first and second derivatives were extrateh

the speech waveform in a standard way along with cepstrahmea
subtraction (CMS). Leading and trailing silences from eath
terance were removed. The TIMIT original phoneme set of 61
phonemes was mapped to a 39 phoneme set as proposed by [1].



Correct Accuracy Ins. Del. Sub.
Kernel-based 60.8 54.9 59 108 284
HMM 62.7 59.1 3.6 105 26.8

Table 2: Phoneme recognition results comparing our kdvaséd
discriminative algorithm versus HMM.

Performance was evaluated over the TIMIT core test set by cal

culating the Levenshtein distance between the predictederhe
sequence and the correct one.

8379.

(1]

(2]

We applied our method as discussed in Sec. 3 and Sec. 4 where

0> =6,C =80, 8 = {1,0.02,0.005}, D = {5, 10, 15, ...,40}

and® = {0.1,0.2,...,0.9}. We compared the results of our

method to the HMM approach, where each phoneme was repre- [3]

sented by a simple left-to-right HMM of 5 emitting statesiw40
diagonal Gaussians. These models were enrolled as follinst:

the HMMs were initialized using K-means, and then enrolled i

dependently using EM. The second step, often called embedde [4]

training, re-enrolls all the models by relaxing the segraton
constraints using a forced alignment. Minimum values ofvéug-

ances for each Gaussian were set to 20% of the global var@nce

the data. All HMM experiments were done using ffoech pack-
age [18]. All hyper-parameters including number of statesyber
of Gaussians per state, variance flooring factor, were tuiséd)
the validation set. The overall results are given in Table/&
report the number of insertions (Ins.), deletions (Del g anbsti-
tutions (Sub.), as calculated by the Levenshtein distafice.Lev-
enshtein distance is defined as the sum of insertions, detetnd

substitutions. Accuracy stands for 100% minus the Levemsht

distance and Correct stands for Accuracy plus insertiorsscah

be seen, the HMM method outperforms our method in terms of

accuracy, mainly due to the high level of insertions of outhod,
suggesting that a better duration model should be expldves:-
ertheless, we believe that the potential of our method gelathan

the results reported and we discuss some possible improneme

(5]
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6. Discussion

To date, the most successful phoneme sequence recogni&ers h
been based on HMMs. In this paper, we propose an alternative
learning scheme for phoneme recognition which is based ®n di
criminative supervised learning and Mercer kernels. Thekwo
presented in this paper is part of an ongoing research trging

apply discriminative kernel methods to speech processing-p

lems [19, 15]. So far, the experimental results we obtaingd w

our method for the task of phoneme recognition are stillrinfe
to state-of-the-art results obtained by HMMs.

comprehensive. We intend to utilize the full power of kenmeith-
ods for phoneme recognition by experimenting with addaldea-
tures and kernels for our task.
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