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Abstract.

Current document archives are enormously large and constantly increasing and that makes it
practically impossible to make use of them efficiently. To analyze and interpret large volumes
of speech and text of these archives in multiple languages and produce structured information
of interest to its user, information distillation techniques are used. In order to access the key
information in response to a request (query), special text processing techniques such as distillation
are required. The task consists of filtering methods to extract the important portions of relevant
documents, named as snippets, to a query, as concisely and as correctly as possible. In the context
of GALE Project, the queries are matched into several predefined templates. Template 1, which
is the main focus of this work, corresponds to listing of facts about an EVENT. Answering to
template 1 questions is much similar to extraction of general passages from an IR engine. In
this work, we are implementing an iterative unsupervised method to answer the queries of this
template. The goal of unsupervised learning is to increase the performance of classifier in terms
of error rate and f-measure without depending to prior annotated data. The approach consists of
using only highly confident features such as word transcriptions extracted from query as well as
their synonyms. After forming the bootstrap model using these features, the model is improved
using self-training, and is iteratively trained during consecutive runs. Our results indicate that the
performance of the system may be improved by more than 12.5% relative in terms of classification
error and 31% relative in terms of F-measure, by using the proposed methods.
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Abstract

Current document archives are enormously large and constantly increasing
and that makes it practically impossible to make use of them efficiently. To
analyze and interpret large volumes of speech and text of these archives in
multiple languages and produce structured information of interest to its user,
information distillation techniques are used. In order to access the key in-
formation in response to a request (query), special text processing techniques
such as distillation are required. The task consists of filtering methods to ex-
tract the important portions of relevant documents, named as snippets, to a
query, as concisely and as correctly as possible.

In the context of GALE Project, the queries are matched into several prede-
fined templates. Template 1, which is the main focus of this work, corre-
sponds to listing of facts about an [EVENT]. Answering to template 1 ques-
tions is much similar to extraction of general passages from an IR engine.

In this work, we are implementing an iterative unsupervised method to an-
swer the queries of this template. The goal of unsupervised learning is to
increase the performance of classifier in terms of error rate and f-measure
without depending to prior annotated data. The approach consists of us-
ing only highly confident features such as word transcriptions extracted from
query as well as their synonyms. After forming the bootstrap model using
these features, the model is improved using self-training, and is iteratively
trained during consecutive runs. Our results indicate that the performance of
the system may be improved by more than 17% relative in terms of classifi-
cation error and 30% relative in terms of F-measure, by using the proposed
methods.

Keywords: distillation, template-based question answering, unsupervised
classification, boosting, lexical features.
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CHAPTER

1

Introduction

Documents are one of the most important repository sources of information which are produced
from textual or audio resources. Textual document are formed primarily by news feeds or blogs.
Documents pertain to large amounts of data, about an event at a certain time period. Important
documents are usually held in large archives to be accessed later for answering critical questions,
in appropriate situations. The oversize of current archives, which increase constantly, makes it
practically impossible to make use of them efficiently. Therefore, in order to access the key docu-
ments in response to a request(query), special text processing techniques are required. The task
consists of filtering methods to extract the important portions of relevant documents as concisely
and as correctly as possible. In the framework of the DARPA Global Autonomous Language Ex-
ploitation (GALE) program, this is named as distillation. Distillation is useful for direct access to
relevant information of interest in the corpus. Output or information of interest consists of useful
pieces of information to a given query, named snippets, possibly from a multilingual audio and
text corpus (Hakkani-Tür & Tur, 2007).

In GALE Project, the queries are matched into several predefined templates. Template 1, which
is the main focus of this work, corresponds to the extraction of list of facts about an [EVENT]. Data
pool to answer the query consists of a collection of documents which comes from an informa-
tion retrieval (IR) Engine. Once the documents are returned, the automated response generators
may be used to answer the query. Several methods have been developed to produce confident
responses to a question such as statistical methods for sentence extraction. In these methods, to
train the sentence extraction models, the negative and positive examples from the given answer
keys (annotated data) are extracted (Hakkani-Tür et al., 2007). Other approaches have tried to
manually write rules or patterns, for extracting sentences that may have a relevant response to a
query as well.

1.1. Related Work To Distillation

The purpose of distillation is to output ordered segments of data called snippets. Snippets can be
considered as an answer to a query. A snippet can range from a fragment of a sentence to a para-
graph.(Hakkani-Tür et al., 2007). The distillation task is similar in nature to question answering
task, however, is not the exactly same (Voorhees, 2003).

One of the significant approaches to distillation is the IXIR system which is a common work of
ICSI and SRI. In this work, basically the relevant documents are extracted by document retrieval.
DR is defined as the matching of a stated query against useful parts of free-text records. These
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CHAPTER 1. INTRODUCTION

records could be any type of unstructured text, such as newspaper articles.

A document retrieval system has two main tasks:

• Find relevant documents to user queries,
• Evaluate the matching results and sort them according to relevance.

Document classification tasks can be divided into two main sorts: supervised document classifi-
cation where some external mechanism (such as human feedback) provides information on the
correct classification for documents, and unsupervised document classification, where the classi-
fication must be done entirely without reference to external information. There is also a third sort
called semi-supervised classification, but we don’t use or discuss about this term in this work.

In IXIR approach, inside these relevant documents, relevant sentences are extracted via clas-
sification. To extract relevant documents, document retrieval process is based on Information
Retrieval(IR) and Information Extraction(IE) (Levit et al., 2007a). Relevant documents are found
with IR, and are constrained with IE annotations related to the query type.

Information Retrieval (IR) is the science of searching for information in documents for a given
query, searching for documents themselves, searching for meta-data which describe documents,
or searching within databases and extracting the sentences/snippets describing the event in the
query with associated entities.

Information Extraction (IE) serves to extract all the named entities, co-references (mentions), rela-
tionships and events in the document sources. These IE elements are preferred to be extracted from
ACE (Automatic Content Extraction) annotation guidelines, defined by the annual NIST ACE
evaluations. In next chapters, we explain more in detail about ACE annotations.

In the framework of GALE project, it has been shown that a combination of Information Ex-
traction and Information Retrieval leads into better results in terms of Recall and Precision
(Hakkani-Tür et al., 2007).

In such kind of learning methods, the classifier is usually trained by a large amount of annotated
data in corpus. However, annotated data may not be available for particular query and it is time
consuming to label them manually. In addition, labeling data by humans has a high risk of error.
Thus, the need for a model which does not require prior labeled data is evident.

An efficient classifier can be a solution to this problem. If the classifier automates sentence an-
notating, it can reduce enormously the manpower and this is feasible by an unsupervised dis-
tillation method. Full or partial sentence annotating can be later used for supervised or semi-
supervised classification, respectively.

Besides, template 1 queries are very general questions with a wide domain of responses. An-
swering to these kind of questions is much similar to extraction of general passages from an IR
engine. In other words, the meaning of template is not really applied in this case.

Having this motivation, we decided to implement an unsupervised method to answer the queries
of template 1. The approach consists of using only high confidence examples selected by help of
word transcriptions extracted from Qi plus their synonyms.

Since we assume no training data is available, we bootstrap a classifier using examples that are
relevant to the query with a high confidence (such as sentences that have all the words in the
query slot) and those that are irrelevant to the query (such as sentences that do not contain any
of the words in the query slot. Then we use this bootstrap classifier to label all sentences in
the documents that may be relevant to the query. We iterate this process until the classification
performance on the held-out set converges, or the estimated classes converge. At each iteration,
we re-train the classifier using examples that are classified with a high confidence by the classifier
of the previous iteration.

2



CHAPTER 1. INTRODUCTION

1.2. Structure of this work

Next chapter is devoted to explain the concept of different types of machine learning. Then we
explain the classification concept, a particular usage of machine learning, which will be the pivot
of this project. Throughout this work, we focus and use only one machine learning algorithm,
the Boosting algorithm. The arithmetic base of this algorithm will be explained in order to un-
derstand the further results we obtain in our experiments.

Chapter 3 discusses the practical description of distillation process. Then we talk about the GALE
program and its text processing engines. This part will be followed by some examples of template
based query answering and document triage. In the last part of the chapter, related work to
distillation technology and improvements in this area will be covered.

In chapter 4, we explain our approach in testing the AdaBoost classifier from the very begin-
ning until the development of a complete unsupervised learning algorithm. We talk about the
methods that we tried to achieve the best set of results.

Chapter 5 describes the data sets and the metrics that are particularly used in the experiments.

In chapter 6, we present the results of the various experiments that were performed and discuss
about the reasons for success or failure of the approaches.

Finally, Chapter 7 summarizes the results and deduction of current work along with the future
challenges in the area of non supervised template based query answering.

3



CHAPTER 1. INTRODUCTION

4



CHAPTER

2

Classification

This chapter describes the global term of Machine Learning and proceeds in particular with
the concept of classification. Then we explain some important terms required to understand
the subject thoroughly. Finally, we talk about a successful classification method and the
classifier tool of AT&T, AdaBoost, which performs this task. The arithmetic base of this
algorithm will be explained for a better understanding of the concept.

2.1. Machine Learning

Machine learning refers to a system capable of the autonomous acquiring and integration of
knowledge (Freitag, 2000). The ultimate goal of such as system is to develop more broadly ap-
plicable systems with more robust learning capabilities. Successful, machine learning research
could produce computer systems that learn to operate in novel environments like speech under-
standing systems that automatically adapt to new speakers and new environmental conditions.
They may act as knowledge based consultant systems that collaborate with human experts to
solve difficult problems and acquire new problem-solving tactics by observing the human’s con-
tribution to the eventual problem solution. The goal of machine learning research is to produce
a domain-independent enabling technology for a broad range of computer applications. Many ap-
plications of computers are increasingly knowledge based, i.e. dependent on a large number of
specific facts about the task domain.

This capacity to learn from experience and analytical observation, results in a system that can
continuously self-improve and consequently offer increased efficiency. Machine learning offers
the potential to remove the knowledge acquisition bottleneck that limits performance and in-
creases development costs for such systems (Sequel, 2007).

Machine learning approaches can be divided into 3 main categories:

2.1.1 Supervised Learning

Supervised Learning is a machine learning technique for creating a function from training data.
The training data consist of pairs of input objects (typically vectors), and desired outputs. The
output of the function can be a continuous value (called regression), or can predict a class label

5
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of the input object. The task of the supervised learner is to predict the value of the function for
any valid input object after having seen a number of training examples (i.e. pairs of input and
target output). To achieve this, the learner has to generalize from the presented data to unseen
situations in a "reasonable" way.

2.1.2 Semi-supervised Learning

In computer science, semi-supervised learning is a class of machine learning techniques that
make use of both labeled and unlabeled data for training - typically a small amount of labeled
data with a large amount of unlabeled data. Semi-supervised learning falls between unsuper-
vised and supervised learning. Machine-learning researches show that unlabeled data, when
used in conjunction with a small amount of labeled data, can produce considerable improve-
ment in learning accuracy. The acquisition of labeled data for a learning problem often requires a
skilled human agent to manually classify training examples. The cost associated with the labeling
process thus may render a fully labeled training set infeasible, whereas acquisition of unlabeled
data is relatively inexpensive. In such situations, semi-supervised learning can be of great prac-
tical value.

One example of a semi-supervised learning technique is self-training where the learner iteratively
classifies unlabeled data and adds the ones which have got high enough confidence to its trainnig
data, optionally with a weight. While this method is shown to be effective in a number of speech
and language processing tasks, it has the risk of diverging greatly from the optimal learner, so
a held out control is needed to measure the relative improvement. Another approach is called
co-training, in which two or possibly more learners are each trained on a set of examples, but
with each learner using a different, and ideally independent set of features for each example. For
example, for web page classification one view may be the words in the web page and another
view may be the words in the hypoerlinks pointing to that web page.

An alternative approach is to model the joint probability distribution of the features and the
labels. For the unlabeled data the labels can then be treated as ’missing data’. It is common to
use the Expectation-Maximization(EM) algorithm for finding maximum likelihood of the model.
This estimates the parameters in probabilistic models, where the model depends on unobserved
latent variables which are not directly observed but are rather inferred.

2.1.3 Unsupervised Learning

Unsupervised learning is a method of machine learning where a model is built based on obser-
vations. It is distinguished from supervised learning by the fact that there is no a priori output.
In unsupervised learning, a data set of input objects is gathered. Unsupervised learning then
typically treats input objects as a set of random variables. A joint density model is then built for
the data set.

Unsupervised learning can be used in conjunction with Bayesian inference to produce condi-
tional probabilities (i.e. supervised learning) for any of the random variables given the others.
An important usage of unsupervised learning is for clustering, which is sometimes not proba-
bilistic.

From a theoretical point of view, supervised and unsupervised learning differ only in the causal
structure of the model. In supervised learning, the model defines a set of observations, called
inputs and has on another set of observations, called outputs. The inputs are assumed to be at
the beginning and outputs at the end of the causal chain. The models can include mediating
variables between the inputs and outputs.

6
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In unsupervised learning, all the observations are assumed to be caused by latent variables, that
is, the observations are assumed to be at the end of the causal chain. In practice, models for
supervised learning often leave the probability for inputs undefined. This model is not needed
as long as the inputs are available, but if some of the input values are missing, it is not possible
to infer anything about the outputs. If the inputs are also modeled, then missing inputs cause no
problem since they can be considered latent variables as in unsupervised learning.

2.2. Important Definitions

In the rest of this work, we will use some words that are specific to machine learning and classi-
fication. Since different terminologies are used in literature, first we specify the meaning of some
expressions that will be used frequently throughout this work.

Classifier. A classifier is the tool or program used for learning process. It is based on a predic-
tive function c = f (x) that, given an instance x and a set of classes C, associates one class c ∈ C
to the instance x, it means that it classifies the instance x.

Labeled or Annotated Data. Labeled(annotated) data refers to a set of data in which each in-
stance in the data set is manually assigned a corresponding class. Unlabeled(non annotated) refers
to the instances of the data that do not have a class assigned by a human labeler.

Training or Building a Classifier. It consists of applying a learning algorithm L with some
training data Dt results in the creation of a classifier. We call this process the training phase. In
other terms, the resulting classifier is built on Dt using L.

Testing or Evaluating a Classifier. Once a classifier has been trained on some data Dt it can be
evaluated on another set of data De, with Dt ∩De = ∅. In the evaluation phase, also called testing
phase, the classifier attributes a class ce ∈ C to every instance x ∈ De. The class ce that was
attributed by the classifier to the instance x is then compared to the true class ct of the instance
x. If the two classes match, i.e. ce = ct, the classification of x is considered correct. In the
opposite case (ce 6= ct), the classification of x is considered erroneous. Different metrics can then
be used to evaluate the classification performance, based on the number and the type of instances
erroneously and correctly classified.

2.3. Classification

The major focus of Machine learning research is to automatically extract information from data
by computational and statistical methods. Hence, machine learning is closely related to data
mining and statistics.

Classification, as a sub-method of Machine Learning, can also be performed by both supervised
and unsupervised algorithms. Supervised learning has the strict meaning of classification where
the classes are known a priori and have a meaning to the user. Unsupervised document classifi-
cation or document clustering has been used to enhance information retrieval. This is based on
the clustering hypothesis, which states that documents having similar contents are also relevant
to the same query. A fixed collection of text is clustered into groups or clusters that have similar

7
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contents. The similarity between documents is usually measured either with boosting algorithms
or with the associative coefficients from the vector space model, e.g., the cosine coefficient.

Statistical classification is a statistical procedure in which individual items are placed into groups
based on quantitative information on one or more characteristics inherent in the items (referred
to as features) and based on a training set of previously labeled items.

The learning algorithm should be appropriate to the task. For example, while support vector
machines (SVM) yield top results in most of the learning tasks (Liu et al., 2006), studies have
shown that the BoosTexter tool (Schapire & Singer, 2000), which implements a boosting learning
algorithm, is particularly efficient for text classification and sentence segmentation problems.

2.4. Boosting, A Successful Classification Method

Boosting is a machine learning meta-algorithm for performing supervised learning. Boosting
tries to create a single strong learner from a set of weak learners. A weak learner is defined to
be a classifier which is only slightly correlated with the true classification. In contrast, a strong
learner is a classifier that is arbitrarily well-correlated with the true classification. While boosting
is not basically a constrained algorithm in general, most boosting algorithms follow a template.
Typically boosting occurs in iterations, by incrementally adding weak learners to a final strong
learner. At every iteration, a weak learner learns the training data with respect to a distribution.
The weak learner is then added to the final strong learner. This is typically done by weighting
the weak learner in some manner, which is typically related to the weak learner’s accuracy. After
the weak learner is added to the final strong learner, the data is reweighed and examples that
are misclassified gain weight and examples that are classified correctly lose weight. Thus, future
weak learners will focus more on the examples that previous weak learners misclassified (Kearns,
1998). Briefly, the algorithm tries to improve the final result of a learning algorithm by iteratively
training a classifier on a weighted training set of data. At the end of the learning process, the
weighted linear combination of the classifiers built at each iteration forms the final classifier.

Some algorithms refer to themselves as "boosting algorithms", and these algorithms can be quite
effective. However, only provable boosting algorithms should adopt the title "boosting". These
algorithms that are similar to boosting are sometimes called "leveraging algorithms".

The main variation between many boosting algorithms is their method of weighting training data
points and hypotheses. AdaBoost is very popular and perhaps the most significant historically as
it was the first algorithm that could adapt to the weak learners. However, there are many more
recent algorithms such as LPBoost, TotalBoost, BrownBoost, MadaBoost, LogitBoost, and others.

2.5. AdaBoost Description

During the last decades, a large number of machine learning methods have been proposed for
text classification tasks which typically built around the Bag-of-Words model known from in-
formation retrieval. But this approach comes with deficiencies that motivate the integration of
features on a higher semantic level than single words(Bloehdorn & Hotho, 2005).

Boosting has its roots in a theoretical framework for studying machine learning called the "PAC"
learning model. They tried to enhance a weak learning algorithm which performs just slightly
better than random guessing in the PAC model in order to make it boosted into an arbitrarily
accurate strong learning algorithm. Boosting is part of a larger theory called ensemble learn-
ing. While ordinary machine learning algorithms, such as decision trees or preceptors, work

8
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by searching the best hypothesis for a set of data, ensemble learning algorithms have a differ-
ent approach. Rather than finding a unique hypothesis, they construct a committee of simple
hypotheses and combine them to obtain a final hypothesis.

AdaBoost is a well-known algorithm that uses boosting. In this work we use the particular Ad-
aBoost.MH version of the algorithm by AT&T. This is the algorithm which we will refer to as
Boosting in the rest of this report and implicitly when mentioning boosting in general.

When AdaBoost was first presented, immediately it drew the attention in the machine learn-
ing community, since it was one of the most accurate classification algorithms available at
that time(Freund & Schapire, 1995). At the beginning, researchers associated it to bagging and
thought that the major strength of Boosting had to do with variance reduction. But experiences
showed that Boosting also reduces bias and thus differs from bagging(Friedman et al., 1998). It
has since then led to more research, both on the practical side and on the theoretical side and is
still a widely and lively discussed topic in the machine learning field. An interesting characteris-
tic of Boosting is that it seems to be resistant to over-fitting. This phenomenon had no theoretical
explanation until 1998 when Schapire et al. found an upper bound error for Boosting and argued
that the non over-fitting effect was explained by the fact that Boosting produced a high margin
distribution. Being an efficient learning algorithm in general, Boosting is quite appropriate for
template-based query answering task since it handles word N-grams which is one of the basic
ideas for our approach as will be explained later.

2.6. Algorithm

BoosTexter implements different versions of the AdaBoost algorithm for the task of text catego-
rization. The version used in this work has a discriminative power because it not only checks for
the presence of a feature but also for the absence of it. As explained above, the idea of boosting is
to run several times one simple classifier on a weighted training set of data, changing the weights
at each iteration.

Particularly at each iteration t, a new simple classifier ht is built and all simple classifiers ht, t ∈
[1, . . . , T] are combined at the end of the T iterations of the learning process into one final classifier
f (x, l):

f (x, l) =
T

∑
t=1

αtht(x, l) (2.1)

with αt the weight of the weak learner ht.

In the case of boosting, a weak learner has the same form as a one-level decision tree. The pseudo-
code of the AdaBoost.MH algorithm is shown below.

Each training example i is assigned L weights D(i, l), i.e. one weight for each possible class. At
the beginning of the learning process, all weights are equal. At each iteration, a weak learner
finds a weak hypothesis ht(x, l) : X → < given the distribution of the weights D(i, l). The sign
of ht(x, l) is interpreted as a prediction of whether the label l belongs to the set of labels assigned
to the sample x (ht(x, l) > 0) or not (ht(x, l) ≤ 0). Once this evaluation has been done for each
label l, the following function Y[l] can be described:

Y[l] =
{

1, if l ∈ Y
0, if l /∈ Y

The weights are then updated such that the next iteration t + 1 will force the weak learner to
focus on the examples that were wrongly classified at the last iteration t. The final hypothesis is
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Given the training data: (x1, Y1), ..., (xm, Ym) where xi ∈ X , Yi ⊆ Y
Initialize the distribution D1(i, l) = 1/mk, i = 1..m, k = 1..|Y|
for each iteration t = 1..T do

Train a base learner ht using distribution Dt
Update

Dt+1(i, l) =
Dt(i, l)e(−αYi [l]ht(xi ,l))

Zt
(2.2)

where Zt is a normalization factor and αt is the weight of the base learner
end for
The final classifier is the weighted sum of the ht(x, l):

f (x, l) =
T

∑
t=1

αtht(x, l)

FIG. 2.1: AdaBoost.MH

a weighted linear combination of the hypotheses of all iterations, with higher weights attributed
to the weak hypotheses with a lower classification error rate.

The final output of the boosting algorithm described in the above Algorithm yields a real number
value w =f (x, l)for each example x and label l. These values are weights of the label l, attributed
to a sample x. To achieve the final goal of classifying, the weights f (x, l)need to be interpreted
and mapped to a class. The conversion from the weights output by the Boosting to the attribution
of a class is done as described below.

Each weight is turned into probability p(l|x) according to the following equation:

p(l|x) =
1

1 + e−2 f (x,l)T
(2.3)

where T is the number of iterations used to train the classifier and f (x, l) the final classifier output
by the learning algorithm.

These probabilities can then be converted into a binary classification by using a threshold thr.

H(x) =
{

1, if p(Cs|x) > thr
0, if p(Cs|x) ≤ thr (2.4)

where H(x) reflects the class of the example x. The threshold thr is a parameter and can be
optimized during run-time.

2.7. Weak Learner’s Error

The weak learner’s job is to find a weak hypothesis at each iteration. The weak hypotheses
returned by the weak learner throughout the T iterations all have the form of a one-level decision
tree. Even though the weak hypothesis ht(xi, l) maps each sample x to a real value in<, it is easier
to understand it in the simplest case where each ht(xi, l) is binary, i.e. restricted to {−1, +1}. The
base learner minimizes the probability that the wrong label will be attributed to a sample x for
the current weights distribution Dt. However, the strength of a weak hypothesis is measured by
its error (Freund & Schapire, 1999).
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The error function is expressed by the following function:

εt = Pri∼Dt [ht(xi) 6= Yi[l]] (2.5)

In practice, the error is measured with respect to the distribution Dt on which the weak learner
was trained. The weak learner may be an algorithm that can use the weights Dt on the training
examples. Alternatively, when this is not possible, a subset of the training examples can be sam-
pled according to Dt, and these un-weighted re-sampled examples can be used to train the weak
learner.

For each example x, the algorithm tests the previous word. The weak learner then chooses the
word w among all the preceding words and create a basic rule saying “if the word in instance x is
preceded by the word w than give it value r1, otherwise give it value r2”. The choice of the word w takes
into account the overall weighting error made by choosing this word. In the usual case where
more than one feature is available, the best hypothesis obtained out of all features is returned.

Once the algorithm has been provided with a base classifier ht, the next step is to determine the
weight αt ∈ < that will be attributed to ht in the linear combination that forms the final classifier.
In the case of a binary hypothesis ht(xi, l), this is done as follows:

αt =
1
2

ln
(

1− εt

εt

)

Thus, if the error εt inferred by the base classifier ht is big, the weight αt assigned to ht is small.
A small αt results in a higher exponent for e in the weights update (2.2). If the hypothesis done
by ht was correct for the example xi, yi and ht(xi) have the same sign and the exponent is thus
negative, leading to a reduction of the weights D(i, l) of the example xi. On the contrary, if the
hypothesis done by ht was wrong, the signs of Yi[l] and ht(xi) in 2.5 are opposed, leading to a
positive exponent and thus to an increase of the weight D(i, l) of sample xi. The sample xi will
therefore have a bigger importance in the next iteration when a new base classifier will be chosen.
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CHAPTER

3

Distillation

In this chapter, we discuss about the distillation concept and important uses of this technol-
ogy. Then we talk about Global Autonomous Language Exploitation program (GALE) and
its text processing engines. This part will be followed by some examples of template based
query answering and document triage. In the last part of the chapter, related work to distil-
lation and question answering technology, and improvements in this area will be explained
briefly.

3.1. Distillation

In recent years, technology has progressed quite rapidly, from systems that could accurately pro-
cess text in only very limited domains like service reports to programs that can perform useful in-
formation extraction from a very broad range of texts such as business news. The major strength
behind these advances comes from: (1) the development of robust text processing architectures
and (2) the emergence of statistical methods that help to overcome knowledge acquisition prob-
lems by making use of corpus and training data.

Text processing of large amounts of data requires also special filtering methods to extract the
required data as concisely and correctly as possible. One of the most important techniques is dis-
tillation. The goal of this process is to develop and apply technologies to analyze and interpret
the huge volumes of speech and text in multiple languages. Particularly, it is useful for direct
access to relevant information of interest in the corpus. Output or information of interest consist
of useful pieces of information to a given query, possibly from a multilingual audio and text cor-
pus (Hakkani-Tür & Tur, 2007). The distillation engine integrates the information from multiple
sources and documents and currently its output is English text.

3.2. Global Autonomous Language Exploitation program(GALE)

During this project, we are using the distillation engine of DARPA Global Autonomous Language
Exploitation program(GALE). The goal of the GALE program is to develop and apply computer
software technologies to translate, analyze, and interpret large volumes of speech and text in
multiple languages. This is mainly done for reducing the need for linguists and analysts and
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manpower in general for automatically providing relevant and concise information. This tech-
nology will make it possible for English speakers to do much of what foreign language operators
and analysts do now, i.e. convert large quantities of non-decipherable foreign language data into
usable data in English for operational planning, crisis response, and force protection.

Automatic processing engines will convert and distill the data, delivering pertinent information
in easy-to-understand forms to monolingual English-speaking analysts in response to direct or
implicit requests. Critical information, usually buried in large volumes and obscured by foreign
languages, is both highly important and subject to quick destruction. The GALE program will
provide in an integrated product, automated transcription, translation, and distillation of foreign
speech and text in support of military operations and tactical situational awareness. 3.1 illustrates
the concept of GALE Distillation engine and consecutive steps of query response generation. The
process accepts English or non-English documents along with a query. The following progressive
steps are done to generate the query response:

1. Identifying of relevant information

2. Eliminating the redundant information

3. Detecting of contradictions

4. Proposition for an already supported response by some evidence

The output of this system generates a comprehensive query response to the end-user.

FIG. 3.1: Gale Concept and Goals

GALE utility consists of three integrated parts: transcription, translation, and distillation. 3.2
depicts these three engines and their functionalities. Transcription, or the conversion of audio
(speech) to English text, is the first step in exploiting foreign language audio information. Trans-
lation is the conversion of foreign language text into readable English text with annotations re-
lated to the language of origin, topics, parts of speech, names and other factors and is carried out
on text transcribed from audio or obtained from foreign language text sources. GALE engines
perform both of these processes in a completely automated fashion, without the intervention of
human linguists. The distillation engine will search for and integrate information from multiple
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sources relevant to specific queries. It will discard repetition to reduce the volume of informa-
tion while retaining important content. This engine requires the interaction of human for final
decision making.

FIG. 3.2: Gale Processing Engines

Distillation is a concept entirely new to GALE, in which relevant information is extracted from
foreign language and English input and concisely presented to the user in English. GALE distil-
lation is not a key-word search, and does not involve summarization. Instead, it utilizes language
analysis techniques to identify information relevant to a user’s query, with the aim of extracting
all available relevant information and nothing redundant. GALE’s distillation engine will allow
computerized searches that will return just the specific context and sense desired, even when the
text was not originally in English. For example, an analyst will be able to ask the GALE dis-
tillation engine to produce a biography of a person, provide information about an organization
during a specified period of time or to find statements made by certain people during specified
times on designated topics.

There are some organizations which support the background information of this project. The
Linguistic Data Consortium (LDC) is an open consortium of universities, companies and govern-
ment research laboratories who create training corpora, guidelines, annotation tools and related
resources to support the Distillation task. Training resources include:

• Collections of raw source text that serve as input to training and test corpora for Distillation
• Queries that conform to designated query templates
• Manual annotation in English, Chinese and Arabic for:

Relevant documents
Snippets of relevant text
Formalized phrases that express core facts extracted from those snippets
Logical deductions and relationship extraction between pairs of these phrases (The

presence of one implies the second one to be true)
• Relevance judgments of system-extracted snippets

In GALE project, the ultimate performance targets are to translate Arabic and Chinese speech and
text with 95% accuracy and an extremely high degree of consistency (90-95%), and to extract and
deliver key information with proficiency matching or exceeding that of humans. GALE systems
must be able to perform at these high levels of accuracy and consistency for foreign language
information from a wide range of domains and genres, and be able to cope with informal part of
language.
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3.3. Document Triage

Document triage in foreign language is one of the biggest existing problems, and the GALE ap-
proach attacks the problem in the reverse order. In a distillation process, it seems appropriate to
search and triage first and translate only after the important documents have been identified.

Basis Technology provides foreign-language conversion for intelligence that focuses on name
translation. Because of the many nuances and broad differences between languages, implicit
meaning can be ambiguous and translations are not always accurate. In addition, the English
spelling of foreign words varies from system to system and the engine should take care of these
subtle points. There is also a difference between orthographic accuracy and phonetic accuracy
in transliteration. How to pronounce a word is different from how to write or how to translate
it. So analysts can risk missing important information because of the potential for inconsistent
transliteration. Additionally, in some languages such as Arabic, there is no upper case, lower
case or hyphen. Rather, these are impositions by the English translation as a way to make the
name more understandable to English speakers.

While the research and development of language translation technology is an ongoing effort,
there is no question about the need for it.

DARPA’s GALE program is directly addressing a cross-agency requirement for increased foreign
language skills and searchable language-translation technology.

3.4. Template-based Queries

GALE distillation queries pertain to GNG(Go/No-Go) distillation engine evaluation. Each query
uses a query template among 17 predefined templates.

For each template, there are some categories that indicate the reason for information relevance.
To attribute a sentence as relevant to a query, at least one category must apply. Training data
will not include category annotations and GALE distillation engines are not required to provide
category labels in their output.

Given a query and a particular sentence, the task is to classify the sentence in one of the two
classes of relevant or irrelevant.

ICSI and SRI manage to work on queries of templates 1, 8, 12, 15 and 16, however the focus of
this work is on template 1. In the following, a number of query templates are listed:

For example, in Template 1 queries, event is the variable portion of the query. Relevant informa-
tion focus on the event, the persons, places and activities associated with this event. Here the
goal of a distillation system is to output ordered segments called snippets that can be considered
as an answer to the query. A snippet can range from a fragment of a sentence to a paragraph.
Below is an example query (in which the event is variables) with some related snippets:
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LIST FACTS ABOUT [event](template 1)
WHAT [people|organizations|countries] ARE INVOLVED IN [event]
AND WHAT ARE THEIR ROLES?
PROVIDE INFORMATION ON [person/organization]
FIND STATEMENTS MADE BY OR ATTRIBUTED TO [person] ON [topic(s)]
DESCRIBE THE RELATIONSHIP OF [person/org] TO [person/organization]
DESCRIBE INVOLVEMENT OF [person/organization/country] IN [event/topic]
DESCRIBE THE PROSECUTION OF [person] FOR [crime](template 8)
HOW DID [country] REACT TO [event]?
DESCRIBE THE ACTIONS OF [person/organization] DURING [date] TO [date]
PRODUCE A BIOGRAPHY OF [person] (template 12)
DESCRIBE ARRESTS OF PERSONS FROM [organization] AND GIVE THEIR ROLE
IN THE ORGANIZATION (template 15)
DESCRIBE ATTACKS in [location] GIVING LOCATION, DATE, AND NUMBER OF
DEAD AND INJURED (template 16)
WHERE HAS [person] BEEN AND WHEN?

FIG. 3.3: Examples of query templates. The bracketed words are the variable parts.

Query:

• LIST FACTS ABOUT EVENTS DESCRIBED AS FOLLOWS: [the dual suicide bombing at a
concert in Moscow] formation since [28 Sept 2000].

Snippets:

• At least 17 people were killed and 22 others wounded in suicide bombings.
• In Russia’s capital of Moscow on Saturday Police put minimum power of each of the two

bombs at equivalent of 500 grams of TNT.
• The Russian government blamed the attacks on Chechen rebels.

One critical component for distillation is detecting sentences to be extracted from each relevant
document. The user typically is not interested in reading the whole news story but instead just
the portion with the requested information content. This process is relevant but not exactly equiv-
alent to document summarization, information retrieval, question answering, or information ex-
traction. In a summarization system, there is usually no predefined query; simply, documents
are summarized. Yet, sentence extraction may be part of a summarization system. However, the
goal in a summarization system is to extract the most informative sentences that summarize the
whole document, so features like the number of named entities in the sentence or rank of the
sentence in the document are extremely useful. Recently question-focused (or query relevant)
summarization in also incorporated in the evaluations where the similarity of each sentence with
the question can also be used as a feature. However, the questions do not have a predefined
structure such as the query templates. Question answering systems, on the other hand, act upon
a requested question, such as list all the European union countries. In that sense question an-
swering output is very formatted compared to distillation. Distillation usually requires details
for the event in question. Even for a query very close to question answering, such as What is the
relationship of Sarkozy to France, the answer is not a single word or sentence (such as He is the
president); instead, anything relating Sarkozy to France in the corpora needs to be in the answer
set. Information extraction, more specifically event extraction, can be considered as the closest
match for distillation. Some of the ACE events (such as arrest or attack) are among the GALE
distillation queries.
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3.5. Related Work To Distillation

A large body of work in question-answering has followed among which a number of systems
have used techniques inspired by information extraction. Below there is the description of some
prior work which help in improvement of distillation techniques eventually.

3.5.1 Selecting On-Topic Sentences from Natural Language Corpora

One approach is a system that answers the on-topic questions for natural language documents
and arbitrary free-text topic descriptions. The approach is based on creating proposition trees,
semantically organized hierarchies of predicate-argument structures, for topic formulation and
document sentences.

The biggest advantage of this system is for the question answering task and for the kinds of
queries that either are focused entirely on a topic or event such as, "List facts about [EVENT]" or
those who inquire about a particular aspect of a topic or the reaction an event for ex.: "How did
[COUNTRY] react to [EVENT]". In the example queries above, [EVENT] is a slot filled with a
free-text description of some event. To select documents from a corpus that answer such queries,
it is required to say how "on topic" they are with respect to such free-text formulations.

Matching a slot can be trivial if the slot consists of a single name or very specific term, but it can
also require considerable effort when the slot contains a complex description of some topic or
event. An example of a difficult case is the following query from the GALE Distillation task: List
facts about [the looting of Iraqi museums after the U.S. invasion]. Another difficulty in dealing
with queries that have topic and event slots, is the fact that human language makes it possi-
ble to convey on-topic information without using the words that were used in the actual topic
formulation. Here is an example of a sentence related to the query slot [the looting of Iraqi mu-
seums after the U.S. invasion]: To resolve this problem, free-text query slots can be represented

Many works of art were stolen from Baghdad galleries in 2003.

as predicate-argument proposition trees. Responses to queries involving free-text arguments can
be found using a matching algorithm to instantiate the query proposition tree in the proposition
trees of the candidate responses.

Predicate-argument structures (propositions) can be extracted from syntactic parsers. Each
proposition has a type (e.g. VERB, NOUN, MODIFIER, SET and others), a head predicate and a
non-zero number of arguments. Each argument refers to another proposition or a mention (asso-
ciated with a subtree of the sentence’s syntactic parse). Each argument also has a role, where the
lexicon of roles consists of a closed set of grammatical functions such as subject, object, indirect
object and others.

Individual propositions extracted from a sentence can be assembled into one coherent tree struc-
ture. This tree represents the semantic interpretation of the sentence, abstracted from its exact
syntactic realization. In practice, a sentence may consist of either one or several such proposition
trees also known as proposition forest, created by replacing mention arguments of propositions
with propositions referencing those mentions as their predicate head. In order to examine the
degree of topicality, the proposition forests are extracted for both slot and sentence. then each of
slot proposition trees τi in each of the sentence proposition trees tj . If an instantiation is possi-
ble, its score θij is compared with other instantiation scores for this slot proposition tree, and the
non-negative maximum is saved:

θi := max(max
j

θij, 0). (3.1)
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The topicality measure is defined by the following formula:

θ :=
∑i wi ∗ (θi/θmax

i )
∑i wi

. (3.2)

Where wi is the weight of the proposition tree τi. This weight depends on the number of nodes.
In this work, two more topicality measures are also introduced where each complete others in
terms of precision/recall characteristics.

Topicality measure η is based on subtrees of full proposition trees and topicality measure µ indi-
cates the percentage of tree nodes in a slot forest whose word pool has at least one match with
the word pool of sentence forest. A sentence is said to be relevant on a given topic if one of three
measures exceeds a certain threshold(Levit et al., 2007b).

3.5.2 Exploiting IE Annotations for Document Retrieval in Distillation Tasks

This approach uses information extraction annotations to augment document retrieval for distil-
lation. The fact that some of the distillation queries can be associated with annotation elements
introduced for the NIST Automatic Content Extraction (ACE) task, is the base of this approach.

The objective of the ACE is to develop technology, to automatically infer from human language
data the entities being mentioned, the relations among these entities that are directly expressed,
and the events in which these entities participate.(Doddington et al., 2004). Entities include person,
location, organization, and other names.Value is a text string that further characterizes the prop-
erties of some Entity or Event.Mention extraction aims to group entities using nominal, pronom-
inal, and named representations.Relation extraction tries to find predefined relations between the
mentions such as wife of a person or employee of an organization. Event types include: Life,
Movement, Transaction, Business, Conflict, Contact, Personnel, Justice.

The data includes both textual and audio data in multiple languages, namely English, Chi-
nese, and Arabic. Non-English data, is being translated automatically. The University of Mas-
sachusetts INDRI search engine indexes all the data. During runtime when a query is given, the
INDRI search engine retrieves candidate documents, considering the dates, the sources of docu-
ments to be searched, and so on, as specified in the query. When the relevant documents related
to query are returned, the goal of sentence extraction is to tag each sentence in these documents
with respect to its relevance.

Here the statistical method for sentence extraction in information distillation is data-driven and
uses lexical and simple semantic features and treats the problem as a binary classification task,
where each sentence is classified as relevant (positive) or not relevant (negative). To train the
sentence extraction models, the negative and positive examples from the given answer keys are
extracted, which have the relevant snippets and the corresponding document identifiers for each
query. As the relevant sentences in those answer keys also include the document identifiers, all
sentences in those documents are extracted.

The important change is introducing an intermediate processing stage between the INDRI in-
formation retrieval engine and the sentence extraction module, to filter out irrelevant docu-
ments. exclusion of irrelevant documents at this stage, does not hurt neither precision nor re-
call(Hakkani-Tür et al., 2007).

3.5.3 Statistical Sentence Extraction For Information Distillation

One of the approaches to distillation is a statistical sentence extraction. Basically, it can be con-
sidered as a classification problem, where each candidate sentence in documents is classified as
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relevant or irrelevant to a specified query. The documents may be in textual or audio format also
in other languages rather than English (such as Chinese and Arabic). For audio documents, both
manual and automatic transcriptions are used. For non-English documents, automatic transla-
tions is the prior step before classification. The University of Massachusetts INDRI search en-
gine indexes all the data (Strohman et al., n.d.). During runtime, with a given query, the INDRI
search engine retrieves candidate documents considering the dates, the sources of documents to be
searched, and other relevant categories specified in the query template. Then the sentence ex-
traction process tries to identify the potential snippets. Finally, similar sentences are clustered into
groups. Due to the diversity of the data sources and the noise introduced via speech recognition
(ASR) and machine translation (MT), it’s essential to have a robust method.

In one of the approaches which is sentence extraction by keyword-spotting, each sentence gets
a vote if certain keywords and named entities, depending on the template, are mentioned in the
query appear in the sentence. Then the recall/precision curves are drawn according to the num-
ber of votes. However this approach requires human involvement for in-domain knowledge. In
the second approach which is based on classification, a data-driven (or learning) method for sen-
tence extraction is employed in information distillation. The negative and positive examples are
extracted from the given answer keys which have the relevant snippets and the corresponding
document identifiers for each query. Since the relevant sentences in answer keys also include
the document identifiers, all sentences in those documents are extracted as examples, and the
sentences whose portion are in the answer key are marked as positive examples, and all the rest
as negative examples.

During classification, lexical and semantic features are used. Lexical features consist of word n-
grams obtained from the training examples. Using all word -grams instead of several keywords
as features is also expected to improve the robustness of the system. This can be considered as a
query-specific information extraction system. Then these features are augmented with semantic
ones by tagging the raw sentences to mark the instances of organization, location, or dates in the
query.

The classifying tool of this approach is AdaBoost which performs a discriminative classification
method with both lexical(word n-grams) and semantic features. Boosting is an iterative proce-
dure, on each iteration a weak classifier is trained on a weighted training set, and at the end, the
weak classifiers are combined into a single, combined classifier.

One problem with this task is that it is sometimes not clear whether a sentence must be extracted
since it is a subjective decision. So instead of making a binary decision, the data may be divided
into more classes such as very relevant, marginally relevant, and so on. However, the results
of classification based approach for information distillation, indicate 11%-13% relative improve-
ment over a baseline keyword-spotting-based approach(Hakkani-Tür & Tur, 2007).

3.5.4 Q.A. using Integrated Information Retrieval and Information Extraction

This research provides extended responses to questions regarding specialized topics. This task is
a combination of information retrieval, topical summarization, and information extraction.

This technique interleaves information retrieval (IR) and response generation, at the first stage
using IR in high precision mode to return a small number of documents that are highly likely to
be relevant and can determine what name variations are used in the corpus and estimate how
many documents contain relevant references.

Information extraction of entities and events within these documents is then used to point highly
relevant sentences and associated words are selected to revise the query for a second pass of
retrieval, improving recall. The relevant context is approximated by measuring the proximity of
the target name in the query and extracted events.

20



CHAPTER 3. DISTILLATION

FIG. 3.4: IXIR Approach.

Once the document retrieval is completed, the information extraction component produces the
full range of annotations as specified for the ACE 2005 evaluation, including entities, values,
time expressions, relations, and events. The extraction engine identifies seven semantic classes
of entities. Each entity will have one or more mentions in the document; these mentions include
names, nouns and noun phrases, and pronouns. Text processing begins with an HMM-based
named entity tagger, which identifies and classifies the names in the document. Finally, the
event classifier (which uses the proposed arguments as features) is used to reject unlikely event
sequences.

Once the final set of documents is obtained, the answer generator module selects candidate pas-
sages. The names, with alternate renderings, are located through the entity mentions by the IE
system(Schiffman & McKeown, 2007).

3.5.5 Integrating Several Annotation Layers For Statistical Information Dis-
tillation

In this research a sentence extraction algorithm for Information Distillation a presented. For a
given template based query, relevant passages must be extracted from massive audio and tex-
tual document sources. For each sentence of the relevant documents, the statistical classification
methods are used to estimate the extent of its relevance to the query. Two aspects in relevance
are considered: the template (type) of the query and its slots (free-text descriptions of names,
organizations, topic, events and so on, around which templates are centered). The important
aspect of this work is the choice of features used for classification. The features come from a
combination of sentence annotations from several levels (such as word transcriptions, syntactic
and semantic parses, and IE elements) into time-synchronous directed acyclic graphs (charts) to
learn sentence relevance. By using the system for GALE Distillation, the average F-measure for
five templates are improved from 0.39 (with words only) to 0.51 which is around 30% relative
progress(Levit et al., 2007a).

This approach is called IXIR. Figure 3.4 shows how this approach works.

21



CHAPTER 3. DISTILLATION

22



CHAPTER

4

Approach

This chapter consists of presentation of methods to improve the performance of information
distillation system. In this chapter, first we have a quick review on the distillation system
and query types that are the target of this work. Then alternative solutions proposed during
the project will be discussed.

4.1. The Baseline Supervised Approach for Template 1

This work is mostly dedicated to improve the performance of answering to Template 1 queries of
GALE project. Template 1 queries look for responses to "Describe the facts about [EVENT]", with
possible definitions of EVENT slot such as "Stolen art works from Baghdad galleries in 2003".
The output of the distillation system is a list of snippets (sentences) relevant to that query.

Template 1 queries are hard to answer with the current IXIR distillation approach based on su-
pervised classification. Contrary to other templates, its form is very general. Answering to these
queries is more similar to passage retrieval of an IR system. However, if the performance of clas-
sification for this template is increased, it would be useful to answer free-template questions as
well.

In the IXIR approach, to perform the classification task, one needs to train the classifier on data
that have been already labeled. Usually,the amount of data used to train an efficient classifier for
sentence classification is large; at the same time, labeling data is a very time consuming and labor
intensive task that has to be done by humans. Implementing an efficient unsupervised classifi-
cation method to annotate data automatically, reduces the labeling effort for more sophisticated
approaches. Other templates may also exploit similar unsupervised methods.

In every classification method, once a learning algorithm has been selected, the next step is to
feed this algorithm with a set of training data. The data set is split into instances (also called
examples) which are represented by a set of features and a class. For the sentence classification
task, the features are mainly word N-grams and synonyms.

However, for free form questions such as Template 1, it also is difficult to design features that
can capture the characteristics of a response. There is no guarantee that the relevant responses to
a new question will have the same characteristics as the relevant responses for other questions.
For example, for Template 16, which deals with attacks in a specific location, attacks in London
and Moscow both contain the number of people died or wounded in the attack among the relevant
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responses. However, such patterns are hard to form for Template 1 questions, which may request
a description of September 11 or election of Hillary Clinton to the U.S. Senate.

To answer the query Qi by a supervised method, it is required to use the answer keys provided
for {⋃ Qj, j 6= i}. If the classifier uses only the word n-grams as features, due to the large number
of words in word pool, it may not necessarily learn the words particularly related to Qi. In other
words, the training method is not focused on important features for Qi.

To improve the search quality, other sophisticated approaches are also proposed. Instead of just
using word transcriptions and names, they use some additional features like syntactic parses,
semantic predicate-argument structures, and various elements of Information Extraction (IE) an-
notations (Levit et al., 2007a). Although these features have augmented the performance of clas-
sifier, the same problem still exists where the query Qi is not targeted specifically. Therefore, it’s
not assured to be answered with appropriate words transcriptions and features.

In this study we employed AdaBoost which is a linear classifier. A linear classifier, classifies to
group items that have similar feature values and achieves this by making a classification decision
based on the value of the linear combination of the features. Each instance of query is a vector
of the feature space. For a given experiment, all instances must be described in the same fea-
ture space. After T iterations, boosting outputs a function f (x) which computes the probability
p(Cr|x) that the instance x is hypothesized as a sentence boundary.

An acceptance threshold tacc is then used to map this probability on either a relevant or irrelevant
class, and thus decide of the class C(x) of the instance x:

C(x) =
{

Cr if p(Cr|x) > tacc
Cir otherwise (4.1)

where Cr stands for the relevant sentence to be labeled as class 1 and Cir for irrelevant sentence
to be labeled as class 0.

The acceptance threshold tacc is a parameter that can be optimized on the training or held-out set.
If it is set on held-out set, a lower acceptance threshold leads the final hypothesis to contain more
data in training set, while a higher acceptance threshold on the contrary leads to less training
data. It can also be used to give a precise profile to the classifier by balancing the performance
between the recall and the precision, two metrics that are used very frequently in classification
evaluations.

In the case of supervised classification, to be able to learn how to classify the instances according
to their features, the algorithm needs to be provided with the positive and negative classes of
the training instances. i.e. with instances that have been labeled. Figure 4.2 shows the steps of
supervised learning concretely:

4.2. Unsupervised Learning for Distillation

In unsupervised classification, supposedly positive and negative labels should be generated by
the algorithm itself. The data files required for training, consist of several documents, each of
them containing some sentences which usually come all together from a news feed. For template
1 queries, by definition, annotated training data are not accessible. Therefore, we need to form
the query-specific training set with estimated labels, as many as possible, by various techniques
which will be explained in this chapter. Training set will be expanded and developed more
precisely during several iterations. We call this approach incremental classification. In this type of
work, a kind of blind feedback is generated to reply to query, and the performance of classifier
highly depends on the accuracy this feedback. Although we already have blind feedback for
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FIG. 4.1: This diagram shows how supervised methods perform the classification.

FIG. 4.2: This diagram shows how our unsupervised classifier works.

document retrieval, applying it to information distillation via developing a statistical classifier is
a novel approach.

To understand how the proposed unsupervised learning method works we try to explain it by an
example. Assume that we are given a database of documents with the set of sentences S in each
document and a new query slot of desired template. The goal is finding relevant sentences for
that query slot. We start with a small set of rules to find out the sentences that have the highest
likelihood of being an answer to this query. As a preliminary set of relevant sentences, we may
consider the ones that contain the exact phrase in the query slot. We call this the set A. Then we
can also find a set of sentences that have a very high likelihood of being irrelevant to the query,
such as the ones that do not have any overlap in terms of words with the words in the query
slot, after excluding the stop words. We call this set B. At this step we label the sentences of
set A as 1, and those of B with 0 class. The next step would be training a classifier with these
highly confident examples, estimating labels to the examples in S or the examples in S− (A + B)
iteratively via trained data obtained by the classifier. The goal here, is to iteratively refine the
classification decisions.

For a given query, Q, when we talk about data file, Q.data file, which contains candidate doc-
uments for query Q returned by either LDC or University of Massachusetts INDRI IR engine.
Documents returned by LDC are known to be relevant however in the case of INDRI, informa-
tion about relevance is not available completely. Though, the case of INDRI should be closer to
reality.

For all the proposed unsupervised learning methods, before training the classifier we need to
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clean the query texts and data files to prevent noise effect in classification as much as possible.
For example, in words such as "can’t", "Clinton’s", to prevent losing the important words, it is
better to remove the " ’ " for methods using TF-IDF.

In all parts of this project, frequencies of word occurrence have a very important role. When we
talk about words, we mean important words to a particular query. For instance in a query like
"The looting of Iraqi Museums following the 2003 US invasion" , the words that are worth to be
looked for, are "looting", "Iraqi", "Museums", "US" and "invasion".

In the above example, we have removed stop words and numbers. Although "2003" may be an
important word by itself, due to the structure of test files, we have to eliminate it. The reason
is that the date of an event is usually reported in document header. Including this date causes
lots of irrelevant sentences annotated as 1 in initial approximation. Therefore a considerable
augmentation of error rate will follow.

To extract the non-function words automatically, we use a tool called WordNet. More explana-
tions about WordNet are provided in the rest of this chapter. As we apply WordNet on a text,
stop words and numbers are automatically removed, since WordNet just recognizes the four
structures of verb, noun, adjective and adverb. Also for some examples such as "Iraqi", Word-
Net may return several stems for different grammatical roles such as "Iraq", "Iraqi", etc. In the
methods that require stems, we usually choose the one with the shortest length to be able to have
wider search results from our text. For the rest of cleaning process, we use regular expressions.
As an example, the above query transforms into "loot iraq museum follow us invasion".

We have tried several methods for the following steps. For example, in a few of methods, next
step is to compute the occurrence frequency of each remaining word in the corresponding data
file. For each query we take the processed query words and compute the frequencies. Then we
take their mean. Among the words in word pool, we extract those who have a frequency higher
than mean value.

In this study, to optimize error rate and F-measure we use five types of thresholds:

• Mean Threshold: This parameter leaves a margin below mean base level of frequency of
word occurrences, and lets choose words with frequencies bigger the margined mean.

• TF-IDF Threshold: Same as Mean Threshold, just leaves a margin below TF-IDF base level.
• Number of iterations of classifier.
• Number of iterations of algorithm
• Probability threshold: This parameter which is also called acceptance threshold. thp defines

the probability above which, estimated classified sentences can be judged with certainty as
true classified ones.

Depending on the method, number of selected thresholds may vary.

For methods using TF-IDF, instead of using mean frequency, important words are chosen by a
threshold on TF-IDF. Further, for methods that use TF-IDF, other than query stemming, we find
document stems to obtain even cleaner data and more exact TF-IDF values.

Up to now, methods use a word selection more strict at the beginning and they they remove
the constraints gradually. It means that they start word selection by an upper limit, they they
reduce(relax) the number of words they are looking for. Contrary to this type of word selection,
in our last method, which will be described more in detail, the words are selected from at least 1
word and then their number increases gradually in different iterations.

WordNet WordNet is a semantic lexicon for the English language. It groups nouns, verbs,
adjectives and adverbs into sets of synonyms called synsets, each expressing a distinct concept.
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It provides short, general definitions, and records the various semantic relations between these
synonym sets.

Synsets are interlinked by means of conceptual-semantic and lexical relations. Every synset con-
tains a group of synonymous words or collocations where a collocation is a sequence of words
that go together to form a specific meaning. Different senses of a word are in different synsets.
The meaning of the synsets is further clarified with short defining glosses (Definitions and/or
example sentences). WordNet distinguishes between nouns, verbs, adjectives and adverbs be-
cause they follow different grammatical rules. Most synsets are connected to other synsets via a
number of semantic relations.(Fellbaum, 1998)

The purpose of WordNet is to produce a combination of dictionary and thesaurus that is more
intuitively usable, and to support automatic text analysis and artificial intelligence applications.
Although WordNet contains a sufficient wide range of common words, it may not cover special
domain vocabulary.

In this work, we use this tool for two different purposes. The first one as explained, is to find the
stems of words for a clean search. The more important one is the collection of synonyms that it
returns. Later, we will use this collection as a semantic feature for our classifier.

Back to word selection, once the important words are selected and processed, we start generative
(incremental) classifier by this set of high confidence examples. Our incremental classifier starts
with an initial annotated file. This file is obtained by different methods described in the pro-
ceeding methods. The incrementing process is done during different iterations, but the general
concept is quite similar for all the methods. We explain it just once for the case of "M1: Strict
Initial Classification For Relevant and Irrelevant Snippets" method presented below.

4.2.1 M1: Strict Initial Classification For Relevant Snippets

In this method, we extract the sentences of original data file (F0) which contain all the non-
function words in the query and label them as relevant (class 1). We label the rest of the sen-
tences as irrelevant (class 0). The union of these labeled snippets, form the initial training file for
classification (F1).

We then train a bootstrap classifier using this initial data. Later, we automatically classify the
whole corpus omitting the set of previously used sentences. Each sentence in the corpus is
weighted either to be relevant (positive) or to be irrelevant (negative) by a coefficient calculated
by classifier. These posterior probabilities are calculated as in the following formula:

p(l|x) =
1

1 + e−2w.iter (4.2)

where iter is the number of iterations used to train the classifier and w is the final classifier output
by the learning algorithm.

Next step is to select a set of confident sentences in both relevant and irrelevant classes. This
is a crucial point in our algorithm. We add-up the sentences which are confidently classified to
the existing training data. We optimize the confidence threshold using a held-out set. Then we
retrain the classifier using this extended set. This makes the classifier to learn new words other than
those already found. Then the same process is applied in an iterative fashion. In our experiments
we limited the number of iterations to 3, since no further learning happens after that.

The pseudo code of this operation is shown in algorithm Algorithm 1.
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Algorithm 1 Auto Incremental Classifier, Method M1

Given the query and related data : (Q , Q.data)
FindQueryWordFrequency(Q , Q.data)
new_mean = meanWordFrequencies)× (1−meanThreshold)

for each wi = 1...wn do
if f req(wi) > new_mean then Add wi to WordPool
end if

end for

FirstIteration

Sen1 = ∅
Sen0 = ∅
if ∀wi ∈ WordPool exists in sentencei then Label sentencei by 1; Sen1 = Sen1∪ sentencei
elseLabel sentencei by 0; Sen0 = Sen0∪ sentencei
end if

Label the rest of the sentences as 0
dataFile1 = Sen0∪ Sen1
Remove all wi in WordPool from dataFile1.

Train the classification model using dataFile1
Classify the rest of the sentences

NextIterations

Use Output of Classifier at Previous Iteration
if prob(sentencei) ≥ (1− prbThreshold) then dataFilei+1 = dataFilei ∪ sentencei
end if
if prob(sentencei) ≤ (0 + prbThreshold) then dataFilei+1 = dataFilei ∪ sentencei
end if
Train the classification model using dataFile(i + 1)
Classify the rest of the sentences

Repeat the Iteration

4.2.2 M2: Strict Initial Classification For Relevant and Irrelevant Snippets

This method is more strict comparing to the previous one in terms of labeling initial irrelevant
snippets. Once we find the collection of relevant sentences, instead of labeling all the rest as
irrelevant, we extract the sentences that have none of the non-function words and label them as
irrelevant. By this method, the initial data file is smaller, but it is less noisy and we expect to
obtain better performance.

The portion of pseudo code which is different from previous method is shown at Algorithm 2
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Algorithm 2 Auto Incremental Classifier, Method M2

Given the query and related data : (Q , Q.data)
......

Sen1 = ∅
if ∀wi ∈ WordPool exists in sentencei then Label sentencei by 1; Sen1 = Sen1∪ sentencei
end if

Sen0 = ∅
if @wi ∈ WordPool exists in sentencei then Label sentencei by 0; Sen0 = Sen0∪ sentencei
end if
.....

4.2.3 M3: Relaxation of Initial Classification For Relevant and Irrelevant
Snippets

This experiment is a bit different from previous ones. It starts like M2 for the first iteration, but
in second and later iterations we change the strategy to enlarge the training data file. Instead of
using the output of classifier, we try to relax the search criteria and recreate a larger training set.
For example, if in the first iteration we look for the presence of 4 words to mark a sentence as
relevant, in second iteration we look for the presence of the 3 highest frequency words, then for
2 highest frequency ones, etc. We continue for three iterations or we stop when we have at least
one word to look for before third iteration. The difference of this method with previous ones is
removal of two threshold; number of algorithm iterations and probability threshold. However,
mean threshold and classification iterations are still applied.

4.2.4 M4: Word Selection By TF-IDF At Document Level

The TF-IDF weight (Term Trequency/Inverse Document Frequency) is a weight often used in
Information Retrieval. This weight is a statistical measure used to evaluate how important a
word is to a document in a collection or corpus. The importance increases proportionally to the
number of times a word appears in the document but is limited by the frequency of the word in
the corpus. The Term Frequency in the given document is the number of times that term appears
in the document. This count should be normalized. Normalization is to prevent a bias towards
longer documents which may have a higher term frequency regardless of the actual importance
of that term in the document. The equations to calculated TF and IDF are mentioned in 4.3 and
4.4.

TFi =
ni

∑k nk
(4.3)

where ni is the number of occurrences of the considered term, and the denominator is the number
of occurrences of all terms.

IDFi = log
|D|

|{d : ti ∈ d}| (4.4)

where |D| is the total number of the documents and |di| is the number of documents in which
term ti occurs at least once.
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Considering the file Q.data containing some documents, we find the TF − IDF for each ti ∈ Q.
Term frequency is limited by number of documents. This makes sure of reducing the weight of
frequently repeated words such as stop words. In this method, we select the words with TF-IDF
larger than predefined threshold. Once the important words are extracted, we look for word N-
grams up to N = 2 in the document to find the relevant sentences and for then initial data file.
Once this part is done, the rest of the method is similar to the previous ones. Again, we use the
output of classifier to increment the size of training documents and reiterate the classification.

4.2.5 M5: Word Selection By TF-IDF At Sentence Level

This method’s concept is very similar to the previous one, except that we replace documents with
individual sentences. TF-IDF produces more accurate results when number of documents is high
enough. Since the size of our corpus is not that large, we tried to simulate having a high number
of documents by this approach. Once the TF-IDF in sentence level are calculated, we extract word
N-grams up to N = 2 and continue as method M4.

4.2.6 M6: All-Words Selection

This method is very similar to M2 except that there are some changes for word selection proce-
dure. The significant change of this method is including semantic features. We include not only
word transcriptions but also word synonyms found by WordNet. For each query word, we obtain
up to two synonyms (the most pertinent ones) from WordNet and stem them. Then we look in
text just for synonyms and keep those that are repeated sufficiently. For computing a measure of
sufficiency, we do the same as method M2 does for main words. We find the occurrence frequen-
cies of synonyms in the text, compute the mean of these frequencies and select the synonyms that
occur more than this mean in the text. It should be noted that synonyms are repeated much less
frequently than basic words and shouldn’t be compared to the number of occurrences of basic
words. Once we form a complete collection of words, we look for word unigrams and bigrams
in the text. In fact, by using bigrams in addition to unigrams, we relax the classification. We find
relevant sentences to union of unigrams and bigrams and add them up. Then we remove the
redundant sentences. Since the relaxing is done at word count level, we also dropped the mean
threshold. The pseudo code of this method is presented below:

1. For each word wi in word pool, find the first two senses of synonyms.

2. Find the frequencies of synonym words in document collection.

3. Take mean of them.

4. Add those synonyms who occur more than their frequency to word pool and name this set
by W.

5. Look for sentence that contain a combinations of w1w2, w2w3, ... , wn−1wn PLUS w1w2...wn
in text.

6. Remove redundant sentences and label the rest as 1.

7. Look for sentence that do not contain w1w2...wn in text.

8. Label them by 0.

9. Add up these two set of sentences and create F1.

10. Continue the classification as previous methods.
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4.2.7 M7: Loose Word Selection

In all of the previous methods, although we tried several alternatives, there were some cases that
the classifier was not able to detect relevant sentences for the initial data file. It happens in cases
that keywords passed through thresholds are not present in text.

This weakness causes a lack of learning relevant sentences in the first iteration, consequently
classifier never learns correct features even in next runs. In mathematical terms, it leads to a zero
value for precision and recall and eventually zero F-measure. Even if we obtain good results
for F-measure in some of test queries, these zero values have a negative impact on the average
F-measure of test queries calculated later in n-fold. Therefore, we decided to try a method to
have at least one true positive sentence. For this, it is required to relax the search criteria since
the beginning. Contrary to previous methods that we started with a large collection of words
and relaxed afterwards, this time we start with the least number of words and make a more
strict search at later runs. For example at first iteration, we look for 10% of the query words
or at least one word to appear in a sentence and label such sentences as relevant. Then we
label the sentences that do not carry any of the query slot words (after stop word removal and
stemming) as irrelevant. We train an initial classifier, and proceed with the iterative step. Here,
the percentage of words is a parameter and is optimized according to the development set.
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CHAPTER

5

Data and Metrics

This chapter describes qualitatively and quantitatively the corpus that we use for the classi-
fication. Then we proceed with feature types related to this work, as well as explanations of
some important measures. Then we explain the performance factors that we use to measure
the performance of unsupervised classification. Performance factors are compared to the base-
line which will be described afterwards. Finally, we explain about a statistical significance
test which will be used later in results chapter.

5.1. Data

All the experiments of this work are done in two phases. For the first phase, the corpora are a
combination of TDT4 and TDT5 corpora from LDC (we will refer to them as Y1-data) along with
a few more queries from the corpus of GALE-Y2. This corpus includes the collection of English
written news forms including blogs. (Wayne, June 1998). For each query we only consider those
documents in which, LDC found at least one relevant sentence. During the initial experiments,
we use the documents which come from Y1 data source as both training and test data sets. For
this part, we classify the sentences related to 27 queries of template1. Later, we add to our corpus
10 queries from GALE-Y2. Once these queries are added to our corpus, they form our test set
and in the meanwhile the previous 27 queries form the training set. The important point is that
the queries in test set should not be included in training set.

In the second phase, experiments are repeated on documents returned by UMass INDRI Docu-
ment Retrieval engine. The latter set has the advantage of being conducted under more reality-
like conditions.

5.1.1 LDC Documents

Linguistic Data Consortium (LDC) has annotated part of their TDT4, TDT5 and GALE-Y2 corpora
with respect to a number of queries. For each query, it employed an off-the-shelf search engine to
find documents with at least one relevant sentence in it. Then all sentences of these documents
were annotated with respect to the query. In other words, given a query of templatei as input, it
produces a number of binary "yes/no" decisions for each sentence of the retrieved documents.
Template of the query and its slots were both taken into account while making relevance decisions.
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To have a general idea about the documents returned by LDC, we have depicted the proportion
of relevant and irrelevant sentences per query in 5.1. As can be observed, for each query, at least
some relevant sentences exist.
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FIG. 5.1: The proportion of relevant sentences to irrelevant ones in 37 queries provided by LDC.

5.1.2 INDRI Documents

Another source of documents employed for distillation tasks is INDRI Information Retrieval Sys-
tem from UMass. INDRI employs an inference network approach, combining multiple evidences
of relevance using statistical models. Therefore, the returned documents are associated with their
own relevance scores. Similarly, the arguments in the GALE distillation queries are represented
as nodes in the inference network and their appearances in the documents are scored with argu-
ment scores (Hakkani-Tür et al., 2007).

The collection of documents provided by INDRI for a particular query of templatei, are not nec-
essarily same as those provided by LDC, but may have some overlaps.

The proportion of relevant and irrelevant sentences per query are shown in 5.2.

5.2. Sentence Annotations

Usually the sentences inside the documents should be annotated manually. The annotation
guidelines of GALE, give the necessary instructions to determine whether a sentence is rele-
vant or not. The following text is extracted from "Annotation Guidelines for Distillation Training
Data" prepared by ACE. It explains how template1 queries should be annotated.

"Relevant information focuses on the event and the persons, places, and activities directly associ-
ated with the event. Relevant information also includes subevents, causes, goals, and precursor
or preparation events.

34



CHAPTER 5. DATA AND METRICS

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

700

800

Queries

N
um

be
r 

of
 r

el
ev

an
t a

nd
 ir

re
le

va
nt

 s
en

te
nc

es

Relevant sen.
Irrelevant sen.

FIG. 5.2: The proportion of relevant sentences to irrelevant ones in 37 queries provided by INDRI.

For persons associated with the event: relevant information includes their role and the reason
for their involvement in the event, as well as their involvement in promoting, funding, or plan-
ning for the event. Information about a person must be directly related to the event if it is to
be relevant. Involvement in the event may be confirmed or suspected. Direct reactions, direct
consequences, and the significance of the event are also relevant. For locations associated with
events: only information that directly pertains to the even is relevant."

5.3. Features

When the input data to an algorithm is too large to be processed and it is suspected to contain
much data, but not necessarily much information), then the input data should be transformed
into a reduced representation set of features (also named features vector). Transforming the input
data into the set of features is called features extraction. If the features extracted are carefully
chosen it is expected that the features set will extract the relevant information from the input
data in order to perform the desired task using this reduced representation instead of the full size
input (Gorgel & O.N.Ukan, 2007).

For example, the performance of the classifier can be improved by incorporating statistical in-
formation at the word sequence level such as selection of higher rank words. In the context of
this work, rank is equal to frequency of occurrence of a word in text when all stop words have
been removed. Various methods can be used to incorporate word history or modifying word
neighborhood. Modification includes proposing new word candidates such as the stem of word
or synonyms of words. By word stemming or synonyms, we can expand the coverage of each
feature .

Throughout this work, we have used n-grams from word transcriptions as classification features.
We have also included stemming and synonyms to cover more sentences as relevant ones.

35



CHAPTER 5. DATA AND METRICS

5.4. Synonyms

Among 17 query templates defined in GALE framework, template1 queries can be considered as
the least trainable queries, since they are open-domain queries and all the data is concentrated in
slot. Therefore, to be able to find a correct answer to these types of queries, we need to collect as
much data as possible related to query slot.

In our unsupervised approach, the decision of relevance to a particular query, depends either
on the number of occurrences (frequency) of query components in documents or on the TD/IDF
coefficient for that component. Talking about query components, we mean word botth transcrip-
tions and their synonyms. Then for each word, we take a collection of synonyms (2 per word)
and compute frequencies for the words in this new set. Depending on these frequencies, we keep
some of the synonyms and throw out the rest. The final set of words, is a sorted list of high
frequency query words and their synonyms. During sentence extraction, they will be used either
as unigrams or as bigrams. Longer N-grams (more than 2) do not bring significant change to
classification performance.

5.5. Parameters and Thresholds

To improve the classification quality, we need to define a set of thresholds and parameters in our
algorithms. As it is usually done in classification approaches, several thresholds for the classifier
are used, until the best performance on training set is achieved. This particular set of thresholds
is applied to the classifier when it is running on test set.

In this work we have 5 types of thresholds:

• Mean Threshold: This parameter leaves a margin below mean base level of frequency, of
word occurrences and lets choose words with frequencies bigger the margined mean. This
value ranges from 0 to 0.4.

• TF-IDF Threshold: Same as Mean Threshold, just leaves a margin below TF-IDF base level.
This threshold changes between 0 and 0.4.

• Number of iterations of classifier. The classification is done either at 100 or at 200 iterations.
• Number of iterations of algorithm. This value changes between 1 and 3.
• Probability threshold: The final output of the boosting algorithm are weights of the label l,

attributed to a sample x. The weights f(x, l) need to be interpreted and mapped to a class.
The conversion from the weights output by the Boosting to the attribution of a class is done
as described below.
Each weight is turned into probability p(l|x) according to the following equation:

p(l|x) =
1

1 + e−2 f (x,l)T
(5.1)

where T is the number of iterations used to train the classifier and f (x, l) the final classifier
output by the learning algorithm.

This probability, which is in fact the probability of correctness of sample x, forms our last thresh-
old. For example by setting the probability threshold equal to 0.3, we consider samples with
probability bigger than 0.7 as relevant and those with probability less than 0.3 as irrelevant. This
variable changes from 0 through 0.4.
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Prior distribution of classes Classifier estimation
True positive(TP) Relevant Relevant
True negative(TN) Irrelevant Irrelevant
False positive(FP) Irrelevant Relevant
False negative(FN) Relevant Irrelevant

FIG. 5.3: The four possible combinations between prior distribution of classes and classifier esti-
mation.

5.6. Performance factors

To estimate the accuracy of a classification, we compare for each instance in the test set the class
estimated by the classifier to the one assigned by humans, which we refer to as the correct one.
The labeling done by humans is thus considered as the absolute truth when evaluating the hy-
potheses done by a classifier, even though there may be mistakes in them comparing to annota-
tion guideline.

There exist four designations to compare the estimation of the system with the correct classifica-
tion: the true positives/negatives and the false positives/negatives. The true positives and the
true negatives represent the examples that the classifier guess for them is correct. More precisely,
if a sentence is identified as relevant by the classifier and it is relevant in reality as well, it is
considered as true positive and a sentence that the classifier identifies as irrelevant correctly, will
be interpreted as true negative. As can be observed in 5.1 and 5.2, the irrelevant sentences are
much more frequent in documents and that happens due to open-domain property of template1
queries. The two remaining classes are the ones containing the examples that were wrongly clas-
sified. The false negatives represent the irrelevant sentences identified by classifier, whereas it is
relevant in reality. Finally, the false positives are the irrelevant sentences which are mal-estimated
by classifier as relevant. The designations are summarized in 5.3.

Since the whole distillation task is now framed as a classification problem, to measure the per-
formance of the system as a concrete number, we used primarily classification error rate and then
F-measure.To do so, the classifier’s output scores should be interpreted as binary values and turn
into binary decisions. Depending of correctness or incorrectness of decisions, TP, TN, FP and
FN values are determined. Then by using these 4 designations, we compute the standard re-
call and precision metrics to compute F-measure as a performance measure of our system. Once
these values obtained, we perform macro-averaging over queries since the number of relevant
snippets per query varies significantly. We have performed n-fold cross-validation where in each
fold one query was used for testing, and the rest for training. The classifier output is then used
to compute the error rate and F-measure values for various queries.

5.6.1 Classification Error Rate (CER)

Error rate or test error is defined as the number of errors done in the classification, divided by the
total number of instances on which the classifier was tested:

Classification Error Rate =
FN + FP

FN + FP + TP + TN
.

5.6.2 F-measure

In order to understand what the F-measure is, one first has to understand two intermediate mea-
sures, the recall and the precision.
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Recall

The recall is the ratio of relevant sentences that are retrieved, out of all true labeled sen-
tences(Relevant and irrelevant). It can be expressed as:

Recall =
TP

TP + FN
. (5.2)

Hence, if only recall was taken into account to measure the performance, the best solution would
be to label every sentence as relevant, which would yield to a recall of 100%. Such a case is
avoided by combining the recall measure with the precision measure.

Precision

Precision is the ratio of retrieved and pertinent(relevant) sentences to all relevant sentences.

Precision =
TP

TP + FP
(5.3)

In the previous extreme case with a recall of 100%, the precision would thus be very low. On the
contrary, if only non-relevant sentences are returned the precision is 100%, but the recall is 0%.

Recall and precision measure the extent to which the system produces all the appropriate output
(recall) and only the appropriate output (precision).

The recall and precision measures taken separately are however not sufficient, as pointed out
by the above-mentioned extreme cases. These two measures are complementary and should
therefore be combined. This is achieved by the F-measure, which is nothing but the weighted
harmonic mean of recall (R) and precision (P) measures:

F-Measure =
P·R(α + 1)

αP + R

where α is a coefficient usually set to 1.

5.7. Baseline

Theoretically, baseline consists of information gathered at the beginning of the study from which,
variations found in the study are measured. Deciding which is an appropriate baseline is a dif-
ficult task, however in the case of classification, usually chance baseline is used. We then com-
pute the measures on unseen data using the proportion of observed agreement with baseline
(Fazly et al., 2006). In a chance baseline, all the sentence are labeled randomly. In the framework
of classification, random labeling has a standard definition. It is equivalent to labeling all the
sentences as relevant or all as irrelevant.

To compare the error rate improvement, we use the baseline with all irrelevant sentences. It looks
a reasonable choice, since in our corpus the majority of sentences are irrelevant to their query.
Though to have least error for baseline, we need to label all the sentences as 0. This baseline is
called chance0 baseline. More clearly, we find the performance measure in the case that every
sentence are labeled with equal chance to a single class (here is 0).

This type of labeling of baseline will lead to have the recall equal to zero. Thus, the F-measure
would be equal to zero for all the queries of baseline. In order to resolve this problem, in the
case of F-measure comparison, we choose the other type of baseline. We label all the sentences of
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training set as 1. This baseline is called Chance1 baseline. Again we compute the F-measure of
classifier over our test set, and compute the improvement to baseline results.

Table 5.1, shows a resume about two individual parts of our corpus corresponding to LDC Doc-
uments:

Queries from GALE-Y1 Queries from GALE-Y2 Total
Documents 526 97 623
Sentences 10785 2347 13132

Table 5.1: Summary of LDC Corpus Statistics.

The same, table 5.2, shows same type of information about INDRI corpora:

Queries from GALE-Y1 Queries from GALE-Y2 Total
Documents 535 200 735
Sentences 11501 4651 16152

Table 5.2: Summary of INDRI Corpus Statistics.

To explain the computation of baseline measures, consider a query with following prior informa-
tion:

# of Rel. Sentences = 46
# of Irrel. Sentences = 165

The error and F-measure can be easily computed as following:

Chance0 Error =
P

P + N
= 0.2180

Chance1 Precision =
P

P + N
Chance1 Recall = 1

Chance1 F-measure =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ P
2 ∗ P + N

= 0.3580

where P stands for relevant sentences and N stands for irrelevant ones.

5.8. Statistical Significance Test

Test of statistical significance addresses the question, how likely is a result, assuming the null hy-
potheses to be true (Shaver, 1993). A statistically significant difference, means there is statistical
evidence that there is a difference; it does not mean the difference is necessarily large, important
or significant in the usual sense of the word. The most common level, used to mean something is
good enough to be believed, is 0.95. This means that the finding has a 95% chance of being true.
For example, a value of "0.01" means that there is a 99% (1-.01=.99) chance of it being true.

The significance level is the probability that the null hypothesis will be rejected in error when it is
true (a decision known as a Type I error, or "false positive") (Hand et al., 2001).
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In this work, we have used a script written by Jeff Bilmes at ICSI. Assuming we have two meth-
ods (Our Method and Baseline), each run on N independent trials (Number of sentences to be
classified), and p1 and p2 are two processes to be compared in terms of classification error rate.

"We want to find out if p2 is significantly (in a statistical sense) better than p1 under N samples.
We do this by assuming a null hypothesis, H0, and seeing how unlikely this null hypothesis is.

Since we want to test whether one process (p2) is better than another p1 (as apposed to testing
whether one process is either better or worse than another), we use the two hypothesis H0 and
H1 as illustrated below.

H0: p1 == p2, i.e. the scores are really identical
H1: p1 > p2 , i.e. p2 is indeed better than p1 at the current significance level.

We do this by assuming H0 and then disproving it at various significance levels."
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6

Experiments and Results

Experimental results are presented in this chapter. In unsupervised methods, classification
is performed in two phases. In the first one, only LDC corpus is used, whereas in second
part INDRI documents are tested to be classified. For each experiment, several result sets
are presented and compared with the baseline results. At each case, relative improvement
compared to baseline and the result of statistical significance test are computed.

6.1. Phase I: LDC Data

In all of our experiments, we split the data to form a training set, a test set and a development (or
held-out) set, as it is always done in classification tasks. The training set contains approximately
80% of the labeled data whereas the remaining 20% is evenly distributed between the test set and
the development set.

The classifier learning process is done using the training set, the held-out set is optionally used
to optimize parameters and thresholds and the test set is used to evaluate the performance of the
classifier. In our experiments, we tried to optimize the acceptance threshold over the posterior
probabilities for two classes irrelevant (0) and relevant (1). We generated the posterior probabil-
ities p(0|example) and p(1|example) and computed F-measure and error rate by using different
thresholds until we obtained the best performance over the development set. Then we applied
that threshold on the test set and measured the classifier performance. In fact, p(0|example) and
p(1|example) show the probability of correctness of distinguished sentence class, by the classifier.
The posterior probabilities are calculated as shown in the previous chapter.

Test set should always be unseen, meaning that no parameters can be modified according to it.
Also, it is expected that each classifier which is built on a specific corpus, performs the best when
evaluated exactly on the very same corpus. Since both the training and test data share the same
settings (query templates, annotation style). This is because of the iid (identical and independent
distribution of examples from the same source) assumption of classifiers.

Cross-validation is a standard practice of partitioning a sample of data into subsets such that
the analysis is initially performed on a single subset while the other subsets are retained for
subsequent use in validating the initial analysis. The initial subset of data is the so called training
set; the other subsets are called validation or testing sets. If the data size is not big enough, n-fold
cross validation should be applied. This method helps to have a larger corpus for training data,
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and consequently more precise results on the test set will be produced. In n-fold cross-validation,
the original corpus which consists of training and test data, is partitioned into n subsets. Among
these n subsets, a single one is retained as the validation data for testing the model, and the
remaining (n− 1) sets are used as training data. The cross-validation process is then repeated n
times (the folds), with each of the n subsets used exactly once as the validation data. The n results
from the folds then can be averaged to produce a single estimation.

To compare the performance of the proposed methods, we performed n-fold cross validation
and computed the mean of the desired metric (classification error or F-measure) to compare to
the baseline performance. In our experiments, we have 27 template 1 queries as described in the
previous chapter.

By applying the proposed methods, we obtain two important sets of results. One set corresponds
to the performance of classifier for test queries in terms of classification error rate and the other
one corresponds to its performance in terms of F-measure.

As mentioned in previous chapter, we use a combination of parameters (thresholds) for each run
of classification. Once we train the classifier, it is reasonable to find the set of parameters that lead
to the best results on training set, and apply the same set of thresholds on test set and measure
the performance.

In the case of n-fold cross validation, at each fold, for each parameter set, we sum up the desired
metric (classification error rate or F-measure) over all the training data and take an average. Then
the parameter set that leads to best average result (minimum error rate or maximum F-measure)
on the held-out parameter optimization set is applied on test set.

6.1.1 Supervised Classification

As the first step, we started with the experiments using the supervised learning method. This
was done in order to get the performance of the existing IXIR system for the template 1 queries.

The results of this experiment are shown in figure 6.1. The plots show lots of fluctuations for
F-measure and error for different test queries, which is actually a good sign for the necessity of
a fair evaluation. In some cases we observe an F-measure equal to zero. It comes from the fact
that classifier has recognized no relevant examples for that query. In other words, it was unable
to learn correct words on the existing training set. It happens due to the generality of template 1
queries.

The ultimate goal of supervised classification baseline is having an average of the measured
metric for all test queries. In this experiment, the average for F-measure is around 12.52 and the
average for the error rate is 24.38. It is obvious that the very low F-measure comes from the effect
of zero value F-measures for some test queries. Note that, when we use a trivial classifier which
selects all sentences as relevant, the F-measure is much higher, proving that the existing data-
driven IXIR approach is unsuitable for this template. It is also intuitive since it is not clear what
kind of features the classifier would learn. This happens since the query slots can be anything in
this template and there is no pattern.

Figure 6.2, shows the diagrams for Precision and Recall at different runs. In some of the cases
both precision and recall are equal to zero. These are the same points that number of relevant
sentences recognized by classifier are equal to zero. Again it proves that the raw method of
classification and query answering in template 1, needs to be enhanced. In the areas that they
are not zero, we observe a trade-off between precision and recall. When we get a very good
precision, the recall drops or vice versa.

Table 6.1 shows a comparison between the measured metrics of n-fold with those of baseline
when classification is done in a supervised fashion using only LDC data.
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FIG. 6.1: F-measure and error rate of 27 queries of LDC data in n-fold cross validation experiment
for supervised classification.

Classification by Words Baseline Relative Improvement %
Error rate 24.38 25.60 4.7
F-measure 12.52 38.34 -67.34

Table 6.1: Performance of the supervised classification versus baseline using n-fold cross valida-
tion. The training corpus comes from LDC data.
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FIG. 6.2: Precision and Recall of 27 test queries in n-fold cross validation experiment for LDC
data for supervised classification.

6.1.2 Unsupervised Classification

In this section, we present our results using the proposed unsupervised learning methods for
information distillation. For each method, we provide query by query error rate and F-measure
figures and the averages. The number of iterations is optimized using the held-out set. The
maximum of this value is set to 3 iterations.

M1: Strict Initial Classification For Relevant Snippets

The result sets can be observed in figure 6.3. Table 6.2 shows a numeric comparison of classi-
fication error rate or F-measure changes, between classification results and the baseline. When
we measure the test error of each query by this method, in 18 cases we obtain better results than
baseline whereas in 9 case the classifier acts weaker than baseline.

Improvement No Changes Degradation
Error 14 0 13
F-measure 16 0 11

Table 6.2: This table shows number of cases that improvement or no change or degradation of
classification error or F-measure has happened comparing to baseline, in method M1 on LDC
documents corresponding to GALE-Y1 queries.

In average, as can be observed in table 6.3, Method M1 decreases the classification error rate by
0.38% and increases the F-measure by 0.77%.
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(a) Test error rate of Method M1 Under Best Results For Training Set
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(b) Test F-measure of Method M1 Under Best Results For Training Set

FIG. 6.3: Test error rate and F-measure while having best training classification error when
method M1 is executed on LDC documents corresponding to GALE-Y1 queries.
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Method M1 Baseline Relative Improvement % Stat. Sig. Test Level
Error rate 0.2399 0.2408 0.3881 –
F-measure 0.3685 0.3657 0.7775 –

Table 6.3: Average classifier performance versus average baseline performance, while having
the best results for training set in method M1 on LDC documents corresponding to GALE-Y1
queries.

M2: Strict Initial Classification For Relevant and Irrelevant Snippets

The result sets can be observed in figure 6.4. As before, table 6.4 shows a numeric comparison
of error rate or F-measure changes, between test results and baseline while having best training
results.

Improvement No Changes Degradation
Error rate 14 0 13
F-measure 17 0 10

Table 6.4: This table shows number of cases that improvement or no change or degradation of
classification error or F-measure has happened comparing to baseline, in method M2 on LDC
documents corresponding to GALE-Y1 queries.

Method M2 Baseline Relative Improvement % Stat. Sig. Test Level
Error rate 0.2424 0.2408 -0.6587 N/A
F-measure 0.3797 0.3657 3.8313 0.05

Table 6.5: Average classifier performance versus average baseline performance, while having
the best results for training set in method M2 on LDC documents corresponding to GALE-Y1
queries.

On average, as can be observed in table 6.5, Method M2 doesn’t perform any improvements on
classification error rate, but increases the F-measure by 3.83%. This improvement is actually bet-
ter than the one obtained with the M1 method. The reason might be applying more strict criteria
to find the irrelevant classes, comparing to M1. In this method, the relevancy was defined as
presence of all words and irrelevancy by absence of all words passed through the mean thresh-
old. Thus, there is probability to lose some of sentences which don’t fall in either category and
never be learned by classifier. However, this may result in less noisy training data. It means that
in general, the accuracy of classified sentences as relevant, is quite high. The significance test
shows that with a probability of 95% the difference obtained between F-measure of our study
and baseline is not due to chance.

M3: Relaxation of Initial Classification For Relevant and Irrelevant Snippets

The result sets can be observed in figure 6.5. As before, table 6.6 shows a numeric comparison
of test error or F-measure changes, between test results and baseline while having best training
results.

In Method M3, the classification error rate is not reduced, but the F-measure is increased by
6.55%. The reason of degradation in CER might happen because of providing too much relaxation
in this method. During different iterations, this method does not rely on the previous results of
the classifier. That is, each run is completely independent from the previous one and doesn’t get
any feedback from previous iteration. For instance, we may look for 4 words in first run, then
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(a) Test error rate of Method M2 Under Best Results For Training Set
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(b) Test F-measure of Method M2 Under Best Results For Training Set

FIG. 6.4: Test error rate and F-measure while having best training classification error when
method M2 is executed on LDC documents corresponding to GALE-Y1 queries.
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(a) Test error rate of Method M2 Under Best Results For Training Set

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Test Queries

T
es

t F
−

m
ea

su
re

 W
hi

le
 B

es
t F

−
m

ea
su

re
 O

bt
ai

ne
d 

O
n 

T
ra

in
in

g Method M3 on LDC Documents

Test F−measure
BaseLine F−measure

(b) Test F-measure of Method M3 Under Best Results For Training Set

FIG. 6.5: Test error rate and F-measure while having best training classification error when
method M3 is executed on LDC documents corresponding to GALE-Y1 queries.
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Improvement No Changes Degradation
Error rate 14 0 13
F-measure 17 0 10

Table 6.6: This table shows number of cases that improvement or no change or degradation of
classification error or F-measure has happened comparing to baseline, in method M3 on LDC
documents corresponding to GALE-Y1 queries.

Method M2 Baseline Relative Improvement % Stat. Sig. Test Level
Error rate 0.2424 0.2408 -0.6587 N/A
F-measure 0.3896 0.3657 6.5525 0.001

Table 6.7: Average classifier performance versus average baseline performance, while having
the best results for training set in method M3 on LDC documents corresponding to GALE-Y1
queries.

we look for 3 words in next run and so on. Since the search is reset at each time, it is possible
that the number of errors increase significantly in iterative runs and that can be the reason for
degradation of classification error rate. However, the F-measure has improved to an acceptable
level. It means that in general, the accuracy of the classified sentences as relevant is quite high.
The significance test shows that with a probability of 99.9% the difference obtained between F-
measure of our study and baseline is not due to chance.

M4 Word Selection By TF-IDF At Document Level

The result sets can be observed in Figure 6.6. Table 6.8 shows a numeric comparison of error
or F-measure changes, between test classification results and baseline while having best training
results.

Improvement No Changes Degradation
Error rate 10 0 17
F-measure 11 0 16

Table 6.8: This table shows number of cases that improvement or no change or degradation of
classification error rate or F-measure has happened comparing to baseline, in method M4 on
LDC documents corresponding to GALE-Y1 queries.

In Method M4, the classification error rate is not reduced. It means that extracting words with
high TF-IDF and using them either as unigram or as bigram, does not help in terms of error rate.
Also, we observe a degradation of F-measure which means that the choice of our features, is not
good for precision and recall. Note that this is the F-measure of the positive class, as usually done
in the information retrieval literature. Given that it is known that these documents have at least
one relevant sentence, choosing all the sentences in the baseline guarantees 100% recall. Actually
this is a tougher baseline to beat than another baseline, which would randomly assign x% of the
sentences as relevant, where x% is the prior probability of being relevant.

M5 Word Selection By TF-IDF At Sentence Level

The result sets can be observed in figure 6.7. As before, table 6.10 shows a numeric comparison
of error or F-measure changes, between test classification result and baseline while having best
training results.
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(a) Test error rate of Method M4 Under Best Results For Training Set
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(b) Test F-measure of Method M4 Under Best Results For Training Set

FIG. 6.6: Test error rate and F-measure while having best training classification error when
method M4 is executed on LDC documents corresponding to GALE-Y1 queries.
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(b) Test F-measure of Method M5 Under Best Results For Training Set

FIG. 6.7: Test error rate and F-measure while having best training classification error when
method M5 is executed on LDC documents corresponding to GALE-Y1 queries.
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Method M2 Baseline Relative Improvement % Stat. Sig. Test Level
Error rate 0.2472 0.2408 -2.6724 N/A
F-measure 0.3105 0.3695 -27.3366 N/A

Table 6.9: Average classifier performance versus average baseline performance, while having
the best results for training set in method M4 on LDC documents corresponding to GALE-Y1
queries.

Improvement No Changes Degradation
Error rate 11 0 16
F-measure 9 0 18

Table 6.10: This table shows number of cases that improvement or no change or degradation of
classification error or F-measure has happened comparing to baseline, in method M5 on LDC
documents corresponding to GALE-Y1 queries.

In Method M5, the only difference is that TF-IDF is found at the sentence level. It means that
each sentence is considered as a document to increase the number of documents of our corpus.
An improvement on error rate can be observed. It means TF-IDF extracts more relevant words,
when the number of documents are higher. This result is correct with probability of 90%. But,
the same problem still exists with F-measure, and since the structure of this method is similar to
previous one, the degradation of F-measure must come due to the same problem.

M6: All-Words Selection

The result sets can be observed in Figure 6.8. Also, table 6.12 shows a numeric comparison of
error or F-measure changes, between test classification result and baseline while having best
training results.

When we select test queries from Y1, a relative improvement of 5.30% is achieved comparing
to baseline at it is significant at level 95%. This method actually is much similar to the method
M2. We used bigrams and synonyms in addition to M2 to decrease its error rate, and it was
successful. However these changes do not have a positive effect on F-measure. Similar to the
previous methods, this method fails to find relevant sentences although it is good at finding
irrelevant ones.

M7: Loose Word Selection

The result sets can be observed in Figure 6.9. Table 6.14 shows a numeric comparison of error
or F-measure changes, between test classification results and baseline while having best training
results.

On GALE-Y1 data, comparing to other methods, this method has had the best performance in
terms of CER and F-measure. The improvements on CER and F-measure are correct with prob-

Method M2 Baseline Relative Improvement % Stat. Sig. Test Level
Error rate 0.2320 0.2408 3.6367 0.1
F-measure 0.2887 0.3657 -21.0334 N/A

Table 6.11: Average classifier performance versus average baseline performance, while having
the best results for training set in method M5 on LDC documents corresponding to GALE-Y1
queries.
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FIG. 6.8: Test error rate and F-measure while having best training classification error when
method M6 is executed on LDC documents corresponding to GALE-Y1 queries.
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Improvement No Changes Degradation
Error rate 12 0 15
F-measure 2 0 25

Table 6.12: This table shows number of cases that improvement or no change or degradation of
classification error or F-measure has happened comparing to baseline, in method M6 on LDC
documents. Test and training queries come from GALE-Y1 source.

Method M2 Baseline Relative Improvement % Stat. Sig. Test Level
Error rate 0.2280 0.2408 5.3031 0.05
F-measure 0.1752 0.3657 -52.0876 N/A

Table 6.13: Average classifier performance versus average baseline performance, while having
the best results for training set in method M6 on LDC documents. Test and training queries
come from GALE-Y1 source.

Improvement No Changes Degradation
Error rate 16 0 11
F-measure 19 0 8

Table 6.14: This table shows number of cases that improvement or no change or degradation of
classification error or F-measure has happened comparing to baseline, in method M7 on LDC
documents. Test and training queries come from GALE-Y1 source.

Method M2 Baseline Relative Improvement % Stat. Sig. Test Level
Error rate 0.2248 0.2408 6.63 0.005
F-measure 0.4344 0.3657 18.79 0.001

Table 6.15: Average classifier performance versus average baseline performance, while having
the best results for training set in method M7 on LDC documents. Test and training queries
come from GALE-Y1 source.

54



CHAPTER 6. EXPERIMENTS AND RESULTS

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Test Queries

T
es

t E
rr

or
 R

at
e 

W
hi

le
 B

es
t E

rr
or

 O
bt

ai
ne

d 
O

n 
T

ra
in

in
g

Method M7 on LDC Documents

Test Error
BaseLine Error

(a) Test error rate of Method M7 Under Best Results For Training Set

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Test Queries

T
es

t F
−

m
ea

su
re

 W
hi

le
 B

es
t F

−
m

ea
su

re
 O

bt
ai

ne
d 

O
n 

T
ra

in
in

g Method M7 on LDC Documents

Test F−measure
BaseLine F−measure

(b) Test F-measure of Method M7 Under Best Results For Training Set

FIG. 6.9: Test error rate and F-measure while having best training classification error when
method M7 is executed on LDC documents corresponding to GALE-Y1 queries.
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ability of 99.5% and 99.9%, respectively. The strength of this method is that, it obtains at least
one relevant sentence for each query. This way, it helps a considerable increase of F-measure. At
the same time, the results show that this method detects irrelevant sentences at the correct extent
which helps a reduction on error rate.

6.2. Phase II: INDRI Data

6.2.1 Unsupervised Classification

In this set of experiments, the same methods are run on the collection of documents returned by
IR Engine of INDRI. The charts and set of information corresponding to the proposed 7 methods
are presented below.

M1: Strict Initial Classification For Relevant Snippets

Improvement No Changes Degradation
Error rate 11 0 16
F-measure 12 0 15

Table 6.16: This table shows number of cases that improvement or no change or degradation of
classification error or F-measure has happened comparing to baseline, in method M1 on INDRI
documents corresponding to GALE-Y1 queries.

Method M1 Baseline Relative Improvement % Stat. Sig. Test Level
Error rate 0.2018 0.1814 -11.2508 N/A
F-measure 0.2769 0.2867 -3.4466 N/A

Table 6.17: Average classifier performance versus average baseline performance, while having
the best results for training set in method M1 on INDRI documents corresponding to GALE-Y1
queries.

This method performs worse in term of classification error rate and F-measure when compared to
the results presented in the previous section using only the LDC data. The reason is that by using
the LDC data, missing the small number of relevant sentences costs dearly for these parameters,
however the setting in this experiment is closer to a real world scenario where some documents
may have no relevant sentence.

M2: Strict Initial Classification For Relevant and Irrelevant Snippets

The results of this experiment are reflected in figure 6.11 and tables 6.18 and 6.19.

Comparing to M1, this method performed much better in terms of F-measure improvements. The
performance improves by more than 11% relative, showing the importance of having less noisy
training data as in the previous section. The error rate did not decrease due to similar reasons
discussed in the previous method.
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FIG. 6.10: Test error rate and F-measure while having best training classification error when
method M1 is executed on INDRI documents corresponding to GALE-Y1 queries.
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FIG. 6.11: Test error rate and F-measure while having best training classification error when
method M2 is executed on INDRI documents corresponding to GALE-Y1 queries.
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Improvement No Changes Degradation
Error rate 9 0 18
F-measure 17 0 10

Table 6.18: This table shows number of cases that improvement or no change or degradation of
classification error or F-measure has happened comparing to baseline, in method M2 on INDRI
documents corresponding to GALE-Y1 queries.

Method M2 Baseline Relative Improvement % Stat. Sig. Test Level
Error rate 0.2107 0.1814 -16.1510 N/A
F-measure 0.3196 0.2867 11.4659 0.001

Table 6.19: Average classifier performance versus average baseline performance, while having
the best results for training set in method M2 on INDRI documents corresponding to GALE-Y1
queries.

M3: Relaxation of Initial Classification For Relevant and Irrelevant Snippets

Figure 6.12 shows the comparison of classification error rate and F-measure between our results
and baseline. Tables 6.20 and 6.21 shows numerical results of comparison, as well.

Improvement No Changes Degradation
Error rate 9 0 18
F-measure 16 0 11

Table 6.20: This table shows number of cases that improvement or no change or degradation of
classification error or F-measure has happened comparing to baseline, in method M3 on INDRI
documents corresponding to GALE-Y1 queries.

This method performed similarly to the previous one in general, even obtaining less improve-
ment in F-measure, which shows it’s capable of detecting relevant sentences correctly. However
the error rate is increased. This shows the poor performance of it in detecting irrelevant sen-
tences, hence providing higher false alarms.

M4: Word Selection By TF-IDF At Document Level

The results related to this method are shown at figure6.13 and tables 6.22 and 6.23.

Comparing to previous methods in the same category, this method cases a degradation in both
CER and F-measure which shows TF-IDF coefficient is not necessarily a good criteria for word
extraction.

M5: Word Selection By TF-IDF At Sentence Level

The result sets can be observed in figure 6.14. As before, table 6.24 shows a numeric comparison
of error or F-measure changes, between test classification result and baseline while having best
training results.

Again, the same performance can be observed for a TF-IDF based method. By this observation,
we believe that TF-IDF is not always a good criteria for word selection in real-world documents
containing mostly irrelevant sentences.
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FIG. 6.12: Test error rate and F-measure while having best training classification error when
method M3 is executed on INDRI documents corresponding to GALE-Y1 queries.
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Method M2 Baseline Relative Improvement % Stat. Sig. Test Level
Error rate 0.2105 0.1814 -16.0292 N/A
F-measure 0.2971 0.2867 3.6145 0.05

Table 6.21: Average classifier performance versus average baseline performance, while having
the best results for training set in method M3 on INDRI documents corresponding to GALE-Y1
queries.

Improvement No Changes Degradation
Error rate 11 0 16
F-measure 9 0 18

Table 6.22: This table shows number of cases that improvement or no change or degradation of
classification error or F-measure has happened comparing to baseline, in method M4 on INDRI
documents corresponding to GALE-Y1 queries.

Method M2 Baseline Relative Improvement % Stat. Sig. Test Level
Error rate 0.2030 0.1814 -11.9109 N/A
F-measure 0.2466 0.2867 -14.0078 N/A

Table 6.23: Average classifier performance versus average baseline performance, while having
the best results for training set in method M4 on INDRI documents corresponding to GALE-Y1
queries.

Improvement No Changes Degradation
Error rate 12 0 15
F-measure 10 0 17

Table 6.24: This table shows number of cases that improvement or no change or degradation of
classification error or F-measure has happened comparing to baseline, in method M5 on INDRI
documents corresponding to GALE-Y1 queries.

Method M5 Baseline Relative Improvement % Stat. Sig. Test Level
Error rate 0.1937 0.1814 -6.7669 N/A
F-measure 0.2553 0.2867 -10.9501 N/A

Table 6.25: Average classifier performance versus average baseline performance, while having
the best results for training set in method M5 on INDRI documents corresponding to GALE-Y1
queries.

61



CHAPTER 6. EXPERIMENTS AND RESULTS

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Test Queries

T
es

t E
rr

or
 R

at
e 

W
hi

le
 B

es
t E

rr
or

 O
bt

ai
ne

d 
O

n 
T

ra
in

in
g

Method M4 on INDRI Documents

Test Error
BaseLine Error

(a) Test error rate of Method M4 Under Best Results For Training Set

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Test Queries

T
es

t F
−

m
ea

su
re

 W
hi

le
 B

es
t F

−
m

ea
su

re
 O

bt
ai

ne
d 

O
n 

T
ra

in
in

g Method M4 on INDRI Documents

Test F−measure
BaseLine F−measure
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FIG. 6.13: Test error rate and F-measure while having best training classification error when
method M4 is executed on INDRI documents corresponding to GALE-Y1 queries.
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FIG. 6.14: Test error rate and F-measure while having best training classification error when
method M5 is executed on INDRI documents corresponding to GALE-Y1 queries.
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M6: All-Words Selection

The result sets can be observed in figure 6.15. Tables 6.26and 6.27 show the numeric comparison
of error or F-measure changes, between best classification result and baseline while having best
training results.

Improvement No Changes Degradation
Error rate 8 0 19
F-measure 4 0 23

Table 6.26: This table shows number of cases that improvement or no change or degradation of
classification error or F-measure has happened comparing to baseline, in method M6 on INDRI
documents corresponding to GALE-Y1 queries.Test and training queries come from GALE-Y1
source.

Method M6 Baseline Relative Improvement % Stat. Sig. Test Level
Error rate 0.1844 0.1814 -1.6299 N/A
F-measure 0.1619 0.2867 -43.5265 N/A

Table 6.27: Average classifier performance versus average baseline performance, while having
the best results for training set in method M6 on INDRI documents corresponding to GALE-Y1
queries.Test and training queries come from GALE-Y1 source.

Similar to the results in the previous section, this method resulted in huge performance drop for
the F-measure. and little degradation for the classification error rate. This shows the necessity of
an alternative method for improving of F-measure.

M7: Loose Word Selection

Improvement No Changes Degradation
Error rate 14 0 13
F-measure 22 0 5

Table 6.28: This table shows number of cases that improvement or no change or degradation of
classification error or F-measure has happened comparing to baseline, in method M7 on INDRI
documents corresponding to GALE-Y1 queries.

The results show improvements both on CER and F-measure. The best improvement on F-
measure is obtained by this method up to now and the results is correct with probabilty of 99.9%.
Since INDRI data is much similar to real data, it shows that this method is the best method among
all for F-measure improvement, but the result on CER is not that significant. F-measure is a very
important parameter for this kind of text processing tasks, therefore we can apply this method in
same kind of applications.

6.3. Summary of Reslts

Tables 6.30, 6.31, 6.32 and 6.33 summarize the results presented so far on GALE-Y1 corpus. In the
same way, tables 6.34, 6.35, 6.36 and 6.37 show a summary of results when the training queries
are extracted from GALE-Y1 corpus and test queries from GALE-Y2.
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FIG. 6.15: Test error rate and F-measure while having best training classification error when
method M6 is executed on INDRI documents. Training queries come from GALE-Y1.
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FIG. 6.16: Test error rate and F-measure while having best training classification error when
method M7 is executed on INDRI documents corresponding to GALE-Y1 queries.
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Method M2 Baseline Relative Improvement % Stat. Sig. Test Level
Error rate 0.1752 0.1814 3.409 –
F-measure 0.3836 0.2867 33.7615 0.001

Table 6.29: Average classifier performance versus average baseline performance, while having
the best results for training set in method M7 on INDRI documents corresponding to GALE-Y1
queries.

As seen, each method has strengths and weaknesses. The performance varies depending on
the corpus. In some of the methods, CER decreases while F-measure also decreases. In those
cases, the method is capable of extracting correct irrelevant sentences, but it detects more than
necessary. Since the majority of sentences are irrelevant, it improves the CER, but hurts the F-
measure.

For GALE-Y1 queries, we obtained the best F-measure and CER improvement by method M7
when using LDC and INDRI data. On LDC data, also M5 and M6 work good for CER reduction.

Similarly we obtained F-measure improvements using M2 and M3. It means that less noisy data,
helps to increase F-measure, although does not necessarily reduce the CER. In other words, it
means that even if we lose some data, the selected sentences are classified correctly with high
confidence.

Test Source LDC INDRI
M1 Y1 .38 -11.25
M2 Y1 -.65 -16.15
M3 Y1 -.65 -16.15
M4 Y1 -2.67 -11.91
M5 Y1 3.63 -6.7
M6 Y1 5.30 -1.6
M7 Y1 6.63 3.40

Table 6.30: This table shows a comparison between the performance of different methods in terms
of classification error rate over LDC and INDRI data for GALE-Y1 queries. The results show the
percentage of relative improvement, compared to baseline.

Test Source LDC INDRI
M1 Y1 .77 -3.44
M2 Y1 3.83 11.46
M3 Y1 6.55 3.61
M4 Y1 -27.33 -14
M5 Y1 -21.03 -10.95
M6 Y1 -52.08 -43.52
M7 Y1 18.79 33.76

Table 6.31: This table shows a comparison between the performance of different methods in
terms of F-measure over LDC data and INDRI data for GALE-Y1 queries. The results show the
percentage of relative improvement, compared to baseline.

For GALE-Y2 queries, almost all of the methods have some improvements of CER on LDC data.
LDC data is clean data which contains at least some relevant sentences. Methods, M1, M4, M5 ,
M6 and M7 perform the same even on INDRI data. It shows that the choice of using less noisy
data or TF-IDF or other criteria, depends strongly on the corpus. In the case of F-measure, as it
was expected, M7 has the best performance and much better than other methods.
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LDC INDRI
Best Method M7 M7
Best Error Rate Reduction 6.63 3.40

Table 6.32: The methods having best performance on Classification Error on LDC and INDRI
data respectively, are listed in this table.

LDC INDRI
Best Method M7 M7
Best F-measure improvement 18.79 33.76

Table 6.33: The methods which perform the best in terms of F-measure on LDC and INDRI data
respectively, are listed in this table.

Test Source LDC INDRI
M1 Y2 17.66 5.86
M2 Y2 14.28 -7.62
M3 Y2 14.28 -7.62
M4 Y2 2.40 7.83
M5 Y2 .91 5.08
M6 Y2 11.36 7.78
M7 Y2 3.46 7.00

Table 6.34: This table shows a comparison between the performance of different methods in terms
of Classification Error Rate over LDC data and INDRI data for GALE-Y2 queries. The results
show the percentage of relative improvement, compared to baseline.

Test Source LDC INDRI
M1 Y2 -11.76 -10.36
M2 Y2 -10.53 -17.39
M3 Y2 -10.53 -8.35
M4 Y2 -61.92 -23.34
M5 Y2 -38.66 -22.87
M6 Y2 -61.07 -55.52
M7 Y2 30.82 28.82

Table 6.35: This table shows a comparison between the performance of different methods in terms
of F-measure over LDC and INDRI data for GALE-Y2 queries. The results show the percentage
of relative improvement, compared to baseline.

LDC INDRI
Best Method M1 M4
Best Error Rate Reduction 17.66 7.83

Table 6.36: The methods having best performance on Classification Error on LDC and INDRI
data respectively for GALE-Y2 queries, are listed in this table.

LDC INDRI
Best Method M7 M7
Best F-measure improvement 30.82 28.82

Table 6.37: The methods which perform the best in terms of F-measure on LDC and INDRI data
respectively for GALE-Y2 queries, are listed in this table.
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Conclusions

Template 1 queries are very general questions with a wide domain of responses. Although using
a template, the question answering is quite different from that of other templates, since all the
information about the event is concentrated in the slot. Answering to these kind of questions
is much similar to extraction of general passages from an IR engine. If the performance of clas-
sification for this template is increased, it would be useful to answer free-template questions as
well.

In supervised classification methods, sufficiently large size of annotated data is required to train
a system. However, annotated data may not be available for particular query and it is time
consuming to label them manually. Therefore, we were motivated to implement an efficient un-
supervised distillation method to automate sentence annotating in response to template 1 queries
and reduce labeling efforts in the framework of GALE Project. Later, other templates may also
exploit similar unsupervised methods.

Throughout this work, we used the documents returned either by the manual annotations pro-
vided by LDC or by the University of Massachusetts INDRI IR engine. The approach consists of
using only highly confident features such as word transcriptions extracted from query as well as
their synonyms. After forming the bootstrap model using these features, the model is improved
using self-training, and is iteratively trained during consecutive runs.

In various experiments, we use statistical sentence extraction for information distillation. We
observed that less noisy data helps to find a clean collection of relevant and irrelevant sentences.
But in the meanwhile, depending on the word filtering (either by means of word frequencies or
by TF-IDF), risk of losing a large amount of sentences in training data increases. The methods
which use this kind of selection have deficiencies in terms of error rate enhancement, since the
collection of non-labeled sentences should be labeled randomly by classifier. However, in some
of them F-measure is improved significantly. It should also be considered that we have a tough
baseline for F-measure which its recall is 100%. Thus, beating such a baseline is not a simple task.

This approach tries to enhance the F-measure by increasing recall and in the meanwhile uses
confident features to find relevant sentences and consequently increase the error rate. Therefore,
it seems to output more coherent results comparing to previous attempts.
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CHAPTER 7. CONCLUSIONS

Future Work

In this work, we tested only English documents and sentences of our corpus. However, as a novel
work, unsupervised distillation can be applied into other languages translated in English. It can
be applied and tested to perform natural language information distillation, as well.

The improvement of classification is related to extraction of proper features. Another important
challenge would be to use other sophisticate features rather than just word transcriptions and
synonyms, including named entities, co-references (mentions), relationships and events in the
document sources. These are IE elements and preferred to be extracted from ACE (Automatic
Content Extraction) annotation guidelines, defined by the annual NIST ACE evaluations.

It would even be more interesting to try compare the performance of the methods presented in
this work with other baselines rather than chance baselines. As an example it could be to use
Monte Carlo Baseline. Monte Carlo search refers to the extreme of simply randomly choosing
states and keeping track of the best so far. To have a fair baseline, we can assign x% of the
sentences as relevant in each document and then compute F-measure and error rate. X% is the
prior probability. For example if 10% of the sentences are relevant, assign one out of 10 sentences
as relevant randomly.
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