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In this paper, a novel statistical generative model to describe a face is presented, and is applied to the face
authentication task. Classical generative models used so far in face recognition, such as Gaussian Mixture
Models (GMMs) and Hidden Markov Models (HMMs) for instance, are making strong assumptions on the
observations derived from a face image. Indeed, such models usually assume that local observations are
independent, which is obviously not the case in a face. The presented model hence proposes to encode
relationships between salient facial features by using a static Bayesian Network. Since robustness against
imprecisely located faces is of great concern in a real-world scenario, authentication results are presented
using automatically localised faces. Experiments conducted on the XM2VTS and the BANCA databases
showed that the proposed approach is suitable for this task, since it reaches state-of-the-art results.
We compare our model to baseline appearance-based systems (Eigenfaces and Fisherfaces) but also to
classical generative models, namely GMM, HMM and pseudo-2DHMM.

� 2009 Published by Elsevier B.V.
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C1. Introduction

Face recognition has been and is still an active research area,
probably because of its wide-range of applications, including vi-
deo-surveillance, user authentication and human–computer inter-
action to name a few. Hence, many different algorithms have been
proposed to solve this task over the last 30 years. Nowadays, var-
ious systems are able to properly recognise people based on their
face image. However, such results are often attained only if a suf-
ficient amount of training data covering a reasonable range of vari-
ations (such as pose or illumination conditions for instance) is
available to train the recognition system, and provided that the
face is perfectly located in the image.

A face recognition system can be used in two modes: authenti-
cation (or verification) and identification. An authentication sys-
tem involves confirming or denying the identity claimed by an
individual. On the other hand, an identification system attempts
to establish the identity of a given person out of a pool of different
people. Identification generally operates on a closed-set scenario
(the individual to identify is present in the database), while
authentication operates on an open-set scenario, where people
not present in the database could try to fool the system. Although
these tasks are slightly different, both modes usually share the
80
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same classification algorithms. In this work, the focus is made on
the face authentication task.

Existing face recognition algorithms are often divided into two
categories: appearance-based (also referred to as holistic) and fea-
ture-based, depending on the way the face image is processed. In
appearance-based method, the whole face image is represented
as a high-dimensional vector. Due to the curse of dimensionality,
such vectors cannot be compared directly. Hence, holistic methods
use dimensionality reduction techniques to resolve this problem
and thus derive lower-dimensional vectors for subsequent classifi-
cation. The most popular examples among such approaches are
based on Principal Component Analysis (PCA) and on Linear Dis-
criminant Analysis (LDA). In PCA-based systems, also known as
Eigenfaces [1], high-dimensional vectors are projected onto the
subspace defined by the leading eigenvectors of the data covari-
ance matrix. LDA-based face recognition, also referred to as Fisher-
faces [2], is a supervised method: the linear projection is based on
Fisher’s linear discriminant formula to find a subspace where vec-
tors of the same class are close to each other, and at the same time
far from the ones belonging to other classes. The PCA or LDA sub-
space representation is then used for classification using a simple
metric, or more sophisticated machine learning techniques, such
as Support Vector Machines for instance [3]. Other dimensionality
reduction techniques were applied to the face recognition problem,
including Independent Component Analysis (ICA) [4], as well as
non-linear methods such as Locality Preserving Projections (also
known as Laplacianfaces) [5], Kernel PCA [6,7] and Generalised Dis-
criminant Analysis (GDA), which is actually a kernelized version of
LDA [8,9]. Amongst all these systems, empirical evaluation showed
nerative model dedicated to face recognition, Image Vis. Comput. (2009),
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that Kernel methods, and Kernel Fisherfaces in particular, are the
best for the face recognition task [9]. However, all these sub-
space-based approaches usually require a large amount of training
data to properly capture the different variations (such as pose and
illumination), but also a proper alignment or warping of the faces
to be classified. Indeed, experiments conducted using these classi-
cal holistic methods with automatically localised faces (i.e. when
face localisation is error-prone) showed a significant drop in per-
formance [10,11]. There also exists more powerful holistic ap-
proaches, with better generalisation abilities, mainly in terms of
pose and illumination. For instance, Blanz and Vetter [12] propose
a three-dimensional morphable model, where recognition is per-
formed using an analysis-by-synthesis framework. In this case
however, the face model is built using 3D-scans and furthermore,
manual annotation of fiducial key points is required as a first step
to recognition. Another example is given by the Active Appearance
Model [13], in which the shape and the appearance of the face are
jointly modelled in a single feature vector. Here, the system is able
to automatically localise the face, but a large number of heavily
annotated training data are required to build the model. Moreover,
identities are classified using LDA, which usually requires a large
training set.

Feature-based approaches are typically using a set of local
observations obtained from the face image to derive a model of
an individual, which is subsequently used for recognition. One of
the most representative systems in this family is probably the Elas-
tic Bunch Graph Matching (EBGM) [14]. In this case, a face image is
represented by a set of wavelets coefficients arranged in a graph,
whose nodes corresponds to fiducial points (eyes, tip of the nose,
corner of the mouth, etc.). During the recognition process, the lat-
tice is allowed to be deformable so as to maximise the correlation
between corresponding wavelet coefficients of the gallery and of
the probe image. Others recent approaches are based on Local Bin-
ary Patterns (LBPs) [15,16], where the face is represented by a set
of concatenated LBP histograms, each one being computed in a dif-
ferent block of pixels along the image. Recognition is then per-
formed by measuring the similarity between histograms. Other
successful feature-based approaches are based on statistical gener-
ative models, such as Gaussian Mixture Models (GMMs) [17], Hid-
den Markov Models (HMMs) [18–20], or its variant [10,21,22].
Such systems usually decompose the face image into blocks and
then learn the distribution of the blocks using one of the previously
mentioned models. As compared to holistic approaches, feature-
based systems have several advantages: they are more robust to
little variations in pose, illumination, occlusion, expression and
localisation errors [10,23,24]. Moreover, and in contrast to appear-
ance-based systems, feature-based approaches are able to incorpo-
rate more a priori knowledge on the object to recognise, by
selecting which features to use and how to relate them to each
other.

In this paper, we propose a new statistical generative model
based on static Bayesian Networks and especially tailored to deal
with the object to be considered, that is the human face. Actually,
classical generative models make strong independence assump-
tions on the way that face image data are generated. Indeed, in
the GMM framework as applied in [17], overlapping blocks are
considered to be independent, which is obviously not the case in
a face image. Consider the two eyes for instance: the block contain-
ing the right eye is certainly related to the block containing the left
one. The one-dimensional HMM decomposes the face image verti-
cally as a sequence of horizontal strips, and model the features ex-
tracted from each strips by a Gaussian Mixtures. It is hence more
powerful than a GMM (different parts of the face are modelled
by different Gaussian Mixtures) but the independence assumption
between different parts of the face remains. The pseudo-2D HMM
add another level of precision, since in this case, strips are not con-
Please cite this article in press as: G. Heusch, S. Marcel, A novel statistical ge
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sidered directly, but decomposed into blocks, and then modelled
by an embedded HMM, which will give the emission probabilities
of the main, vertical HMM. Nevertheless, all these HMM-based ap-
proaches, as well as models based on dynamic Bayesian Networks
[25] introduce structure into the observations, but are not able to
capture correlations between observations. Actually, all these sta-
tistical models only constrain the ordering of the observations
(i.e. the nose has to be above the mouth for instance).

The main assumption that drove us towards the proposed mod-
el is that salient facial features are related to each others, and
hence should not be treated as if they were independent. Actually,
this paradigm along with the use of Bayesian Networks has already
been successfully applied in two face processing task: face detec-
tion [26] and facial expression recognition [27]. For the task of face
authentication, preliminary experiments using the proposed ap-
proach and yielding encouraging results were presented in [28].
In this contribution, we present experiments on the XM2VTS [29]
and BANCA [30] databases using automatically located faces. In-
deed, since face localisation is the necessary first step to any other
face analysis task, we believe that robustness to imperfectly lo-
cated faces is worth investigating. A comparison of the proposed
approach to other face authentication systems is made using ex-
actly the same settings. Namely, our system is compared to two
popular appearance-based method, Eigenfaces and Fisherfaces,
and also to classical generative models such as GMM, HMM and
pseudo-2DHMM as applied in [10].

The remaining of this paper is organised as follows. Section 2
briefly introduces Bayesian Networks, as well as the inference
and learning framework. The proposed model and the learning
procedure using model adaptation are presented in Section 3. In
Section 4, an overview of the face and the facial features localisa-
tion systems are outlined. The experimental framework and the
databases are described in Section 5 whereas results are presented
and discussed in Section 6. Finally, Section 7 concludes the paper
and proposes possible future research directions.

2. Bayesian Networks

In this section, we will briefly describe the framework used to
build the statistical generative model to represent a face. Bayesian
Networks (also known as belief networks or probabilistic expert sys-
tems) provide an intuitive way to represent the joint probability dis-
tribution over a set of variables: random variables are represented as
nodes in a directed acyclic graph, and links express causality relation-
ships between these variables. More precisely, relationships be-
tween nodes are specified through local conditional probabilities.
Note that the lack of arcs between two nodes then encodes a condi-
tional independence of the associated variables.

More generally, let us define PaðXiÞ as the set of parents of the
variable Xi in the directed acyclic graph, the joint probability en-
coded by a Bayesian Network over the set of variables
X ¼ ðX1; . . . ;XnÞ is given by the following chain rule:

PðXÞ ¼
Yn

i¼1

PðXijPaðXiÞÞ ð1Þ

Hence, a Bayesian Network is fully defined by the structure of the
graph and by its parameters, which consists in the conditional prob-
ability distributions of each variable given its parents. Note, how-
ever, that a variable Xi may have no parents, in which case its
probability distribution is simply given by PðXiÞ.

2.1. Inference

An important task in Bayesian Networks is inference. It consists
in computing probabilities of interest, once evidence has been
nerative model dedicated to face recognition, Image Vis. Comput. (2009),
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Fig. 1. The proposed model: observed salient facial features are generated by a tree-
structured Bayesian Network. Shaded nodes represent visible observations whereas
white nodes denote hidden causes.
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entered into the network (i.e. when one or more variables have
been observed). In other words, entering evidence consists in
either fixing the state of a discrete variable to one of its possible va-
lue or to assign a value in the case of a continuous variable. We are
then interested in finding the effect this evidence has on the distri-
bution of the other unobserved (or hidden) variables.

There are many different algorithm allowing to perform infer-
ence, the most simple and intuitive one is certainly the so-called
bucket elimination [31]. However, it is inefficient to handle multi-
ple queries, since it has to be run for every variable of interest. The
most renowned one for singly-connected graphs is certainly belief
propagation [32]. Here, messages are passed between all the nodes
until convergence and thus multiple queries are answered in a
more efficient way.

Another more generic method to perform exact inference, and
which is both able to deal with multiple queries and multiply-
connected networks is the Junction Tree algorithm [33], and will
be used in our case. This algorithm basically consists in two steps
[34]. First the directed acyclic graph is transformed into a second-
ary structure and becomes an undirected graphical model. Sec-
ond, messages are exchanged between nodes in this undirected
representation. Nodes of the Junction Tree are cluster of variables
called cliques, and each link is labelled with a separator containing
the variables present in the two linked cliques. Each clique
(respectively separator) has an associated potential, which is a
real-valued function on the configurations of the set of variables
in the clique (resp. separator). When observations are entered, cli-
que and separator potentials are initialised such that the distribu-
tion defined by the Junction Tree matches the original
distribution encoded by the Bayesian Network. Then, messages
between cliques are exchanged through separators in the form
of potentials operations.

2.2. Learning

Learning in Bayesian Networks refers either to structure learn-
ing, parameters learning or both [35]. In our case, we are consider-
ing networks of fixed structure, and hence are interested in
learning parameters from data by maximising the log-likelihood,
which is given by:

Lðh;vÞ ¼ log
X

h

pðv;hjhÞ ð2Þ

where h denotes the parameters of the model, v represents the set
of variables corresponding to visible observations and h is the set of
hidden variables. Since maximising directly Eq. (2) may be difficult,
we simplify the problem using the variational approximation to the
Expectation-Maximisation (EM) algorithm [36]:

Lðh;vÞ ¼ log
X

h

pðv;hjhÞ ¼ log
X

h

qðhÞ pðv;hjhÞ
qðhÞ

P
X

h

qðhÞ log
pðv;hjhÞ

qðhÞ

¼
X

h

qðhÞ log pðv;hjhÞ �
X

h

qðhÞ log qðhÞ ð3Þ

where qðhÞ is the variational parameter and is a distribution over
the hidden variables. Furthermore, it can be shown [36] that the
optimal setting (i.e. when the bound corresponds to equality) for
the variational distribution qðhÞ is nothing else but pðhjv; hÞ. More-
over, and since the second term in Eq. (3) can be neglected (since it
does not depend on h), this formulation is then equivalent to the
classical EM algorithm [37]. Note that now, the first term in Eq.
(3) can be decomposed according to the network topology. The
maximisation can thus be done independently for each local condi-
tional distribution.
Please cite this article in press as: G. Heusch, S. Marcel, A novel statistical ge
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3. Proposed model

The proposed model relies on two main assumptions. First, we
believe that salient facial features such as the eyebrows, the eyes,
the nose and the mouth provide enough discriminative informa-
tion between individuals. Second, it is assumed that facial features
are correlated and thus should not be considered independently.
The proposed model is hence trying to capture relationships be-
tween facial features and is depicted in Fig. 1. Shaded nodes are
representing visible observations derived from the face image,
whereas white nodes are representing the hidden causes that gen-
erated these observations. The model can be explained as follow:
the nodes on the top represent unknown relationships between
eyebrows and eyes (node BE), eyes and nose (node EN) and nose
and mouth (node NM). Hence, these variables are used to model
the relationship between the different face parts. These combina-
tions then generate a certain type of facial features (such as a small
nose, or broad lips for instance), represented by the nodes at the
second level. And finally, these types of facial features generate
the corresponding observations. Note that our model does intro-
duce relationships between observations: if the node Ole is ob-
served, information about the node Ore can be inferred through
the node E for instance.

In this network, hidden nodes are discrete-valued and observed
nodes are multivariate gaussians. Hence, the probability distribu-
tions of the nodes on the first and second level are given by (con-
ditional) probability tables, whereas the distributions of the nodes
corresponding to observations are given by conditional gaussians,
defined as:

PðO ¼ ojPaðoÞ ¼ iÞ ¼ 1

ð2pÞ
n
2jRij

1
2

exp �1
2
ðo� liÞ

TR�1
i ðo� liÞ

� �

ð4Þ

where O ¼ o stands for a realisation of one of the observations and
PaðoÞ ¼ i for a possible configuration of its parent. n is the dimen-
sion of the feature vector representing a particular observation.
The mean li and the covariance matrix Ri are the parameters of
the conditional gaussian distribution and depend on the value of
the parent node. Note also that in our model, diagonal covariances
matrices are used. The parameters of the Bayesian Network to be
learned are denoted by h and consists in the entries of the (condi-
tional) probability tables as well as the means and the covariance
matrices of the conditional gaussians.

Ultimately, we are interested in finding how well a model fit an
observed face representation. This is achieved by computing the
probability of the observations given the model, i.e. the likelihood.
Defining the set of visible observations v ¼ ðOlb;Orb;Ole;Ore;On;OmÞ,
the log-likelihood Lðh; vÞ of a face representation is computed by
nerative model dedicated to face recognition, Image Vis. Comput. (2009),
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first inferring the distribution of the hidden variables using the
Junction Tree algorithm, and then by summing out over the states
of the hidden variables.

3.1. Learning: model adaptation

In the context of face recognition, it is often the case that few
training examples per class are available and hence the Maximum
Likelihood (ML) estimates of the parameters may be inaccurate
[38]. One way to circumvent the lack of client-specific training data
are to estimate the ML parameters of a nearby distribution using a
larger amount of training data coming from different identities and
then to adapt this distribution using training data of each individ-
ual. This idea was first used in speaker verification [38,39] and was
also successfully applied in face authentication [10]. Although this
technique is often referred to as Maximum A Posteriori (MAP)
learning, one should be aware that, in this context, it is not MAP
learning in the strict Bayesian sense, since no priors pðhÞ are explic-
itly set on the parameters to be learned. Rather, the nearby distri-
bution, referred to as the world model, is learned using the EM
algorithm with the ML criterion. Then, the parameters of each cli-
ent model are adapted from the parameters of the world model
using client-specific training data in the following way:

hclient ¼ a � hML þ ð1� aÞ � hworld ð5Þ

where hML denotes the client parameters obtained from a Maximum
Likelihood estimation using client-specific data. The adaptation
parameter a 2 ½0; 1� is used to weight the relative importance of
the obtained ML statistics with respect to the prior knowledge we
have on the distribution, represented by the parameters of the
world model.

4. Facial features localisation

Face recognition results in the literature are usually presented
assuming perfect localisation of the faces, often relying on manu-
ally annotated eyes position for instance. However, in a real-world
scenario, faces must be automatically detected to be further pro-
cessed. Furthermore, it has been shown that performances of most
of existing algorithms decreases when errors are introduced in the
localisation process [10,11]. For these reasons, we believe that the
behaviour of the proposed system is worth investigating using
automatically detected faces. Hence, we briefly present the face
detection algorithm used to locate the face in the input image.
We also outline the Active Shape Model [40], as this algorithm
was employed to localise the salient facial features used as obser-
vations in the proposed model (see Fig. 1).
417

418

419

420

Fig. 2. Landmark points of the Active Shape Model.
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C4.1. Face detection

In order to detect the face in the input image, a variant of the
face detector proposed by Fröba and Ernst [41] is used. The detec-
tor employs local features based on the Modified Census Transform
(MCT), which represent each location of the image by a binary pat-
tern computed from a 3 � 3 pixel neighbourhood. Each input im-
age is scanned and all possible windows in a given scale range
are analysed. Each window is then classified as containing a face
or not. The classification is carried out using a cascade classifier
in a similar way than in [42]. Overlapping windows labelled as
faces are then merged together so as to provide a unique bounding
box containing the detected face. Eyes position is then inferred
from the position and the scale of the bounding box. Note that if
a face is missed by the detector, eyes position is estimated from
other images of the same individual within the same recording ses-
sion, but where the face was effectively detected.
Please cite this article in press as: G. Heusch, S. Marcel, A novel statistical ge
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4.2. Active shape model

Active Shape Models (ASMs) were first introduced by Cootes
et al. in [40] and consists in fitting the shape of an object (in our
case, a face), using a previously learned global shape model, usually
represented as a set of landmark points (see Fig. 2). In order to find
the shape of the object in the input image, an iterative search is ap-
plied, starting from a rough approximation of the localisation of
the object (i.e. eyes location inferred from face detection). During
the matching process, each point of the shape moves in the image
plane to achieve the best match between the image and the model
of local observations trained with the global shape model. In our
work, Local Binary Patterns (LBPs) are used to model the local
observations, as described in [43]. Note also that, as in the original
ASM, constraints are added to the displacement of each point, such
that the shape of the object does not diverge.

5. Experiments

In this section, we first describe the general framework to per-
form face authentication using statistical generative models. Then,
we present measures used to assess the performance of the sys-
tems, as well as the databases and their respective experimental
protocols. Finally, the feature extraction scheme for the proposed
model is described.

5.1. General framework

In the framework of face authentication, a client claims its iden-
tity and supports the claim by providing an image of its face to the
system. There are then two different possibilities: either the client
is claiming its real identity, in which case it is referred to as a true
client, either the client is trying to fool the system, and is referred
to as an impostor. In this open-set scenario, subjects to be authen-
ticated may or may not be present in the database. Therefore, the
authentication system is required to give an opinion on whether
the claimant is the true client or an impostor. Since modelling all
possible impostors is obviously not feasible, the world-model is
used to simulate impostors, since it is trained using data coming
from different identities and thus represents the model for an
‘‘average”, or general individual [39].

More formally, let us denote hworld as the parameter set defining
the world-model whereas hclient represents the client-specific
parameters. Given a client claim and its face representation v, an
opinion on the claim is given by the following log-likelihood ratio:

KðvÞ ¼ log pðvjhclientÞ � log pðvjhworldÞ ð6Þ

where pðvjhclientÞ is the likelihood of the claim coming from the true
client and pðvjhworldÞ is an approximation of the likelihood of the
claim coming from an impostor. Based on a threshold s, the claim
is accepted if KðvÞP s and rejected otherwise.
nerative model dedicated to face recognition, Image Vis. Comput. (2009),
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5.2. Performance measures

Face authentication is thus subject to two type of errors, either
the true client is rejected (false rejection) or an impostor is ac-
cepted (false acceptance). In order to measure the performance
of authentication systems, we use the Half Total Error Rate (HTER),
which combines the False Rejection Rate (FRR) and the False
Acceptance Rate (FAR) and is defined as:

HTERðs;DÞ ¼ FARðs;DÞ þ FRRðs;DÞ
2

½%� ð7Þ

whereDdenotes the used dataset. Since both the FAR and the FRR de-
pend on the threshold s, they are strongly related to each other:
increasing the FAR will reduce the FRR and vice versa. For this reason,
authentication results are often presented using either Receiver
Operating Characteristic (ROC) or Detection-Error Tradeoff (DET)
curves, which basically plots the FAR versus the FRR for different val-
ues of the threshold. Another widely used measure to summarise the
performance of a system is the Equal Error Rate (EER), defined as the
point along the ROC or DET curve where the FAR equals the FRR.

It was noted in [44] that ROC and DET curves may be misleading
when comparing models. Hence, the so-called Expected Perfor-
mance Curve (EPC) was proposed, and consists in an unbiased esti-
mate of the reachable performance of a model at various operating
points [44]. Indeed, in a real-world scenario, the threshold s has to
be set a priori: this is typically done using a validation (or develop-
ment) set. Nevertheless, the optimal threshold can be different
depending on the relative importance given to the FAR and the
FRR. Hence, in the EPC framework, b 2 ½0; 1� is defined as the trade-
off between FAR and FRR. The optimal threshold s� is then com-
puted using different values of b, corresponding to different
operating points:

s� ¼ arg min
s

b � FARðs;DvÞ þ ð1� bÞ � FRRðs;DvÞ ð8Þ

where Dv denotes the validation set. Performance for different val-
ues of b is then computed on the test set Dt using the previously
found threshold. Note that setting b to 0.5 yields the Half Total Error
Rate (HTER) as defined in Eq. (7). Moreover, a modified version of
the standard proportion test, as described in [45] is used in order
to compute 95% confidence intervals around Expected Performance
Curves (Fig. 7).

5.3. Databases

The XM2VTS database [29] is a multi-modal database contain-
ing 295 identities, among which 200 are used as true clients (the
remainder are considered as impostors). Recordings were acquired
during four sessions over a period of five months under controlled
conditions (blue background, uniform illumination). Each session
contains two pictures of each individual. Along with the database,
two experimental protocols, stating which images are used for
training, validation and testing have been defined. Experiments
U

Fig. 3. Example of the different sce
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presented in this paper use the version 1 of the Lausanne Protocol
(denoted as LP1).

The BANCA database [30] was especially meant for multi-modal
biometric authentication and contains 52 clients (English corpus),
equally divided into two groups g1 and g2 used for validation
and test, respectively. The corpus is extended with an additional
set of 30 other subjects used to train the world model. Image
acquisition was performed with two different cameras: a cheap
analogue webcam, and a high-quality digital camera, under several
realistic scenarios: controlled (high-quality camera, uniform back-
ground, controlled lighting), degraded (webcam, non-uniform
background) and adverse (high-quality camera, arbitrary condi-
tions). Fig. 3 shows examples of the different acquisition scenarios.

In the BANCA protocol, seven distinct configurations for the
training and testing policy have been defined. In our experiments,
the configurations referred to as Match Controlled (Mc), Un-
matched Adverse (Ua), Unmatched Degraded (Ud) and Pooled Test
(P) are used. All of the listed configurations use the same training
conditions: each client is trained using images from the first
recording session, which corresponds to the controlled scenario.
Testing is then performed on images taken from the controlled sce-
nario (Mc), adverse scenario (Ua), degraded scenario (Ud), while (P)
does the test for each of the previously described configurations.

5.4. Feature extraction

First, faces are automatically located using the face detector de-
scribed in Section 4. The face detector has been trained using face
images coming from the following databases: CMU, BioId, AR and
Purdue. Hence, no prior knowledge on the face images used in
the authentication experiments were introduced in the detection
process. However, the ASM was trained on the training set of the
XM2VTS database (protocol LP1), since in this case, the 68 annota-
tions representing the groundtruth for the landmarks were
available.

Feature extraction for the proposed model is performed by first
running the ASM on the input image, using the automatically de-
tected eyes location as the starting point. Based on the resulting fa-
cial features locations, blocks of pixels are extracted around
selected salient features (see Fig. 1). In order to account for impre-
cisely located features, and also to increase the amount of training
data, shifted blocks of a variable amount of pixels in each direction
are also extracted. Note that a similar approach was already used
in [24]. In order to mitigate the influence induced by variations
in illumination conditions, each block is pre-processed by the
LBP-based pre-processing proposed in [46]. Finally, each block is
decomposed in terms of 2D Discrete Cosine Transform (2D-DCT)
in order to build the final observation vectors.

Hyperparameters for the proposed model, such as the size of ex-
tracted blocks, the number of pixels for the shifted blocks, the
dimension of the DCT feature vectors, the cardinality of the hidden
nodes, as well as the adaptation parameter a were selected in order
to minimise the Equal Error Rate (EER) on the validation set Dv.
narios in the BANCA database.
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Table 1
HTER performance on the test set of XM2VTS LP1 with automatic registration. Q1

System LP1 (%)

Eigenfaces 27.29
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Regarding the other approaches used for comparison, faces
were first cropped from the original images, resized to 64 � 80 pix-
els, converted to grayscale and pre-processed with the same tech-
nique used for the blocks [46]. Note that the cropping step is
performed using automatically detected eyes location (resulting
from face detection), and hence may result in different scales and
translations of face images, as illustrated on Fig. 4. Features for
the GMM, HMM and pseudo-2DHMM were extracted using the
feature extraction scheme described in [10].

6. Results and discussion

In this section, face authentication results using automatically
located faces are presented. Hereafter, the proposed model is re-
ferred to as BNFace, and for comparison purpose, we also report
experimental results obtained with classical generative models:
GMM, HMM and pseudo-2DHMM as applied in [10], as well as
two popular baseline appearance-based systems, Eigenfaces and
Fisherfaces. Note that the same experimental settings (i.e. training
set, automatically detected faces) were used for each system.

6.1. Experimental setup and results

Presented results for the proposed model were obtained using
extracted blocks of 24 � 24 pixels. So, for each facial feature, blocks
centered on the corresponding landmark point given by the ASM
are extracted. Besides, for each facial feature, additional blocks
with shifts of 2, 4 and 6 pixels in each direction are also extracted.
Hence, for a single observation, we obtained 25 blocks. The first 64
coefficients were retained from the 2D-DCT on the blocks, thus
resulting in final feature vectors of dimension n ¼ 64. The cardinal-
ity of the hidden nodes were set to 3 at the top level, and to 8 at the
second level. Finally, the adaptation parameter a was set to 0.4.

Note also that presented results were obtained following the
strict usage of the protocols defined with each database. Hence,
for the XM2VTS database, we use 600 images corresponding to
all client training data to train the world models, but also to build
PCA and LDA matrices. For the BANCA database, the additional set
containing 10 images of 30 individuals were used for the same pur-
poses. In particular, we do not use any other corpus or database,
nor mirroring the available images to build either world models
or subspace representations, as it was sometimes done in other
studies [10,47]. Doing this way enables a fair comparison among
the different systems, since exactly the same data and protocols
were used for each tested system. For the sake of completeness,
we also add previous results from the literature with automatic
registration and using the same baseline systems (when available),
U
N

C

Fig. 4. Illustration of cropped faces using manually located eyes (first row) and
automatically located eyes (second row). Note the variations in scale between
column 2 and 4 for instance.
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since they differ from our own implementations. However, it is
hard to draw a fair comparison with these results, since the exper-
imental framework is usually different from ours. For instance, the
used training set, the size of the face images and the pre-processing
step may differ. Table 1 reports HTER performance obtained on the
XM2VTS database for protocol LP1 and Table 2 reports HTER per-
formance on the BANCA database for protocols Mc, Ua, Ud and P.

We also present performance curves (DET and EPC) for the dif-
ferent systems (Figs. 5 and 6). For the sake of clarity, curves com-
paring the proposed system against holistic approaches are plotted
on the left-hand side of the figures and curves comparing the pro-
posed system to other generative models are plotted on the right-
hand side. Note that only the protocol P was used for the curves on
the BANCA database, since it can be viewed as a summary of the
different investigated protocols (Mc, Ua, Ud).

6.2. Discussion

Compared to the popular holistic systems (Eigenfaces and Fish-
erfaces), the proposed system performs consistently better on both
databases. Moreover, figures representing DET and EPC curves for
BNFace and both holistic systems show that the authentication er-
ror is drastically reduced at all operating points when the proposed
system is used. These results are not surprising, since it has been
previously shown that the performance of appearance-based sys-
tems is severely affected when faces are not perfectly aligned.
Hence, conducted experiments confirm that local feature-based
systems are more robust to imperfectly located faces.

Since classical generative models also uses local features to per-
form classification, such systems are usually less affected by the
face localisation step. Indeed, they perform generally better than
the holistic ones (Tables 1 and 2). Hence, a comparison of the pro-
posed models with GMM, HMM and pseudo-2DHMM may reveal
the advantages and the drawbacks at the models level, when ap-
plied to face authentication.

It must be noted that BNFace performs way better than the sim-
ple GMM-based system on both databases. This result is particu-
larly interesting since it tends to support two stated hypothesis.
First, only a subset of the face image, corresponding to salient facial
features, is sufficient to perform authentication. Indeed, in the
GMM framework, blocks of pixels are extracted from the whole
Fisherfaces 28.19
GMM 12.61
HMM 13.64
P2D-HMM 2.56
BNFace 5.53
GMM [48] 2.45
Fisherfaces [48] 1.93

Table 2
HTER performance on the test set (g2) of BANCA with automatic registration.

System Mc (%) Ua (%) Ud (%) P (%)

Eigenfaces 18.85 32.18 30.03 26.49
Fisherfaces 21.38 31.67 32.08 29.27
GMM 7.33 34.76 33.95 28.83
HMM 8.01 21.67 21.54 16.84
P2D-HMM 2.40 13.49 15.29 12.61
BNFace 3.85 19.94 13.56 12.70
P2D-HMM 2.08 [49] N/A N/A 18.54 [47]
Fisherfaces 9.46 [49] N/A N/A 19.55 [47]
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Fig. 5. Performances curves on the test set of the XM2VTS database.
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face image. Second, it also suggests that blocks extracted from the
face image are correlated and hence should not be treated as if they
were independent. However, results obtained with GMM are sur-
prising since they are much worse than previously published re-
sults on the same databases, also using automatic registration
[17,10]. Nevertheless, this fact can be explained thanks to three
observations. First, the preprocessing step used in our work is dif-
ferent. Second, previous work used mirroring and additional data
to train the models and third, we did not fine-tune the various
hyperparameters, rather, we used the ones reported in [17,10].

In our experiments, the HMM-based system outperforms the
GMM-based system on the BANCA database (note that this is the
converse on the XM2VTS database). This result is in contrast to
the one obtained in [10], where GMM were shown to perform bet-
ter than HMM in the case of automatic face localisation. Hence, it is
difficult to say whether the model itself is not appropriate to model
the face or if its performance is affected by localisation errors. Nev-
ertheless and according to Cardinaux et al. [10], HMM seems to
better model the face image, since it performs better than GMM
when the face is manually located (similar results were also ob-
served when reproducing this experiment). On one hand, this sug-
gests that introducing structure to the observations, in the form of
vertical spatial relationships may be useful. But on the other hand,
HMM also add rigid horizontal constraints, and this may explain
the contradictory results obtained with this approach. However,
note that the proposed model still outperforms the HMM-based
system on both databases. Hence, it suggests once again that rela-
Please cite this article in press as: G. Heusch, S. Marcel, A novel statistical ge
doi:10.1016/j.imavis.2009.05.001
tionships between facial features themselves, and not only on their
ordering, is useful to describe a face.

The pseudo-2DHMM is the only system performing better than
the proposed system. It can be mainly explained thanks to two
observations: first, rigid constraints are less important than in
the HMM for instance, hence pseudo-2DHMM is less affected by
automatic face detection. Second, the model is able to add two-
dimensional spatial constraints to the observations. Results ob-
tained with this approach hence suggest that the two-dimen-
sional spatial ordering along the entire face image are
important. Note that results on the Unmatched degraded (Ud)
protocol of the BANCA database, the proposed model performs
better than P2D-HMM. This suggests that using only a subset of
the face image less affects the authentication system in the case
of a strong mismatch between training and testing acquisition
conditions. However, results obtained with BNFace and with
P2D-HMM are close to each other, especially on the protocol P
of the BANCA database. Hence, in order to better compare these
two classifiers, we present the Expected Performance Curves of
the two systems together with the 95% confidence interval
(Fig. 7). One can see that in some parts, an overlap is occurring,
hence showing that the two classifier are not statistically differ-
ent. The bottom part of the figure depicts the statistical difference
between the two classifiers. If the curve is above 0.95, this means
that the classifiers are different with 95% confidence. As can be
seen on Fig. 7, the two classifiers are only statistically different
with high confidence in a small range of operating points.
nerative model dedicated to face recognition, Image Vis. Comput. (2009),
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Fig. 6. Performance curves on the test set of the BANCA database, protocol P.
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sults, it is also the most complex. Indeed, it uses much more cli-
ent-specific parameters to describe a face and is also much more
computationally demanding than the proposed system. In Table
3, we report the computational time to perform the three tasks in-
volved in face authentication: world-model training, client-model
adaptation (computed on average over the clients) for one individ-
ual, and authentication time for one individual (also computed on
average). These quantities were obtained using the BANCA data-
base on a computer with an AMD Athlon 2.6 GHz. We also report
the number of client-specific parameters for the proposed system
and P2D-HMM. As can be seen on this table, our system’s authen-
tication time is for instance five times smaller. Besides, the number
of client-specific parameters is also greatly reduced.

Overall, obtained results suggest that the proposed model based
on Bayesian Networks is suitable for the task of face authentication
using automatically localised faces. Indeed, we conducted compar-
ative experiments and the proposed model yields better perfor-
mance than 4 out of 5 baseline systems. Moreover, obtained
results are competitive with state-of-the-art reported in the litera-
ture on the same databases and with automatic registration
[47,49]. Note, however, that the proposed system relies on the Ac-
tive Shape Model to locate the salient facial features. Indeed, upon
visual inspection of the landmarks, we remarked that, in some
cases, facial features are not accurately located. Hence, our model
Please cite this article in press as: G. Heusch, S. Marcel, A novel statistical ge
doi:10.1016/j.imavis.2009.05.001
may also suffer from such imprecision. When performing experi-
ments using perfect facial features localisation on the XM2VTS
database (unfortunately, there is no such ground truth for the BAN-
CA database), an improvement is indeed observed: the HTER is re-
duced from 5.53% to 3.95%.

7. Conclusion and future directions

In this paper, we introduced a novel statistical generative model
based on Bayesian Networks and especially tailored to deal with
the object to be processed that is two-dimensional face images.
The proposed model relies on two main assumptions: first, salient
facial features such as eyebrows, eyes, nose and mouth contains
sufficient information to discriminate two individuals. Second,
such local observations should not be treated independently.
Rather, it was assumed that salient facial features are related to
each others. The proposed approach was applied to the task of face
authentication using automatically detected faces. Hence, the
whole authentication process is made automatic, which is a desir-
able behaviour in a real-world scenario. Two benchmark databases
were used to assess the performance of the system and show con-
vincing results. Indeed, the proposed model outperforms classical
appearance-based methods, but also classical generative models,
where independence is assumed between local observations. Be-
sides, presented results are competitive with state-of-the-art re-
nerative model dedicated to face recognition, Image Vis. Comput. (2009),
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Fig. 7. EPC with confidence intervals and statistical difference for BNFace and P2D-HMM on the protocol P of the BANCA database.

Table 3
Computational time on BANCA.

System World model training time (s) Client model adaptation time (s) Individual authentication time (s) Number of parameters

P2D-HMM 3520 �220.2 �9.8 73,726 [10]
BNFace 1499 �50.2 �2 6345
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complex models such as pseudo-2DHMM still perform better,
although demanding much more computational resources.

This work is, to the best of our knowledge, the first attempt to
use static Bayesian Networks to tackle the face authentication
problem and future research directions are manifold. Actually,
we do not know which kind of information is useful to uniquely
describe a face. In this work, we chose to use salient facial features
as a set of observations, but other clues such as texture, colour or
even shape certainly carry discriminative information. Another
open issue is how to relate local observations to each others. In-
deed, the structure of the network was designed according to our
prior knowledge on how facial features may be related. However,
we still do not know if there are actually causal relationships be-
tween features, and how these can be expressed. Nevertheless,
we think that using static Bayesian Networks provide an elegant
framework to describe faces, and is worth investigating.
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