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Abstract. Accurate speaker location is essential for optimal performance of distant speech
acquisition systems using microphone array techniques. However, to the best of our knowledge,
no comprehensive studies on the degradation of automatic speech recognition (ASR) as a function
of speaker location accuracy in a multi-party scenario exist. In this paper, we describe a framework
for evaluation of the effects of speaker location errors on a microphone array-based ASR system,
in the context of meetings in multi-sensor rooms comprising multiple cameras and microphones.
Speakers are manually annotated in videos in different camera views, and triangulation is used
to determine an accurate speaker location. Errors in the speaker location are then induced in
a systematic manner to observe their influence on speech recognition performance. The system
is evaluated on real overlapping speech data collected with simultaneous speakers in a meeting
room. The results are compared with those obtained from close-talking headset microphones, lapel
microphones, and speaker location based on audio-only and audio-visual information approaches.
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1 Introduction

The recent aim of present innovations in multimodal technology components is to provide simpler
interfaces for human-computer interaction applications in many conversational settings, including
meetings. Meetings represent an effective mode of information exchange among humans. Automatic
analysis of meetings have a potential of conveying detailed knowledge about human activities which
can also be archived for later retrieval and review [4].

In the context of automatic analysis of meetings, robust localization and tracking of active speakers
is of fundamental importance, particularly for enhancement and recognition of speech in microphone-
array based ASR systems. Microphone arrays provide hands-free and high-quality distant speech
acquisition through beamforming techniques, which rely on speaker location for speech enhancement
[2]. In this article, we present a framework for systematic evaluation of an integrated system comprising
speaker tracking and microphone array speech recognition. This evaluation refer to errors in speaker
position coordinates and the corresponding influence on speech recognition performance.

Localization and tracking of active speakers, and speech enhancement and recognition from mul-
tiple far-field microphones are challenging tasks in smart room scenarios, where the speech signal
is corrupted with noise from presentation devices and room reverberations. These tasks are further
complicated in the case of overlapping speech, where multiple speakers talk simultaneously, which
is a common situation in multi-party interaction [15]. Localization and tracking of active speakers
have been investigated using computer vision systems [3] , audio source localization systems [10]
and approaches based on audio-visual fusion [5, 13]. Microphone array speech recognition (i.e, the
integration of beamformer with ASR for overlap speech in meeting rooms) has been investigated in
[12].

In a closely related work, McCowan et al. presented a system combining audio-visual multi-speaker
tracking and microphone array based speech enhancement for overlapping speech, however, speech
recognition was not considered in this work [11]. Recently Asano et al. presented a system to detect,
enhance, and recognize single speaker speech based on the fusion of sound localization from a small
microphone array and vision tracking based on background subtraction from two cameras [1]. This
work was limited to detection of speech events in noisy environments, and neither overlapping speech
scenarios nor the evaluation of speaker localization errors for ASR were studied. A particle filter
fusing audio from multiple large microphone arrays and video from multiple calibrated cameras was
used in the context of seminar rooms, which also evaluated the effect of localization errors for ASR
[16]. However, in this work neither multiple-person localization nor overlapping speech scenarios
were considered. With the growing interest for system integration, it is important to analyze in
detail the influence of speaker location on speech recognition performance. In the current paper, a
systematic evaluation framework for overlapping speech from two speakers in meetings is presented.
These two speaker locations are computed from manually labelled positions in two different camera
views and triangulated to determine accurate speaker positions. One speaker position is kept fixed,
then position errors systematically induced in the z,y,2 coordinates of the other speaker, and speech
recognition performance is finally measured. The performance is also compared with those obtained
from close-talking headset microphones, close-talking lapel microphones, and speaker locations based
on audio-only, and audio-visual based tracking methods.

The paper is organized and presented in four sections: Section 2 gives an overview of the system
setup, section 3 explains the evaluation methodology, section 4 presents experiments and results, and
finally section 5 concludes the paper.

2 System setup
The observations are based on recordings from an instrumented meeting room. The audio-visual

sensors include a circular eight-element microphone array centered on the table, headset and lapel
microphones made of high quality electret type, and three CCTV video cameras to capture different
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views of the participants. The sensor configuration and calibration are similar to the system described
by McCowan et al. [11]. Figure la shows the room layout, the positions of the microphone array and
video cameras, and the typical speaker positions in the meeting room. To observe the microphone
array sensitivity and spatial response across the meeting room, the speaker positions are designed
to cover all possible seated regions: side-by-side (P1,P3) , opposite (P1,P2) and diagonally opposite
(P1,P4). Sample images from the center camera are as shown in Figure 1b.

Camera R
Bookshelf

P1 P3

X

Presentation

Screen

Microphone Array

—

Camera C

P2 P4

Whiteboard

Pictures [T Camera L

Figure 1: (a) Schematic diagram of the meeting room; (b) sample images from the center camera. P1,
P2, P8, Pj indicate the typical speaker positions.

3 Evaluation Methodology

A schematic description of the evaluation methodology is shown in Figure 2. Each speaker is captured
in two different camera views from the array of video cameras which are calibrated to a microphone-
array 3-D reference of the meeting room. The frame-based ground truth was generated as follows.
First, the 2-D point-based mouth position of each speaker was manually annotated in each camera
plane. Then, each pair of 2-D points was reconstructed into a 3-D point using standard optimization
methods [7]. The ground truth was produced at a rate of 1 frame/sec, i.e., every 25 video frames.
The 3-D points for each speaker are used as input to the speech enhancement module.

The speech enhancement module comprises a beamformer followed by a post-filter. The beam-
former uses a superdirective technique to calculate the channel filters maximizing the array gain, while
maintaining a minimum constraint on the white noise gain as described by Cox et al. [2]. The post-
filter is specifically designed to handle overlapping speech and is based on the speech signal energy, as
fully described in [11]. At each time-step for which the distance between the tracked speaker location
and the beamformer’s focus location exceeds a small value, the beamformer channel filters are recal-
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Figure 2: System block diagram. The audio from the microphone array and 3-D estimates, recon-
structed by the calibration module are used as inputs to the speech enhancement module. Sp.1 and
Sp.2 indicate speaker 1 and speaker 2 respectively. Speech recognition is performed on the enhanced
speech to obtain the corresponding result.

culated. The enhanced speech is used as input to a standard HMM recognition system to evaluate the
quality of the speech signal. For the baseline, a full HTK based recognition system, trained on the
original Wall Street Journal database (WSJCAMO) is used [14]. The training set consists of 53 male
and 39 female speakers, all with British English accents. The system consists of approximately 11000
tied-state triphones with three emitting states per triphone and six mixture components per state.
Fifty two element feature vectors comprising 13 MFCCs (including the Oth cepstral coefficient) with
their first, second, and third order derivatives were used. Cepstral mean normalization is performed on
all the channels. The dictionaries used are generated from that developed for the Augmented Multi-
party Interaction (AMI) project and used in the evaluations of National Institute of Standards and
Technology rich transcriptions (NIST RT05S) system [8], and the language models are the standard
MIT-Lincoln Labs 5k and 20k Wall Street Journal trigram language models. To reduce the channel
mismatch between the training and test conditions, the baseline HMM models are adapted using a
maximum likelihood linear regression (MLLR) [9] and maximum-a-posteriori (MAP) adaptation [6].
Adaptation data was matched to the testing condition (that is, headset data was used to adapt models
for headset recognition, lapel data was used to adapt for lapel recognition, etc).

The evaluation protocol is as follows. One speaker is kept fixed for all the cases and errors are
induced in the z,y,z coordinates of the other speakers in a controlled fashion. The evaluation refers
to errors in the speaker position coordinates in all the three axes of a cartesian coordinate system,
and the corresponding influence on speech recognition performance. So for a range of R cm, each of
the z,y,z coordinates are changed by time-steps of r cm and then speech recognition performance is
measured.

Finally, to examine the approximate range of speaker location errors and their influence on speech
recognition performance, audio-only localization and audio-visual based tracking systems are eval-
uated. The location estimates are directly computed from the audio-only speaker localization as
proposed by Lathoud et al. [10] and the audio-visual tracking as proposed by Gatica-Perez et al. [5].

4 Experiments and results

For the experiments, an overlapping speech corpus was recorded which consisted of read Wall Street
Journal sentences taken from the test set of the WSJCAMO database. The sentences were read by
two speakers simultaneously in a meeting room. The data comprised non-native English speakers
with different speaking styles and accents. The audio data from the headset microphones, lapel
microphones, and eight element circular microphone array was captured. The meeting room also
provided synchronized video recordings, including frontal views of the participants and wide-angle
view of the entire room. The data is divided into development (DEV) and evaluation (EVAL) sets
with no common speakers in both sets. The DEV set consisted of 60 sentences, amounting to 11
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Figure 3: Plots showing errors vs. degradation in WER for the three cases in x, y, z coordinates.

minutes of speech data. The EVAL set comprised 150 sentences from two speakers for all the cases
(side-by-side, opposite, and diagonally opposite speakers). The speaker at P1 position is fixed and the
errors are induced in the z,y,z coordinates of the other speakers. The positive z axis is towards the
bookshelf and the positive y axis towards the presentation screen, as shown in the Figure 1a, while
the positive z axis is towards the roof of the meeting room. The errors are introduced in a step of r =
3 cm for a range of R = 30 cm in both positive and negative directions for all the coordinates. Speech
recognition experiments are performed only for the speakers where errors have been introduced, hence
the total number of sentences considered are 75, amounting to 14 minutes of data.

Figure 3 shows the results for errors in cm, in z, y, z coordinates against word error rates (WER) in
percentage for all the cases. The y-axis is the absolute degradation in WER (DWER) with respect to
the headset microphone, WER (array) - WER (headset)), which are the best results and are considered
as baseline for all the results, as shown in Table 1. The values at zero on the error axis indicate the
degradation in WER obtained from the ground truth.

It can be observed from the plots that WERs are roughly linear with respect to the localization
errors, indicating that the errors in computing the speaker location proportionally degrade the quality
of the desired speech signal. From the plots, it is clear that the WERs for P1P3 (side-by-side) speakers
are normally the highest in all the three coordinates due to the close proximity of the speakers. As
expected, in the case of P1P4 (diagonally opposite) speakers, the WERs are low in all the three
coordinates due to the comparatively large distance between the speakers. For the errors in the
positive z direction, P1P2 case is the worst performing because positive z is the direction that brings
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the two speakers closer. Also, for the errors in positive y direction, P1P3 case is the worst because
positive y is the direction that brings the two speakers close. These are clearly evident from Figures
3a and 3b.

From Figure 3, it is also observed that the WERs are lower in the case of z coordinate than the z y
coordinates, and the errors in positive and negative z coordinate are symmetrical. This indicates that
the quality of the speech signal is comparatively less affected by the errors in the z coordinate and
also that the inaccuracies in the positive and negative directions distort the speech signal similarly.

Table 1 also shows the comparison of WERs for ground truth, lapel microphone, and speaker
locations based on recently proposed by Gatica-Perez et al. [5] and Lathoud et al. [10] for all the
two-speaker methods.

Table 1: Comparison of WER for different channels. Headset values are the absolute values and the
remaining are relative to the headset.

WER (%)
Signal P1P3 P1P2 P1P4
Headset 41.6 43.2 44.7
Ground truth | 12.8 13.0 10.7
Lapel 13.4 13.8 114
Audio-visual 17.2 16.2 16.6
Audio-only 34.6 36.0 36.5

As expected, in the case of P1P4 | the ground truth and lapel microphone have less WER degrada-
tion than P1P3 and P1P2 which is again due to the comparatively long distance between the speakers.
It is also clear, that the lapel and the ground truth based microphone-array have relatively similar
performances indicating the accuracy of the audio-visual calibration method. It is also observed that
for all the cases, the WER for audio-only estimates are much higher than audio-visual tracking esti-
mates, which are higher in turn than the ground truth speaker locations. For the estimates from the
audio-visual tracking method, the Euclidean distance error is between 18-24 cm, which is partly due
to the fact that the tracker estimate in each camera view corresponds to the center of a person’s head,
rather than to the center of the mouth, and that the two head centers in each camera view do not
correspond to the 3-D same physical point. In contrast, the audio-only estimates are discontinuous
and are available only in approximately 60% of the frames. Errors are computed only on those frames
for which there is at least one audio estimate, and the Euclidean distance error is between 100-120 cm.
This is clearly reflected on the WER, as observed in Table 1. This confirms that the speaker location
estimates based on audio-visual fusion information are more accurate than the audio-only estimates,
which is consistent with earlier studies [16]. In summary, our experiments suggest what the limits of
ASR are even when localization is perfect, and where some current technologies stand with respect to
this given standard.

5 Conclusions

We presented a framework to evaluate the effect of speaker location errors on a microphone array-
based ASR system in the context of meetings. The system is evaluated on real data collected with
overlapping speech from simultaneous speakers in a meeting room. The evaluation refers to the
errors in speaker position coordinates in the three axes of a cartesian coordinate system, and the
corresponding influence on speech recognition performance. The results indicate that in a range of 30
cm range, the errors in computing the speaker location degrade the quality of the desired speech signal
in a roughly propotional way. We also observed that the quality of the speech signal is less affected
by errors in the z coordinate, and that the inaccuracies in positive and negative directions distort
the speech signal similarly. We also compared the results with those obtained with lapel microphones
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and speaker locations based on audio-only speaker localization and audio-visual tracking methods and
confirmed that the errors in speaker location estimates by audio-visual tracking are promising but still
open to improvement.
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