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Abstract. Phone posteriors has recently quite often used (as additional features or as local
scores) to improve state-of-the-art automatic speech recognition (ASR) systems. Usually, better
phone posterior estimates yield better ASR performance. In the present paper we present some
initial, yet promising, work towards hierarchically improving these phone posteriors, by implicitly
integrating phonetic and lexical knowledge. In the approach investigated here, phone posteriors
estimated with a multilayer perceptron (MLP) and short (9 frames) temporal context, are used
as input to a second MLP, spanning a longer temporal context (e.g. 19 frames of posteriors)
and trained to refine the phone posterior estimates. The rationale behind this is that at the
output of every MLP, the information stream is getting simpler (converging to a sequence of
binary posterior vectors), and can thus be further processed (using a simpler classifier) by looking
at a larger temporal window. Longer term dependencies can be interpreted as phonetic, sub-
lexical and lexical knowledge. The resulting enhanced posteriors can then be used for phone and
word recognition, in the same way as regular phone posteriors, in hybrid HMM/ANN or Tandem
systems. The proposed method has been tested on TIMIT, OGI Numbers and Conversational
Telephone Speech (CTS) databases, always resulting in consistent and significant improvements
in both phone and word recognition rates.
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Figure 1: Our approach for enhancing phone posterior estimation: The first MLP is transforming acoustic
(cepstral) features to phone evidences in terms of posterior probabilities. The second MLP processes a temporal
context of the phone evidences estimated by the first MLP, and learns the longer term dependencies between
phone evidences. These dependencies can be interpreted as phonetic, sub-lexical and lexical knowledge.

1 Introduction

Recently the estimation and usage of posterior probabilities has become popular for boosting the
performance of speech recognition systems. The posterior based systems can be categorized mainly
to either the approaches which use posteriors as local scores (measures), or the approaches which
use posteriors as features. Hybrid Hidden Markov Model / Artificial Neural Network (HMM/ANN)
method [1] is one of the the first methods to use posterior probabilities as local scores. In this
method, ANNs (more specifically Multilayer Perceptrons, MLPs) are used to estimate the emission
probabilities required in HMM. Hybrid HMM/ANN method provides the possibility of discriminant
training, as well as using small acoustic context by presenting a few number of frames at MLP input.
Posterior probabilities have also been used as local scores for word lattice rescoring [2], beam search
pruning [3] and confidence measures estimation [4]. Considering the use of posterior probabilities as
features, the most successful approach is Tandem [5]. In Tandem, MLP estimated phone posteriors are
used as input features for training/inference in a standard HMM/GMM configuration. Tandem takes
the advantage of discriminative acoustic model training, as well as being able to use the techniques
developed for standard HMM systems.

In both hybrid HMM/ANN and Tandem approaches, phone posteriors are often simply estimated
from the acoustic information available in a local frame or a limited number of local frames using
MLPs. The information in a limited window of spectral features in not the only source of knowledge
available about phonemes. Information about phonemes are spread over time and there is no sharp
boundaries between phonemes. Phonemes have specific duration constraints (phonetic knowledge),
follow specific sub-lexical and lexical rules (lexical knowledge), etc.

In this paper, we propose a simple yet very effective approach for integrating phonetic and lexical
knowledge in the phone posterior estimation. We use a secondary MLP to learn long term dependencies
between phone evidences (posteriors) estimated initially by a first MLP. These long term dependencies
can be interpreted as phonetic and sub-lexical or lexical knowledge. In the present work, the second
MLP has been trained on the same database, but using a longer temporal context of initial phone
posteriors as input, and the same phone labels as targets. In the future tough, we expect further
improvements by training the two MLPs on different databases. Another alternative will also be to use
the second MLP only for (task) adaptation purposes. The second net is able to integrate the learned
phonetic and lexical knowledge in the phone posterior estimation. This leads to enhanced phone
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posteriors as compared to initial phone posteriors. Since the posterior vector sequences (sometimes
referred to as “posteriogram”) resulting of the first MLP is much simpler (converging to a sequence of
binary vectors), the second MLP can extract longer-term information and act as a filter, smoothing
out evidences which are not matching the learned phonetic and lexical knowledge.

We have compared the performance of the enhanced phone posteriors and initial posteriors for
phone and word recognition, in Tandem and hybrid HMM/ANN configurations. We have used
TIMIT [6], OGI Numbers [7], and CTS [8] databases for the experiments. It is shown that the
enhanced posteriors perform significantly and consistently better than the initial phone posteriors for
phone and word recognition over different databases, and different configurations.

The paper is organized as follows: Section 2 briefly discusses the MLP-based phone posterior
estimation. Section 3 presents the method for integrating longer-term temporal span (implicit phonetic
and lexical knowledge), and enhancing posterior estimation. Section 4 describes phone and word
evaluation experiments on TIMIT, OGI Numbers, and CTS, all resulting in improved performance
with respect to MLP-based phone posteriors currently used in many systems.

2 Phone posterior estimation

As already mentioned, the phone posteriors are usually estimated only based on information in a
local or limited span of spectral feature frames. Among different approaches for estimating phone
posteriors, MLPs provide a discriminative way of estimating phoneme posteriors. The MLP, trained
on the training part of the database, estimates the posterior probabilities of phoneme classes at each
frame p(¢: = i|z;), where ¢ is a phoneme at time ¢, g; is the event ¢, = 4, and x; is the acoustic
features at time t. These posteriors can be possibly used as features for training and inference in a
HMM/GMM layer, as they are used in Tandem configuration [5] or as scores in hybrid HMM/ANN
configuration [1]. The time limited spectral information is not the only source of knowledge available
for a specific phoneme. Usually other sources of knowledge, such as phonetic and lexical knowledge,
and long context can provide additional information about phonemes, and possibly help to enhance
the estimation of phone posteriors.

3 Integrating phonetic and lexical knowledge in the posterior
estimation

Based on our discussion in the previous section, there are some extra sources of knowledge which are
usually not taken into account in MLP-based phone posterior estimation. In this section, we propose
a new configuration for integrating these extra sources of knowledge in the phone posterior estimation.
The configuration is shown in Figure 1. We have two MLPs in this configuration. The first MLP
performs the initial phone posterior probability estimation by transforming a small context of acoustic
features (cepstral features) to phone posteriors. The second MLP takes a long temporal context of
phone posteriors estimated by the first MLP as its input, and outputs phone posteriors for the same
set of phonemes as the first MLP. The first MLP is typically trained with the cepstral features as
input and phone targets as output, while the second MLP is trained with a long context of phone
posteriors as input and the same phone targets as output. The first MLP learns the transformation
form acoustic features to phone evidences, while the second MLP gets the phone evidences as the input
and learns long term dependencies between phone evidences. This long term phone dependencies can
be interpreted as sub-lexical or lexical knowledge, phoneme trajectory shape and phone duration
information (phonetic knowledge). Therefore, the second MLP implicitly learns phonetic and lexical
information, and is able to introduce these extra knowledge in the phone posterior estimation during
the forward pass (inference). This leads to enhancement of phone posteriors. In the current work the
two MLPs are trained using the same database. In future tough, we study further improvements by
training the two MLPs on different databases. Another alternative will also be to use the second MLP
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for task adaptation purposes.

Figure 2 is showing an example of initial and corresponding enhanced posteriors. The enhanced
(second MLP) posteriors are less noisy than the initial (first MLP) posteriors. Ideally, this approach
can be used for post-processing the output of any posterior estimator to integrate higher level knowl-
edge (phonetic, lexical knowledge).

4 Experiments and Results

We have set up phone and word recognition experiments to evaluate and compare the performance of
the enhanced phone posteriors with the initial posteriors. The comparison is done in terms of frame,
phone and word error rates using hybrid HMM/ANN and Tandem configurations for the recognition.

4.1 Phone recognition experiments

For the phone recognition experiments, TIMIT database [6] is used. The training data consists of 3000
utterances from 375 speakers, cross validation data set consists of 696 utterances from 87 speakers
and the test data set consists of 1344 utterances from 168 speakers. There are 39 context independent
phonemes. The acoustic features are PLP, delta and double delta features. For estimating initial
posteriors we have used an MLP with 351 input nodes (9 frames of PLPs), 1000 hidden nodes and 39
(corresponding to the number of phonemes) output nodes.

In order to estimate enhanced posteriors, a 19 frames temporal context of the initial posteriors
are post processed by a secondary MLP (as explained in Section 3). This MLP has 741 (39x19) input
nodes, 1000 hidden nodes and 39 output nodes (corresponding to the number of phonemes). The size
of the temporal posterior context, and the structure of the second MLP is obtained empirically for all
the experiments. For the phone recognition, we have used NOWAY [9] which is a hybrid HMM/ANN
decoder. In this decoder, each phoneme is modeled with 5 states, and a bi-gram phoneme level
language model is used. Frame and phone recognition results are shown in Table 1. The second
column is showing the performance of the initial posteriors in terms of frame and phone error rates.
The third column is showing the performance of corresponding enhanced posteriors obtained by post
processing the initial posteriors. The enhanced posteriors perform significantly better than the initial
posteriors for frame and phone recognition.

’ Error rates \ Initial posteriors \ Enhanced posteriors ‘

FER 29.9% 27.4%
PER 31.2% 28.5%

Table 1: Frame error rates (FER) and phone error rates (PER) for initial and enhanced phone posteriors, on
TIMIT database.

4.2 'Word recognition experiments

The Conversational Telephone Speech (CTS) [8] and OGI Numbers [7] databases are used for word
recognition experiments. In Numbers database, there are 31 word classes and 27 context independent
phonemes. The training set is about 1.5 hours and the test set is about 0.9 hour. The acoustic features
are PLP, delta and double delta features. For estimating initial posteriors, we have used an MLP with
351 input (9 frames of acoustic features), 1800 hidden, and 27 output (corresponding to the number
of phones) nodes.

In CTS database, there are 46 phone and 1000 word classes. The acoustic features are PLP, delta
and double delta features. For initial posterior estimation, we have used an MLP with 351 input, 2000
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Figure 2: (a) Initial posteriors estimated by the first MLP, and (b) enhanced phone posteriors estimated by
the second MLP integrating phonetic and lexical knowledge. The new enhanced posteriors are less noisy.

hidden, and 46 output nodes (corresponding to the number of phones). The training set is about 15
hours and the test set is about 0.6 hour.

In order to enhance phone posterior estimates for the Numbers database, a second MLP post-
processing 19 frames of initial posteriors is used (as explained in Section 3). It has 513 (19x27) input
nodes, 1000 hidden nodes and 27 output nodes. For the CTS database, a second MLP with 598
(13x46) input nodes, 2000 hidden nodes and 46 output nodes is used to post-process 13 frames of
the initial posteriors. Table 2 is showing frame error rates for the initial and enhanced posteriors for
Numbers and CTS databases. Again, lower error rates can be observed for the enhanced posteriors in
both databases. For word recognition, we have used Tandem and hybrid HMM/ANN configurations.

In Tandem approach, the posteriors are first gaussianized and decorrelated using log and Karhunen
Loeve (KLT) transforms. The result of the transformation is used as features for training and inference
in a HMM/GMM layer. The HMM/GMM layer is implemented in HTK [10], and trained with the
posterior features. In case of Numbers database, context dependent models with 12 mixtures per
state is used. In case of CTS database, context independent models with 32 mixtures per state, and
a bi-gram language model is used. Table 3 is showing the word recognition performances for initial
and enhanced posteriors. It can be observed that the enhanced posteriors are consistently performing
better than the initial posteriors for the two databases.

In hybrid HMM/ANN approach, the posteriors are used as local scores for decoding. We have used
NOWAY as the hybrid decoder for Numbers database, and JUICER [11] for CTS database. In case
of Numbers database, phonemes are modeled with 5 states in the decoder. In case of CTS database,
phonemes are modeled with 5 states, and a bi-gram language model is used. Table 4 is showing the
word recognition performances for initial and enhanced posteriors. It can be again observed that the
enhanced posteriors are performing better than the initial posteriors.

Overall, the experiments show that enhancing posterior estimates, consistently improves the per-
formance in terms of frame, phone and word recognition.

In addition to the recognition studies, we study the entropy of the enhanced and regular posteriors.
The entropy provides a measure of consistency/confusion in the posteriors. The entropy is measured
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for each frame (posteriors vector), and averaged over all the frames. Table 5 shows the average
entropies for the enhanced and initial posteriors. Enhanced posteriors have smaller entropy than the
initial posteriors. This indicates that there is more consistency in the enhanced posteriors, or in th
other words they are less noisy.

’ Database \ Initial posteriors \ Enhanced posteriors ‘

Numbers 19.5% 16.7%
CTS 28.7% 25.9%

Table 2: Frame error rates (FER) on Numbers’95 and CTS tasks, for initial and enhanced phone posteriors.

’ Database \ Initial posteriors \ Enhanced posteriors ‘

Numbers 4.7% 4.2%
CTS 44.2% 43.0%

Table 3: Word error rates (WER) on Numbers’95 and CTS tasks, for initial and enhanced phone posteriors.
The phone posteriors are used in Tandem configuration for the recognition. Enhanced phone posteriors perform
significantly and consistently better than the initial posteriors.

’ Database \ Initial posteriors \ Enhanced posteriors

Numbers 9.2% 8.2%
CTS 53.6% 49.2%

Table 4: Word error rates (WER) on Numbers’95 and CTS tasks, for initial and enhanced phone posteriors.
The phone posteriors are used in hybrid HMM/ANN configuration for the recognition. Enhanced phone
posteriors perform better than the initial posteriors.

5 Conclusions

In this paper, we have proposed a simple yet very effective approach for enhancing the estimation of
phone posteriors by hierarchically processing longer time spans of simpler information streams. In
this approach, we use a secondary MLP to post-process the posteriors, and learn long term intra- and
inter-phone posterior dependencies. The long term dependencies can be interpreted as phonetic, sub-
lexical and lexical knowledge. This learned knowledge is integrated in the phone posterior estimation
during the forward pass (inference), resulting in an enhanced version of the phone posterior estimates.
The resulting enhanced posteriors are shown to consistently perform better than the initial posteriors
for frame, phone and word recognition, over different small and large vocabulary tasks. Ideally, this
approach can be used at the end of any posterior estimator to learn and integrate higher level of prior
knowledge in the posterior estimation.

In this work, the second MLP has been trained on the same database. In the future, we study
possible further improvements by training the two MLPs on different databases, or splitting the
existing database between the two MLPs (with a percentage of overlap). Another alternative will
also be to use the second MLP only for (task) adaptation purposes. For instance, the first MLP can
be trained on a general English database, while the second MLP is trained on a second database of
specific accent or dialect. In this case, the first MLP acts as a general phone posterior estimator, and
the second MLP adapts the posterior estimation for a specific task.
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’ Database \ Initial posteriors \ Enhanced posteriors

TIMIT 1.16 0.84
CTS 1.64 1.29
Numbers 0.67 0.40

Table 5: Average entropy of enhanced and initial phone posteriors for different databases.

We will also further study the strategies and possibilities of optimizing and using a simpler structure
for the second MLP. This will provide the possibility of processing longer temporal context. The initial
phone posteriors have simpler and possibly linearly separable patterns, as compared to the acoustic
features. Therefore, it is potentially possible to use a relatively simpler MLP for post processing
the phone posteriors. Additional MLPs in the hierarchy can even have simpler structure, since the
posteriors become smoother.
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