Learning the Inter-frame Distance for Discriminative Template-based Keyword Detection

This paper proposes a discriminative approach to template-based keyword detection. We introduce a method to learn the distance used to compare acoustic frames, a crucial element for template matching approaches. The proposed algorithm estimates the distance from data, with the objective to produce a detector maximizing the Area Under the receiver operating Curve (AUC), i.e. the standard evaluation measure for the keyword detection problem. The experiments performed over a large corpus, SpeechDatII, suggest that our model is effective compared to an HMM system, e.g. the proposed approach reaches 93.8\% of averaged AUC compared to 87.9\% for the HMM.

Presented at:
International Conference on Speech Communication and Technology (INTERSPEECH)

 Record created 2010-02-11, last modified 2018-03-17

Download fulltextPDF
External link:
Download fulltextURL
Rate this document:

Rate this document:
(Not yet reviewed)