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Abstract

Hierarchical penalizationis a generic framework for incorporating prior informa-
tion in the fitting of statistical models, when the explicative variables are organized
in a hierarchical structure. The penalizer is a convex functional that performs soft
selection at the group level, and shrinks variables within each group. This favors
solutions with few leading terms in the final combination. The framework, orig-
inally derived for taking prior knowledge into account, is shown to be useful in
linear regression, when several parameters are used to model the influence of one
feature, or in kernel regression, for learning multiple kernels.
Keywords – Optimization: constrained and convex optimization.Supervised
learning: regression, kernel methods, sparsity and feature selection.

1 Introduction

In regression, we want to explain or to predict a response variable y from a set of explanatory
variablesx = (x1, . . . , xj , . . . , xd), wherey ∈ R and∀j, xj ∈ R. For this purpose, we use a model
such thaty = f(x) + ǫ, wheref is a function able to characterizey whenx is observed andǫ is a
residual error.

Supervised learning consists in estimatingf from the available training datasetS = {(xi, yi)}ni=1.
It can be achieved in a predictive or a descriptive perspective: to predict accurate responses for future
observations, or to show the correlations that exist between the set of explanatory variables and the
response variable, and thus, give an interpretation to the model.

In the linear case, the functionf consists of an estimateβ = (β1, . . . , βj , . . . , βd)
t

applied tox, that
is to sayf(x) = xβ. In a predictive perspective,xβ produces an estimate ofy, for any observation
x. In a descriptive perspective,|βj | can be interpreted as a degree of relevance of variablexj .

Ordinary Least Squares(OLS) minimizes the sum of the residual squared error. When the explana-
tory variables are numerous and many of them are correlated,the variability of the OLS estimate
tends to increase. This leads to reduced prediction accuracy, and an interpretation of the model
becomes tricky.

Coefficient shrinkageis a major approach of regularization procedures in linear regression models.
It overcomes the drawbacks described above by adding a constraint on the norm of the estimateβ.
According to the chosen norm, coefficients associated to variables with little predictive information
may be shrunk, or even removed when variables are irrelevant. This latest case is referred to as
variable selection. In particular,ridge regressionshrinks coefficients with regard to theℓ2-norm,
while the lasso(Least Absolute Shrinkage and Selection Operator) [1] and thelars (Least Angle
Regression Stepwise) [2] both shrink and remove coefficients using theℓ1-norm.
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Figure 1: left: toy-example of the original structure of variables; right: equivalent tree structure
considered for the formalization of the scaling problem.

In some applications, explanatory variables that share a similar characteristic can be gathered into
groups – orfactors. Sometimes, they can be organized hierarchically. For instance, in genomics,
where explanatory variables are (products of) genes, some factors can be identified from the prior
information available in the hierarchies ofGene Ontology. Then, it becomes necessary to find
methods that retain meaningful factors instead of individual variables.

Group-lassoandgroup-lars[3] can be considered as hierarchical penalization methods, with trees of
height two defining the hierarchies. They perform variable selection by encouraging sparseness over
predefined factors. These techniques seem perfectible in the sense that hierarchies can be extended
to more than two levels and sparseness integrated within groups. This papers proposes a penalizer,
derived from an adaptive penalization formulation [4], that highlights factors of interest by balancing
constraints on each element, at each level of a hierarchy. Itperforms soft selection at the factor level,
and shrinks variables within groups, to favor solutions with few leading terms.

Section 2 introduces the framework ofhierarchical penalizationand the associated algorithm is
presented in Section 3. Section 4 shows how this framework can be applied to linear and kernel
regression. We conclude with a general survey of our future works.

2 Hierarchical Penalization

2.1 Formalization

We introducehierarchical penalizationby considering problems where the variables are organized
in a tree structure of height two, such as the example displayed in figure 1. The nodes of height
one are labelled in{1, . . . ,K}. The set of children (that is, leaves) of nodek is denotedJk and its
cardinality isdk. As displayed on the right-hand-side of figure 1, a branch stemming from the root
and going to nodek is labelled byσ1,k, and the branch reaching leafj is labelled byσ2,j .

We consider the problem of minimizing a differentiable lossfunction L(·), subject to sparseness
constraints onβ and the subsets ofβ defined in a tree hierarchy. This reads







































min
β,σ

L(β) + λ
K
∑

k=1

∑

j∈Jk

β2
j√

σ1,k σ2,j

,

subject to

K
∑

k=1

dk σ1,k = 1 ,

d
∑

j=1

σ2,j = 1 ,

σ1,k ≥ 0 k = 1, . . . ,K , σ2,j ≥ 0 j = 1, . . . , d ,

(1a)

(1b)

(1c)

whereλ > 0 is a Lagrangian parameter that controls the amount of shrinkage,x/y is defined by
continuation at zero asx/0 =∞ if x 6= 0 and0/0 = 0.
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The second term of expression (1a) penalizesβ, according to the tree structure, via scaling factors
σ1 andσ2. The constraints (1b) shrink the coefficientsβ at group level and inside groups. In what
follows, we show that problem (1) is convex and that this joint shrinkage encourages sparsity at the
group level.

2.2 Two important properties

We first prove that the optimization problem (1) is tractableand moreover convex. Then, we show
an equivalence with another optimization problem, which exhibits the exact nature of the constraints
applied to the coefficientsβ.

Proposition 1 ProvidedL(·) is convex, problem (1) is convex.

Proof: A problem minimizing a convex criterion on a convex set is convex. SinceL(·) is convex and
λ is positive, the criterion (1a) is convex providedf(x, y, z) = x2

√
yz

is convex. To show this, we
compute the Hessian:
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Hence, the Hessian is positive semi-definite, and criterion(1a) is convex.

Next, constraints (1c) define half-spaces forσ1 andσ2, which are convex sets. Equality constraints
(1b) define linear subspaces of dimensionK−1 andd−1 which are also convex sets. The intersec-
tion of convex sets being a convex set, the constraints definea convex admissible set, and problem
(1) is convex. �

Proposition 2 Problem (1) is equivalent to

min
β

L(β) + λ
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. (2)

Sketch of proof:

The Lagrangian of problem (1) is

L = L(β) + λ

K
∑
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j√
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+ ν1

(
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Hence, the optimality conditions forσ1,k andσ2,j are
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After some tedious algebra, the optimality conditions forσ1,k andσ2,j can be expressed as

σ1,k =
d
− 3

4

k (sk)
3

4
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for j ∈ Jk ,

wheresk =
∑

j∈Jk

|βj |
4

3 . Plugging these conditions in criterion (1a) yields the claimed result. �
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2.3 Sparseness

Proposition 2 shows how the penalization influences the groups of variables and each variable in
each group. Note that, thanks to the positivity of the squared term in (2), the expression can be
further simplified to

min
β

L(β) + ν
K
∑

k=1

d
1

4

k





∑

j∈Jk

|βj |
4

3





3

4

, (3)

where, for anyL(β), there is a one-to-one mapping fromλ in (2) to ν in (3). This expression
can be interpreted as the Lagrangian formulation of a constrained optimization problem, where the
admissible set forβ is defined by the multiplicand ofν.

We display the shape of the admissible set in figure 2, and compare it toridge regression, which does
not favor sparsity,lasso, which encourages sparsity for all variables but does not take into account
the group structure, andgroup-lasso, which is invariant to rotations of within-group variables. One
sees thathierarchical penalizationcombines some features oflassoandgroup-lasso.

ridge regression lasso group-lasso hierarchical penalization
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3
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2 +|β3|≤1 2
1

4

“

|β1|
4
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4
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Figure 2:Admissible sets for various penalties, the two horizontal axes are the(β1, β2) plane (first group) and
the vertical axis is forβ3 (second group).

By looking at the curvature of these sets when they meet axes,one gets a good intuition on why
ridge regressiondoes not suppress variables, whylassodoes, whygroup-lassosuppresses groups
of variables but not within-group variables, and whyhierarchical penalizationshould do both. This
intuition is however not correct forhierarchical penalizationbecause the boundary of the admissible
set is differentiable in the within-group hyper-plane(β1, β2) at β1 = 0 andβ2 = 0. However,
as its curvature is very high, solutions with few leading terms in the within-group variables are
encouraged.

To go beyond the hints provided by these figures, we detail here the optimality conditions forβ
minimizing (3). The first-order optimality conditions are

1. for βj = 0, j ∈ Jk and
∑

j∈Jk

|βj | = 0,
∂L(β)

∂βj

+ ν d
1

4

k vj = 0, wherevj ∈ [−1, 1];

2. for βj = 0, j ∈ Jk and
∑

j∈Jk

|βj | 6= 0,
∂L(β)

∂βj

= 0;

3. for βj 6= 0, j ∈ Jk,
∂L(β)

∂βj

+ ν d
1

4

k sign(βj)

(

1 +
1

|βj | 43
∑

ℓ∈Jk
ℓ 6=j

|βℓ|
4

3

)− 1

4

= 0.

These equations signify respectively that

1. the variables belonging to groups that are estimated to beirrelevant are penalized with the
highest strength, thus limiting the number of groups influencing the solution;

2. when a group has some non-zero relevance, all variables enter the set of active variables
provided they influence the fitting criterion;

3. however, the penalization strength increases very rapidly (as a smooth step function) for
small values of|βj |, thus limiting the number ofβj with large magnitude.
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Overall,hierarchical penalizationis thus expected to provide solutions with few active groupsand
few leading variables within each group.

3 Algorithm

To solve problem (3), we use an active set algorithm, based onthe approach proposed by Osborne
et al. [5] for thelasso. This algorithm iterates two phases: first, the optimization problem is solved
with a sub-optimal set of active variables, that is, non-zero variables: we defineA = {j |βj 6= 0},
the current active set of variables,γ = {βj}j∈A, the vector of coefficients associated toA, and
Gk = {Jk ∩A}, the subset of coefficientsγ associated to groupk. Then, at each iteration, we solve
the problem

min
γ
L(γ) = L(γ) + ν

K
∑

k=1

d
1

4

k





∑

j∈Gk

|γj |
4

3





3

4

, (4)

by alternating steps A and B described below. Second, the setof active variables is incrementally
updated as detailed in steps C and D.

A Compute a candidate update from an admissible vectorγ

The goal is to solvemin
h

L(γ + h), whereγ is the current estimate of the solution andh ∈ R
|A|.

The difficulties in solving (4) stem from the discontinuities of the derivative due to the absolute
values. These difficulties are circumvented by replacing|γj + hj | by sign(γj)(γj + hj). This
enables the use of powerful continuous optimizers based either on the Newton, quasi-Newton or
conjugate gradient methods according to the size of the problem.

B Obtain a new admissible vectorγ†

Let γ† = γ + h. If for all j, sign(γ†
j ) = sign(γj), thenγ is sign-feasible, and we go to step C,

otherwise:

B.1 LetS be the set of indicesm such thatsign(γ+
m) 6= sign(γm). Let µ = min

m∈S
−γm

hm

, that is,

µ is the largest step in directionh such thatsign(γm + µhm) = sign(γm), except for one

variable,ℓ = arg min
m
−γm

hm

, for whichγℓ + µhℓ = 0.

B.2 Setγ = γ + µh andsign(γℓ) = − sign(γℓ), and compute a new directionh as in step A.
If, for the new solutionγ†, sign(γ†

ℓ ) 6= sign(γℓ), thenℓ is removed fromA. Go to step A.
B.3 Iterate step B untilγ is sign-feasible.

C Test optimality ofγ
If the appropriate optimality condition holds for all inactive variablesβℓ (βℓ = 0), that is

C.1 forℓ ∈ Jk, where
∑

j∈Jk

|βj | = 0, then

∣

∣

∣

∣

∂L(β)

∂βℓ

∣

∣

∣

∣

≤ ν d
1

4

k ,

C.2 forℓ ∈ Jk, where
∑

j∈Jk

|βj | 6= 0, then
∂L(β)

∂βℓ

= 0,

thenγ is a solution. Else, go to step D.

D Select the variable that enters the active set

D.1 Select variableℓ, ℓ /∈ A that maximizesd
− 1

4

k

∣

∣

∣

∣

∂L(β)

∂βℓ

∣

∣

∣

∣

, wherek is the group of variableℓ.

D.2 Update the active set:A ← A ∪ {ℓ}, with initial vector: γ = [γ, 0]t where the sign of the

new zero component is− sign
(

∂L(β)
∂βℓ

)

.

D.3 Go to step A.

The algorithm is initialized withA = ∅, and the first variable is selected with the process described
at step D.
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4 Experiments

We illustrate on two datasets howhierarchical penalizationcan be useful in exploratory analysis
and in prediction. Then, we show how the algorithm can be applied for multiple kernel learning in
kernel regression.

4.1 Abalone Database

The Abalone problem [6] consists in predicting the age of abalone from physical measurements.
The dataset is composed of 8 attributes. One concerns the sexof abalone, and has been encoded
with dummy variables, that isxsex

i = (100) for male,xsex
i = (010) for female, orxsex

i = (001) for
infant. This variable defines the first group. The second group is composed of 3 attributes concerning
size parameters (length, diameter and height), and the lastgroup is composed of weight parameters
(whole, shucked, viscera and shell weight).

We randomly selected 2920 examples for training, includingthe tuning ofν by 10-fold cross val-
idation, and left the 1257 other for testing. The mean squared test error is at par withlasso(4.3).
The coefficients estimated on the training set are reported in table 4.1. Weight parameters are a main
contributor to the estimation of the age of an abalon, while sex is not essential, except for infant.

sex 0.051 0.036 -0.360 0.516
size -0.044 1.134 0.358 1.7405

weight 4.370 -4.499 -1.110 1.399 11.989

Table 1:Coefficients obtained on the Abalone dataset. The last column representsthe valued
1

4
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@
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4

3
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3

4
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4.2 Delve Census Database

The Delve Census problem [7] consists in predicting the median price of a house in different survey
regions. Each 22732 survey region is represented by 134 demographic information measurements.
Several prototypes are available. We focussed on the prototype “house-price-16L”, composed of 16
variables. We derived this prototype by including all the other variables related to these 16 variables.
The final dataset is then composed of 37 variables, split up into 10 groups1.

We randomly selected 8000 observations for training and left the 14732 for testing. We divided
the training observations into 10 distinct datasets. For each dataset, the parameterν was selected
by a 10-fold cross validation, and the mean squared error wascomputed on the testing set. We
reported on table 4.2 the mean squared test errors obtained with thehierarchical penalization(hp),
thegroup-lasso(gl) and thelassoestimates.

Datasets 1 2 3 4 5 6 7 8 9 10 mean error
hp (×109) 2.363 2.745 2.289 4.481 2.211 2.364 2.460 2.298 2.461 2.286 2.596
gl (×109) 2.429 2.460 2.289 4.653 2.230 2.364 2.472 2.308 2.454 2.291 2.595

lasso (×109) 2.380 2.716 2.293 4.656 2.216 2.368 2.490 2.295 2.483 2.288 2.618

Table 2:Mean squared test errors obtained with different methods for the 10 datasets.

Hierarchical penalizationperforms better thanlassoon 8 datasets. It also performs better than
group-lassoon 6 datasets, and obtains equal results on 2 datasets. However the lowest overall mean
error is achieved bygroup-lasso.

4.3 Multiple Kernel Learning

Multiple Kernel Learning has drawn much interest in classification with support vector machines
(SVMs) starting from the work of Lanckriet et al. [8]. The problem consists in learning a convex

1 A description of the dataset is available athttp://www.hds.utc.fr/∼mszafran/nips07/.
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combination of kernels in the SVM optimization algorithm. Here, we show thathierarchical penal-
izationis well suited for this purpose for other kernel predictors,and we illustrate its effect on kernel
smoothing in the regression setup.

Kernel smoothing has been studied in nonparametric statistics since the 60’s [9]. Here, we consider
the model where the response variabley is estimated by a sum of kernel functions

yi =

n
∑

j=1

βj κh(xi,xj) + ǫi ,

whereκh is the kernel with scale factor (or bandwidth)h, andǫi is a residual error. For the purpose
of combiningK bandwidths, the general criterion (3) reads

min
{βk}K

k=1

n
∑

i=1



yi −
K
∑

k=1

n
∑

j=1

βk,j κhk
(xi,xj)





2

+ ν

K
∑

k=1

n
1

4

k





n
∑

j=1

|βk,j |
4

3





3

4

. (5)

The penalized model (5) has been applied to the motorcycle dataset [9]. This uni-dimensional prob-
lems enables to display the contribution of each bandwidth to the solution. We used Gaussian
kernels, with 7 bandwidths ranging from10−1 to 102.

Figure 3 displays the results obtained for different penalization parameters: the estimated function
obtained by the combination of the selected bandwidths, andthe contribution of each bandwidth to
the model. We display three settings for the penalization parameterν, corresponding to slight over-
fitting, good fit and slight under-fitting. The coefficients ofbandwidthsh2, h6 andh7 were always
null and are thus not displayed. As expected, when the penalization parameterν increases, the fit
becomes smoother, and the number of contributing bandwidths decreases. We also observe that the
effective contribution of some bandwidths is limited to a few kernels: there are few leading terms in
the expansion.

5 Conclusion and further works

Hierarchical penalizationis a generic framework enabling to process hierarchically structured vari-
ables by usual statistical models. The structure is provided to the model via constraints on the
subgroups of variables defined at each level of the hierarchy. The fitted model is then biased to-
wards statistical explanations that are “simple” with respect to this structure, that is, solutions which
promote a small number of groups of variables, with a few leading components.

In this paper, we detailed the general framework ofhierarchical penalizationfor tree structures of
height two, and discussed its specific properties in terms ofconvexity and parsimony. Then, we
proposed an efficient active set algorithm that incrementally builds an optimal solution to the prob-
lem. We finally illustrated how the approach can be used when groups of features, or when discrete
variables exist, after being encoded by several binary variables, result in groups of variables. Fi-
nally, we also shown how the algorithm can be used to learn from multiple kernels in regression. We
are now performing quantitative empirical evaluations, with applications to regression, classification
and clustering, and comparisons to other regularization schemes, such as thegroup-lasso.

We then plan to extend the formalization to hierarchies of arbitrary height, whose properties are
currently under study. We will then be able to tackle new applications, such as genomics, where the
available gene ontologies are hierarchical structures that can be faithfully approximated by trees.
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