
More Efficiency in Multiple Kernel Learning

Alain Rakotomamonjy alain.rakotomamonjy@insa-rouen.fr

LITIS EA 4051, UFR de Sciences, Université de Rouen, 76800 Saint Etienne du Rouvray, France

Francis Bach francis.bach@mines.org

CMM, Ecole des Mines de Paris, 35 rue Saint-Honoré, 77305 Fontainebleau, France

Stéphane Canu stephane.canu@insa-rouen.fr

LITIS EA 4051, INSA de Rouen, 76801 Saint Etienne du Rouvray, France

Yves Grandvalet yves.grandvalet@idiap.ch

IDIAP, Rue du Simplon 4, Case Postale 592, CH-1920 Martigny, Switzerland

Abstract

An efficient and general multiple kernel learn-
ing (MKL) algorithm has been recently pro-
posed by Sonnenburg et al. (2006). This ap-
proach has opened new perspectives since it
makes the MKL approach tractable for large-
scale problems, by iteratively using existing
support vector machine code. However, it
turns out that this iterative algorithm needs
several iterations before converging towards
a reasonable solution. In this paper, we ad-
dress the MKL problem through an adaptive
2-norm regularization formulation. Weights
on each kernel matrix are included in the
standard SVM empirical risk minimization
problem with a ℓ1 constraint to encourage
sparsity. We propose an algorithm for solv-
ing this problem and provide an new insight
on MKL algorithms based on block 1-norm
regularization by showing that the two ap-
proaches are equivalent. Experimental re-
sults show that the resulting algorithm con-
verges rapidly and its efficiency compares fa-
vorably to other MKL algorithms.

1. Introduction

During the last few years, kernel methods, such as sup-
port vector machines (SVM) have proved to be efficient
tools for solving learning problems like classification or

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

regression (Scholkopf & Smola, 2001). For such tasks,
the performance of the learning algorithm strongly de-
pends on the data representation. In kernel methods,
the data representation is implicitly chosen through
the so-called kernel K(x, x′). This kernel actually
plays several roles: it defines the similarity between
two examples x and x′, while defining an appropriate
regularization term for the learning problem. For ker-
nel algorithms, the solution of the learning problem is
of the form:

f(x) =

ℓ
∑

i=1

α⋆
i yiK(x, xi) + b⋆, (1)

where {xi, yi}ℓi=1 are the training examples, ℓ the num-
ber of learning examples, K(·, ·) is a given positive
definite kernel associated with a reproducing kernel
Hilbert space (RKHS) H and {α⋆

i }i, b⋆ some coeffi-
cients to be learned from examples.

Recent applications (Lanckriet et al., 2004a) and de-
velopments based on SVMs have shown that using
multiple kernels instead of a single one can enhance
interpretability of the decision function and improve
classifier performance. In such cases, a common ap-
proach is to consider that the kernel K(x, x′) is actu-
ally a convex linear combination of other basis kernels:

K(x, x′) =

M
∑

k=1

dkKk(x, x′), with dk ≥ 0,
∑

k

dk = 1,

where M is the total number of kernels. Each ba-
sis kernel Kk may either use the full set of variables
describing x or only a subset of these variables. Al-
ternatively, kernels Kk can simply be classical kernels
(such as Gaussian kernel) with different parameters,

More Efficiency in Multiple Kernel Learning

or may rely on different data sources associated with
the same learning problem (Lanckriet et al., 2004a).
Within this framework, the problem of data represen-
tation through the kernel is then transferred to the
choice of weights dk. Learning both the coefficients αi

and the weights dk in a single optimization problem is
known as the multiple kernel learning (MKL) problem.
This problem has been recently introduced by Lanck-
riet et al. (2004b) and the associated learning problem
involves semi-definite programming which makes the
problem rapidly intractable as the number of learning
examples or kernels become large. Bach et al. (2004)
have reformulated the problem and then proposed a
SMO algorithm for medium-scale problems. Another
formulation of this problem based on a semi-infinite
linear problem (SILP) has been proposed by Sonnen-
burg et al. (2006). The advantage of this latter formu-
lation is that the algorithm solves the problem by iter-
atively solving a classical SVM problem with a single
kernel (for which many efficient toolboxes exist) and
a linear programming for which number of constraints
increases along with iterations.

In this paper, we present another formulation of the
multiple learning problem. We first depart from the
framework proposed by Bach et al. (2004) and further
used by Sonnenburg et al. (2006). Indeed, instead
of using a 1-norm block regularization, we propose,
in Section 2, a weighted 2-norm regularization of each
function induced by the kernel Kk; we control the spar-
sity of the linear combination of kernels, by adding a 1-
norm regularization constraint on these kernel weights.
This adaptive multiple kernel regularization can then
be solved through an iterative algorithm as described
in Section 2.2, by means of a standard SVM imple-
mentation and a gradient descent procedure.

A side contribution of this paper is to offer another
insight to the work of Bach et al. (2004). Indeed,
following the line of Grandvalet (1998), by using a
variational formulation of the 1-norm block regulariza-
tion, we show that the two formulations are equivalent
(see Section 3.1). Furthermore, we discuss the conver-
gence properties of our algorithm in Section 3.4. After
these developments, we present an experimental sec-
tion that illustrates the efficiency of our algorithm and
some concluding remarks.

2. Multiple Kernel Learning framework

We present in this section the formulation of our multi-
ple kernel learning problem and the algorithm we pro-
pose for solving it. In order to simplify notations, in
the sequel, all summation on i and j goes from 1 to ℓ,
while summation on k goes from 1 to M .

2.1. The problem

We consider the classification learning problem from
data {xi, yi}ℓi=1 where xi belongs to some input space
X and yi = {+1,−1} denoting the class label of exam-
ples xi. In the support vector machines methodology,
the decision function is of the form given in equation
(1) where the optimal vector α⋆

i and real b⋆ are ob-
tained by solving the dual of the following optimiza-
tion problem :

minf∈H,b∈R
1

2
‖f‖2H + C

∑

i ξi

with yi(f(xi) + b) ≥ 1− ξi ∀i
ξi ≥ 0 ∀i

In some situations, a machine learning practitioner
may be interested in another form of decision function.
For instance, in the so-called multiple kernel learning
framework, he looks for a decision function of the form
f(x)+b =

∑

k fk(x)+b with each fk ∈ Hk where Hk is
the RKHS associated with kernel Kk. Inspired by the
multiple smoothing splines framework (Wahba, 1990),
the approach we propose in this paper for solving this
multiple kernel SVM problem is based on the resolu-
tion of the following problem :

mindk,fk,b,ξi

∑

k
1

dk

‖fk‖2 + C
∑

i ξi

with yi

∑

k fk(xi) + yib ≥ 1− ξi ∀i
∑

k dk = 1
ξi ≥ 0, dk ≥ 0 ∀i,∀k

(2)

where each dk controls the squared norm of fk in
the objective function. Hence the smaller dk is, the
smoother fk should be. When dk = 0, we will prove in
the sequel that fk must also be equal to zero, so that
the problem stays well-defined. Note that a sparsity
constraint of the vector d has been added through a
ℓ1 norm constraint and then it should lead to a sparse
decision function with few basis kernels. Note that
the function to be minimized is jointly convex in its
parameters d, {fk}, b, and ξ.

2.2. Solving the problem

One possible approach for solving the problem given
in equation (2) is to use a 2-step alternate optimiza-
tion algorithm, followed for example by Grandvalet
and Canu (2003) in a different context. The first step
would consist in solving problem (2) with respect to
fk, b and ξ while considering that the vector d is fixed.
Then, the second step consists in updating the weight
vector d through a descent step towards the minimum
of the objective function of equation (2) for fixed fk,
b and ξ. In Section 3.1 we show that the second term
can be computed in closed form. However, such an

More Efficiency in Multiple Kernel Learning

approach does not always have convergence guaran-
tees and may lead to numerical problems, in particu-
lar when one dk approaches zero (Grandvalet, 1998).
In some other cases, it is possible to have a conver-
gence proof of such alternate optimization algorithm
(Argyriou et al., 2007).

Instead, we prefer to consider the problem as the fol-
lowing constrained optimization problem :

mind J(d) such that
∑M

k=1
dk = 1, dk ≥ 0 (3)

where

J(d) =







minfk,b,ξi

1

2

∑

k
1

dk

‖fk‖2 + C
∑

i ξi

with yi

∑

k fk(xi) + yib ≥ 1− ξi

ξi ≥ 0
(4)

The objective function J(d) is actually an optimal
SVM objective value. We solve the minimization prob-
lem (3) on the simplex by means of a projected gradi-
ent method, which assumes that J(·) is differentiable
and requires the computation of its gradient.

2.2.1. Computing J(·) and its derivatives

First, we show that for a given vector d, J(d) is the
objective value of a classical SVM problem where the
kernel is : K(xi, xj) =

∑

k dkKk(xi, xj). Then, un-
der some reasonable conditions, we show that J(d) is
differentiable. Indeed, the Lagrangian of the primal
problem (4) can be written :

L =
1

2

∑

k

1

dk

‖fk‖2 + C
∑

i

ξi

+
∑

i

αi(1− ξi − yi(
∑

k

fk(xi) + b))−
∑

i

νiξi

and setting the derivatives of this Lagrangian accord-
ing to the primal variables to zero gives :

(a) 1

dk

fk(·) =
∑

i αiyiKk(·, xi), ∀k
(b)

∑

i αiyi = 0
(c) C − αi − νi = 0, ∀i

(5)

According to these equations, the associated dual
problem is :

maxα − 1

2

∑

i,j αiαj

∑

k dkKk(xi, xj) +
∑

i αi

with
∑

i αiyi = 0
C ≥ αi ≥ 0

(6)

This is the usual SVM dual problem using a single ker-
nel matrix K(xi, xj) =

∑

k dkKk(xi, xj). Hence, this
step can be solved by any SVM algorithm. The more

efficient this SVM algorithm is, the more efficient our
MKL algorithm becomes. Furthermore, If this SVM
algorithm is able to handle a large-scale problem, then
this MKL algorithm can also solve large-scale problem.
Thus, the overall complexity of our MKL algorithm is
tied to the one of the single kernel SVM algorithm.
Also note that according to the Lagrangian derivatives,
fk(·) goes to 0 as the coefficient dk vanishes.

For computing the derivatives of J with respect to d,
let us note that J(d) is the optimal objective value of
equation (4) solved above. and J(d) can be seen as
an implicit function. Then for a given d, because of
strong duality, J(d) is also the objective value of the
dual problem. Then, we also have :

J(d) = −1

2

∑

i,j

α⋆
i α

⋆
j

∑

k

dkKk(xi, xj) +
∑

i

α⋆
i

where the vector α⋆ optimizes equation (6). We as-
sume for the rest of the paper that each kernel matrix
(Kk(xi, xj))i,j has a minimal eigenvalue greater than
a fixed small η > 0 (if the original kernels do not ver-
ify this, a small rigde may be added on the diagonal
of the kernel matrices). This implies that the dual
function is strictly concave with convexity parameter
η (Lemaréchal & Sagastizabal, 1997).

Differentiability issues and derivatives computation of
optimal values of optimization problems have been
largely discussed by Bonnans and Shapiro (1998).
The particular case of SVM have been addressed by
Chapelle et al. (2002). From these works, we know
that J(d) is differentiable if the SVM solution is
unique. This unicity is ensured by the strict concavity
of the dual function. And in such cases, derivatives
of J(d) can be computed as if the optimal value of α⋆

does not depend on dk. Thus, by simply derivating
the dual function given in equation (6) wrt to dk, we
have :

∂J

∂dk

= −1

2

∑

i,j

α⋆
i α

⋆
jyiyjKk(xi, xj) ∀k (7)

2.2.2. Algorithm

The optimization problem we have to deal with is a
non-linear optimization with linear constraints (see
equation (3)). With our positivity assumption on
the kernel matrices, J(·) is convex, differentiable with
Lipschitz gradient (Lemaréchal & Sagastizabal, 1997).
The approach we used for solving such problem is then
a projected gradient method, which does converge for
such functions (Bonnans et al., 2003).

Once the gradient of J(d) has been computed, d is

More Efficiency in Multiple Kernel Learning

Algorithm 1 adaptive 2-norm multiple kernel algo-
rithm

d1
k = 1

M
for k = 1, · · · ,M

for t = 1, 2, · · · do

solve the classical SVM problem with K =
∑

k dt
kKk

compute ∂J
∂dk

for k = 1, · · · ,M
compute descent direction Dt and optimal step γt

dt+1

k ← dt
k + γtDt,k

if stopping criterion then

break
end if

end for

updated by gradient descent while ensuring that the
constraints on d are satisfied. This can be done first by
reducing the gradient and then by projecting the gra-
dient so that non-negativity of d is ensured. In other
words, the updating scheme will be the following :

dt+1 ← dt + γtDt

where Dt is the vector of descent direction. The step
size γt is determined by using a one-dimensional line
search, with proper stopping criterion such as Armijo’s
rule, which ensures global convergence. Note that the
line-search technique involves querying the objective
function and thus needs the computation of several
single kernel SVM with small variations of d. However,
this part can be speeded up by initializing the SVM
algorithm with previous values of α⋆.

The overall algorithm is described in Algorithm 1. We
can see that the above described steps are performed
until a stopping criterion is met. This stopping cri-
terion can be either based on a duality gap, or more
simply, on a maximal number of iterations, or on the
variation of d between two consecutive steps.

3. Discussions

In this section we discuss the connection of our mul-
tiple kernel learning framework with other multiple
kernel algorithms (and their equivalence) and address
other points like computational complexity, extensions
to other SVM algorithms and convergence of the algo-
rithm.

3.1. Connections with 1-norm block

regularization formulation of MKL

The multiple kernel learning formulation introduced
by Bach et al. (2004) and further developed by Son-
nenburg et al. (2006) consists in solving the following

optimization problem:

minwk,b,ξi

1

2
(
∑

k ‖wk‖)2 + C
∑

i ξi

with yi

∑

k〈wk,Φk(xi)〉+ yib ≥ 1− ξi

ξi ≥ 0
(8)

where Φk(x) is a non-linear mapping of x to a RKHS
Hk. What makes this formulation interesting is that
the ℓ1-norm block penalization of wk leads to a sparse
solution in w and thus, the algorithm automatically
performs kernel selection.

We have stated in the previous section that our algo-
rithm also performs some kind of kernel selection by
weighting each squared-norm of fk and by adding a ℓ1
norm constraints on these weights. We show in the fol-
lowing that these two formulations (Bach et al.’s and
ours) are equivalent. At first, equation (8) formulation
can be rewritten in the following functional form :

minfk,b,ξi

1

2
(
∑

k ‖fk‖)2 + C
∑

i ξi

with yi

∑

k fk(xi) + yib ≥ 1− ξi

ξi ≥ 0
(9)

In order to prove the equivalence of both formulation,
we simply show that the variational formulation of the
1-norm block regularization is equal to the adaptive
weighted 2-norm regularization, (which is a particular
case of a more general equivalence proposed by Mic-
chelli and Pontil (2005)) i.e :

min
dk≥0,

P

k
dk=1

∑

k

‖fk‖2
dk

=

(

∑

k

‖fk‖
)2

(10)

For proving this equality, we use a classical Lagrangian
approach. Hence, the Lagrangian of the primal is :

L =
∑

k

‖fk‖2
dk

+ ν

(

∑

k

dk − 1

)

−
∑

k

ηkdk

At optimality, we have :

(a) d2
k =

‖fk‖2
ν − ηk

, ∀k (b)
∑

k

dk = 1 (c) ηkdk = 0, ∀k

(11)
according to (c), we can state for all k that either
‖fk‖ = 0 and thus dk = 0 or dk = ‖fk‖/

√
ν and

ηk = 0. Then at optimility, we have :

∑

k

‖fk‖2
dk

=
√

ν
∑

k

‖fk‖

with
∑

k dk = 1 =
∑

k ‖fk‖/
√

ν which proves the vari-

ational formulation of (
∑

k ‖fk‖)2 given in equation
(10).

More Efficiency in Multiple Kernel Learning

This proof shows that the non-smooth 1-norm block
regularized optimization original problem has been
turned into a smooth (under positive definiteness con-
ditions) optimization problem at the expense of adding
variables. However, although the number of variables
has increased, we will see that this problem can be
solved more efficiently.

3.2. Computational complexity

We can note that the algorithm of Sonnenburg et al.
(2006) and ours are rather similar since they are both
based on the MKL algorithm wrapped around a sin-
gle SVM algorithm. This makes both algorithms very
easy to implement and efficient. The main difference
between the two algorithms resides in how the kernel
weights dk are optimized. The algorithm of Sonnen-
burg et al. (2006) uses a linear programming involving
M variables and an increasing number of constraints,
which is equivalent, as shown in Section 3.5, to a cut-
ting plane method. Our algorithm is based on a gra-
dient descent procedure involving a reduced gradient
technique.

Although the overall complexity of our algorithm is
difficult to evaluate formally, we can have some clues
about it. For each iteration, our algorithm needs one
single kernel SVM formulation and the computation of
the gradient of J(d). The gradient computation have
a complexity of the order of n3

SV ·M , where nSV is the
number of non-zeros alpha’s at that given iteration.
The main burden involved in the projected gradient
technique is the several SVM retrainings. The number
of these retrainings is data and step dependent how-
ever since we use a good initialization of the SVM, this
step is rather cheap.

3.3. Extensions to other SVM algorithms

In this paper we have focused on the SVM algorithm
for binary classification, but it is worth noting that our
multiple kernel learning algorithm can be extended to
other SVM algorithms without much effort. However,
since this point is not the main focus of the paper,
we simply sketch the outline of these extensions here.
For another algorithm, say one-class SVM, the change
would be merely the loss function and thus the defini-
tion of J(d) in problem (4). Then, for the algorithm,
the first step would simply consists in optimizing a one-
class SVM with a kernel K =

∑

k dkKk while for the
second step the gradient of the objective function ac-
cording to dk is needed. Hence, the main effort for the
extension has to be devoted to the processing of this
gradient through the dual of the 1-class SVM problem.
In this particular case, the gradient of J would be the

same as for 2-class SVM. Hence, the structure of the
algorithm does not change, except for the calculation
of the step size since it needs the computation of the
dual objective value.

3.4. Convergence analysis

In this paragraph, we briefly discuss the convergence
of the algorithm we propose.

We first suppose that problem (4) is always exactly
solved, which means that the duality gap of such prob-
lem is 0. With such conditions, our gradient computa-
tion in equation (7) and thus our algorithm is perform-
ing steepest projected gradient descent on a continu-
ously differentiable function J(·) (remember that we
have assumed that the kernel matrices are positive def-
inite) defined on the simplex {d,

∑

k dk = 1, dk ≥ 0},
which does converge to the global minimum of J (Bon-
nans et al., 2003).

However, in practice, problem (4) is never solved ex-
actly since most SVM algorithm will stop when the
duality gap is smaller than a certain ε. In this case,
the convergence of our projected gradient method is no
more guaranteed by standard arguments. Indeed, the
output of the approximately solved SVM leads only to
an ε-subgradient (Bonnans et al., 2003; Bach et al.,
2004). This situation is more difficult to analyze and
we plan to address it completely in future work.

3.5. Cutting planes vs. steepest descent

Our differentiable function J(d) is defined as:

J(d) = max
α







−1

2

∑

i,j

αiαj

∑

k

dkKk(xi, xj) +
∑

i

αi







The SILP algorithm of Sonnenburg et al. (2006) is ex-
actly equivalent to a cutting plane method to minimize
the function J . Indeed, for each value of d, the best α
is found and leads to an affine lower bound on J(d). As
more d’s and α’s are computed, the number of lower
bounding affine functions increases and the next vec-
tor d is found as the minimizer of the maximum of all
those affine functions.

Cutting planes method do converge but they are
known for their instability, notably when the number
of lower-bounding affine functions is small (Bonnans
et al., 2003): the approximation of the objective func-
tion is then loose and the iterates may oscillate, as
shown in Section 4.

In this paper, we use a steepest descent approach
which does not suffer from instability issues since we
have a differentiable function to minimize.

More Efficiency in Multiple Kernel Learning

4. Numerical experiments

We apply our multiple kernel learning algorithm to
real-world datasets coming from the UCI repository :
Liver, Credit, Ionosphere, Pima, Sonar. For the mul-
tiple kernels, we have used a Gaussian kernel with 10
different bandwidths σ, on all variables and each single
variable. We have also used a polynomial kernel of de-
gree 1 to 3 again on all and each single variable. Note
that in all the experiments, kernel matrices have been
precomputed prior to running the algorithm. Kernels
have also been normalized to unit trace.

We have compared our algorithm to the SILP ap-
proach of Sonnenburg et al. Both algorithms use
a SVM dual solver based on an active constraints
method written in Matlab. The linear programming
involved in the SILP approach has been solved
using the publicly available toolbox LPSOLVE. The
gradient descent procedure of our algorithm has
been implemented in Matlab. While running our
algorithm, a coefficient dk smaller than 0.001 is
forced to 0. All the experiments have been run on
a Pentium D-3 GHz and 1GB of RAM. For a fair
comparison, we have selected the same termination
criterion for these iterative algorithms : iteration
terminates when ||dt+1 − dt||∞ < 0.01 or the maximal
number of iteration (500) has been reached. For
each dataset, we have run both algorithms 50 times
with different training and testing splits (50 % of
all the examples for training and testing). Training
sets have been normalized to zero mean and unit
variance and the test sets have also been rescaled
accordingly. Different values of the hyperparameter
C (0.1, 1, 10, 100) have been tried. In Table 1, we
have reported different performance measures of both
algorithms only for the values of C that leads to the
best accuracy performance. Although, this procedure
is unusual since it does not take into account a proper
model selection procedure, this is relevant since we are
essentially interested in other performance measures
such as the number of kernels selected or the running
time.
Results in Table 1 show that both algorithms are
comparable in performance accuracy. The main
differences we observe rely on the number of kernels
selected by both algorithms and their running time.
We can see that our algorithm tends to select a larger
number of kernels. A rationale for this observation
can be the following. For our algorithm, the update
of dk is based on a gradient descent algorithm. Hence,
due to slow convergence of given coefficient towards
0, the termination criterion we choose may stop the
algorithm too early.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

d k

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Iterations

d k

0 20 40 60 80 100 120
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Index of kernels

D
iff

er
en

ce
 o

f d
k

Figure 1. Example of evolution and final values of the co-
efficients dk weighting the kernels for the SILP algorithm
and our adaptive 2-norm algorithm. This figure has been
obtained for Pima dataset and C = 100. (top) Evolution
of dk for the SILP algorithm. (middle) Evolution of dk

for our adaptive 2-norm regularization algorithm. (bot-
tom) Difference of the final values of dk of the 2 algorithms
d

SILP

k − d
OUR

k (117 kernels have been used).

The main advantage of our algorithm is the computa-
tional time needed for convergence of the algorithm.
On all the datasets we used, our algorithm is faster
than the one of Sonnenburg’s et al. This difference in
running time can be understood from Figure 1. This
figure illustrates the behavior of the dk coefficients as
the iteration increases. One one hand, we can see
that the SILP algorithm spends many iterations be-
fore converging towards a reasonable solution of dk.
Hence, as stated by Sonnenburg et al (Sonnenburg
et al., 2006), many SVM trainings are unnecessarily
costly since the dk are still far away from optimal. On
the other hand, our algorithm converges after fewer it-
erations, although the solution is not strictly equal to
the one obtained with SILP, as we can see on the right
side of the Figure (the convex optimization problems
are solved with a small but non zero duality gap, so
solutions may actually slightly differ).

4.1. Computing approximate regularization

path

In the previous experiment, we have compared the per-
formances and running time of the MKL SILP algo-
rithm and our algorithm for a single value of C. How-

More Efficiency in Multiple Kernel Learning

Table 1. Some performance measures of the two MKL al-
gorithms. For the best hyperparameter C value, we have
averaged over 50 trials the number of kernels selected, av-
erage accuracy of the resulting decision function and the
running time. The number of kernels M is also given.

Liver M = 91
Algorithm # Kernel Accuracy Time (s)
SILP 8.3 ± 1.8 65.4 ± 2.7 7.7 ± 2.7
Our 10.2 ± 2.0 65.0 ± 2.3 3.2 ± 0.9

Pima M = 117
Algorithm # Kernel Accuracy Time (s)
SILP 10.9 ± 1.6 75.8 ± 1.8 78.0 ± 18.8
Our 14.3 ± 2.2 75.8 ± 1.6 27.1 ± 7.2

Credit M = 208
Algorithm # Kernel Accuracy Time (s)
SILP 10.4 ± 1.9 86.4 ± 1.4 124 ± 28
Our 16.8 ± 5.4 86.3 ± 1.4 32.7 ± 9.7

Ionosphere M = 442
Algorithm # Kernel Accuracy Time (s)
SILP 19.9 ± 2.1 92.2 ± 1.5 152 ± 39
Our 30.5 ± 7.0 92.3 ± 1.4 18.1 ± 5.8

Sonar M = 793
Algorithm # Kernel Accuracy Time (s)
SILP 29.1 ± 3.5 79.2 ± 4.6 383 ± 113
Our 46.0 ± 7.6 78.6 ± 4.2 21.8 ± 16.9

ever, in many applications, this optimal value of is
unknown and usually, one has to compute several de-
cision functions with varying C and then choose the
optimal one according to some model selection crite-
rion like the cross-validation error.

In this other experiment, we have evaluated the run-
ning time of both algorithms when C is varying and
when using a warm-start technique. In our case,
a warm-start approach (DeCoste & Wagstaff., 2000)
consists in using the optimal solutions {dk} and α⋆

i

obtained for a given C to initialize a new MKL prob-
lem with C + ∆C. In our case, we have started with
the largest value of C and then we have followed the
regularization path by decreasing C.

The experimental setup is the same as the previous
one. Furthermore, we have consider 100 values of the
hyperparameter C. We have sampled 50 values of C in
both intervals [0.1, 10] and [10, 100]. Figure 2 gives an
example of the regularization path of d with varying
C. We can note for instance that there is more kernels

involved in the decision function when C is large and
when C is small, only a single (or few) kernel tends to
be selected. This finding is consistent over the datasets
we used.

Results on the running time of both algorithms for
computing the approximate regularization paths are
given in Figure 3 and Table (2). They have been ob-
tained by averaging 5 runs over different training sets.
Figure 3 plots the computational time for each value of
C. Since C = 100 is the initial state of the algorithm,
no warm-start has been used, hence the large running
time value. We can see that for the SILP MKL algo-
rithm, the computational time is somewhat linear with
C, whereas using the adaptive 2-norm algorithm, the
running time rapidly decreases (when decreasing C
from 100) and then reaches a steady state with small
computational time. Table 2 depicts the average time
(over 5 runs) for computing the whole approximate
regularization path with 100 samples of C. We can
note that our adaptive 2-norm algorithm is more effi-
cient than SILP and that the gain factor goes from 5
to 66. This gain factor is better when the number of
kernels is large.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

C
d k

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

C

d k

Figure 2. Approximate regularization paths of the dk with
respects to C for the Ionosphere dataset. Each solution,
except for C = 100, has been computed using a warm-
start techniques and with decreasing C. (top) Adaptive
two-norm MKL. (bottom) SILP MKL.

5. Conclusion

In this paper, we have introduced another approach
for solving the multiple kernel learning problem in sup-
port vector machines. Our approach uses an weighted
2-norm regularization while imposing sparsity on the
weights. Hence, our algorithm is able to perform ker-
nel selection. We have also showed that a solution of
our algorithm is also a solution of the multiple kernel
problem introduced by Bach et al. (2004), making the
two algorithms equivalent in this sense. In the exper-
iments, we have illustrated that our algorithm gives
equivalent accuracy performance results while select-

More Efficiency in Multiple Kernel Learning

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

C

T
im

e
(s

)

SILP
adapt

Figure 3. Averaged over 5 runs of each step computation
time for both algorithms for the Ionosphere dataset. For
C = 100, we have the largest computation time since in
such case there is no warm-start.

Table 2. Averaged time computation (in seconds) of an ap-
proximated regularization path with 100 samples of C vary-
ing from 0.1 to 100. We compare the performance of the
MKL SILP algorithm and our algorithm.

data SILP Adaptive Ratio

Liver 612 ± 180 116± 19 5.3
Pima 4496 ± 730 754 ± 44 6.0
Credit 4830 ± 754 753± 64 6.4
Ionosphere 5000 ± 788 221 ± 22 22.6
Sonar 11234 ± 2928 170 ± 25 66.1

ing more kernels than the SILP MKL algorithm. How-
ever, we have empirically showed that our algorithm
is more stable in the kernel weights and thus it needs
fewer iterations to converge towards a reasonable so-
lution, making it globally faster than the SILP algo-
rithm.

Future works aim at improving both speed and spar-
sity in kernels of the algorithm (for instance by ini-
tializing the SILP framework with the results of our
algorithm) and by extending this algorithm to other
SVM algorithm such as the one-class or the regression
SVM.

Acknowledgments

We wish to thank reviewers for their useful comments.
This work was supported by grants from the IST pro-
gramme of the European Community under the PAS-
CAL Network of excellence, IST-2002-506778.

References

Argyriou, A., Evgeniou, T., & Pontil, M. (2007). Con-

vex multi-task feature learning (Technical Report).

Bach, F., Lanckriet, G., & Jordan, M. (2004). Mul-
tiple kernel learning, conic duality, and the smo al-
gorithm. Proceedings of the 21st International Con-

ference on Machine Learning (pp. 41–48).

Bonnans, J., Gilbert, J., Lemaréchal, C., & Sagas-
tizbal, C. (2003). Numerical optimization theoretical

and practical aspects. Springer.

Bonnans, J., & Shapiro, A. (1998). Optimization prob-
lems with pertubation : A guided tour. SIAM Re-

view, 40, 202–227.

Chapelle, O., Vapnik, V., Bousquet, O., & Mukerjhee,
S. (2002). Choosing multiple parameters for SVM.
Machine Learning, 46, 131–159.

DeCoste, D., & Wagstaff., K. (2000). Alpha seeding for
support vector machines. International Conference

on Knowledge Discovery and Data Mining.

Grandvalet, Y. (1998). Least absolute shrinkage is
equivalent to quadratic penalization. ICANN’98

(pp. 201–206). Springer.

Grandvalet, Y., & Canu, S. (2003). Adaptive scaling
for feature selection in svms. Advances in Neural

Information Processing Systems. MIT Press.

Lanckriet, G., Bie, T. D., Cristianini, N., Jordan, M.,
& Noble, W. (2004a). A statistical framework for
genomic data fusion. Bioinformatics, 20, 2626–2635.

Lanckriet, G., Cristianini, N., Ghaoui, L. E., Bartlett,
P., , & Jordan, M. (2004b). Learning the kernel
matrix with semi-definite programming. Journal of

Machine Learning Research, 5, 27–72.

Lemaréchal, C., & Sagastizabal, C. (1997). Practical
aspects of moreau-yosida regularization : theoreti-
cal preliminaries. SIAM Journal of Optimization, 7,
867–895.

Micchelli, C., & Pontil, M. (2005). Learning the ker-
nel function via regularization. Journal of Machine

Learning Research, 6, 1099–1125.

Scholkopf, B., & Smola, A. (2001). Learning with ker-

nels. MIT Press.

Sonnenburg, S., Raetsch, G., Schaefer, C., &
Scholkopf, B. (2006). Large scale multiple kernel
learning. Journal of Machine Learning Research, 7,
1531–1565.

Wahba, G. (1990). Spline models for observational

data. Series in Applied Mathematics, Vol. 59, SIAM.

