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Abstract. We present a novel approach to 3D delineation of dendritic networks
in noisy image stacks. We achieve a level of automation beyond that of state-
of-the-art systems, which model dendrites as continuous tubular structures and
postulate simple appearance models. Instead, we learn models from the data it-
self, which make them better suited to handle noise and deviations from expected
appearance.

From very little expert-labeled ground truth, we train both a classifier to recognize
individual dendrite voxels and a density model to classify segments connecting
pairs of points as dendrite-like or not. Given these models, we can then trace
the dendritic trees of neurons automatically by enforcing the tree structure of the
resulting graph. We will show that our approach performs better than traditional
techniques on brighfield image stacks.

1 Introduction

Full reconstruction of neuron morphology is essential for the analysis and understand-
ing of their functioning. In its most basic form, the problem involves processing stacks
of images produced by a microscope, each one showing a slice of the same piece of
tissue at a different depth.

Currently available commercial products such as Neurolucida 3 TImaris*, or Meta-
morph? provide sophisticated interfaces to reconstruct dendritic trees and rely heavily
on manual operations for initialization and re-initialization of the delineation proce-
dures. As a result, tracing dendritic trees in noisy images remains a tedious process. It
can take an expert up to 10 hours for each one. This limits the amount of data that can
be processed and represents a significant bottleneck in neuroscience research on neuron
morphology.

Automated techniques have been proposed but are designed to work on very high
quality images in which the dendrites can be modeled as tubular structures[1,2]. In
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practice, however, due to the underlying neuron structure, irregularities in the dyeing
process, and other sources of noise, the filaments often appear as an irregular series of
blobs surrounded by other non-neuron structures, as is the case of the brightfield image
stacks depicted by Fig. 1. Yet, such images are particularly useful for analyzing large
samples. More generally, very high resolution images take a long time to acquire and
require extremely expensive equipment, such as confocal microscopes. The ability to
automatically handle lower resolution and noisier ones is therefore required to make
these techniques more accessible. Ideally, the painstaking and data-specific tuning that
many existing methods require should also be eliminated.

(a)

Fig. 1. (a) Minimum intensity projection of an image stack. Each pixel value is the minimum in-
tensity value of the voxels that are touched by the ray cast from the camera through the pixel. (b)
3D tree reconstructed by our algorithm, which is best viewed in color. (¢) Detail of the data vol-
ume showing the non-tubular aspect of a dendrite with the corresponding automatically generated
delineation.

In this paper, we therefore propose an approach to handling the difficulties that are
inherent to this imaging process. We do not assume an a priori dendrite model but
rely instead on supervised and unsupervised statistical learning techniques to construct
models as we go, which is more robust to unpredictable appearance changes. More
specifically, we first train a classifier that can distinguish dendrite voxels from others
using a very limited amount of expert-labeled ground truth. At run-time, it lets us detect
such voxels, some of which should be connected by edges to represent the dendritic
tree. To this end, we first find the minimum spanning tree connecting dendrite-like
voxels. We then use an Expectation-Maximization approach to learn an appearance
model for the edges that correspond to dendrites and those that do not. Finally, given
these appearance models, we re-build and prune the tree to obtain the final delineation,
such as the one depicted by Fig. 1(b), which is beyond what state-of-the-art techniques
can produce automatically.

To demonstrate the versatility of our approach, we also ran our algorithm on retinal
images, which we were able to do by simply training our classifier to recognize 2D
blood vessel pixels instead of 3D dendrite voxels.
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2 Related Work

Reconstructing networks of 3D filaments, be they blood vessels or dendrites, is an im-
portant topic in Biomedical Imaging and Computer Vision [3, 4]. This typically involves
measuring how filament-like voxels are and an algorithm connecting those that appear
to be. We briefly review these two aspects below.

2.1 Finding Dendrite-Like Voxels

Most automated methods assume the filaments to be locally tubular and model them as
generalized cylinders. The most popular approach to detecting such cylindrical struc-
tures in image stacks involves computing the Hessian matrix at individual voxels by
convolution with Gaussian derivatives and relying on the eigenvalues of the Hessian to
classify voxels as filament-like or not [5-7]. The Hessians can be modified to create an
oriented filter in the direction of minimum variance, which should correspond to the
direction of any existing filament [8, 9]. To find filaments of various widths, these meth-
ods perform the computation using a range of variances for the Gaussian masks and
select the most discriminant one. The fact that intensity changes inside and outside the
filaments has also been explicitly exploited by locally convolving the image with dif-
ferential kernels [1], finding parallel edges [10], and fitting superellipsoids or cylinders
to the vessel based on its surface integral [2, 11].

All these methods, however, assume image regularities that are present in high-
quality images but not necessarily in noisier ones. Furthermore, they often require care-
ful parameter tuning, which may change from one data-set to the next. As a result,
probabilistic approaches able to learn whether a voxel belongs to a filament or not have
begun to be employed. Instead of assuming the filaments to be cylinders, they aim at
learning their appearance from the data. In [12], the eigenvalues of the structure tensor,
are represented by a mixture model whose parameters are estimated via E-M. Support
Vector Machines that operates on the Hessian’s eigenvalues have also been used to dis-
criminate between filament and non-filament voxels [13].

The latter approach [13] is closest to our dendrite detection algorithm. We however
go several steps further to increase robustness: First, we drop the Hessian and train our
classifier directly on the intensity data, thereby making fewer assumptions and being
able to handle structures that are less visibly tubular. Second, we also learn an appear-
ance model for the filament itself as opposed to individual voxels.

2.2 Reconstructing Filaments

Existing approaches to building the dendritic tree all rely on a dendritness measure of
how dendrite-like filaments look, usually based on the voxel-based measures discussed
above. They belong to one of two main classes.

The first class involves growing filaments from seed points [2, 14—16]. This has been
successfully demonstrated for confocal fluorescent microscopy images. It is computa-
tionally effective because the dendritness of filaments need only be evaluated in a small
subset of the voxels. However, it may easily fail in noisy data because of its sequential
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nature. If the growing process diverges at one voxel, the rest of the dendritic tree will
be lost.

The second class requires optimizing the path between seed points, often provided
by the operator, to maximize the overall dendritness [8, 11, 17]. In these examples, the
authors use active contour models, geometrical constraints and the live-wire algorithm
between to connect the seeds.

By contrast to these methods that postulate an a priori cost function for connecting
voxels, our approach learns a model at run-time, which lets it deal with the potentially
changing appearance of the filaments depending on experimental conditions. Further-
more, we do this fully automatically, which is not the case for any of the methods
discussed above.

3 Methodology

Our goal is to devise an algorithm that is fully automatic and can adapt to noisy data in
which the appearance of the dendrites is not entirely predictable. Ideally we would like
to find the tree maximizing the probability of the image under a consistent generative
model. Because such an optimization is intractable, we propose an approximation that
involves the three following steps:

1. We use a hand-labeled training image stack to train once and for all a classifier that
computes a voxel’s probability to belong to a dendrite from its neighbors intensities.

2. We run this classifier on our stacks of test images, use a very permissive threshold
to select potential dendrite voxels, apply non-maximum suppression, and connect
all the surviving voxels with a minimum spanning tree. Some of its edges will cor-
respond to actual dendritic filaments and other will be spurious. We use both the
correct and spurious edges to learn filament appearance models in an EM frame-
work.

3. Under a Markovian assumption, we combine these edge appearance models to
jointly model the image appearance and the true presence of filaments. We then
optimize the probability of the latter given the former and prune spurious branches.

As far as detecting dendrite voxels is concerned, our approach is related to the
Hessian-based approach of [13]. However, dropping the Hessian and training our clas-
sifier directly on the intensity data lets us relax the cylindrical assumption and allows us
to handle structures that are less visibly tubular. As shown in Fig. 2, this yields a marked
improvement over competing approaches.

In terms of linking, our approach can be compared to those that attempt to find
optimal paths between seeds [11, 8] using a dendrite appearance model, but with two
major improvements: First our seed points are detected automatically instead of being
manually supplied, which means that some of them may be spurious and that the con-
nectivity has to be inferred from the data. Second we do not assume an a priori filament
model but learn one from the data as we go. This is much more robust to unpredictable
appearance changes. Furthermore, unlike techniques that model filaments as tubular
structures [1, 2], we do not have to postulate regularities that may not be present in our
images.
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3.1 Notations

Given the three step algorithm outlined above, we now introduce the notations we will
use to describe it in more details.

Let Z;, ..., Zn be the voxels corresponding to the local maxima of the classifier
response and will serve as vertices for the dendritic tree we will build. For 1 < n < N,
let X,, be a Boolean random variable standing for whether or not there truly is a filament
at location Z,,. Finally, Let ® = (z1,...,2n) and 2\; = (21, ...,%_1,Tiy1, TN).

Forl1 <7< Nand1l < j < N,letJ;; denote a random variable standing for the
appearance of the edge going from Z; to Z; and let L; ; = ||Z; — Z;|| be its length. J; ;
is obtained by sampling the voxel response of the classifier in a regular lattice between
(Z;, Z;). Let A; ; be a vector composed by the projection of .J; ; in a latent space and
Li’ je

Let T" denote the true dendritic tree we are trying to infer. It is a graph whose vertices
are a subset of 71, ..., Zx and whose edges are defined by G, a set of pairs of indexes
in{l,...,N} x{1,...,N}.

(a) Training volume (b) Grayscale (c) Hessian (d) Boosting

Fig.2. (a) Training data. On top: image stack representing one neuron. Bellow: Manually delin-
eated filaments overlaid in white. (b,c,d) Voxels labeled as potentially belonging to a dendrite. (b)
By thresholding the grayscale images. (c) By using the Hessian. (d) By using our classifier. Note
that the seed points obtained with our method describe better the underlying neuron structure.

3.2 Local Dendrite Model

As discussed in Section 2, the standard approach to deciding whether voxels are inside
a dendrite or not is to compute the Hessian of the intensities and look at its eigenvalues.
This however implicitly makes strong assumptions on the expected intensity patterns.
Instead of using such a hand-designed model, we train a classifier from a small quantity
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of hand-labeled neuron data with AdaBoost[18], which yields superior classification
performance as shown in Fig. 2.

More specifically, the resulting classifier f is a linear combination of weak learners
hii

fla,y, 2 Zal (2,,2) , (1

where the h; represent differences of the integrals of the image intensity over two cubes
in the vicinity of (z,y, z) and T} is the weak classifier threshold. We write

hi(z,y,z) =0 leyz ZI 2y ) T 2

where o is the sign function, V1, V;2 are respectively the two volumes defining h;, trans-
lated according to (x,y, z). These weak classifiers can be calculated with just sixteen
memory accesses by using precomputed integral cubes, which are natural extensions of
integral images.

During training, we build at each iteration 103 h; weak learners by randomly pick-
ing volume pairs and finding an optimal 7; threshold for each. After running Adaboost,
N = 1000 weak learners are retained in the f classifier of 1. The training samples
are taken from the manual reconstruction of Fig.2. They consist of filaments at differ-
ent orientations and of a certain width. The final classifier responds to filaments of the
pre-defined width, independently of the orientation.

At run time, we apply f on the whole data volume and perform non-maximum
suppression by retaining only voxels that maximize it within a 8 X 8 x 20 neighborhood,
such as those shown in Fig.2. The anisotropy on the neighborhood is due to the low
resolution of the images in the z axis, produced by the point spread function of the
microscope.

3.3 Learning an Edge Appearance Model

The process described above yields Zi,. .., Zy, a set of voxels likely, but not guar-
anteed to belong to dendrites. To build an edge appearance model, we compute their
minimum spanning tree. Some of its edges will correspond to filaments and some not.
We therefore create a low dimensional descriptor for the edges, and use it to learn a
gaussian mixture model that we can use to distinguish the two classes of edges.

To obtain an edge descriptor, we first sample the voxel response on a regular lattice
centered around each edge and perform PCA on the resulting set of vectors. For each
edge, we retain the first N PCA components. We construct a N + 1-D edge feature
vector, A; ; by appending the edge length L; ; to this N-D vector.

This population of IV + 1-D vectors is a mixture of edges truly located on filaments,
and of edges located elsewhere. We therefore apply an E-M procedure to derive both a
prior and a Gaussian model for both. The only specificity of this unsupervised training is
to force the covariance between the length and the other N components to be zero, since
the length of an edge is only weakly correlated with its length-normalized appearance.
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Fig. 3. (a) First two dimensions of the PCA space of the edge appearance models. The Gaussian
models are shown as contour lines. The two small figures at the top represent the projection of
the means in the original lattice. The top-left one represents the model w1 for filaments, which
appear as a continuous structure. The top-right one represents the non-filament model po. Since,
by construction the endpoints of the edges are local maxima, the intensity there is higher than
elsewhere. (b) Hidden Markov Model used to estimate the probability of a vertex to belong to the
dendritic tree.

Hence, given a subgraph G with a population of edges that are both in the dendrite
and elsewhere, this E-M procedure produces two Gaussian models yio and p; on RV +1
that represent respectively the edges truly on filaments and those elsewhere.

3.4 Building and Pruning the Tree

We can now use the edge appearance model to reconstruct the dendritic tree. To this
end we first compute the maximum spanning tree using as weight for the edges their
likelihood to be part of a dendrite. Nevertheless, the tree obtained with this procedure
is over-complete, spanning vertices that are not part of the dendrites, Fig. 4(b). In order
to eliminate the spurious branches, we use the tree to evaluate the probability that in-
dividual vertices belong to a dendrite, removing those with low probability. We iterate
between the tree reconstruction and vertex elimination until convergence, Fig. 4(c).

We assume that the relationship between the hidden state of the vertices and the
edge appearance vectors can be represented in terms of a hidden Markov model such
as the one depicted by Fig. 3(b). More precisely, we take N (G, 7) to be the neighboring
vertices of 7 in G and assume that

P(Xi | X\is (Ak)(k,yeg) = P(Xi | (Xk)ren 6.6 (Aik)ken(g.i) » 3)
P(Ai ;| X, (Ak) (kpyeo\ ) = P(Aij | Xi, X5) - “)

Under these assumptions, we are looking for a tree consistent with the edge appear-
ance model of section 3.3. This means that the labels of its vector of maximum posterior
probabilities x are all 1s. To do so we alternate the building of a tree spanning the ver-
tices currently labeled 1 and the re-labeling of the vertices to maximize the posterior
probability. The tree we are looking for is a fixed point of this procedure.
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(a)

Fig. 4. Building and pruning the tree. (a) Image stack (b) Initial maximum spanning tree. (c) After
convergence of the iterative process. (d) Manually delineated ground truth. Red solid lines denote
edges that are likely to be dendrites due to their appearance. Blue dashed lines represent edges
retained by the minimum spanning tree algorithm to guarantee connectivity.The main filaments
are correctly recovered. Note that our filament detector is sensitive to filaments thinner than the
ones in the ground truth data. This produces the structures in the right part of the images that are
not part of the ground truth data.

Building the Tree. We are looking for maximum likelihood tree that spans all vertices.
Formally:

argmax {log P(T'=T | (Ai j)1<i,j<N)}

pa(Ai ) .

= argmax {log P((A4; i )1<i.q T =7)} = argmax lo
gmax {log P((4i)1<ij<v | )} = argn > 8 ol Ar)

i,J€ET

To this end, we use a slightly modified version of the minimum spanning tree algo-
rithm. Starting with an empty graph, we add to it at every iteration the edge (i, j) that
does not create a cycle and maximizes

log(p1(Ai )/ 1o(Ai ;) -

While this procedure is not guaranteed to find a global optimum, it gives good re-
sults in practice. The main weakness we have to deal with is the over-completeness of
the resulting tree. While it is very rare to miss an important vertex or part of filament,
we have to discard many spurious branches spanned on non-filaments.

Eliminating Unlikely Vertices. From the appearance models y¢ and y; learned in sec-
tion 3.3, and the Markovian assumption of Section 3.3, we can estimate for any graph G
the most probable subset of nodes truly on filaments. More specifically, we are looking
for the labeling « of maximum posterior probability given the appearance, defined as
follow

argmax P(X = x| (4i ;)i jeq)

xT
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Since full optimization is intractable we propose an iterative greedy search. We loop
through each point ¢, flipping the value of x; if it increases the posterior probability. This
can be seen as a component-wise optimization where the updating rule consists of fixing
all z;, 7 # 4 and applying the following update to x;

x; «— argmax P(X; =z, X\; = T\ | (Aij)ijeg)

= argmax P(X; = x| X\; = x\;, (Aij)ijeg)s
and under assumptions (3) and (4), we have

P(Xi=z|X\; ==\, (Aij)ijeg)

JEN(G,9)

where P(X; =0]|X; =0)=P(X;=1|X;=1)=1-cand P(X; = 1| X; =0) =
P(X; =0|X; =1) = e. eis aparameter chosentobe 0.2. P(4,; ;| X; = z, X; = z;)
comes from our appearance model, with the assumption that the only true filaments
correspond to X; = X; = 1.

The initialization of each x; is done according to the posterior probability of the
edges going through it. If there is an edge with p;(a; ;) > po(as;), then x; = 1.
The termination condition for the loop is that all points are visited without any flip, or
that the number of flips excess ten times the number of points. In practice the second
condition is never met, and only 10—20% of the points flip their hidden variable.

4 Results

In this section we first describe the images we are using. We then compare the dis-
criminative power of our dendrite model against simple grayscale thresholding and the
baseline Hessian based method [6]. Finally, we validate our automated tree reconstruc-
tion results by comparing them against a manual delineation.

4.1 Image Data

Our image database consists of six neuron image stacks, in two of which the dendritic
tree has been manually delineated. We use one of those trees for training and the other
for validation purposes.

The neurons are taken from the somatosensory cortex of Wistar-han rats. The image
stacks are obtained with a standard brightfield microscope. Each image of the stack
shows a slice of the same piece of tissue at a different depth. The tissue is transparent
enough so that these pictures can be acquired by simply changing the focal plane.

Each image stack has an approximate size of 5 * 10? voxels, and is downsampled
to a size of 10® voxels to make the evaluation of the image functional in every voxel
computationally tractable. After down-sampling, each voxel has the same width, height
and depth, of 0.8 pm.
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4.2 Image Functional Evaluation

The f classifier of 1 is trained using the manual delineation of Fig.2. As positive sam-
ples, we retain 500 voxels belonging to filaments of width ranging from two to six
voxels and different orientations. As negative samples, we randomly pick 1000 voxels
that are no closer to a neuron than three times the neuron width and are representative of
the image noise. Since the training set contains filaments of many different orientations,
Adaboost produces a classifier that is orientation independent.

Fig.2 depicts the candidate dendrite voxels obtained by performing non maxima
suppression of images calculated by simply thresholding the original images, comput-
ing a Hessian-based measure [6], or computing the output of our classifier at each voxel.
The same procedure is applied in the validation data of Fig 4(d). Considering correct the
vertices that are within 5 um (6 voxels) of the neuron, we can plot the three ROC curves
of Fig. 5(a) that show that our classifier outperforms the other two.
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Fig. 5. (a) ROC curve for all three measures using the validation data of figure 4(d). The boosting
classifier outperforms the baseline hessian method of [6] in noisy brightfield images. (b) Defining
a metric to compare our results against a manual delineation. Top: portion of a manual delineation
in which the vertices are close to each other and the tolerance width painted in red. Middle:
Portion of the tree found by our algorithm at the same location. Bottom: The fully-connected
graph we use to evaluate our edge appearance model and plot the corresponding ROC curves.
(c) ROC curve for the detection of edges on filament obtained by thresholding the individual
estimated likelihood of the edges of the graph of (b). The individual points represent the iterations
of the tree reconstruction algorithm. Two of them are depicted by Fig. 4(b,c). After five iterations
we reach a fixed point, which is our final result.

4.3 Tree Reconstruction

To evaluate the quality of the tree, we compare it against the validation data of Fig. 4(d),
which is represented as a set of connected points. As shown in Fig. 5(a,b), performing
this comparison is non-trivial because in the manual delineation the vertices are close
to each other whereas our algorithm allows for distant points to be connected.

To overcome this difficulty, we introduce a measure of whether an edge linking X;
to X; is present in the manual delineation. First, we use the manually labeled points to
construct a volume in which every voxel closer than 5 m to one such point is assigned
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the value 1, and O otherwise. We then compute the average value in the straight line
linking X; and X in that volume. If it is greater than a threshold, we consider that the
edge is described by the graph. Here, we take the threshold to be 0.8.

Given this measure, labeling the edges of the tree returned by our algorithm as true
or false positives is straightforward. However, since we also need to compute rates of
true and false negatives to build ROC curves such as the one of Fig. 5, we create graphs
such as the one depicted by Fig. 5(c) in which each vertex is connected to all its nearest
neighbors.

In Fig.5, we plot a ROC curve obtained by thresholding the likelihood that the
edges of the graph of Fig. 5(c) belong to a neuron based on the edge appearance model
of Section 3.3. Note that this model is not very discriminative by itself. The individual
points in Fig. 5 represent true and false positive rates for the successive trees built by
the procedure of Section 3.4 and depicted by Fig. 4(b,c,d). As the iterations proceed,
the false positive rate is progressively reduced. Unfortunately, so is the true positive
rate as we loose some of the real dendrite edges. However, the main structure remains
and cleaning up this result by hand is much faster than manually delineating the tree of
Fig.4(e).

In Fig. 6, we show reconstruction results in four more image stacks. Our algorithm
recovers the main dendrites despite their irregularities and the high noise level and,
again, cleaning up this tree is much easier than producing one from scratch. Some of
incorrect edges are also retained because the minimum spanning algorithm enforces
connectivity of all the vertices, even when it is not warranted.

4.4 From Dendrites to Blood Vessels

Since we learn filament models as we go, one of the strengths of our approach is its
generality. To demonstrate it, we ran our algorithm on the retina images of Fig. 7 and 8
without any changes, except for the fact that we replaced the 3D weak classifiers of
Section 3.2 by 2D ones, also based on Haar wavelets. The algorithm learned both a
local blood-vessel model and 2D filament model.

In Fig. 7(b), we evaluate the performance of our boosted classifier against that of
other approaches discussed in [19]. It performs similarly to most of them, but a bit worse
than the best. This can be attributed to the fact that it operates at a single scale and is
optimized to detect large vessels, whereas the others are multiscale. As a consequence,
when we run the full algorithm we obtain the results of Fig. 8 in which the large vessels
are correctly delineated, but some of the small ones are missed. This would be fixed by
training our initial classifier to handle different widths.

5 Conclusion

We have proposed a novel approach to fully-automated 3D delineation of dendritic
networks in noisy brightfield images based on statistical machine learning techniques
and tree-optimization methods.

By contrast to state-of-the-art methods, we do not postulate a priori models for
either the dendrite or the edge model between dendrite-like voxels. Instead, we generate
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Fig. 6. Three additional reconstructions without annotations. Top row: Image stacks. Bottom row:
3D Dendritic tree built by our algorithm. As in Fig. 4, the edges drawn with a solid red lines are
those likely to belong to a dendrite given their appearance. The edges depicted with dashed blue
lines are kept to enforce the tree structure through all the vertices. This figure is best viewed in
color.
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Fig. 7. (a) Top: image of the retina. Bottom: response of our boosting classifier in this image. (b)
Comparison of our classifier against other algorithms evaluated in the DRIVE database [19]. It
performs similarly to most of them, but worse than algorithms designed specifically to trace blood
vessels in images of the retina. This can be attributed to the fact that our boosted classifier operates
at a single scale and is optimized to detect large vessels, whereas the others are multiscale.
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Fig. 8. Retinal trees reconstructed with our method. Top row: original image with the recon-
structed tree overlay. As in Fig. 6, edges likely to belong to filaments are drawn in red, while
edges kept to enforce the tree structure are colored in blue. Bottom row: manually obtained
ground truth. Note that thick filaments are correctly delineated, whereas thin filaments are prone
to errors because our classifier is trained only for the thick ones.

the dendrite measure using discriminative machine learning techniques. We model the
edges as a gaussian mixture model, whose parameters are learned using E-M on neuron-
specific samples.

To demonstrate the generality of the approach, we showed that it also works for
blood vessels in retinal images, without any parameter tuning.

Our current implementation approximates the maximum likelihood dendritic tree
under the previous models by means of minimum spanning trees and markov random
fields. Those techniques are very easy to compute, but tend to produce artifacts. In
future work we will replace them by more general graph optimization techniques.
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