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Abstract

We present two models for content-based automatic image annotation and re-
trieval in web image repositories, based on the co-occurrence of tags and visual
features in the images. In particular, we show how additional measures can be
taken to address the noisy and limited tagging problems, in datasets such as
Flickr, to improve performance. As in many state-of-the-art works, an image is
represented as a bag of visual terms computed using edge and color information.
The cooccurrence information of visual terms and tags is used to create models
for image annotation and retrieval. The first model begins with a naive Bayes
approach and then improves upon it by using image pairs as single documents to
significantly reduce the noise and increase annotation performance. The second
method models the visual terms and tags as a graph, and uses query expansion
techniques to improve the retrieval performance. We evaluate our methods on
the commonly used 150 concept Corel dataset, and a much harder 2000 concept
Flickr dataset.
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Chapter 1

Introduction

With the increasing availability of large image collections on the web, content-
based automatic image annotation and retrieval have gained significant interest
to enable indexing and retrieval of unannotated or poorly annotated images
[Barnard et al., 2003, Blei and Jordan, 2003, Li and Wang, 2003, Monay and
Gatica-Perez, 2007]. The annotation problem is defined as follows: given an
image, produce a ranked list of tags that describe the content of the image.
Retrieval is the reverse problem, defined as follows: given a set of query tags,
produce a ranked list of images whose content relate to the query tags. Content-
based retrieval would benefit not only image search engines such as Google Im-

age Search1 and Yahoo Image Search2, but also photo sharing websites such as
Flickr3 and Picasa4. In particular, Flickr allows users to write descriptions and
attach tags to their photos. These features are used to enable image search on
the site. Content-based automatic annotation may be used to suggest tags to
users, and retrieval may be used to expand the search beyond the user gener-
ated annotations. Large scale image collections such as Flickr present a special
challenge for these tasks due to the vast variety of content in these images that
results in a huge number of “visual concepts”, and the often poor or limited
annotation done by users that results in “noisy” labels for supervised learning
methods. In this work, we propose novel algorithms for image annotation and
retrieval tasks that aim to address these challenges in noisy datasets. Our first
method describes an improvement over a basic naive Bayes algorithm by consid-
ering pairs of images as single documents. The hypothesis is that co-occurrence
at the image pair level helps reducing the ambiguity about the relation of the
tags with the actual image content. This method reduces the annotation noise
by using only the common tags and visual features in image pairs to construct
an improved naive Bayes model which gives a better annotation performance.
The second method is used to improve the retrieval performance. It uses a

1http://images.google.com/
2http://images.search.yahoo.com/
3http://www.flickr.com/
4http://picasaweb.google.com/
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graph-based approach to first perform a query expansion and then uses the ex-
panded query to weight the visual terms, which are then used further to rank
the images. Here, the hypothesis is that a single tag is often insufficient to
generate a relevance score for visual features because of the noisy training and
high diversity in the image content.
A wide variety of datasets have been used in the research community for image
analysis experiments. The Corel image collection is a publicly available and
widely used dataset that has images with carefully done manual annotations.
To facilitate comparison among the different approaches, we use data from both
the Corel and Flickr collections. The main contributions of this work are the
exploration of simple co-occurrence based algorithms that include measures to
address the noisy and limited annotation problem, and an objective evaluation
on Corel and Flickr data.
The rest of the report is organized as follows: Chapter 2 gives an overview
of related work. Chapter 3 describes the image representation that we use in
this work. Chapter 4 details the proposed algorithms. Chapter 5 describes the
datasets used, experiments and results. We conclude in Chapter 6 and discuss
some future directions for research.
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Chapter 2

Related Work

A wide range of image analysis and content matching methods have been used
in image annotation and retrieval research. The methods usually differ in the
kind of visual features used, the modeled relationship between visual features
and tags, and the kind of annotations and datasets used. Typically, the algo-
rithms associate the tags with either the whole image or a specific region/object
in the image. Using the former approach, in [Mori et al., 1999], an image is di-
vided into a fixed grid and visual feature vectors from each block are quantized
into a finite set of visual terms (visterms). All visterms of an image are asso-
ciated with all the tags, and aggregating this information from all the images,
an empirical distribution of a tag given a visterm is calculated. A new image is
annotated by calculating the average likelihood of a tag given the visterms of
the image. In contrast to this approach, a region naming approach is adopted
in [Duygulu et al., 2002] by first segmenting the image into regions using the
normalized cuts segmentation algorithm [Shi and Malik, 2000]. These regions
are then classified into region types using a variety of visual features. A map-
ping between region types and keywords is learned using an EM approach.
This model assumes a one-to-one correspondence between image regions and
tags. An improvement over this model is suggested in [Jeon et al., 2003] by
applying a cross-media relevance model for image annotation. This model also
segments image into regions but does not assume a one-to-one correspondence
between regions and tags. The conditional probability of a tag given an image
is computed from the training data empirically. A new image is annotated by
computing the likelihood of potential tags and image regions using the learned
probabilities. Corr-LDA [Blei and Jordan, 2003] uses a region naming approach
by first segmenting the image into regions using normalized cuts segmentation
algorithm [Shi and Malik, 2000]. Next, Latent Dirichlet Allocation (LDA) [Blei
et al., 2003] is used to build a combined generative model for regions and tags.
For each tag, one of the regions is selected and the corresponding tag is drawn
conditioned on the latent topic that generated the region. The latent topics
in this case model the correspondence between visual features and tags. Also
using a latent topic approach, the work in [Monay and Gatica-Perez, 2007] first
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constructs a bag-of-visual terms using a variety of visual features. The bag-
of-visual terms and tags are both mapped to a common latent semantic space
using Probabilistic Latent Semantic Analysis (PLSA) [Hofmann, 1999]. This
approach associates the whole image to all the tags rather than a region naming
approach. PLSA is also used in [Sivic et al., 2005] to derive latent topics for
visual features but those topics are used as image categories. An image dj is
then classified as containing object k according to the maximum of P (zk|dj)
over k, where P (zk|dj) represents the probability of latent topic zk given the
document dj as given by the PLSA model. A diverse density multiple instance
learning approach is demonstrated in [Yang and Lozano-Perez, 2000] by first
dividing the image into several overlapping regions and constructing a feature
vector from each. The training process then determines which features vec-
tors in an image best represent the user’s concept and which dimensions of the
feature vectors are important. The work in [Li and Wang, 2003] builds a 2-D
Multiresolution Hidden Markov Model (2D MHMM) [Li et al., 2000] for each
image category that clusters the visual feature vectors at multiple resolutions
and models spatial relations between the clusters. A new image is annotated
by computing its likelihood of being generated by a category, and then tags
are selected from the highest likelihood category. The work in [Hardoon et al.,
2006] uses Kernel Canonical Correlation Analysis (KCCA) [Lai and Fyfe, 2000]
to learn a mapping from image descriptors to tags. A graph based approach is
adopted in [Pan et al., 2004] that models the visual features and tags as nodes
in a graph and discovers correlations between visual and tag nodes via random
walks with restarts. Table 2.1 gives an overview of different methods.
While many advanced models have been proposed, most of the existing research
has used reasonably well annotated datasets such as Corel. Limited vocabulary
and “simple” images in Corel also help in developing more efficient models.
Annotation noise in real world datasets such as Flickr presents additional chal-
lenges that we aim to address in this work. Flickr datasets have been used more
recently in numerous other studies. Tagging patterns in Flickr images are used
in [Dubinko et al., 2007, Rattenbury et al., 2007] to extract events over time.
Tags and location information along with image analysis is used in [Kennedy
et al., 2007] to retrieve images of landmarks from Flickr. The work in [Wu
et al., 2008] constructs a similarity network of tags based on the visual corre-
lation between regions in the image. Tag recommendation systems [Garg and
Weber, 2008, Sigurbjörnsson and van Zwol, 2008] have also been proposed that
suggest related tags based on some query tags, using the co-occurrence patterns
of tags in Flickr. Content based image annotation can be used either to enhance
such tag recommendation systems or as an alternative when no query tags are
present.
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Paper Image representa-
tion

Visual-Tag associa-
tion

Dataset(s)

[Mori et al.,
1999]

Divide image into a uni-
form grid. Features:
color (RGB), edge (So-
bel).

Probability distribution
of tag given visual term.

Mypaedia (9681
images)

[Yang and
Lozano-Perez,
2000]

Divide image into over-
lapping regions. Fea-
tures: grayscale pixel
values.

Multiple instance learn-
ing to weight visual fea-
tures for a tag.

Corel (500 im-
ages), another
downloaded
collection (228
images)

[Duygulu et al.,
2002]

Segment image into re-
gions. Features: color,
orientation energy, size,
position, etc.

EM algorithm to learn
mapping between re-
gion types and tags.

Corel (5000 im-
ages)

[Jeon et al.,
2003]

Segment image into re-
gions. Features: color,
orientation energy, size,
position, etc.

Probability distribution
of tag given a set of vi-
sual terms.

Corel (5000 im-
ages)

[Blei and Jor-
dan, 2003]

Segment image into re-
gions. Features: color,
texture, size, shape, po-
sition, etc.

LDA to map visual
terms and tags to a
common latent space.

Corel (7000 im-
ages)

[Li and Wang,
2003]

Divide image into uni-
form grid at multiple
resolutions. Features:
color (LUV), texture
(Daubechies-4 wavelet
transform).

2D MHMM to model
each image category,
mapping between 2D
MHMM and tags.

Corel (28600
images)

[Pan et al.,
2004]

Segment image into re-
gions Features: color
(RGB), texture, posi-
tion, shape.

Visual features and tags
as nodes in a graph.
Correlation discovery
via random walks with
restarts.

Corel (16000
images)

[Sivic et al.,
2005]

Detect interest points.
Features: edge (SIFT)

PLSA to map visual
features to object cate-
gories.

Caltech 101
(4090 images),
MIT image
dataset (2873
images)

[Hardoon et al.,
2006]

Detect interest points.
Features: edge (SIFT)

Kernel Canonical Cor-
relation Analysis.

University
of Washing-
ton Ground
Truth Image
Database (697
images)

[Monay and
Gatica-Perez,
2007]

Detect interest points.
Features: color (HSV),
edge (SIFT)

PLSA to map visual
terms and tags to a
common latent space.

Corel (16000
images)

[Kennedy et al.,
2007]

Detect interest points.
Features: color (LUV),
texture (Gabor), edge
(SIFT)

Both tags and visual
features used to retrieve
images of landmarks.

Flickr (110000
images)

This work Detect interest points.
Features: color (HSV),
edge (SIFT)

Probability distribution
of visual terms given
tags.

Corel (16000
images) , Flickr
(65000 images)

Table 2.1: An overview of related work
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Chapter 3

Image Representation

We use the same image representation as in [Monay and Gatica-Perez, 2007],
which we briefly describe here. A vocabulary of visual features or visterms is
created from the training images as follows. Given a training image, Differ-
ence of Gaussians (DOG) point detector [Lowe, 2004] is used to identify regions
where a maximum or minimum of intensity occurs in the image, and it is invari-
ant to translation, scale, rotation and constant illumination variations. Figure
3.1 shows an example image and interest regions identified by the DOG point
detector. Edge and color features are then computed from each interest region.
For edge features, Scale Invariant Feature Transform (SIFT) descriptors [Lowe,
2004] are used to compute a histograms of edge directions over different parts of
the interest region. Eight edge orientation directions and a grid size of 4x4 are
used to form a feature vector of size 128. Orientation invariance is achieved by
estimating the dominant orientation of the local image patch using the orienta-
tion histogram of the keypoint region. All direction computations in the elabo-
ration of the SIFT feature vector are then done with respect to this dominant
orientation. Figure 3.2a shows an illustration of the SIFT grid corresponding to
a single interest region. This grid represents a single SIFT feature vector of size
128. Figure 3.2b shows the histogram of SIFT feature vectors obtained from all
the interest regions in the image.
For color features, we use the Hue-Saturation-Value (HSV) color space. An
image is divided into a uniform grid and a 2D Hue-Saturation (HS) histogram
is computed using the color distribution from the resulting regions. Brightness
values are discarded for illumination invariance. The HS histogram is used as a
color feature vector.
Both the edge and the color feature vectors aggregated from all the training im-
ages are then quantized into 1000 centroids each using the K-means clustering
algorithm [Lloyd, 1982]. This gives us a discrete set of 1000 edge features and
1000 color features that we call visterm vocabulary of size 2000. Next, the edge
and color feature vectors of each image are mapped to the corresponding closest
feature vector in the visterm vocabulary. This gives us an image representation
in the form of a bag of visterms. Both training and test images are represented

8



by bags of visterms using the same visterm vocabulary.

(a) Given Image (b) Interest Points

Figure 3.1: (a) given image, (b) interest regions obtained by applying Difference
of Gaussians point detector. [Figures taken from [Monay et al., 2009]]

(a) SIFT Grid (b) Visterm Histogram

Figure 3.2: (a) SIFT grid for an interest region. Each square represents a bin
in the grid. For each bin, a histogram of edge directions is computed. The
histogram is shown with the help of arrows of different sizes and directions. (b)
Visterm histogram of the edge (SIFT) features computed from all the interest
points in the image. [Figures taken from [Monay et al., 2009]]

9



Chapter 4

Co-occurrence Models

We propose two models for the annotation and retrieval tasks. Both models
are based on co-occurrence of visterms and tags in the images, though the co-
occurrence information is used in a different fashion. The first model is an
extension of a simple naive Bayes approach, while the second model is a graph
based approach.

4.1 Naive Bayes model

We first describe a basic naive Bayes model and then make improvements to
address the noisy tagging problem in Flickr.

4.1.1 Basic Naive Bayes model

A simple naive Bayes model can be trained by calculating conditional probabil-
ities P (vi|tj) for all combinations of visterm vi and tag tj in the corpus,

P (vi|tj) =
nI(vi, tj)

nI(tj)
,

where nI(vi, tj) denotes the number of training images with visterm vi and tag
tj , and nI(tj) denotes the number of training images with tag tj .

For image annotation, given a new image I, we first calculate its set of
visterms {v1, v2, . . . , vk}. Annotation can be modeled as a classification prob-
lem by treating visterms as inputs and each of the tags in the vocabulary as
a separate class. We compute the annotation score for a tag tj as S(tj) =
P (tj |v1, v2, . . . , vk). Using Bayes rule:

S(tj) = P (tj |v1, v2, . . . , vk) =
P (v1, v2, . . . , vk|tj) ∗ P (tj)

P (v1, v2, . . . , vk)
.
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Next, we assume that given a tag, visterms occur in an image independently of
each other. That is,

P (v1, v2, . . . , vk|tj) = P (v1|tj) ∗ P (v2|tj) ∗ . . . ∗ P (vk|tj).

Such a conditional independence assumption is usually adopted in naive Bayes
algorithms to simplify the model. We can also drop the term P (v1, v2, . . . , vk)
from S(tj) as it is common to all the tags, then

S(tj) ∝ P (v1|tj) ∗ P (v2|tj) ∗ . . . ∗ P (vk|tj) ∗ P (tj).

Multiplying a large number of probability terms might make the score computa-
tionally intractable. Therefore, we actually compute the logarithm of the score
above, preserving the relative ranking of the tags,

log(S(tj)) = log(P (v1|tj)) + . . . + log(P (vk|tj)) + log(P (tj)).

To solve the inverse problem of image retrieval, given a query tag tj , we
compute the conditional probability P (In|tj) for each image in the database.
Let In be composed of visterms {v1, v2, . . . , vk}. The score of In is given by:

S(In) = P (In|tj) = P (v1, v2, . . . , vk|tj).

Again using the conditional independence assumption,

S(In) = P (v1|tj) ∗ P (v2|tj) ∗ . . . ∗ P (vk|tj).

An important point to note here is that the images with a large number of
visterms will tend to get lower scores as more probabilities are multiplied. One
way to address this bias is to take the geometric mean of all the conditional
probabilities as the score of an image,

S(In) = (P (v1|tj) ∗ P (v2|tj) ∗ . . . ∗ P (vk|tj))
1/k.

Finally, for computational reasons, we actually compute the log of the score
above,

log(S(In)) = (1/k) ∗ (log(P (v1|tj)) + . . . + log(P (vk|tj))).

4.1.2 Improved Naive Bayes model

The naive Bayes model works reasonably well on the Corel dataset. However,
the Flickr dataset is not as well annotated as the Corel database. For instance,
an image of a car might be tagged as {‘john’, ‘car’, ‘san francisco’} on Flickr.
As users tag photos according to their own wishes, such “annotation noise” is
quite frequent on Flickr. Indeed, as the experiments will show, the performance
of the basic naive Bayes algorithm is quite poor on the Flickr dataset, which
calls for additional measures to counter the annotation noise. Let us take an
example to illustrate how we aim to address this problem.

11



Consider two images of cars on Flickr: I1 tagged as {‘john’, ‘car’, ‘san fran-
cisco’}, I2 tagged as {‘autoshow’, ‘geneva’, ‘car’, ‘black’}. In the basic naive
Bayes algorithm, the visterms of I1 will contribute to the conditional probabil-
ities with tags ‘john’, ‘car’ and ‘san francisco’, that is P (vcar|john), P (vcar|car)
and P (vcar|san francisco). Here vcar denotes a visual feature related to the ‘car’
object. Similarly, visterms of I2 will be associated with ‘autoshow’, ‘geneva’,
‘car’, and ‘black’, that is P (vcar|autoshow), P (vcar|geneva), P (vcar|car) and
P (vcar|black). If both I1 and I2 are pictures of just cars, P (vcar|san francisco)
might be adding noise to the model. Therefore, the visterms of I1 could be
considered as “noise” for the tags ‘john’, ‘san francisco’, and the visterms of I2

could be considered as noise for the tag ‘geneva’. One possible way to reduce
such noise is to consider both I1 and I2 together as a “pair”. We calculate
the common visterms and tags in images I1 and I2, and then associate only
the common visterms with the common tags. Assuming that both images will
have some visterms corresponding to the ‘car’ object as common, those vis-
terms will now only be linked to the tag ‘car’, and not to the other “noisy”
tags. In other words, the new model will only consider P (vcar|car), eliminat-
ing P (vcar|san francisco), P (vcar|john), P (vcar|autoshow), P (vcar|geneva) and
P (vcar|black). There is a possibility that some relevant tags will also get elim-
inated when considering image pairs. For example, if the car in I2 is black in
color, eliminating P (vcar|black) when considering the pair {I1, I2} might ap-
pear to be removing useful information from the training set. However, note
that since we consider all possible image pairs, the tag ‘black’ would be con-
sidered whenever I2 is paired with any other image In that also has the tag
‘black’. Further, if a tag is not common in any image pair, it means that its
tag frequency is 1. Such a low frequency tag is very likely a “personal tag”, or
some other rare tag that is not very useful for the purpose of annotation.
Based on the intuition of the example above, we consider pairs of images as a
single document rather than each image as a document for calculating the con-
ditional probabilities in the naive Bayes algorithm. Concretely, for each image
pair {In, Im}, we define two terms, namely visual-similarity simV (In, Im) and
tag-similarity simT (In, Im), calculated as the cosine similarity of visterms and
tags respectively.

simV (In, Im) =
Vn.Vm

norm(Vn) ∗ norm(Vm)

simT (In, Im) =
Tn.Tm

norm(Tn) ∗ norm(Tm)

sim(In, Im) = simV (In, Im) ∗ simT (In, Im)

where Vx and Tx denote the visterm vector and the tag vector of image Ix re-
spectively, and norm denotes the L2 norm.
The conditional probability of a visterm given a tag is computed using all possi-
ble image pairs as single documents, each pair {In, Im} weighted by sim(In, Im).

P (vi|tj) =

∑

{m,n:m 6=n,vi∈Im,vi∈In,tj∈Im,tj∈In} sim(Im, In)
∑

{m,n:m 6=n,tj∈Im,tj∈In} sim(Im, In)
.
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This way of computing P (vi|tj) gives more weight to image pairs which
have higher similarity in terms of visterms and tags. Next, the annotation and
retrieval tasks are performed in the same fashion as in the basic naive Bayes
method. As shown later in results, the improved naive Bayes method gives
better annotation results on the Flickr dataset. It also improves the results
on the Corel dataset, though by a smaller margin. Additionally, this method
tends to downweight low frequency tags as they are less likely to be found in a
pair of similar images. Overall, it benefits the system as the low frequency tags
are more often very “personal” tags that might be considered as noise for the
purpose of automatic annotation.

4.2 Graph based model

The improved naive Bayes model helps in the annotation performance for the
Flickr dataset but the retrieval performance is still quite low. The increase in
annotation performance can be largely attributed to the removal of annotation
noise found in images. However, the problem of “limited tagging” is still there,
which is one of the main reasons for low retrieval performance. For example, in
the training set, if the images tagged as ‘bay area’ are not also tagged as ‘san
francisco’, the visterms related to ‘bay area’ will not have a high conditional
probability w.r.t. ‘san francisco’. Now, in the test set, if the images of ‘bay
area’ are tagged as ‘san francisco’, it would be very difficult for the naive Bayes
model to retrieve them for the query ‘san francisco’ based on the visual context
only. This “limited tagging” illustration provides the intuition that it might
be useful to first perform a query expansion and then retrieve images for the
expanded query. If the query ‘san francisco’ is expanded to also include ‘bay
area’, it would now become easier to retrieve images using the trained model.
Query expansion is a commonly used technique in text retrieval to enhance the
performance for queries that might be insufficient to retrieve the relevant doc-
uments due to variety of reasons [Xu and Croft, 1996]. Term co-occurrence in
documents is often used for query expansion to find related terms given some
input terms. In our case, query expansion should also look beyond the immedi-
ate tag co-occurrence as the tags ‘san francisco’ and ‘bay area’ might not occur
together very often in the training set. We aim to build a graph model that
captures these notions to enhance the retrieval performance.
In our formulation, each tag and visterm contributes a node to a graph. Weighted
directed edges between nodes represent the conditional probabilities. Con-
cretely, there are three kinds of edges:

tag-to-tag edges An edge from tag ti to tag tj , e(ti, tj) is weighted by P (tj |ti).

tag-to-visterm edges An edge from tag ti to visterm vj , e(ti, vj) is weighted
by P (vj |ti).

visterm-to-visterm edges An edge from visterm vi to visterm vj , e(vi, vj) is
weighted by P (vj |vi).

13



The conditional probabilities are calculated in the same way as in the naive
Bayes method.

P (tj |ti) =
nI(tj , ti)

nI(ti)
;P (vj |ti) =

nI(vj , ti)

nI(ti)
;P (vj |vi) =

nI(vj , vi)

nI(vi)
.

However, to limit the number of edges and reduce noise, we propose to calculate
“support” and “confidence” for each edge, and keep only those edges for which
support ≥ α, where α depends on the type of edge. For instance,

support = P (tj , ti) =
nI(tj , ti)

#documents
,

confidence = P (tj |ti) =
nI(tj , ti)

nI(ti)
.

Here, the confidence values are the weights of the edges, and support values
are just used for pruning the edges. A low support value indicates that we do not
have enough training data for that particular edge. This approach is commonly
used in association rule mining [Agrawal and Imielinski, 1993]. Once we build
such a graph from the training set, there are three steps for retrieving images.
A query expansion step, a cross-mapping step, and an image ranking step. Each
of these steps are described in the following sections.

4.2.1 Query expansion

Let us illustrate the concept with a toy-example. Consider that the tag subgraph
obtained from the training data looks like the one in Figure 4.1. If the query is

Figure 4.1: Subgraph showing tag nodes and edges.

‘san francisco’, we give a weight of 1.0 to the tag node ‘san francisco’. The rest
of the nodes are weighted by a heuristic method. Following the edges, ‘golden
gate’ can be given a weight of Weight(san francisco)*e(san francisco, golden
gate) = 1.0*0.7 = 0.7. Similarly, ‘union square’ will get a weight of 0.4 but we
also need to reach the other tags such as ‘bay area’, ‘skyline’, etc. Missing edges
could arise due to the limited number of images and tagging information in the
training set. To calculate the score for the tag ‘bay area’, one possibility is to
“chain” the probabilities along a path from ‘san francisco’ to ‘bay area’. For
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instance, Weight(bay area) = Weight(san francisco) * e(san francisco, golden
gate) * e(golden gate, bridge) * e(bridge, bay area) = 1.0*0.7*0.9*0.4 = 0.252.
Observe that there exists another path to calculate the same score. Weight(bay
area) = Weight(san francisco) * e(san francisco, golden gate) * e(golden gate,
bay area) = 1.0*0.7*0.8 = 0.560. The path that gives the highest score for a
tag best represents the “cohesiveness” of the tag with the query tag. In this
example, we would take the score of ‘bay area’ as 0.560.
The above example illustrates that a variation of the well-known Dijkstra’s
shortest path algorithm [Dijkstra, 1959] can be used to calculate the scores for
all the tags in the graph. Figure 4.2 gives the algorithm. In our modified version,
instead of adding edge weights and keeping the minimum path value as the label
of each node, we multiply the edge weights and keep the maximum path value
as the label of each node. The rest of the algorithm remains the same. In case
of multiple tags in the query, we make Weight(q) = 1.0 during initialization for
each tag q in the query.

Figure 4.2: Algorithm for calculating tag weights during query expansion.

Using the visterm-visterm edges, we can also do query expansion for visterms
in a similar fashion for the annotation task. In practice, however, we did not
find it useful as we typically had enough visterms from the query image and
adding any other visterms led to an increase in noise. This was a somewhat
expected result due to the large number of visterms usually present in an image
compared to typically small number of tags.
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4.2.2 Cross-mapping

The expanded query has a weight for each tag. Next, we calculate the weight
of each visterm as:

Weight(vi) =
∑

tj

Weight(tj) ∗ IDF (tj) ∗ e(tj , vi)

where IDF (tj) denotes the inverse document frequency of tag tj calculated as

IDF (tj) = log

(

nI

nI(tj)

)

where nI is the total number of images and nI(tj) is the number of images with
tag tj . The aim here is to normalize the weights of high frequency tags to avoid
a bias. Weight(vi) is computed such that more weight is given to visterms
that have higher conditional probabilities P (vi|tj) with a large number of high
weight query tags.

4.2.3 Image Ranking

Once we have a weight of each visterm, we need to rank the images. We use the
traditional TF*IDF setup here similar to text document retrieval. Each image
In has a weight vector Vn of visterms.

Vn(vi) = TFn(vi) ∗ IDF (vi)

where TFn(vi) is the term frequency of vi in In normalized by the total num-
ber of visterms, and IDF (vi) is the inverse document frequency calculated as
log(nI/nI(vi)).
Let Q represent the vector of visterm weights obtained from the cross-mapping
step. To generate a ranked list of images, the score of an image is calculated as:

S(In) = Vn.Q

Images are shown in the order of decreasing scores and precision-recall is calcu-
lated using the ground truth available in the test set.

It is possible to construct a similar method for the image annotation task.
However, in our experiments, we did not find much improvement in annotation
due to the reason explained in the query expansion section.
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Chapter 5

Experiments

We will first describe the datasets used in Section 6.1. The sections following
that will describe the aggregated data strategy in Flickr, evaluation setup and
the results respectively.

5.1 Data Sets

We performed our experiments on two datasets:

5.1.1 Corel Dataset

The first dataset is constructed from the publicly available Corel Stock Photo

Library. This dataset is well annotated manually using a limited vocabulary size
and has offered a good testbench for algorithms. [Barnard et al., 2003] organized
images from this collection into 10 different samples of roughly 16,000 images,
each sample containing training and test sets. We use the same 10 sets in our
experiments and report the performance numbers averaged over all the sets
(standard deviation was around 1%). Each set has on average 5240 training
images, 1750 test images, and a vocabulary size of 150 tags.

5.1.2 Flickr Dataset

We use a subset of the Flickr data used in [Negoescu and Gatica-Perez, 2008].
This subset consists of roughly 65k images by 4k randomly chosen users. We
used the top 2k tags out of 10k tags, in terms of frequency, as the vocabulary.
While Corel may be considered as an artificially constructed dataset, Flickr
represents images and annotations by real world users. Flickr images are usually
very rich in terms of content, often containing multiple objects. A few tags with
each image is quite restrictive to describe the image completely or to build
effective models. In our experiments, instead of considering each image as a
single document, we aggregated the visterms and tags from all the images for
a particular user, and considered that as a single document. In this way, each
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user contributes a single document to the corpus, and then users are partitioned
into training and test sets. The average number of images per user was 12. The
motivation for doing such an aggregation will become clear from the Canonical
Correlation Analysis (CCA) described in Section 5.2.

5.2 Canonical Correlation Analysis (CCA)

We work with the complete set of 65k Flickr images and the 10k tag vocabulary
in this analysis. An image I has a set of visterms SV : {v1, v2, . . . , vNv

} and a set
of tags ST : {t1, t2, . . . , tNt

}. For this analysis, we first map visterms and tags
to a lower dimensional concept space using Latent Dirichlet Allocation (LDA)
[Blei et al., 2003]. SV is mapped to a probability distribution over 100 latent
topics. Each topic is a probability distribution over 2000 visterms:

p(SV |αv, βv) =

∫

p(θv|αv)





|SV |
∏

i=1

100
∑

k=1

p(z
(v)
k |θv)p(vi|z

(v)
k , βv)



 dθv,

where αv, βv are corpus level parameters, θv is the topic distribution for a doc-

ument, and p(vi|z
(v)
k , β) is the probability distribution of visterms for topic z

(v)
k

as described in [Blei et al., 2003]
Similarly, ST can be mapped to a probability distribution over 100 latent

topics. Each topic in this case is a probability distribution over 10k tags:

p(ST |αt, βt) =

∫

p(θt|αt)





|ST |
∏

j=1

100
∑

k=1

p(z
(t)
k |θt)p(tj |z

(t)
k , βt)



 dθt.

For image annotation and retrieval to work, the image content should be cor-
related to its tag annotations. For our purposes, we would like to measure corre-
lation between topic distribution for visterms θv and topic distribution for tags
θt. Canonical Correlation Analysis (CCA) [Hotelling, 1936] is a method to mea-
sure correlation between two multi-dimensional variables. It finds bases for each
variable such that the correlation matrix between the basis variables is diagonal
and the correlations on the diagonal are maximized. Concretely, for two multi-
dimensional variables X and Y , CCA first finds basis vectors α1 and β1 such
that the correlation between the scalar quantities α1.X and β1.Y is maximized.
The entities u1 = α1.X and v1 = β1.Y are called the first pair of canonical vari-

ables and their correlation ρ1 = correlation(u1, v1) is called the first canonical

correlation coefficient. Next, CCA finds a second pair of basis vectors α2 and
β2 (u2 = α2.X, v2 = β2.Y ) such that the correlation ρ2 = correlation(u2, v2) is
maximized subject to the constraint that the second pair of canonical variables

u2 and v2 is uncorrelated with the first pair u1 and v1. This procedure is con-
tinued such that the rth pair of canonical variables ur and vr is uncorrelated
with the first (r − 1) canonical variables. ρr = correlation(ur, vr) is called the
rth canonical coefficient. The dimensionality of the canonical variables is equal
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Measure Flickr images Corel images
Individual Aggregated

max 0.25 0.35 0.53
(0.01) (0.12) (0.07)

sum 1.54 4.70 6.47
(0.25) (3.05) (1.72)

Table 5.1: Maximum and sum of correlation values among corresponding canon-
ical variables for visterm topics and tag topics. The number in brackets indicate
the correlation values when we randomize the tag assignment to images.

to or less than the dimensionality of either of original variables. Table 5.1 shows
the maximum (first) and the sum of correlation values between corresponding
canonical variables for visterms and tags. To see how significant this correlation
is, we randomized the tag assignment to images and then calculated the corre-
lation. A significant drop in correlation for the randomized case is an indicator
that the tags associated with images are not random but have some relation
with the content of the image. Furthermore, when we aggregate the visterms
and tags for all images from a single user, the assumption is that this aggre-
gation process would preserve the association between visterms and tags while
enriching the tag collection of a document. As shown in Table 5.1, the aggrega-
tion process in the Flickr data indeed increases the correlation between visterms
and tags. This suggests that we might get a better performance by considering
all the images from a user as a single document. The Flickr results described
further have been calculated from the aggregated dataset. For comparison, we
also performed CCA on Corel image collection. The aggregated Flickr model
still has lower correlation values compared to Corel, primarily due to the more
careful annotations, limited vocabulary and relatively “simple” images in Corel.

5.3 Evaluation Setup

The experimental setup is as follows: we train the naive Bayes and graph models
from the training set. For annotation, given an image from the test set, we count
the suggested tag as relevant only if it is present in the reference annotations.
For retrieval, each tag in the vocabulary is used as a query and a ranked list
of suggested images is obtained. An image is considered as relevant only if it
contains the query tag in the reference annotations. While this setup appears
reasonable for Corel dataset, it is particularly harsh for the Flickr dataset. For
example, an otherwise relevant suggested tag would be considered irrelevant if
the user did not add it to his/her image. Likewise for retrieval, an image showing
‘golden gate bridge’ would be considered irrelevant for the query ‘golden gate’
if the user did not tag that image with ‘golden gate’. Ideally, one would like
to conduct a user study to address this issue but such studies are difficult for
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large datasets. In this work, we rely only on the annotations done by actual
Flickr users which means that the performance numbers may be a conservative
estimate of the “true” performance. The following three standard performance
measures are used for both annotation and retrieval:

P@1 Precision value at position 1 in the results.

MAP Mean Average Precision. Average precision (AP) of a single query is the
mean of precision scores after each relevant item is returned. MAP is the
mean of individual AP scores.

AP =

∑N
r=1(P (r) ∗ rel(r))

number of relevant documents in the whole corpus
,

MAP =
sum of AP for all queries

number of queries
,

where r is the result position, N is the number of results retrieved, P (r)
is the precision at position r, rel(r) is 1 if position r has a relevant result
and 0 otherwise.

Acc Accuracy: defined as the precision at position p where p is the number of
relevant documents for the query in the whole corpus.

5.4 Results

Table 5.2 shows annotation performance on both Corel and aggregated Flickr
datasets. N.B. is used as an abbreviation for Naive Bayes. The improved naive
Bayes algorithm increases the performance on both Corel and Flickr datasets,
the improvement being much larger on Flickr. The huge improvement for Flickr
is due to the reduction in “tagging noise” when pairs of images are used as
documents. Further, since the Corel dataset has much “simpler” images and
much better annotations than Flickr, one might expect the same algorithm to
perform better on Corel. This would mostly be true if we were considering in-
dividual images in Flickr rather than the aggregated set. However, as shown in
the precision-recall graph in Figure 5.1, the precision numbers for the first few
positions are higher in Flickr than in Corel. This could be explained by the fact
that the aggregation process expands the set of ground truth tags for Flickr.
As a result, the annotation algorithm has simply more choice of tags to predict.
However, the expansion in the size of ground truth also lowers the recall values.
This is the reason why MAP and Accuracy values are lower compared to Corel.
Table 5.4 shows some example queries and results for the annotation task. For
Flickr queries, we use all the images from a single user’s profile. It was not
possible to show all those images in this example, so we included a few images
that looked representative of the true and suggested tags.
Table 5.3 shows the retrieval performance of the different algorithms and Figure
5.2 shows the precision-recall curve. Both the improved naive Bayes algorithm
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Measure Basic N.B. Improved N.B.

C
or

el P@1 0.348 0.440
MAP 0.362 0.387
Acc 0.283 0.326

F
li
ck

r P@1 0.001 0.430
MAP 0.012 0.219
Acc 0.003 0.259

Table 5.2: Annotation performance comparison.

Measure Basic N.B. Improved N.B. Graph

C
or

el P@1 0.330 0.370 0.344
MAP 0.168 0.175 0.170
Acc 0.182 0.189 0.187

F
li
ck

r P@1 0.005 0.033 0.165
MAP 0.018 0.051 0.069
Acc 0.010 0.042 0.062

Table 5.3: Retrieval performance comparison.

and the Graph based algorithm result in a modest increase in Corel performance
compared to the basic model. However, since the numbers for Corel are so close,
it is very hard to say which algorithm is performing better. We might be ob-
serving a “ceiling effect” here which means that these numbers could be close
to the performance limit of these algorithms for the Corel dataset. The low
performance numbers for the Flickr dataset are mainly due to the reason that it
is very hard to rank the content rich images based on the weight of the visterms.
Nevertheless, we still see an increase in performance when using the improved
naive Bayes algorithm and a further increase when using the Graph based ap-
proach. Also, as mentioned earlier, the performance numbers for Flickr show
only a conservative estimate of the “true” performance owing to our evaluation
setup. Table 5.5 shows some retrieval examples.
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Dataset Corel Flickr

ex
am

p
le

1

Query Image(s)

True Tags beach, clouds, sky, water
brick, house, car, clouds,

tree, polaroid, etc.

Basic N.B. clouds, horizon, hills, mountain
rob, mexico city,

cape town, orange county

Improved N.B. water, sky, clouds, tree
people, street, tree, car,

house, sky

ex
am

p
le

2

Query Image(s)

True Tags cat, ground, lion, tree
oslo, norway, house, night,

adventure, blue, etc.

Basic N.B. lion, mane, cat, trunk final, stencils, republic, oc

Improved N.B. lion, tree, cat, mane
sky, house, night, bw,

red, blue

Table 5.4: Annotation examples. Predicted tags are shown in the order of rank,
that is, the first tag is suggested at position 1. Correctly predicted tags are
shown in bold green, incorrectly predicted tags are shown in light red. For
Flickr, a document consists of aggregated visterms and tags for a single user.
The above example shows representative images and tags from a single user’s
profile.
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Dataset Corel Flickr
Query Tag clouds clouds

Basic N.B.

Improved N.B.

Graph

Table 5.5: Retrieval examples. First 3 results are shown for each algorithm
in the order of rank. That is, the first result shown is retrieved at position 1.
Relevant results are shown with a green background and irrelevant with a red
background. For Flickr, since a single result represents all the images from a
user’s profile, representative images from the corresponding user’s profile are
shown here.
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Figure 5.1: Precision-Recall curves for annotation performance.
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Figure 5.2: Precision-Recall curves for retrieval performance.
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Chapter 6

Conclusions

We have studied two models for automatic image annotation and retrieval based
on co-occurrence of visual features and tag annotations in the images. The pro-
posed algorithms are designed to address the noise in large scale image databases
such as Flickr and show gains in performance. The improved naive Bayes model
suggests that it might be useful to look at “pairs of images” to reduce the anno-
tation noise in images. The graph-based model suggests that query expansion
could bring performance gains for the retrieval task.
For future work, we would like to experiment with different vocabulary sizes for
visterms and tags for Flickr, to understand how that affects the performance.
Expanding the visterm and tag vocabulary sizes helps to capture more informa-
tion from the corpus but also makes the system more susceptible to noise and
difficult to model. A different content aggregation for Flickr might also be fruit-
ful. Aggregating all the images from a user might increase the noise if the images
and/or tags are not similar or do not represent similar topics. An alternative
would be to aggregate based on content, that is, aggregate only those images
for which the visterm and/or tag vectors are similar. This might result in a
significant performance boost for Flickr. We would also like to experiment with
topic based models such as LDA and PLSA to see if using the topic distribution
for visual features rather than raw visterm counts could be beneficial.
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