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ABSTRACT

In this paper, we investigate the multimodal nature of cell
phone data in terms of discovering recurrent and rich pat-
terns in people’s lives. We present a method that can dis-
cover routines from multiple modalities (location and prox-
imity) jointly modeled, and that uses these informative rou-
tines to predict unlabeled or missing data. Using a joint
representation of location and proximity data over approx-
imately 10 months of 97 individuals’ lives, Latent Dirichlet
Allocation is applied for the unsupervised learning of topics
describing people’s most common locations jointly with the
most common types of interactions at these locations. We
further successfully predict where and with how many other
individuals users will be, for people with both highly and
lowly varying lifestyles.

Categories and Subject Descriptors: 1.5.2 [Design Method-

ology]: Pattern analysis

General Terms: Human Factors.

1. INTRODUCTION

Cell phones are rapidly emerging as the ultimate multi-
modal sensor of human dynamics [5]. Equipped with GPS,
Bluetooth, accelerometers, cameras, and microphones, cur-
rent phones have the potential of tracing human activities at
scales previously unattainable and of enabling the design of
new human-centered applications related to people’s daily
life, thus opening a whole scope of problems in multimodal
integration and ubiquitous computing [2, 8, 9].

Two fundamental problems in this domain relate to rou-
tine modeling: how to discover recurrent patterns in a per-
son’s life from multimodal data like proximity, location, and
motion, and how to predict, based on the knowledge of a per-
son’s routines, her most likely routines at any given time.
On one hand, pattern discovery via unsupervised learning
is often a necessity, given the potentially large number of
relevant routine patterns of an entire population and the
huge amount of unlabeled data that can be recorded with
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a phone over time [3, 4]. On the other hand, predictions
from aggregated user observations are, arguably, some of
the most useful outcomes of routine modeling, by inferring
both where and with whom a user would most likely be in
the future (for anticipation) or would most likely have been
in the past (for cases of missing data).

While recent works have started to analyze both problems
from location or proximity data - discovery and prediction
in [3], discovery in [4] - one aspect that has not been in-
vestigated in depth is the role of multimodal integration in
large-scale routine analysis. More specifically, how does the
joint use of multiple modalities (e.g. location and proximity
to others) enhance the understanding of a person’s routines,
and how can this be efficiently represented and automat-
ically inferred? Proximity to known people (as a coarse
approximation of face-to-face interaction) adds a rich ele-
ment of social context that is very useful to complement or
disambiguate many situations in daily life. For instance, be-
ing at home alone and with a large group having a party
represent entirely different social situations, that would be
nevertheless identical from the sole perspective of location.
Such finer descriptions of routines based on multiple cues
are clearly important to characterize users and their habits.

This paper presents an approach for large-scale unsuper-
vised learning and prediction of people routines through the
joint modeling of human location and proximity interac-
tions. Our work has three contributions. First, extending
our previous work [4], we propose a multimodal representa-
tion that integrates location and proximity to characterize
a person’s daily life in a simple yet robust way. Second,
we show that a probabilistic topic model approach for rou-
tine mining results in the discovery of patterns that are not
only meaningful but also complementary, informing about a
person’s life better than location alone or proximity alone.
Finally, we show that the discovered topics can be further
used for prediction purposes (i.e. inferring missing or future
bits of a person’s life), present a method to do so, and show
promising performance on a massive and challenging dataset
involving 97 people and thousands of days of data.

2. MULTIMODAL FRAMEWORK

We use the Reality Mining (RM) dataset [3] for which the
activities of 97 students and staff at MIT were recorded by
Nokia 6600 smart phones over the 2004-2005 academic year.
Given a day in the life of a person in terms of where they go
and the number of people within the group they are in prox-
imity with, our goal is to discover routines from large-scale
multimodal phone data. Further, we use the combined lo-



cation and proximity routines discovered to predict missing
location and proximity data. Following [4], we represent a
day in the life of a user in terms of where they are over a 90-
minute time interval as well as the number of people they
are with during this time interval within the RM popula-
tion, forming a joint location-proximity data representation
described next.

2.1 Joint Location-Proximity Representation

The joint location-proximity data representation is based
on the concatenation of data corresponding to users’ loca-
tion, proximity, and a timeslot indicating a coarse measure
of the time of day for which this data is measured. The
details follow.

Location Representation: Following Eagle et al [3], a
given individual’s locations (given by cell towers) is repre-
sented over the course of a day by first simplifying all pos-
sible locations into 4 categories, work (W), home (H), out
(O), and no reception (N). W are the MIT work premises, H
are the homes of individuals, and O are towers that are not
H or W. N is a label used if there is missing data for a person
for a given time. The basic idea for the location word rep-
resentation, which is taken from our previous work [4], is to
assign a single location label (H,W,0,N) for each 30—minute
time interval of a user’s day, resulting in 48 location labels
for each user and each day. Then, 3 consecutive 30-minute
labels are taken to obtain location transition information
over a 1.5 hour period in a day. These 1.5-hour intervals
are overlapping, resulting in 48 x 1.5-hour 3-label location
sequences in a day.

Timeslot Division: Each day is divided into 8 timeslots
as follows: 0-7am (1), 7-9am (2), 9-11am (3), 1lam-2pm (4),
2-5pm (5), 5-7pm (6), 7-9pm (7), 9-12pm (8). This timeslot
is concatenated to the 1.5 hour location label sequences to
form the location words used in [4].

Proximity Representation: For proximity data, we
only consider proximity with people in the RM group. Prox-
imity in general could be considered, though proximity with
laptops and computers is also recorded in the data and is
difficult to distinguish from mobile phones. We quantize
the number of proximate people into 4 prototypical groups:
user is alone, dyad (1 person in proximity), small group (2-4
people in proximity), large group (5 or more people in prox-
imity). The group sizes are motivated by research in social
science that has traditionally analyzed dyads, small groups,
and large groups as separate categories, as they present dis-
tinct dynamics.

A day in a user’s life is finally represented as a bag of
words, where a word is a location word, concatenated with
a proximity group and a timeslot.

2.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is an unsupervised prob-
abilistic generative model that was initially developed to
characterize text documents, but can be extended to other
collections of discrete data [1]. A word is a basic unit of dis-
crete data defined by an item for a vocabulary of size V. A
document is a bag of N words, and a corpus is a collection
of M documents. Each document is viewed as a mixture
of topics, where topics are distributions over words. The
probability of a given word w; assuming 7" topics is given
by: p(we) = S01_, p(we|ze)p(zt), where z; is a latent variable
indicating the topics from which the t** word was drawn.

The objective of LDA inference is to determine the word
distribution p(w|z =t) = ) for each topic ¢ and the topic
distribution p(z = t) = Ht(d) for each document d. We use
the approximation derived in [6] based on Gibbs sampling.
In LDA, p(0) and p(¢) are assumed to have Dirichlet dis-
tributions with hyperparameters o and 3, respectively. The
Gibbs sampler is used since the estimation problem of max-
imizing p(w|¢, @) = [ p(w|¢, §)p(|a)db, is intractable. The
Gibbs sampler results in

W _ " +B8 o _ng ta (1)
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where ngw) and n((;) are the number of times word w and
document d have been assigned to topic ¢, respectively, and
ng = Zgzl nﬁ“’) and ng = Z:/:l nfit). In our work, docu-
ments are days and words are defined in Section 2.1. We use
LDA for two tasks:

Routine Discovery: We recently used LDA discover lo-
cation routines [4]. Here, we propose to extend this use to
handle multimodal data, expecting that topics will capture
joint patterns of location and proximity that help disam-
biguate relevant cases (e.g. discriminating between a person
at work alone and in a group).

Predicting Behavior: LDA is also used for the predic-
tion of missing words in a document (i.e. the prediction
of users’ joint patterns of location and proximity for cer-
tain timeslots). To achieve prediction, LDA inference is run
on the unseen documents with missing bits. This results
in matches between an unseen document and known docu-
ments using the estimation of the posterior distribution of
topics given the unseen documents’ words p(z|w). The re-
sulting topics are ranked according to p(d|z) and the top 3
topics ztop are selected for potential use in prediction. The
most probable word’s timeslot for topics ziop is compared
to the missing sequence’s timeslot. We pick the topic ztop
whose top word’s timeslot is the closest to the timeslot in
the document whose missing words will be predicted. We
also ensure that p(d|ztop) > Th where Th is chosen to en-
sure the document is characterized by the topic with high
enough probability. The result is a single topic which best
describes the missing data over the timeslot. To fill in the
missing location and proximity words, we replace the miss-
ing labels with those of the top document for the mostly
likely topic selected.

3. EXPERIMENTSAND RESULTS

We experimented with all of the 97 individuals in the
dataset and days ranging from 18.07.2004 to 05.05.2005, en-
compassing 291 consecutive days thus extending our previ-
ous work [4] who only considered 30 users. This subset of
days was chosen since these are the days for which proxim-
ity data is mostly available. Days with entirely no reception
for location were not considered since they contain no useful
information for proximity either. The LDA model used for
joint location-proximity routine discovery had 7" = 100 top-
ics. Heuristic methods were used to obtain 7', but roughly
speaking, a small value of T" will produce coarse routines,
whereas a large 1" will be much more specialized.

3.1 Joint Location-Proximity Routines
The fusion of proximity and location data enables the dis-
covery of more detailed information regarding this group of
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Figure 1: Ranked days (i.e. documents) for all top-
ics by p(d|z;), showing the top 50 days’ location data
(a) and proximity data (b) for a given topic, z;. (c) A
histogram of the users whose days ranked in the top
50 for topic z;. Note the colorbars for the location
figures (a) indicating the W, H, O, and N locations
and for the proximity figures (b) indicating a large
group, small group, pair, or alone.

MIT users’ daily lives compared to single modalities. A short
summary of the entire corpus is presented below, but a more
in depth analysis of the results in the form of a video demo
can be found at www.idiap.ch/ kfarrahi/MMDemo/results.wmv.
-Home routines and proximity: Most of the home routines
discovered occurred for users alone (not in proximity with
anyone from the group). Only 2 out of the 20 home rou-
tines discovered dominated for a pair of users in proximity.
No home routines occurred for small or large groups which
suggests that people did not socialize within the population
at home.
- Work routines and proximity: Most of the routines discov-
ered with proximity interactions occurred at work locations.
There are 17 work routines, and 13 of them occur with prox-
imity patterns. Routines at work were discovered for all
four proximity groups (users alone, in dyads, small and large
groups), which indicates that all these types of interactions
occur frequently.
-Morning routines and proximity: Only 3 out of 100 topics
had a proximity interaction in the morning (before 10am),
and all 3 of these routines occur for pairs of users and never
for groups. People interacting in the morning seems to be
relatively sparse.

-Day-time routines and proximity: Approximately 20 topics
characterize user interactions throughout the day (10am-
7pm). The interactions include pairs of users, as well as
small and large groups.
- FEvening routines and proximity: 7 topics characterize group
interactions in the evenings (7pm-midnight). These occur
for pairs of users, and small as well as large groups.
Specific topics illustrating the types of joint routines dis-
covered are visualized in Figure 1. We have illustrated re-
sults for selected topics z; = 20, 61, 46, 71, 85, where column
(a) visualizes the location data, column (b) the proximity
data, and column (c) the user statistics. For a selected topic
z;, the top 50 documents are ranked according to p(d|z;)
and their location data (a) and proximity data (b) are visu-
alized. Further, a histogram for the users whose days ranked
in the top 50 documents is shown in (c). A summary of the
routines discovered plotted in Figure 1 is:
-Topic 20: At home in the morning in proximity to someone
in the group. This routine occurs for 5 specific individuals
mostly (as seen in the plot “Dominant Users for Topic 207).
-Topic 61: Out roughly from 10am-7pm as a large group
with a “break” occurring in between for several hours in work
locations. This might correspond to days with courses in the
morning and afternoon for several students which are held
off their main work environment.
-Topic 46: At work in the afternoon until late in the evening
with a small group of people. This corresponds to typical
graduate student behaviour.
-Topic 71: At work non-stop from roughly 1pm-8pm alone.
This routine dominates for many individuals.
-Topic 85: At work from 10am-7pm in small to large groups.
This occurs most frequently for 3 specific individuals, who
seem to have structured working hours.

3.2 Behavior Prediction

The purpose of behavior prediction is to apply LDA in
order to predict unobserved location and proximity data for
a timeslot of a user’s day. For experiments, we decided to
separate users based on the entropy of users’ lifestyles [3]. In
our work, we use the Author Topic Model (ATM) to separate
users based on the entropy of their location routines. In [4]
we used the ATM for routine discovery but not for entropy
characterization. Entropy is computed on the probability
of topics given authors p(z|a), where an author a is a user,
location words are the same, and a document is a day. All
of the users in the dataset are ranked according to their
entropies. We set two thresholds for high and low entropy
which gave 10 users in each case. We randomly picked 5 for
each class (high and low).

For each of the 10 users picked, 20 days were randomly
selected, from days with at least one proximity interaction
(i.e. at least one word over the entire day contains an in-
teraction). This set of days was used to form the test set
from which we remove words to generate data with miss-
ing sequences to predict. For each day, the words of a given
timeslot were removed to form a day from which the method
predicts the missing sequence, thus generating 8 days, each
with one timeslot’s words missing. The resulting dataset
from which we predict missing sequences contains 10 users,
each with 160 days = 1600 documents for testing. Thus,
for each user there are 160 documents for testing, and each
timeslot contains 200 documents for testing.



For each document, there is one timeslot with missing lo-
cation and proximity labels. The location error is the num-
ber of incorrect labels divided by the total number of labels
to be predicted in the given timeslot. For instance, doc-
uments with timeslot 1 missing have 14 location labels to
be predicted since it occurs from 0-7am. The proximity er-
ror is the average number of people wrongly predicted for
each word in the timeslot. More specifically, if the predicted
group (alone, dyad, small group, large group) is correct then
there is no error. If the predicted group is incorrect, then
we predict the minimum number of possible people in the
group (alone=1, dyad=2, small group=3, large group=>5)
and compute the difference with the actual number of peo-
ple in proximity. For example, if there are 10 people in
proximity and we predict a small group, then we assume 3
people are in proximity. If this incorrect prediction occurs
over the 14 words in timeslot 1, then the average proximity
error is 7.

The location and proximity errors are computed over users
and timeslots in Figure 2. We can see the average errors as a
function of the user for location in Fig 2(a) and proximity in
Fig 2(b). Users 1-5 (in blue) have low entropy and 6-10 (in
red) have high entropy. In Fig 2(a), the bar shows the error
which would be obtained if all labels would be labeled as
"W’, which is the most frequently occurring location label in
the test set. Interestingly, low-entropy users have lower error
in the prediction of location labels than high-entropy users.
In Fig 2(b) we plot the proximity error. In the best (resp.
worst) case, the predicted number of people in proximity is
incorrect by, on average, 0.5 (resp. 1.5) people. In this case,
low entropy users do not necessarily have lower prediction
errors in proximity than high entropy users. At the same
time, for these results, entropy was computed on users’ lo-
cation, and these results show that users with predictable
location patterns do not necessarily have predictable prox-
imity patterns.

In Figures 2(c) and (d), we plot the average errors as a
function of timeslot for both high and low entropy users
for location (Fig 2(c)) and proximity (Fig 2(d)). We can
see in Fig 2(c) that for every timeslot, high entropy users
are harder to predict (have higher errors) than low entropy
users. Also, for timeslots 1 and 2, low entropy users corre-
spond to much better performance than high entropy users.
The worst performance occurs for timeslots 6, 7, and 8, es-
pecially for high entropy users, thus we can conclude the
prediction of location is most difficult in the evenings. The
error in proximity prediction as a function of timeslot, in
Fig 2(d), is again not highly correlated with the location en-
tropy of a user. The prediction in proximity has the highest
error in timeslot 5, corresponding to 2-5pm and the lowest
error in the mornings. In the worst case, the proximity error
is less than 2 people on average.

4. CONCLUSIONS

Our method successfully discovers recurrent patterns in
people’s lives from multimodal data and can use the discov-
ered routines for data prediction, estimating location and
proximity data of users with varying location entropy. In
future work, the methodology for data prediction will be fur-
ther optimized to include prediction on varying timescales,
to predict one data modality source given another (for ex-
ample, to predict a user’s location given the time of day and
their interactions), and to consider proximity with all blue-
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Figure 2: (a) Average location error for prediction
as a function of users, where low entropy users are
labeled ‘Low E’ and high entropy users ‘High E’. (b)
Average proximity error for prediction as a function
of users. The average error in (c) location predic-
tion, and (d) proximity prediction, as a function of
timeslot for low and high entropy users.

tooth devices including laptops, computers, and anonymous
cell phones.
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