Discovering Human Routines from Cell Phone Data with Topic Models

We present a framework to automatically discover people's routines from information extracted by cell phones. The framework is built from a probabilistic topic model learned on novel bag type representations of activity-related cues (location, proximity and their temporal variations over a day) of peoples' daily routines. Using real-life data from the Reality Mining dataset, covering 68 000+ hours of human activities, we can successfully discover location-driven (from cell tower connections) and proximity-driven (from Bluetooth information) routines in an unsupervised manner. The resulting topics meaningfully characterize some of the underlying co-occurrence structure of the activities in the dataset, including ``going to work early/late", ``being home all day", ``working constantly", ``working sporadically" and ``meeting at lunch time".


Presented at:
IEEE International Symposium on Wearable Computers (ISWC)
Year:
2008
Note:
IDIAP-RR 08-32
Laboratories:




 Record created 2010-02-11, last modified 2018-01-28

External links:
Download fulltextURL
Download fulltextRelated documents
Download fulltextn/a
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)