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Abstract. This paper describes an approach where posterior-based features are applied in those
recognition tasks where the amount of training data is insufficient to obtain a reliable estimate of
the speech variability. A template matching approach is considered in this paper where posterior
features are obtained from a MLP trained on an auxiliary database. Thus, the speech variability
present in the features is reduced by applying the speech knowledge captured on the auxiliary
database. When compared to state-of-the-art systems, this approach outperforms acoustic-based
techniques and obtains comparable results to grapheme-based approaches. Moreover, the proposed
method can be directly combined with other posterior-based HMM systems. This combination
successfully exploits the complementarity between templates and parametric models.
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1 Introduction

The test vocabulary of conventional automatic speech recognition (ASR) systems is described by its
phonetic transcription. Hidden Markov models (HMMs) representing phoneme-level linguistic units
are then concatenated to form the test word models. However, in some user-specific applications
like voice-activated agendas, the vocabulary can be composed by words (e.g. proper names) whose
phonetic transcriptions cannot be easily found in standard phonetic dictionaries. In this type of
applications, the user is typically asked to provide a few acoustic samples and/or the graphemes of
the test vocabulary. This information is then used to build the word models.

The ASR approaches used in this type of applications can be classified in two categories, depending
whether the information used for building the lexicon models is acoustical or grapheme-based. In the
former case, a template matching (TM) or a hidden Markov model (HMM)-based approach can be
applied. When using TM, the user defines the lexicon by providing some acoustic samples of each
word. These samples are compared with the test utterances to determine which word has been
pronounced. The major advantage of this method is its simple implementation and its fast decoding
time. However, its accuracy is strongly dependent on the pronunciation described by the templates
and also, its performance can dramatically decrease when increasing the test vocabulary size. On
the other hand, HMMs trained on a different database can be used to form the word models. The
phonetic transcription required for this approach is then obtained by applying a phonetic HMM-based
decoder to the acoustic sample.

The grapheme information can also be used to infer the phonetic transcription through a classifica-
tion and regression tree (CART) [1]. This technique is widely applied in the speech synthesis field [2].
The HMM-based word models can thus learn the speech variability contained on another database and
apply this information to user-specific applications. The major limitation of this approach appears
on those words which do not follow the standard phonetic rules, like proper names.

In this paper we present a novel approach based on TM. The speech features that form the
templates and the test utterances are estimates of phoneme posterior probabilities [3]. These posterior
features are obtained through a multi-layer perceptron (MLP) which has been trained on a different
database. This approach thus combines the advantages of both TM and HMM-based approaches
because it benefits from a simple implementation and a fast decoding time and also, the speech
variability from an auxiliary database can be incorporated through the posteriors at the feature level.
Moreover, since phoneme posterior features can be seen as discrete probability distributions over
the phoneme space, measures coming from the information theory field such as the entropy and the
Kullback-Leibler (KL) divergence [4] can be successfully applied [5].

In addition, the presented method can be related to the KL-based acoustic model [6]. This model
computes the KL divergence instead of the log-likelihood for estimating the state scores. Since both
the HMM /KL model and the presented TM-based approach use the KL divergence as a local measure,
they can be directly combined. In this work, we also show that the combination of these two methods
can further improve the word accuracy.

This paper is structured as follows: Section 2 briefly describes posterior features. Section 3 sum-
marizes the TM approach for ASR. Then, Section 4 presents the local distances that are used in this
work. Section 5 describes the experiments and discusses the results and finally, Section 6 concludes
this paper.

2 Posterior Features

Short-term spectral-based features, such as MFCC or PLP, are traditionally used in ASR. In this
work, we use posterior-based features. Posterior probability of the phonemes given spectral features
can be estimated by using a MLP [3]. This type of speech features have shown to be an efficient front-
end for ASR because of their discriminative training and the ability of the MLP to model non-linear
boundaries [7]. Moreover, the databases for training the MLP and for testing do not have to be the
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same so it is possible to train the MLP on a general-purpose database and use this posterior estimator
to obtain features for more specific tasks as it has been shown in [8].

Given a sequence of spectral-based features X = {x; ---X; - -- X7}, a sequence of posterior features
can be obtained Z = {zy---z;---zr}. Each posterior feature z; is formed by concatenating the
outputs of the MLP when using x; as input. Thus, z; = [P(c1|x¢) -+ P(ck|x¢) - P(cx|x¢)]T, where

{cx | denotes the set of K phonemes®.

3 Template Matching Approach

In TM for ASR, every word w in the lexicon W is represented by a set of N, samples Y(w) =
{Vi(w)} N known as templates [9]. Each template Y;(w) is a sequence of speech features extracted
from a particular pronunciation of w. When decoding a test sequence of features Z, a similarity
measure ¢(Z, Y;(w)) is computed between the test sequence Z and each template Y;(w) of each word
w of the lexicon W. The test sequence Z is then decided to be the word w associated to the template
with the minimum distance.

= arg min min (2,Y) (1)
The choice of the similarity measure ¢(X,Y’) is an important issue in this approach because it should
take into account those properties from the templates that best describe the classes. In ASR, the
most typical similarity measure is based on dynamic time warping (DTW) [9]. This measure handles
the different speech rates that different pronunciations of the same word may have and it also uses a
very similar decoding procedure than HMM.

When using DTW, a local distance between the speech vectors must be defined. Euclidean distance
is typically used, although previous experiments [5] have shown that the use of the KL divergence
can yield better performance when using posterior features. In the next section, we describe the local
distances used in this work.

4 Local Measures

In this section, we describe the local measures for the DT'W implementation used in this work. We use
the Euclidean distance because it is the typical local distance used in TM and, since we use posterior
features in this work, we also present several KL-based measures.

4.1 Euclidean Distance

Fuclidean distance is the most common similarity measure between features in a TM approach. This
distance assumes that data follows a normal distribution since its definition is equivalent to the
logarithm of the Gaussian function. Given two feature frames a and b of dimension K, Euclidean

distance is defined as .

DEucl(a7b> == Z(al - bz)2 (2)

i=1

4.2 Kullback-Leibler Divergence

Given two discrete probability distributions a and b of dimension K. The KL divergence is defined
as [4]:

K
a;

KL(al[b) = ailog 7" 3)
i=1 v

n practice, a context of spectral features x;_4 - - - X¢+4 is used as input for the MLP. Hence, each component of the
posterior feature estimates P(cp|x¢—4 -+ X¢44).
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This measure has its origin in the information theory field [4]. It defines the average number of
extra bits that are used when coding an information source with distribution b with a code that is
optimal for a source with distribution a. Given the asymmetric nature of the KL divergence, several
formulations can be used as local similarity functions. Let us consider z the frames corresponding to
the test sequence and y the frames from the templates.

e Dir(z,y) = KL(y||z). The frames belonging to the templates are considered as the reference
distributions in this case.

e Drir(z,y) = KL(z||ly). In this case, the frames belonging to the test sequence are considered
as the reference distributions.

e Dskr(z,y) = KL(y||z) + KL(z||y). This is a symmetric version of the KL divergence. It has
been successfully applied in other fields such as speech synthesis [10].

e Symmetric KL can be seen as a weighting sum between Dy and Dgiy where weights are
equal. In this paper, we also investigate the use of weights which are not uniform but dependent
on the entropy of the distributions. This weighting strategy has been previously applied in the
combination of posterior-based multi-stream ASR [11].

w1
Dueight(z,y) = mKL(YHZ)

W2
——KL 4
2 KL(zlly) @

where the weights are inversely proportional to the entropy H of the distributions, i.e., wy = ﬁ

and wg = ﬁ Since the entropy is a measure of uncertainty, this measure weights each factor
depending on the uncertainty of the reference distribution.

N

Figure 1: Contour lines for Euclidean distance and KL divergence on the simplex space generated by
3-dimensional posterior features. On the left side, the evaluated function is f(z) = ||z — a||> whereas
on the right side, the function is f(z) = KL(al|z).

Figure 1 illustrates how, unlike Euclidean distance, the KL divergence explicitly considers the
topology of the posterior space. This is due to the logarithm function contained in the KL definition.
In fact, it can be shown that the space of distributions using the KL divergence has similar behavior
to metric spaces governed by the Euclidean distance [12].

5 Experiments and Results

5.1 Database Description

The database chosen for this work is Phonebook [13]. It is formed by utterances containing isolated
words. The test part of this database consists of 8 subsets of 75 different words each. There are 12
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realizations of each word. The first and the last utterances for each word are chosen as the first and
the second acoustic sample. The result of each experiment is the average of the individual results
obtained from each subset.

The additional database used to learn the speech variability is the Conversation Telephone Speech
(CTS) database [14]. The utterances of this database consist of sentences pronounced by different
speakers in telephone conversations. The MLP and HMMs representing context-dependent phonemes
are trained on this database. When using HMM/GMM, 16 Gaussian distributions are used to describe
each state emission likelihood.

5.2 Experimental Setup

The systems implemented in this work are mainly divided in three groups depending on if they use
acoustic information, the graphemes of the word or a combination of both.

5.2.1 Using the Acoustic Information

In this work, we carry out experiments using one or two acoustic samples. This represents that the
user has pronounced each word of the test vocabulary once or twice.

System 1 : The word models are templates formed by PLP features [15]. This is the simplest
system because no information from other databases is considered. Since speech features are
not posteriors, the only possible local measure for the DTW implementation is the Euclidean
distance.

System 2 : The word models are based on HMM/GMMs using PLP features. The phonetic tran-
scription required to form the word models is obtained from a phonetic decoder applied to the
acoustic sample. The phonetic decoder is also based on HMM/GMMs. One phonetic tran-
scription is obtained from each acoustic sample. Hence, when two acoustic samples are used,
each test word is described by two phonetic transcriptions. This method is the acoustic-based
state-of-the-art in applications with limited training data size.

System 3 : This system implements the novel TM approach presented in this paper. Posterior
features obtained from a MLP are used to form the templates and the test utterances. In this
case, Euclidean distance and all the KL.-based measures described in Section 4 are used.

All the above systems use the acoustic information to build the word models. Systems 1 and 3
directly use the acoustic sample as a template and System 2 uses the acoustic sample to infer the
phonetic transcription that will be used to form the HMM-based word model. Moreover, Systems 2
and 3 incorporate the information of the speech variability learned on the CTS database. While in
System 2 this information is carried by the HMM/GMDMs, in System 3 this information is applied by
the MLP through the estimation of the posterior features.

5.2.2 Using the Grapheme Information

The grapheme information used in this work is provided by the database. This information is used to
infer the pronunciation transcription for each test word through a CART-based statistical model [1].
Then, word models based on phoneme-level HMMs can be built. Each word is only represented by
one phonetic transcription because there is only one grapheme transcription for each word. Since the
test words of the Phonebook database are common English words, we can expect accurate phonetic
transcriptions.

System 4 : In this system, HMM/GMM is used to form the word models. It represents the state-
of-the-art grapheme-based approach in applications with limited training data size.

System 5 : Word models are formed by the HMM /KL acoustic model.
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Word Accuracy
1 sample ‘ 2 samples
System 1 Dgye 56.8 75.2
System 2 90.6 95.4
System 3 Dgye 81.5 88.4
Dk, 91.4 95.7
Drir 90.1 94.0
Dgskr, 92.5 95.8
Doyeight 93.4 96.1
System 4 96.0
System 5 94.7
[ System 6 Dueigne | 964 | 97.2

Table 1: Word accuracy of the implemented systems. Systems using the acoustic information show
two results corresponding to the use of one or two acoustic samples.

HMM /KL computes the KL divergence instead of the log-likelihood to estimate the local score.
A complete description of HMM/KL can be found in [6]. The interest of using this type of model is
that its score can be combined straightforward with other systems also using the KL divergence.

5.2.3 Using Grapheme and Acoustic Information

In this section, we describe a system that combines the information from both the graphemes and the
acoustic samples. Again, two results are provided for this system corresponding to the use of one or
two acoustic samples.

System 6 : In this system, the scores given by the HMM /KL word model and the TM are combined.
This is possible because the local measure used in both systems is the KL divergence. The
combination strategy is the minimum score. Hence, the decoding criterion expressed in (1) is
replaced by

W = arg min min { ( min @(X,Y)) ,S(w)} (5)

weW Y ey (w)

where S(w) is the score given by the HMM /KL model for word w.

Other combination strategies such as the sum have also been experimented. However, the com-
bination based on the minimum score has shown to be the best. This combination strategy has also
been shown to be the best in other works [16].

System 6 benefits not only from the combination of two independent information sources (grapheme
and acoustic) but also from the complementarity of templates and a HMM-based parametric model.

5.3 Results

Table 1 shows the results obtained by the systems described above. The following conclusions can be
drawn:

e As expected, System 1 yields the lowest performance because it does not incorporate information
about the speech variability learned from an auxiliary database.

e Systems using the grapheme information generally yield a better accuracy than systems using
the acoustic information. It must be noted that the phonetic transcription inferred from the
graphemes is particularly accurate because test words where common words. In a user-specific



IDIAP-RR 08-15 7

application, words would probably have a less accurate phonetic transcription and hence, it
would yield a worse performance.

e The proposed method (System 3) outperforms the conventional TM approach (System 1). In
addition, the use of KL-based local measures further improves the accuracy. In particular,
Doyeignt yields significant improvement with respect to other measures because the contribution
of Dk, and Dy, depends on the entropy of each distribution. Moreover, it can be observed
that the accuracy of the proposed method when using Deign: is significantly better than state-
of-the-art acoustic-based approach (System 2) and yields comparable results to state-of-the-art
grapheme-based approach (System 4) when using two templates.

e The combination of the proposed method with HMM/KL further improves the accuracy of
the system. This can be explained because both approaches are complementary in two ways.
Firstly, word references are represented by two different type of models: templates and HMMs.
Secondly, the information used to build these references is independent: templates are built from
the acoustic information and HMM /KL is built from the grapheme information.

6 Conclusions

In this paper we have presented a novel approach for those applications where the amount of data
is limited. This approach is based on TM where speech features are phoneme posterior estimates.
In this paper, we confirm the suitability of applying KL divergence when using posterior features as
observed in previous experiments [5]. We also show that a weighted combination of the KL divergence
can further improve the accuracy.

In addition, this approach is related to posterior-based HMM systems [6]. Since both methods use
KL divergence as local measure, they can be directly combined. In this work, we also show that the
combination further improves the accuracy of the system. This combination benefits from the double
complementarity since (a) words are represented by templates, which can describe the dynamics of the
trajectories generated by the speech features in fine detail, and HMMs, which have good generalization
capabilities and (b) the information used to build the templates comes from the acoustic information
whereas the HMMs are formed from the grapheme information.
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