Nanosystems for a healthier and safer tomorrow

Giovanni De Micheli

[EPFL logo]
[Centre SI logo]
What direction for electronic research?

- We came a long way …
 - 50 years of electronics

- … and where are we going?
 - The next 50 years
Looking for scientific novelty

- **The technology push:**
 - New materials:
 - Carbon, organic electronics
 - Nano-devices:
 - Quantum confinement effects
 - Sensors:
 - Transduction mechanisms

- **The boundary conditions:**
 - Societal changes over 50 years of EE
 - From (transistor)-radio days to facebook
 - Computing and communication technologies bring a new universal perspective

(c) Giovanni De Micheli
Looking for impact

- The economic and societal pull:
 - World Economic Forum (Davos 10)
 - Improve the State of the World: Rethink, Redesign, Rebuild

- Summit on the global agenda (Dubai 09)
 - Most pressing technological/economic issues affecting the world growth
 - Directions for young generation
 - From students to leaders

- Strong overlap with broad EE issues
 - Information technology boosts the value of specific advances in devices to achieve a global perspective

(c) Giovanni De Micheli
The global agenda

- Ensuring sustainability
 - Smart energy production and distribution
 - Intelligent water management

- Strengthening welfare
 - Better, affordable health care and wellness
 - Dealing with ageing and young population

- Mitigating risks
 - Preventing catastrophes and pandemics
 - Monitoring the environment

- Enhancing security
 - Future of the internet
 - Preventing cyber and physical attacks
Smart energy

- **Smart grid**
 - Match supply and demand of energy in a diversified environment

- **Smart home/workplace**
 - Optimize energy consumption according to need

- **Smart data centers**
 - Provide information flow and distribution with limited energy cost

- **Challenges:**
 - *Real time response*
 - *Workload prediction*
 - *Optimum control*
Example: data centers

- Data centers are key to services like Google, Yahoo!, Microsoft…
 - Information is economic power
- Data centers consume 2-4% of world energy
 - Computation, storage and cooling
 - Localization of data centers
- Green data centers:
 - Dynamic power management
 - Hardware control and cooling
 - Hw/Sw co-design:
 - Virtualization to save energy
 - Online learning
- Challenges:
 - Energy vs availability vs latency

(c) Giovanni De Micheli
Electronic health

- Body monitoring
 - Biosensors
 - Body area networks
 - Smart textiles
- Clinical support
 - Remote diagnosis
 - Drug delivery
- Prevention
 - Monitoring nutrition
- Challenges:
 - Non-invasiveness
 - Safety and security
 - Autonomy and adaptation

(c) Giovanni De Micheli
Example: smart implants
Environment

- Monitoring heat, wind, vibration
 - Earthquake, flood prediction
 - Movement of glaciers
- Controlling pollution
 - Water, air purity
 - Bio-contamination
- Emergency relief control
 - Real time support for reaction
- Challenges:
 - Seamless presence
 - Biodegradability
 - Autonomous and adaptive operation
Example: water purity

- antenna
- solar cells
- sensors and electronics
- water flow
- pico-turbine

Modelliertes Diclofenac-Risikopotential in Fließgewässern bei Minimalabfluss Q_min in Mikrogramm pro Liter (inklusive Metabolite)
- < 0.001
- 0.001 - 0.01
- 0.01 - 0.1
- 0.1 - 1
- > 1

chemical to be detected

Carbon nanotubes & polymers

Ion-Sensitive Field Effect Transistor (ISFET)
The way ahead

Systems on Chips
Technology, architectures, integration

Distributed systems
Embedded systems on chip
Heterogeneity, connectivity, human
Requirements for electronic chip design

- From processors to multi-processors
 - Scalable computing and communication architectures
 - Systems and software redesign

(c) Giovanni De Micheli
The fabrication technology support

- Beyond CMOS: a myriad of new ideas

- Are these technologies apt/ready for system design?
- Can they mix and match with CMOS?

- How do we design with these technologies?
 - Higher defect densities and failure rates

(c) Giovanni De Micheli
New computational structures

- Computation requirements
 - Predictable design
 - Fast design closure

- Array based computation
 - Matching *nano* and *micro*

(c) Giovanni De Micheli
New communication structures

- Design requirements:
 - Predictable design
 - Fast design closure
- Network on Chip communication
 - Modular and flexible interconnect
 - Reliable on-chip communication
 - Structured design with synthesis and optimization support

(c) Giovanni De Micheli
New packaging technologies

- From planar to 3D integration
 - Chips have limited wiring resources
 - Electrical and manufacturing constraints limit heterogeneous planar integration
- *Through silicon vias* allow designer to stack:
 - Computing arrays
 - Memory arrays
 - Analog and RF circuitry
- 3D NoCs provide effective and reconfigurable means of realizing communication
Heterogeneous integration

- Electrical and mechanical parts
 - Microactuators, scavengers, microfluidics

- Electronics meets the living world

- Universal co-design

(c) Giovanni De Micheli
3D Biosystems integration

- Nano-structures
- Microfluidics
- Biosensors
- Analog Front-end
- Digital Post Processing
- Memory

1000-10000 nm
90-600 nm
45-180 nm
45-90 nm

(c) Giovanni De Micheli
Electronic system evolution through three illustrative examples
Lab on Chip design
Computer-aided diagnosis (CAD?)

- **Lab on chip** at point of care
 - Perform biochemical test on the field
 - Faster, cheaper, more effective...

- **How**
 - The ultimate hybridization of technologies:
 - Microfluidics: sample transport
 - Sensors: binding proteins, DNA to probes
 - Low-noise electronics
 - Powerful data processing algorithms and software

- A promise of lab on chip is to revolutionize medical care and offer personalized medicine

- Lab on chips are instrumental in environmental monitoring
Advanced integrated sensors

- Sense proteins, antibiotics
- Tethered bilayer:
 - Gold bottom electrode
 - Lipid bilayer
 - Ion channels
- Counter electrode in solution
Equivalent electrical model

- R_M Bilayer resistance
- C_M Bilayer capacitance
- C_I Interface capacitance
- R_S Solution resistance
Modulation of membrane resistance

Modulation of the membrane resistance, R_M, is used to detect or quantify the ligand binding to an ion channel.

Increase in the Re{Z} as a function of concentration is seen at mid-frequencies.

Ion channel activity

Typically 1-100Hz

Re {Z}

Freq
Data mining and interpretation
Data interpretation and clustering

- Grouping similar objects together
 - Detecting gene variations consistent with the sample choice
 - Inference of specific conditions
- Bi-clustering on large data sets
 - Simultaneous cluster of subsets of rows and columns
 - Gene and samples
- Problem solved with ZDD technology
 - Fast and complete data interpretation
Bio analysis and synthesis
Analysis and synthesis

- Analysis - understand biological mechanisms
 - Comprehend in full the value of the omics
 - Genomics, proteomics, transcriptomics

- Synthesis - modify/create new realities
 - Synthesize drugs that alter genetic/metabolic pathways
 - Pharmacogenomics
 - Synthesize biological compounds that support computation
 - Synthetic biology

- Multiple abstractions are needed for analysis and synthesis
Abstractions

- **Bio-chemical abstraction**
 - Event timing
 - Differential equation models

- **Logic level abstraction**
 - Zero-delay model
 - Finite-state system
 - Synchronous, asynchronous

- **Functional abstraction**
 - Biological function
 - Input-output analysis

\[
\begin{align*}
\frac{dx_a}{dt} &= r_a x_a + r_a x_c - \gamma_a x_d \\
\frac{dx_b}{dt} &= r_b x_a - \gamma_b x_d \\
\frac{dx_c}{dt} &= r_c x_b - \gamma_c x_c
\end{align*}
\]
T-helper cells

- Observed behavior:
 - Precursor Th0 cells yield:
 - Effector Th1 cells
 - Effector Th2 cells
 - Evolutions depend on specific gene expressions
 - Evolution can be captured by a gene regulatory network
Functional and logic-level model of T-helper cell

Th0 Cell

IFN-γ

IFN-β

IFN-βR

SOCS1

TCR

IL-18

IL-18R

NFAT

IFN-γ

IL-18R

NFAT

IL-12

IL-12R

JAK1

IFN-γR

IL-4R

IL-12

IL-18

IL-18R

IFN-γR

IFN-βR

STAT4

JAK1

STAT6

STAT3

TPR

IL-4

IL-4R

IL-10

IL-10R

STAT1

GATA3

(c) Giovanni De Micheli
Issues

- Orthogonalization of concerns
 - Focus on terminal behavior independent from timing

- Simulation versus traversal
 - Steady state is often the objective
 - Implicit methods can handle large amount of data

- Modify system by perturbation
 - Knock-out experiment *in silico*
 - Silence a gene
 - Stuck-at 0 (déjà vu?)
Knock-out example: *Arabidopsis Thaliana*
Environmental monitoring and control

Interconnect technology

Large-scale Sensor Networks

(c) Giovanni De Micheli
The environment

- We are embedded in the environment
 - Many inconvenient truths

- What are the challenges of wireless sensor networks to monitor/control the environment?
 - Massive amount of data to process
 - Distributing and powering the nodes
 - Providing redundancy to tolerate local failures
Engineering environmental systems

- Integrated sensing, computation, communication and embedded software
 - Local vs. global data processing and communication

- The power of data abstraction
 - Data reduction and integration

- The distributed intelligence approach
 - Reason and act locally with (some) global information
 - New computational paradigms, as compared to classical supercomputer approaches
The quest for energy efficiency

- Distributed wireless systems must (eventually) be autonomous
 - Energy harvesting from the environment
 - Mobile and fixed applications
 - Convert unused (degraded) energy into information

- Energy distribution systems must be efficient
 - Use information on the system to optimize energy distribution
 - Smart home, building, factory, …
 - Electric grid management
 - Convert information into energy savings

- Mutual interaction: energy ↔ information
 - Policies for run-time energy/information management will play a key role in system design
Dependability, redundancy and connectivity

- Bio-circuits are distributed in the environment
 - Local sensing, processing and communicating

- Dependability requires redundant components and links
 - Fault-tolerant HW, SW and communication
- Avoid system-level failure
 - Safety-critical applications
Cooperative engineering

- Bringing together engineer/scientists/doctors with different skills
 - Communication and vocabulary
 - Abstraction and modularity
- Collaborative workspaces
The program

Micro/nano/info technologies enable embedded systems and networks

HEALTH

SECURITY

ENVIRONMENT

Pollution and disease
Biodiversity mapping
Ubiquitous connectivity
Large-scale wireless sensor networks
Disaster monitoring and relief
Industrial facility management

VISION
Blood pressure
Positioning
DNA
Glucose

PROTEIN

NETWORK

HEALTH

ENVIRONMENT
Summary

- The road ahead has challenges and rewards:
 - Expanding our horizon is key to scientific viability and commercial profitability
- We need heterogeneous hardware design and the corresponding software infrastructure
 - Product/system design is an extremely complex task, because of the variety of facets and technologies involved
- System-level design technologies are crucial for system conception, design and management
 - Progress leads us beyond advanced silicon chip design
 - Scientific and financial benefits will stem from the system/service perspective
Thank you