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Abstract

Tasks that rely on semantic content of documents, notably Information Retrieval and Document Clas-
sification, can benefit from a good account of document context, i.e. the semantic association between
documents. To this effect, the scheme of latent semantics blends individual words appearing through-
out a document collection into latent topics, thus providing a way to handle documents that is less
constrained than the conventional approach by the mere appearance of such or such word.

Probabilistic latent semantic models take the matter further by providing assumptions on how the
documents observed in the collection would have been generated. This allows derivation of inference
algorithms that can fit the model parameters to the observed document collection; with their values
set, these parameters can then be used to compute the similarities between documents. The Fisher ker-
nels, similarity functions rooted in information geometry, constitute good candidates to measure the
similarity between documents in the framework of probabilistic latent semantic models.

In this context, we study the use of Fisher kernels for the Probabilistic Latent Semantic Indexing
(PLSI) model. By thouroughly analysing the generative process of PLSI, we derive the proper Fisher
kernel for PLSI and expose the hypotheses that relate former work to this kernel. In particular, we
confirm that the Fisher information matrix (FIM) should not be approximated by the identity in the
case of PLSI. We also study the impact on the performances of the Fisher kernel of the contribution
of the latent topics and the one of the distribution of words among the topics; eventually, we provide
empirical evidence, and theoretical arguments, showing that the Fisher kernel originally published by
Hofmann, corrected to account for FIM, is the best of the PLSI Fisher kernels. It can compete with the
strong BM25 baseline, and even significantly outperforms it when documents sharing few words must
be matched.

We further study of PLSI document similarities by applying the Language model approach. This
approach shuns the usual IR paradigm that considers documents and queries to be of a similar nature.
Instead, they consider documents as being representative of language models, and use probabilistic tools
to determine which of these models would have generated the query with highest probability. Using
this scheme in the framework of PLSI provides a way to bypass the issue of query representation, which
constitutes one of the specific challenges of PLSI. We find the Language model approach to perform as
well as the best of the Fisher kernels when enough latent categories are provided.

Eventually, we propose a new probabilistic latent semantic model consisting in a mixture of Smoothed
Dirichlet distributions which, by better modeling word burstiness, provides a more realistic model of
empirical observations on real document collections than the usually used Multinomials.

Keywords

Information retrieval, document classification, Fisher kernels, language modeling, PLSI, Smoothed
Dirichlet, latent semantics, probabilistic models.
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Résumé

La prise en compte du contexte, c’est-à-dire des associations sémantiques entre documents, peut avoir
un effet bénéfique dans le cadre de tâches qui reposent sur le contenu sémantique de documents, comme
la Recherche d’Information ou la Classification de Documents. Dans cette perspective, la théorie de la
sémantique latente vise à fusionner les contributions de mots qui occurrent dans la collection de docu-
ments en formant des catégories latentes; ceci produit une quantité qui permet un traitement des docu-
ments qui dépend moins de la simple apparition d’un mot que n’en dépend l’approche traditionelle.

Les modèles à sémantique latente probabilistes poussent l’argument encore plus loin, par des hy-
pothèses explicites sur la façon dont les documents observés sont créés. On peut, de là, dériver des
algorithmes d’inférence pour adapter les valeurs des paramètres du modèle à l’observation. Ces valeurs
peuvent alors s’utiliser pour comparer les documents. Les noyaux de Fisher, fonctions de proximité qui
ont leurs racines dans la géométrie de l’information, constituent de bons candidats pour servir de simi-
larités dans ce cadre.

Dans ce contexte, nous étudions le modèle Probabilistic Latent Semantic Indexing (PLSI), proposé
par Hofmann. En analysant en profondeur le processus de génération de PLSI, nous mettons à jour
le réel noyau de Fisher pour PLSI, et montrons sous quelles hypothèse le noyau d’Hofmann devient
une approximation du noyau réel. Nous confirmons que la Matrice d’Information de Fisher (FIM)
ne s’approche pas par la matrice identité dans le cas de PLSI. Nous menons une étude détaillée des
différents termes qui constituent le noyau de Fisher, et essayons un éventail de variantes. L’expérience
prouve que le noyau d’Hofmann ajustée pour FIM est le noyau le plus performant pour PLSI. Il se
compare favorablement à la référence BM25, et surclasse même nettement les modèles classiques commetf-idf ou BM25 lorsque des documents doivent être rapprochés alors qu’ils ne partagent que peu de
termes.

Nous poursuivons en proposant une proximité fondée sur les modèles de langue. Au lieu de com-
parer des objets de même nature représentant les documents et les requêtes, comme en RD classique,
cette approche envisage les documents comme des réalisations de modèles de langue, et utilisent des
outils probabilistes pour décider lequel des modèles en question est le plus susceptible d’avoir généré la
requête. Dans PLSI, cette approche permet de contourner élégamment la question de la représentation
de la requête, qui est l’un de ses points faibles. L’approche à modèles de langue s’avère aussi performante
que les meilleurs noyaux de Fisher lorsque le nombre de catégories latentes est suffisant.

Pour finir, nous proposons un nouveau modèle constitué d’un mélange de distributions de Dirichlet
lissées. Ces distributions simulent la tendance des mots rares à apparaître en rafales, et modélisent ainsi
mieux la génération des termes que les multinomiales habituelles. À la différence de PLSI, ce modèle
est pleinement génératif, ce qui permet la représentation des requêtes et l’indexation incrémentale.

Mots-clefs

Recherche d’information, classification de documents, noyaux de Fisher, modèles de langue, PLSI,
distribution de Dirichlet lissée, sémantique latente, modèles probabilistes.
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Notations

Collection (or “corpus”)

• C : collection, in the sense of all the word occurrences through all documents

• |C |: total number of occurrence of all terms in all documents: |C |=∑d
∑

w n(d , w)

Latent topics (or “categories”, “semantic categories”)

• Z : set of the latent topics

• P (z): probability of occurrence of topic z ∈ Z .

Documents

• D: set of all documents d that appear in the collection

• P (d ): probability of document d ∈ D occurring in the collection

• |d |: number of term occurrences in document d . |d |=∑w n(d , w)

Terms (or “words”)

• V : vocabulary, set of all terms appearing in the documents

• P (w): probability of term w ∈V occurring in the collection

• n(d , w): number of occurrences of term w in document d

• P (d , w): probability of term w ∈V occurring in document d ∈ D, or probability of the (d , w)
indice pair in the case of PLSI

• bP (d , w): “empirical” or “observed” value of P (d , w). bP (d , w) = n(d , w)/|C |

• bP (w|d ): “empirical” or “observed” value of P (w|d ). bP (w|d ) = n(d , w)/|d |

Fisher Information matrix

G(θ): Fisher Information matrix in the canonical parametrisation (i.e. without square root re-parametrisation)

G(ρ): Fisher Information matrix in the square root parametrisation

component for KU
z : αU(z) =

∑
d

�
P (d ,z)p

P (z)

�2

=
∑

d P 2(d |z)P (z)

component for KU
w : γU(w, z) =

∑
d

�
bP (d , w) P (z|d ,w)p

P (w|z)

�2

component for KH
z : αH (z) =

∑
d

�
P (d |z)p

P (z)

�2

=
∑

d
P 2(d |z)

P (z)

component for KH
w : γH (w, z) =

∑
d

�
bP (w|d ) P (z|d ,w)p

P (w|z)

�2

Identity matrix: I
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Kernels

Hofmann kernel: KH = KH
z +KH

w =
∑

z kH
z +

∑
w kH

w

Unnormalised kernel: KU = KU
z +KU

w =
∑

z kU
z +

∑
w kU

w

“Vector Space” kernel: KVS = KVS
z +KVS

w =
∑

z kVS
z +

∑
w kVS

w
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Chapter 1

Introduction

I learn over the course of the morning that “library work” covers such an enormous area of informa-
tion management that back during the dark ages, before libraries became self-organising constructs,
people used to devote their entire (admittedly short) lives to studying the theory of how best to
manage them.

— Charles Stross, Glasshouse

Information Retrieval (IR) has been an area of enormous development since the 1950s. With the
advent of the Internet, the generalisation of personal computers and the rise of distributed databases,
information has become so abundant that managing it has become impossible without the help of au-
tomated systems. Furthermore, the democratisation of the World Wide Web has been a catalyst for a
searing demand from the general public for a variety of Natural language processing services, ranging
from assistance to translation (Altavista – Babel Fish Translation) to automated retrieval of documents
relevant to a given query (Google, Yahoo,. . . ), a task known as ad hoc retrieval.

Automated information retrieval is an attempt to supplement manual searching of the vast quanti-
ties of available information, an overwhelming task for a human, with the processing power of com-
puters. A system is provided a mathematical representation of the available document collection, to
which it compares a representation of the query issued by the user. Scores of relevance are produced
based on document-query similarity functions, and the user is returned with a list of documents sorted
by score.

While they are quicker than Humans to process large amounts of information, machines are in this
case plagued by their inability to understand the meaning of the data they process. The fallout can
be observed in especially vivid light when synonymy or polysemy are involved, but more generally
amount to overall failure to take context into account. Figure 1.1 shows an example of automatically
generated text where two distinct events are erroneously brought together: the victory of the Southern
Korean team at an international shooting championship is considered to be related to an announcement
that the demented gunman of the Virginia Tech massacre of 17 April 2007 was from South Korea. The
mistaken relation is caused by the occurrence of the terms “Korean” and “shooting” in both newsfeeds.

Incorporating context into ad hoc Information retrieval has thus been one of the foremost tracks
in recent research on the field [3]. The present work positions itself in this trend.

15
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Figure 1.1: Screenshot from KBS, 17 April 2007. In a typical example of computer-generated, unin-
tended dark humour, the automated system that classifies newfeeds did not distinguish between the
demented Korean shooter of the Virginia Tech incident, and the Korean shooters of the national sport-
ing team.
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1.1 Motivations

The family of topic-based representations of documents is a way to circumvent the problems of IR that
stem from failure to account for context. By considering semantic categories, or topics, as a parameter
of the document collection, on the same foot than words and documents themselves, these representa-
tions allow better matching documents of similar content — even if they share few actual word.

One of the foremost manners to model a document collection is to assume it to be the realisation of
a stochastic process of some sort. When this process features latent topics, the model is a probabilistic
latent semantic model. This family of models provides a set of parameters that describe the collection,
and the process by which they contribute to produce data. More specifically, Information Retrieval
systems based on probabilistic latent semantic models are constituted of three elements (see figure 1.2,
p. 1.2):

a generative model. This model defines a number of hidden parameters and describes how they generate
documents. It typically comprises

• a model of how topics z are generated, defined by probability P (z)

• a model of how words w are generated knowing each topic z, defined by the probability
P (w|z)

a machine learning scheme, derived from the model. It allows estimating to the parameters as to fit the
observed data

a document similarity, derived from the model. It uses the parameters and their values to determine
how similar two elements of the observed data are.

For instance, the so-called “Naive Bayes” model assumes that for each document d , a topic z is draw
with multinomial probability P (z), and that the words to appear in this document are then drawn with
probabilities P (w|z) (see section 3.2.1, page 38 for more details). Probabilistic Latent Semantic Indexing
(PLSI) [27] is another example of probabilistic latent semantic models, in which the generative model
furthermore comprises an element that generates document indices, in addition to topics and to words
knowing a given topic (see section 3.3.1, p. 42 for more details).

Table 1.1 provides a classification of a few probabilistic latent semantic models, according to the
nature of their “topic generator” and of their “word generator”. For the Machine learning part of the
system, we used standard schemes, namely the Expectation-Maximisation algorithm, which can be de-
rived from the generative model. Finally, the semantic similarity constitute the essential part of this
work (chapters 4 and following).

To benefit from the representations based on latent topics in the framework of a task such as Infor-
mation Retrieval or Text Classification, ways to compare the document representations between each
others are needed. In the vector space representation of documents, defined from the number of occur-
rences of each word in each document, semantic similarities between documents are typically measured
through the use of standard geometric similarities, like cosine. In the case of stochastic models, the se-
mantic similarity should be founded on the generative process; Fisher kernel constitute a good candidate
in this respect [29, 2].

The present thesis contributes to the field of probabilistic latent semantic models by studying the
associated document similarities; it also proposes an approach to the “word knowing topic” aspect of
generative models based on the Smoothed Dirichlet distribution. Information Retrieval was chosen as
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Topic-based IR

Generative
model

Machine
learning

Semantic
similarity

Topic
generation

Word
generation

LSD
Language
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Figure 1.2: Components of a PLSM-based IR system: the generative model, which comprises a topic
generator and a “word knowing topics” generator, defines parameters and the generation process, and
determines a machine learing scheme and similarities. The machine learing scheme, derived from the
generative model, fits values the of the parameters to observed document collection. The semantic sim-
ilarity, derived from the generative model, uses the parameters to compare documents of the observed
collection. The elements of the system addressed in this work are framed; the solutions studied for
these elements are in italics.

an evaluation framework, though the methods exposed thereafter can be applied to a range of other
textual or non-textual tasks such as clustering, categorisation, etc.

In the course of the work, we formally develop the Fisher kernel for PLSI from the ground up,
uncovering its rigorous form stemming from the IID nature of the PLSI generative process. This
completes the previously published study of PLSI Fisher kernels. We relate the IID-based kernel to
previously published Fisher kernels for PLSI by explicitly giving transformations that lead from the
IID-based kernel to previously published kernel.

We study in details the relative contributions of the different parts of the Fisher kernel for PLSI,
as well as of the role of the Fisher information matrix, and quantify their contribution to the perfor-
mances of the overall system. this explains previously published results and determines which version
of the Fisher kernel is the best to use as a document similarity in a PLSI framework.

We evaluate a language model approach to PLSI similarities, and provide a similarity based only on
observable features of the query. Reliance on only observable features of the query dispenses from the
need for latent parameters for the query; this constitutes a theoretically grounded manner of bypassing
the problem of “folding in” the queries.

We also herald the approximations needed to make the exact form of the PLSI Fisher kernel conve-
nient for computation, and to link it to previously published literature.

The second contribution of this thesis is Latent-based Smoother Dirichlet (LSD, see table 1.1), a
probabilistic latent semantic model where the generative model is constituted of a mixture of Smoothed
Dirichlet distributions. his provides a fully generative latent topics model built on a strong model of
word generation. We provide the generative model, posterior inference of the parameters and the Fisher
kernel appropriate for it.

1.2 Structure of the thesis

This thesis is structured in three parts:
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TERMS

Generation of
through Multinomial DCM [51] Smoothed Dirichlet [58]

P (z) given as pa-
rameter

Naive Bayes
PLSI [27] – LSD

P (z) generated
by Dirichlet
distribution

LDA [7] DCMLDA [16] —

T
O

P
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S

P
R

O
P

O
R

T
IO

N
S

P (z) generated
by Logistic nor-
mal distribution

Correlated Topics [6] – —

Table 1.1: Generative models classified by their generation of latent topics and of words, with the
models addressed in this thesis in bold face. Naive Bayes is detailed in section 3.2 (p. 37); PLSI, in
section 3.3 (p. 42); and Smoothed Dirichlet and LSD, in chapter 6 (p. 71).

1. The first part describes the context and previous work:

• Chapter 2 gives an outlook of the context of the systems that we use as a benchmark.

• Chapter 3 describes the Naive Bayes and PLSI models in detail, notably including the deriva-
tions of the posterior inference through EM and the formerly published Fisher kernels.

2. The second part contains our major contributions:

• Chapter 4 describes the Fisher kernel that stems directly from a literal application of the
generative process of PLSI. Its connections to previously published kernels are studied and
explained.

• Chapter 5 studies the individual contributions of the different constituents of the Fisher
kernel. It also details legacy kernels published in previous works and put them in perspec-
tive from each other.

• Chapter 6 proposes a novel probabilistic latent semantic model called Latent-based Smoothed
Dirichlet; it uses a mixture of Smoothed Dirichlet distributions to model the document
collection in a completely generative manner.

Chapter 7 provides experimental results for the previous chapters.

3. The last part, constituted by chapter 8, concludes this work and proposes outlooks.

1.3 Contributions

The foremost contributions of this thesis are

• a formal derivation of the Fisher kernel for PLSI, uncovering its rigorous form stemming from
the IID nature of the PLSI generative process; in addition to completing the previously published
study of PLSI Fisher kernels, this puts previously published kernels into perspective and explicits
which transformations lead from the IID-based kernel to previously published results (chapter 4,
page 53).

• application of the language model approach to PLSI similarities, providing a similarity based only
on observable features of the query. This has the effect of bypassing the problem of “folding in”
unknown documents in a theoretically grounded manner (section 7.5, page 85);
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• a study of the relative contributions of the different parts of the Fisher kernel, as well as of the
role of the Fisher information matrix; this explains previously published results and determines
which version of the Fisher kernel is the best to use as a document similarity in a PLSI framework
(chapter 5, page 63).

• a proposition for a novel, fully generative probabilistic latent semantic model called Latent-based
Smoothed Dirichlet, where the generative model is constituted of a mixture of Smoothed Dirich-
let distributions. We provide the generative model, posterior inference of the parameters and the
Fisher kernel appropriate for it (chapter 6, page 71).

1.4 Publications

This thesis has yielded four publications:

1. Jean-Cédric Chappelier and Emmanuel Eckard. “Rôle de la matrice d’information et pondération
des composantes dans les noyaux de Fisher pour PLSI”. In Actes du colloque Coria 09, pages 279-
294.

2. Jean-Cédric Chappelier and Emmanuel Eckard. “Utilisation de PLSI en recherche d’information”,
16ème conference sur le Traitement Automatique des Langues Naturelles, 2009

3. Jean-Cédric Chappelier and Emmanuel Eckard. “PLSI: the true Fisher Kernel and beyond”. In
Proceedings of the European Conference on Machine Learning and Principles and Practise of Knowl-
edge Discovery in Databases 2009.

4. Jean-Cédric Chappelier and Emmanuel Eckard. “An Ad Hoc Information Retrieval Perspective
on PLSI through language model identification”. 2nd International Conference on the Theory
of Information Retrieval, Cambridge, 2009.



Chapter 2

Context and state of the art in
document representation

Abstract

This chapter is intended to give an overview of the context in which the present work is
positioned. It present the problematic of Information Retrieval and Text Classification,
describes the toolchains used in this field, and briefly introduced Vector Space and latent
topic-based Information Retrieval, along with document similarity measures. Eventually,
it lists software tools that provide some of these components, as well as ressources for
evaluation.

2.1 Introduction

This thesis positions itself in the framework of Information Retrieval (IR) [84], and more specifically
of latent-based IR. It studies the semantic similarities adapted to Probabilistic Latent Semantic Indexing
(PLSI), selected as an instance of stochastic latent semantic model.

IR consists in recovering documents of a collection that match a given query; Text Clustering and
Text Classification (TC) [71] consist respectively in regrouping documents of similar semantic content,
and in distributing documents amongst pre-defined semantic categories. IR and TC share a number
of techniques [71] such as indexing, which transforms documents into objects usable by a computer;
document similarity, which allow comparing documents and judging how semantically close they are
to each other; and evaluation, which compares the output of the system with a Human-made reference
to judge how well the system performs.

It has been argued that Information Retrieval systems are in fact classification systems[45, 57],
where documents are classified into the “relevant” and “non-relevant” classes. However, fundamental
differences do exist:

1. information retrieval depends on queries that are a priori unknown. This can entail specific
consequences, notably when document representation is ill-defined for queries.1

2. queries have specific traits, well distinct from documents. One notable aspect is short queries,
which need to be expanded (query expansion [67]) before good results can be obtained.

1This is the case, for instance, for dimensionality reduction models that are not entirely generative, like PLSI. The learning
phase constitutes a representation process defining a latent space into which queries must be projected — a non-trivial problem
when this operation is not clearly defined.

21
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There is no question that text classification and information retrieval are very similar, enough to per-
meate each other — for instance, variants of query expansion have been used in TC [94]. Nevertheless,
if a specific trait of IR queries can be blurred by circumstances or by a point of view, the fact that they
are a priori unknown yields fundamental differences from the known documents in TC.

Recently, beginning with the Latent Semantics Indexing (LSI) [15], Information Retrieval has been
performed by transforming the word vector space as to make it more favourable to Information re-
trieval, notably by extracting latent semantic features of the text.

Probabilistic models of a collection of documents can be constructed by providing simple hypoth-
esis on “what causes documents to happen”, or “how they have been generated”. For example, Hoff-
man’s Probabilistic Latent Semantic Indexing (PLSI) model postulates that documents collections are
constituted of documents d , terms w and topics z. Documents are considered to be observable realisa-
tions from which the hidden parameters P (z), P (d |z) and P (w|z) can be inferred through Expectation-
Maximisation. These parameters are then used in document similarities that allow IR to be performed.

2.2 The Information Retrieval processing chain: a functional break-
down

IR systems aim to process data that is in nature intended for human usage; this data is usually not
written with computers in mind, and needs some sort of formating before becoming exploitable by a
machine. This formatting phase, called indexing, may contain a number of steps: recognising where
words begin and end, or identifying singular and plural forms as occurrences of one same word, are
typical examples of such tasks.

The toolchain for IR or TC is composed of a sequence of steps that depends on the application
(more precisely, depending on the intended result, available data , language in which the data is written,
. . . ).

A toolchain for IR in English will typically perform the following steps:

1. translate the text of each document into a mathematical object D ∈ S, S being the representa-
tion space. For instance, a good and often-used document representation D is a vector of term
frequencies.

2. translate the query into a similar mathematical object Q ∈ S.

3. choose a semantic similarity, i.e. function f : S × S → R of a pair of indexed documents; com-
pute the value of the function of each (document – query) pair and associate the result to the
(document – query) pair.

4. compare the results of the function for all (document – query) pairs given a pre-determined cri-
teria; for each query, order the (document – query) pairs.

5. documents are ordered

6. for each query, return the corresponding list of documents

Each of these steps can be refined to some extend. For instance, before the first step, it might be
relevant to ponder whether or not we wish to distinguish between two different forms of the same
word (plural or singular of one work, or accusative vs nominative); between words of the same family,
like nouns, verbs, adjectives; between several different spellings of a same word. This first step is called
indexing.
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Indexing consists in associating documents to points in a high-dimensional representation space.
This step is what allows an actual semantic metric to be used, rather than performing a mere compar-
ison as to whether words occur or not in a particular text [5]. Indexing entails two choices: that of a
set of indexing terms, and that of their weighting. Indexing terms are the vocabulary tokens used to de-
scribe a document — typically “words”, but more accurately stems, noun phrases, etc.; term weighting
expresses the relative importance that is given to one indexing term with, compared to others, as some
indexing term appear more sense-bearing than other.

Families of different indexing schemes can be typified along two criteria [45]:

• choice of indexing terms: human or machine;

• number of terms: indefinite or fixed a priori.

In indexing with an indefinite number of terms, new terms can be added on the fly as new docu-
ments are being indexed, and their contribution can be accounted for straightforwardly. In indexing
with a fixed number of terms, the system does not attempt to account for new terms. In this case,
the terms of the vocabulary can be chosen either before indexing, or during indexing; but if adding a
document to the index is possible, new terms that it might be bearing would be ignored.

Polysemy, synonymy and term relevance field2 hinder the implementation of algorithms before
representation [45]. A naive approach consists in using surface forms of the terms, without accounting
for polysemy or synonymy, either with binary weighting (accounting only for the presence or absence
of a word), or more advanced representation that uses statistical features, like the number of times a
word appears in a document (term frequency) or the number of documents in which a word appears
(document frequency). This naive approach is extremely cost-effective: as much in IR [69] as in TC, it
has been shown that the most sophisticated representations do not necessarily yield better results than
those based on term frequency and document frequency [76, 17, 14].

Using phrases or passages as indexing terms has been tried. Phrases can be defined either syntacti-
cally [43] or statistically [12], using terms which statistically tend to appear close together rather than
terms which bear a syntactical meaning. Research in these directions is underway [53, 54, 1].

To illustrate the indexing phase, we take a sample of text and apply typical indexing steps. The first
articles of the Universal Declaration of Human Rights on 1948 go

All human beings are created free and equal in dignity and rights. They are endowed
with reason and conscience and should act towards one another in a spirit of brotherhood.
Everyone is entitled to all the rights and freedoms set forth in this Declaration, without
distinction of any kind.

Tokenisation recognises the beginning and ends of the words and separates them; in the English
version of the text, these positions are clearly marked by punctuation marks, and this step is straight-
forwards and leaves the text unchanged; it would no be so with the Chinese version.

Normalisation removes punctuation marks and capitalisation, yielding

all human beings are created free and equal in dignity and rights they are endowed with rea-
son and conscience and should act towards one another in a spirit of brotherhood everyone
is entitled to all the rights and freedoms set forth in this declaration without distinction of
any kind

Stopwords are words that are listed as items to ignore. They comprise the most commons of words
bearing no semantic content, like determiners. Their removal yields

2That is the semantic field within which a term has a particular meaning, a question of particular interest for technical terms.
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human beings created free equal dignity rights endowed reason conscience should act to-
wards another spirit brotherhood everyone entitled rights freedoms set forth declaration
distinction kind

Stemming consists in reducing words to their semantic core, and removing inflexions like plural,
cases, or verbal forms. Stemming by Porter’s stemmer [85, 80] would yield

human be creat free equal dign right endow reason conscien should act towards another
spirit brotherhood everyone entitl right freedom set forth declaration distinct kind

On this basis, a mathematical object representing the document can be constructed.

2.3 IR models based on observable features

In IR, like in TC, documents are usually represented by vectors of weights associated to indexing
terms [71].

Coordinates in the representation space are a function of whether an indexing term appears in the
document or not; is some cases, of how many times they appear within a given document; and of how
they populate the document collection.

The “bag of word” assumption consists in ignoring the position of words in a document. The
representation of the document is degraded from a a sequence of words into a multiset (or bag), and the
semantic content of the document is determined only by its term frequencies. To further indexing of
the sample of the Universal Declaration of Human Rights, a bag of word representation of the stemmed
Declaration would turn it into

(de
lar, 2) (distin
t, 2) (human, 2) (polit, 2) (right, 3) (status, 2)

In this case, the terms are weighted by term frequency and the words appearing only once have been
eliminated.

Making the Bag of Words assumption has consequences on the probability of a modeled document.
For instance, a very simple model is an independent identically distributed (IID) process generating
unigrammes (single words), and its probability is

P IID(d ) =
∏

w∈V

P (w)n(w,d ) .

A similar model is the multinomial model, which generates documents with probability:

P multinomial(d ) =
|d |!

∏
w∈V n(w, d )!

∏

w∈V

P (w)n(w,d )

What distinguishes the IID generation of unigrammes from the multinomial model is the Bag of Words
assumption, which alters the normalisation of the distribution as the order of the sequence becomes
irrelevant.

The Bag of Words assumption is the basis for different forms of IR, notably Boolean IR and Vector
Space IR.

Boolean IR attributes a binary weight (0 or 1) to a term, according to whether is appears in a docu-
ment or not. The type of weighting allows performing boolean algebra with keywords. For instance,
the keywords associated with the sample of the Universal Declaration of Human Rights would be

(de
lar) (distin
t) (human) (polit) (right) (status)
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Vector Space IR associates documents with vectors of a vector space whose dimensions represent
the words contained in the collection. Comparison between two documents can then performed using
similarities based on cosines.

The tf-idf weighting is a traditional and popular numerical weighting for Vector Space IR [79].
The tf refers to the term frequency within a given document. idf refers to the inverse documents
frequency of the term3. A number of different flavours of tf-idf exist [74].

BM25 is a more complex similarity based on probabilistic retrieval models [66]. Its latest variant,
BM25F, is considered as state-of-the-art in the IR community [64].

Research continues to find similar, more efficient weighting of the same nature [79].

2.4 IR models based on latent features

Using information based on latent semantic features could be a way to improve the retrieval by match-
ing documents of the same context even if they share few common terms, by disambiguating between
several meanings of a same surface form, and generally to overcome the problems posed by polysemy
and synonymy.

The latent semantic method relies on the notion that latent topics can be inferred from the distribu-
tion of terms amongst documents; by relying, implicitly or explicitly, on the co-occurrence of terms,
the context or a particular occurrence can be determined, and matched to similar contexts.

Latent semantic features were introduced with the Latent Semantic Indexing (LSI), in an attempt to
reduce the dimensionality of the representation space. Some learning systems rely on dimensionality
reduction to classify documents — for instance Linear Least Squares Fit (LLSF) [91]. In general, learn-
ing algorithms respond well to dimensionality reduction, as it tends to reduce problems of overfitting.

Dimensionality reduction can be spread amongst two families [44]:

• Feature selection : the reduced indexing space is constituted of a sub-set of the dimensions of
the original indexing space. An example of such a configuration would be to select the most
significant indexing terms.

• Feature extraction : the reduced indexing space is constituted of a new space, different from the
original indexing space, and possibly of a completely different nature. For instance, LSI produces
an index whose dimensions are “fusions” of the indexing terms of the original space, through
linear combination amongst similar semantic fields.

Feature selection: Dimensionality reduction through term selection aims at extracting the subset of
the original dimensions that contains most of the sense of the documents.

A straightforwards example is filtering terms according to their importance, through a numerical
criterion: document frequency, or more sophisticated criteria based on Information Theory. Notable
examples include DIA association factor [21], Chi-square [12, 22, 70, 72, 93, 92], NGL coefficient [59,
68], Information gain [12, 40, 43, 46, 55, 56, 93, 92], Mutual information [17, 39, 41, 46, 47, 56, 68, 81,
93], Odds ratio [12, 55, 68], Relevancy score [90], GSS coefficient [22] and DCA [10].

Feature extraction: Dimensionality reduction through term extraction reduces the orthogonality
between dimensions that stem from the Standard Model by “blending” the dimensions that bear the
same concepts into another. LSI fathered a lineage of models based on this principle. Term extraction
allows for better management of synonymy [18].

3i.e. the inverse of the number of documents that contain one of more occurrences of the term.
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The foremost representants of this trend are LSI and its derivatives, as well as Term clustering,
which can be performed either supervised or non-supervised4 . The following provides a short descrip-
tion of the most notables members of the Term extraction trend.

Latent Semantic Indexing (LSI) is a techniques of dimensionality reduction that creates a lower-
dimensionality space by performing a Principal component analysis over the occurrence matrix rep-
resenting the corpus of documents and keeping the N most significant dimensions. As such, it is an
example of term extraction, since the resulting dimensions are linear combinations of the dimensions
of the original space.

The performances of LSI match and often surpass those of term selection through χ 2 [70]. It
has entailed a number of developments, such as Polynomial filtering, a matrixless variant [33]; pre-
processing optimisations [82]; and non-linear structures [25].

Probabilistic Latent Semantic Indexing (PLSI, described in much deeper details in the next chapter,
section 3.3, page 42) is also a technique of dimensionality reduction by term extraction. It is based on
the postulate that documents are realisations of mixtures of conditional probabilities over topics, doc-
uments, and terms. Estimated by machine learning techniques performed on the document collection,
these probabilities constitute parameters from which IR or TC systems can be built.

After the introduction of the PLSI model, the document similarities used to compare PLSI repre-
sentations of document have quickly evolved from ad hoc similarities based on cosine [27] to the Fisher
kernel [28]. To address a number of practical and theoretical concerns, a variety of flavours of Fisher
kernels for PLSI have been proposed [61] (see also the kernels listed in chapter 5).

This thesis is largely focused on the Fisher kernels for PLSI. A detailed review of the kernels of the
literature is provided in section 3.3.3 (p. 46), preceding the main contributions that we provide on the
topic, starting from chapter 4 (p. 53).

PLSI is not a genuinely generative model, as it does not provide a generation scheme at the level
of the document. To remedy this issue, Blei et al. [7] proposed Latent Dirichlet Allocation (LDA), a
generative probabilistic model that attempts to describe exchangeability of both words and documents,
i.e. their IID nature conditional to a latent topic. LDA defines finite mixture models on latent topics to
generate the collection, every subject being modeled as a mixture over the probabilities of latent topics.

It has been shown that PLSI is a maximum a posteriori estimated LDA model under a uniform
Dirichlet prior [23]. LDA is little sensitive to its Dirichlet priors [62].

2.5 Similarity functions for documents

Given document representations in a mathematical space, IR or TC tasks can be performed with a
document similarity function.

2.5.1 General principles

In the 1980s, Bollman published a study of metrics between documents [9, 8], citing six criteria that a
“reasonable retrieval function” should fulfil [19]:

1. order relation for pairs of documents: for any two documents of the same length, given a one-term
query, the document containing the most occurrences is ranked highest;

4Of course, dimensionality reduction by term clustering would amount to term selection if the resulting clusters are centred
on the indexing terms of the initial representation space.
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2. order relation for differences between the term frequencies in three documents;

3. term discrimination: documents containing more occurrences of discriminating terms are favoured;

4. relation on influence of out-of-query terms;

5. relation on document length for two documents with the same term count for query terms;

6. constraint between tf and the document length;

These amount to two constraints on term frequencies (relations 1 and 2), a constraint on term
discrimination (3), two constraints on document length normalisation (4 and 5), and one constraint on
the interaction between tf.

Concretely, these relations are a formal description of the following intuitions:

• documents with the most occurrences of a desired term are favoured (1);

• documents that match several terms are favoured (2);

• a rise from 1 to 2 occurrences has more impact that from 100 to 101 (2);

• the respective effects of tf and idf are regulated and balanced (3);

• for a same term frequency, a shorter document will be favoured (4), but to a “reasonable” extend
(5,6);

• the respective effects of tf and |d |, the document length, are regulated and balanced (6);

These criteria have been put in practise with the numerous variants of tf-idf of SMART5 or in
BM25 [66], notably.

In the last decade, an important development of document similarities for probabilistic models in
IR has been based on the “Language model” approaches, presented in the next section.

2.5.2 Language models

Language models [63, 96, 48] consist in a probabilistic profiles over the vocabulary. To a document d ,
language models associate a probability distribution over the vocabulary, Md = {P (w|d ) : w ∈V }.

In the IR context, a query, represented as an empirical term distribution is considered to be a real-
isation of the document model Md of one of the documents of the collection [4] (see figure 2.1). The
document model distribution may be based on unigrammes, or on model accounting for positional
information, such as passages [50]. The search for the most relevant document d for a given query q
then amounts to maximising P (q |d ) over the d . This can take two courses:

1. Keeping in line with the assumption that the observed query bq be a realisation of Md , the most
relevant document can be chosen as the one that maximises the likelihood of this realisation:
Ld (bq) = log P (bq |Md ) [88, 4], with

L(bq) =
∏

w∈q
P (w|Md )

n(q ,w) .

5see http://people.
sail.mit.edu/jrennie/e
o
-svm/smart.html
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Figure 2.1: Classical IR (2.1a) chooses relevant documents using canonical document similarities; it
compares documents and queries representations of the same nature. Language models (2.1b) infer the
probabilistic models, of which documents are assumed to be realisations; the query is considered to be
a realisation of these models, and the document whose model better explains the query is chosen as a
best match.

2. The other course, equivalent in nature to the former [37], measures the divergence between
the empirical distribution P (bq) and a probability distribution of reference P (d ). The canonical
example for such a measure is the Kullback-Leibler divergence [95, 35]

SKL(d , q) =−KL
�bP (w|q), P (w|d )

�
=
∑

w∈q∩d

bP (w|q) log
P (w|d )
bP (w|q)

, (2.5.1)

where bP (w|q) = n(q , w)/|q |, the number of occurrences of word w in query q divided by the
length |q | of query q .

Smoothing

The former straightforwards expressions ofSKL andSLogL use the normalised raw term count bP (w|q) =
n(w, q)/|q | as estimator for P (w|q). However, estimating the query model has been the subject of much
work, that aim at preventing unseen features from being attributed a zero probability [36]. Proposed
solutions include Jelinek-Mercer smoothing [32], shrinkage style estimators [63], Good-Turing esti-
mate, used on higher order n-grammes [78], and a two-stage smoothing model [97]; clusters have also
been used for smoothing [36], produced by k-means [48] or LDA [88]. Models provided by proba-
bilistic latent semantic models, such as PLSI, can be used for smoothing, combining with the empirical
probability estimates [4].

To illustrate, we describe the two simplest smoothing schemes:

Jelinek-Mercer smoothing is a way to balance between the normalised term count of a document (or,
here, of a query) and the normalised term count amongst the entire document collection. The
unconditioned (“general English”) probability of a term w is estimated, for instance, as

PGE(w) =
∑

d∈D

bP (w, d ) = n(C , w)/|C |, (2.5.2)

where n(C , w) =
∑

d∈D n(d , w) is the number of occurrence of word w in the entire corpus
C , and |C |, the size of the corpus, is |C | = ∑w n(C , w). Using the above, the Jelinek-Mercer
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estimator eP (w|q) of P (w|q) is written

eP (w|q) = (1−λ) bP (w|q)+λPGE(w), (2.5.3)

with λ ∈ [0,1].

Pseudo-feedback is another way to build a smoothed estimator for P (w|q) [11, 38]. The idea is to
estimate P (w|q) from the top ranking documents from an initial retrieval phase, as done for
instance in the Relevance Model [42]: a first retrieval is performed and the N highest documents
of the rating, with a rather small N , are then used to estimate

eP PF(w|q) =
1

N

N∑

i=1

P
�

di (q), w
�

with di (q) : i th best match.

Finally, a second retrieval phase is performed with the normalised term count replaced with
eP (w|q) = (1 − λ) bP (w|q) + λ eP PF(w|q). In recent work, λ is learnt automatically for every
query [49].

Smoothing can be applied either to SLogL or SKL(d , q). Furthermore, the pseudo-feedback ap-
proach can be combined with the “direct” smoothing à la Jelinek-Mercer: the first retrieval can indeed
use either raw term frequencies, or smoothed estimators.

2.5.3 Fisher kernels

In the classical approach of IR (section 2.5.1, p. 26), when documents are represented in the vector space
model, similarities that rely only on observable features of documents can be used. However, when the
document model stems from a probabilistic generative process, the Fisher kernel provides a similarity
that also derives from the same generative process [76, 75].

In all generality, a kernel is a similarity measure between two elements X and Y in a vector space V ;
the kernel constitute a scalar product in an alternative space W . Given s : V →W a function casting
X ∈V to its representation in the W space, K(X ,Y ) = s(X ) · s(Y ).

The Fisher kernel was defined in [29] as

K(d , q) =∇Ld (θ) G−1(θ) ∇Lq (θ) (2.5.4)

It can be derived by going through the following steps:

1. Compute the Fisher score: gradient over θ of the log-likelihood

UX (θ) =∇θ log P (X |θ) (2.5.5)

where P (X |θ) is a generative probability model(X = observable data, θ =model parameters)

2. Compute the Fisher information matrix, expectation over X of the covariance matrix of the
score:

G(θ) = EX

h
UX (θ)UX (θ)

T
i

(2.5.6)

It constitutes a metric tensor for the probabilistic representation space, characterising its topol-
ogy.
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3. The Fisher Kernel is given by

K(X1,X2) = [UX1
(θ)]T G(θ)−1 UX2

(θ)

Fisher kernels [31, 30] are an application of kernels to probabilistic models, defined as

K(X ,Y ) = UX (θ)
T G(θ)−1UY (θ) (2.5.7)

In probabilistic setting, they constitute a natural similarity measure, as they approximate the Kullback-
Leibler divergence in the neighbourhood of a point θ of the probabilistic space:

KL
�

P (θ), P (θ+ dθ)
�
≃

1

2
dθT G(θ)dθ

In the case of PLSI, the form of the kernel was first proposed by Hofmann [28]; this form of the
kernel was studied by Nyffenegger et al. [61], yielding several alternative forms of this kernel that are
detailed in depth in section 7.1 (p. 81). We take the mater further and propose a better grounded Fisher
kernel for PLSI in chapter 4 (p. 53).

2.6 Application

Actually setting up an IR/TC system requires more than a theoretical framework: pre-processing the
data (tokenising, stemming, . . . ) or simply efficiently holding and accessing it in memory necessitate
software tools that require enormous amounts of work to write. Hence, reviewing the software already
available and selecting a toolkit usually the first step when one wishes to build a complete system.

2.6.1 Tools

As of this writing, no particular software framework is accepted as the standard toolset for community-
wide usage in Information Retrieval. A number of specific laboratories promote their own tools, devel-
oped in different programming languages, focusing on different aspects of Information Retrieval, and
made available under a variety of different licences.

Adopting a software framework is critical for several reasons: efficient access, storage and handling
of data is a complex, specific task which requires optimisations falling way beyond the scope of In-
formation Retrieval research; indexing of data might require steps for lemmatisation, chunking, word
sense disambiguation, etc. (see section 2.2, p. 22), which usually also falls outside of the scope of the
intended research; off-the-shelf software provide complete toolchain allowing to perform experiments
with known models, and hence allowing baseline comparisons. Software under Free licences (“open-
source”) is especially well-suited for these tasks because

• the absence of charges allows testing several tools;

• the availability of the code makes it possible (if not always easy) to implement new algorithms;

• the general availability of the software framework makes it possible for third parties to use appli-
cations developed during the research, if the application is suitable.
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A general trait apparent in most available software is the effort made to produce applications capable of
scaling up to hundreds of Gigabytes of data, in consistency with the Terabyte track of TREC [77, 13],
which explores the behaviour of Information Retrieval models when used on very large quantities of
data.

TREC6 is an evaluation campaign to study the efficiency of Information Retrieval methods in
English, co-sponsored by the National Institute of Standards and Technology (NIST) and the US De-
partment of Defence. Its aim is to provide NLP researchers with sample corpora, queries and tools to
benchmark retrieval systems, particularly on large test collections. Each of the collections consists of a
set of documents, a set of questions, and a corresponding set of reference files (“right answers”).

A review of the most proeminent software follows. Synthetic tables of the results are available as
tables 2.1, 2.2 and 2.3.

General information LEMUR TERRIER XAPIAN

Latest revision 21 December 2009
(Lemur Toolkit version
4.11 and Indri version
2.11)

11 March 2010 (Terrier
3.0)

14 February 2010
(Xapian 1.0.18)

Focus Probabilistic retrieval;
large databases

Developers Carnegie Mellon and
University of
Massachusetts a

University of Glasgow
(under Keith van
Rijsbergen) b

Dr. Martin Porter,
BrightStation PLC
(originally Cambridge
University) c

Licence BSD Mozilla GPL
Language C / C++ Java C++
Extendable Library “Hooks” for custom

modules d
Library

Indexing capacity 4 ×109 documents or
256 Terabytes e

aSee http://www.lemurproje
t.org/
ontrib.php
bSee http://ir.d
s.gla.a
.uk/
cSee http://www.xapian.org/history.php
dSee http://ir.d
s.gla.a
.uk/terrier/do
/terrier_develop.html
esee http://www.xapian.org/do
s/s
alability.html

Table 2.1: General comparison of Lemur, Terrier and Xapian

2.6.2 Specific software

Lemur Lemur is a toolkit for information retrieval and language modeling. It is licenced under the
BSD licence, and can be obtained from http://www.lemurproje
t.org/. The programme is well-
maintained, and has been used as a baseline in research [58].

Lemur provides six retrieval models: tf-idf, Okapi (BM 25), KL-divergence, InQuery, CORI
collection selection, cosine similarity, Indri SQL. Additionally, the optional classification toolkit of
Lemur provides an implementation of Hoffman’s Probabilistic Semantic Analysis [28]— or at least its

6Text REtrieval Conference, http://tre
.nist.gov/



32 CHAPTER 2. CONTEXT AND STATE OF THE ART

Available IR models LEMUR TERRIER XAPIAN

Vector Space Vector Space – tf-idf
LSI No No No
PLSI Classification only – Not native
Boolean – – “TradWeight”
Probabilistic Okapi (BM25) BM25F, Divergence

From Randomness
Okapi (BM25)

Table 2.2: Comparison of available IR models in Lemur, Terrier and Xapian

Miscellaneous LEMUR TERRIER XAPIAN

Executable application Indri Terrier Omega
TREC compatibility Native Native Not native
Packaging tar.gz ; pre-compiled

packages for MS
Windows

tar.gz RPM, DEB, FreeBSD

Table 2.3: Practical notes on Lemur, Terrier and Xapian

the Expectation-Maximisation learning part 7 : as such, queries cannot be processed easily without an
operation of folding in, which is neither implemented in Lemur, nor very well-defined in the literature.

Lemur in itself is a library. The package provides a stand-alone Information retrieval engine known
as Indri. Indri is parallelisable, can be used as a filter, and scales to the terabyte.

Lemur provides indexers able to read PDF, HTML, XML, and TREC syntax. UTF-8 is supported.

Lucene Lucene is an Information retrieval library. It is supported by the Apache Software Founda-
tion8 and is available under the Apache Software Licence from http://lu
ene.apa
he.org/java/do
s/index.html.

Lucene was written in Java, but can be used with Delphi, Perl, C#, C++, Python, Ruby and PHP.
The LucQE Lucene Query Expansion Module allows using Lucene for TREC experiments9.

Terrier (TERabyte RetrIEveR) Terrier is an IR system for large quantities of data. It is written in
Java and published under the Mozilla Free licence10.

Terrier is said to have “full TREC capabilities including the ability to index, query and evaluate the
standard TREC collections, such as AP, WSJ, WT10G, .GOV and .GOV2.”

Terrier provides tf-idf, Okapi’s BM25 and Rocchio’s query expansion. It has been tested to scale to
all TREC collections.

Development tips are given at http://ir.d
s.gla.a
.uk/terrier/do
/terrier_develop.html.
Terrier has a framework application, which defines a main() function; the Terrier user thus cannot use

7We have implemented another version of the learning algorithm on top of Xapian. Our implementation has been tested as
giving more accurate results than the Lemur version. See section 2.6.2 and figure A.1, p. 114.

8Apache is the most widely used HTTP server on the World Wide Web. It is Free software, available under the Apache
Software Licence.

9http://lu
ene-qe.sour
eforge.net/
10Terrier is available from http://ir.d
s.gla.a
.uk/terrier/download.html (rather oddly for Free software, subscrip-

tion is required); documentation is available at http://ir.d
s.gla.a
.uk/terrier/do
umentation.html
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it as a standard C++ library, but has to write an appmain()” application. Options for the application
are given as XML documents rather than with the command line.

Zettair Zettair is a textual Information retrieval engine published RMIT University under a BSD
licence11.

Zettair allows indexation of text, HTML and TREC formats. A tutorial is available at http://www.seg.rmit.edu.au/zettair/start.html Zettair outputs query logs in the TrecEval format.
Zettair has been tested on 426 GB database of the TREC Terabyte track.
Zettair is written in C.

Zebra Zebra is an indexation and retrieval engine available under the GPL from http://www.indexdata.dk/zebra/. Zebra was tested as scaling up to dozens of GB.
Zebra is written in C.

Xapian Xapian is an Information retrieval library focusing on probabilistic retrieval. A stand-alone
retrieval engine named Omega is provided. Xapian is available under the GPL from http://www.xapian.org/. It is written in C++, and can be interfaced with Perl, Python, PHP, Java, TCL and C#.

Xapian provides pre-compiled software packages for the main Linux distributions (rpm and deb).
We decided to use Xapian as a basis for our work, as it is well-documented, easy to use as a library,

and written in C++. Its licence and its native BM25 were also advantages. On the other hand, we had
to write an indexer for TREC-formatted data, and the EM learning scheme for PLSI.

Evaluation: Treceval

After IR has been performed on a database, the results must be evaluated to judge of the quality of the
system.

Among the ressources provided by TREC is TrecEval , a text utility to evaluate the efficiency
of retrieval programmes, which has become a de facto standard among researchers. TrecEval allows
evaluation of TREC results using the evaluation procedures of the NIST12.

2.6.3 Resources

To evaluate the performances of experimental Information Retrieval systems, standardised collections
of documents and queries are made available to research, along with referentials. The TREC conference
issues guidelines regarding evaluations, usually requesting at 1000 documents to be returned for every
query, and a minimum of 50 queries [87].

The following is a review of the collections used in this work.

Smart collection

The SMART collection is composed of six evaluation sets for information retrieval, each complete with
a document collection, a query set and a referential (see table 2.6.3 for statistical information). The
collection is available for no charge from ftp://ftp.
s.
ornell.edu/pub/smart/; it is composed
of

ADI: a 82-document collection. This collection is very small collection by modern standards, which
can be useful for development and testing.

11available from http://www.seg.rmit.edu.au/zettair/
12the US National Institute of Standard and Technology, http://www.nist.gov/data/nistsd22.htm



34 CHAPTER 2. CONTEXT AND STATE OF THE ART

ADI CACM CISI CRAN MED TIME
# Terms 2402 14181 16067 12029 20177 35619
# Stems 887 4911 5545 4063 7688 13367

V 2789 90927 87067 120973 76571 114850
Documents

# 82 1587 1460 1398 1033 425
avg. |d | 31.0 56.8 56.7 85.1 73.8 268.6

Queries
# 35 64 112 225 30 83

avg. |q | 7.1 12.7 37.7 8.9 11.4 8.2
Stemming was performed using the Porter algorithm of Xapian

Table 2.4: Statistics of the SMART collections

CACM: 3204 document abstracts from CACM journal. This collection provides only the titles of the
documents.

CISI: 1460 document abstracts from the Institute for Scientific Information. This collection provides
a specialised library science context. It is remarkable because some expected query-document
matches are between queries and documents that share no significant term; it is thus particularly
suited to test the extend to which a retrieval models is robust to synonymy.

CRAN: 1400 document abstracts from the Cranfield Institute of Technology. This collection pro-
vides a specialised aeronautic context.

MED: a collection of 1033 articles abstracts from Medline, the National Library of Medicine. This
collection provides a specialised medical context.

TIME: a collection of 425 articles of Time magazine, with 83 queries. This collection provides a
general English context, with an emphasis on political and economic news.

Reuters-21578

The Reuters-21578 collection is a categorisation corpus, composed of 21578 Reuters newswire articles.
Being a TC ressource, it does not comprise queries. It is available from http://daviddlewis.
om/resour
es/test
olle
tions/reuters21578/. Reuters-21578 indexes with 100174 terms (31844 stems
when stemmed through the Porter algorithm of Xapian).

The collection comes in 22 files, named reut2-000.sgm through reut2-021.sgm. Each file con-
tains 1000 documents, except for the last one which contains the last 578 documents.

AP collection from TREC

The Trec AP collection13 is a text retrieval annotated corpus. It is constituted of 242 918 news stories
published by the Associated Press in 1988, 1989 and 1990. The data is provided on several CDs available
from TREC for researchers only. A version of this collection also exists for text categorisation.

Queries are provided in separate 50-query files; they can be applied to any of the collections present
on the CDs (unlike SMART query sets which are specific to a corpus). The matching referentials

13http://www.daviddlewis.
om/resour
es/test
olle
tions/tre
ap/
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AP88 AP89 AP90 ap89_0101-0109 ap89_01xx
# Terms 328 600 348 764 327 019
# Stems 118 574 126 698 117 912 6 592 13 379

V 14 569 545 34 028 514 14 330 736 326 112 1 321 482
Documents

# 79 919 84 678 78 321 1 896 7 466
avg. |d | 183.7 403.5 189.3 172.3 177.2

Table 2.5: Statistics of the AP collections from TREC

provide answers relevant to all TREC collections (the AP88, AP89 and AP90 data sets, but also DOE,
FR, WSJ and ZF), and must be edited accordingly before use.

ap89_0101-0109 and ap89_01xx These two collection were custom-made during this work to pro-
vide datasets larger than the SMART bases, but still manageable with PLSI.

The ap89_0101-0109 collection is a subset of AP89 comprising all the documents whose identifica-
tion starts by 0101 through 0109 (documents AP890101-0001 to AP890109-0349). Similarly, ap89_01xx
comprises all documents whose identification starts with 01 (documents AP890101-0001 to AP890131-
0311).

2.7 Conclusions

IR has known an enormous rise in interest in the last decades due to the growth of information and
the popularisation of the World Wide Web. Classical IR models produce mathematical representions
of documents and queries from statistical traits such as the presence of number of occurrences of a
word in the document and in the collection. An important component of IR system, at the core focus
of this work, is document similarities, which measure the semantic association between queries and
documents.

Another specific concern regarding semantic association between queries and documents is that
the retrieval performances of classical IR systems are hindered by an overall difficulty to account for
context. This notably yields drops in recall in the face of synonyms, or drops in precision in the
face of polysemy [20, 86, 73]. To remedy this issue, the trend of latent semantics has attempted to
describe document collections not only in terms of documents and words, but also in terms of topics.
These topics, assumed to exist as a latent trait in the collection, must be acquired by machine learning
techniques. Once the new representation have has been acquired through machine learning techniques,
appropriate similarities come into play. We have seen that in the case of PLSI, a notable latent semantics
model, issues remain open regarding its document similarities, notably Fisher Kernels [61]. This issue
constitutes the core of this thesis.

The next chapter is devoted to an in-depth review of the PLSI model. The main contributions
of this thesis follow in the latter chapters, answering the questions left unsolved regarding document
similarities for PLSI, especially Fisher kernels.
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Chapter 3

A review of notable models

Abstract

The previous chapter has described the Information Retrieval (IR) and Text Categorisation
(TC) frameworks, and introduced the way in which IR based on latent topic works, with a
generative model from which a learning algorithm and a document similarity are derived.

This chapter reviews in depth the generative models, the derivation of the learning algo-
rithm and the derivation of the Fisher kernel for the mixture of multinomials, or Naive
Bayes model, and for Probabilistic Latent Semantic Indexing (PLSI).

The study of PLSI and its Fisher kernel will allow us to take a new point of view on the
Fisher Kernel for PLSI, detailed in the next chapter (p. 53).

3.1 Introduction

In the previous chapter, we presented a general overview of IR and TC frameworks, focusing on prob-
abilistic latent semantic models. IR based on Probabilistic latent semantic models is three-fold:

• a generative model for the documents is given as an axiom or hypothesis; it defines latent param-
eters assumed to define how documents are generated.

• an inference process is derived from the generative model; it permits inferring the values of the
parameters from an observable document collection.

• a document similarity is derived from the generative model; using the values of the parameters,
it permits the retrieval of documents.

This chapter describes in details these three components for two models: the mixture of multinomials,
or Naive Bayes model, a simple example; and PLSI, a notable model, at the core of this work.

3.2 Naive Bayes

“Naive Bayes” is the name sometimes associated to the latent topic-based generative model that models
the document collection as a mixture of multinomials. Each document is assumed to stem from one
of the latent categories, and the words are generated by multinomial distributions associated with the
categories [65].

37
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3.2.1 The Naive Bayes generative process

The Naive Bayes model assumes that for each document, a latent category is first chosen according
to the category probabilities P (z); terms are then generated by multinomial distributions P (w|z) (see
figure 3.1). Probability of occurrence of a document, as observed in the learning sample, is given by

P (d ) =
∑

z∈Z

P (d |z)P (z) with P (d |z) =
∏

w∈V

P (w|z)n(w,d ) (3.2.1)

The parameters of the model are thus Θ= {P (z), P (w|z)} for all z ∈ Z and w ∈V .

z w
|d |

|D |

Figure 3.1: Graphical representation of the Naive Bayes stochastic model. For each document d in the
document collection D, a category z is first drawn with probability P (z); for each word in document
d , a token d is drawn with probability P (w|z).

3.2.2 Learning parameters of Naive Bayes

The parameters of Naive Bayes can be inferred, given the document collection, through an EM process
in which the expectation and maximisation steps take the following forms:

E-Step

P (z|d ) =
P (z)[P (d |z)]β

∑
ζ ∈Z P (ζ )[P (d |ζ )]β

with P (d |z) ∼∏w P (w|z)n(d ,w) . The parameter β is used to introduce simulated annealing in the
inference process.

M-Step

P (z) =

∑
d P (z|d )

∑
ζ ∈Z
∑

d P (ζ |d )
=

∑
d P (z|d )
|D|

P (w|z) =
∑

d n(w, d )P (z|d )
∑
ω∈V

∑
d n(ω, d )P (z|d )
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Proof

The Expectation-Maximisation algorithm aims at maximising the expectation of the joint likelihood of
the observable over the parameters θ:

Q(Θ,Θold) =EY

h
log P (X ,Y |Θ)

���X ,Θold
i

(3.2.2)

with X the observable and Y the hidden variables. In the case of Naive Bayes, the observable are
the sequence of word realisations :

X = w1, . . . , w|d1|︸ ︷︷ ︸
bd1

, w|d1|+1, . . . , w|d1|+|d2|︸ ︷︷ ︸
bd2

, . . . , w|C |−|d|D| |, . . . , w|C |︸ ︷︷ ︸
bd|D|

while the hidden variables are the categories that generate these observables:

Y = z1, . . . , z|d1 |︸ ︷︷ ︸
=z( bd1) by hypothesis

, z|d1 |+1, . . . , z|d1 |+|d2|︸ ︷︷ ︸
=z( bd2) by hypothesis

, . . . , z|C |−|d|D| |, . . . , z|C |︸ ︷︷ ︸
=z( bd|D|) by hypothesis

For the entire collection, equation 3.2.2 becomes:

EY [log P (X ,Y |Θ)|X ,Θold] = (3.2.3)

=
∑

z1∈Z

. . .
∑

z|D|∈Z

P (z1, . . . , z|D ||w
|C |
1 ,Θold) · log P (w |C |1 , z1, . . . , z|D ||Θ) (3.2.4)

=
∑

z1∈Z

. . .
∑

z|D|∈Z


∏

d∈D

P (zd |d ,Θold)


 ·

∑

δ∈D

log P (δ, zδ |Θ)

 (3.2.5)

=
∑

z1∈Z

. . .
∑

z|D|∈Z

∑

δ∈D


∏

d∈D

P (zd |d ,Θold)


 · log P (δ, zδ |Θ) (3.2.6)

=
∑

δ∈D

∑

z∈Z

P (z|δ,Θold) · log P (δ, z|Θ) (3.2.7)

We thus arrive at
Q(Θ,Θold) =

∑

d∈D

∑

z∈Z

P (z|d ,Θold) log P (d , z|Θ) (3.2.8)

The Estimation step amounts to evaluating Q(Θ,Θold). The Maximisation step thus aims at finding

Θnew = argmaxΘQ(Θ,Θold)

As the parameters of the model probabilise their respective spaces, we have
∑

z
P (z) = 1 and

∑

w
P (w|z) = 1

We can introduce these constraints into the maximisation of Q(Θ,Θold) through Lagrange multipliers,
creating the auxiliary function

Λ
�

P (z), P (w|z),λ,µ
�
=Q(Θ,Θold)+λ

 ∑

w∈V

P (w|z)− 1

!
+µ

 ∑

z∈Z

P (z)− 1

!
.
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Derivation by P (z):

∂ Λ

∂ P (z = ζ )
=
∑

d∈D

P (z|d ,Θold)
����P (w|z)

����P (w|z)P (z = ζ )
+λ (3.2.9)

=⇒ P (z)∼
∑

d∈D

P (z|d ) (3.2.10)

Finally, we obtain

P (z) =

∑
d∈D P (z|d )

∑
ζ ∈Z
∑

d∈D P (ζ |d )
(3.2.11)

Derivation by P (w|z):

∂ Λ

∂ P (w =ω|z = ζ )
=
∑

d∈D

P (z|d ,Θold)
1

P (d , z|Θ)
·

∂ P (d |z,Θ)

∂ P (w =ω|z = ζ )
+µ (3.2.12)

=
∑

d∈D

P (z|d ,Θold)
1

�����P (d , z|Θ)
�����P (d , z|Θ)n(d , w)

P (w, z)
+µ (3.2.13)

=⇒ P (w|z)∼
∑

d∈D

n(w, d )P (z|d ,Θold) (3.2.14)

Finally, we obtain

P (w|z) =
∑

d∈D n(w, d )P (z|d )
∑
ω∈V

∑
d∈D n(ω, d )P (z|d )

(3.2.15)

Notes on implementation

A practical difficulty can arise in the P (d |z) term of the E-step because it contains a product of P (w|z);
as a product over terms all lesser than one (and, depending on the w and z couple, potentially consid-
erably so), this term yields very low figures. In the eventual output, this very small term is divided by
a sum of similar terms, resulting in figures commensurable to 1; however, computation of the interme-
diary figures is not tracktable for long documents.

One possible solution to this problem takes advantage of the basic premises of Naive Bayes. As
Naive Bayes generates documents by first choosing a topic and then producing a burst of words, the
P (z|d ) have in practise binary values: in effect, P (z|d ) is a mask that tells which unique latent category
z corresponds to a given document d . Taking advantage of this property, a value of 1 could be attributed
to the term that maximises P (d |z) over z for a given d ; a value of 0 would be attributed to all others
terms.

However, we refrain from using this shortcut in our implementation, for two reasons:

• estimation of P (z|d ) could yield values between 0 and 1, reflecting uncertainty with respect to
the data;

• we want to leave open the possibility to study models in which P (z|d ) has values other than 1 or
0 — i.e. actual mixture models, in which every document is itself a mixture of topics.

We thus propose another course of action: for a given document d , the P (d |z) will be com-
puted following the classical trick of re-normalising P (d |z) with exp

�
log P (d |z)− log P (d |z0)

�
, where
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z0 = arg maxz P (d |z0). The term in P (d |z0) eventually cancels out later in the renormalisation.

More in details, P (z|d ) is obtained as

P (z|d ) = P (z) · exp
�

log P (d |z)− log P (d |z0)− P (d )
�
= P (z) · exp

�
A(z)−B

�
,

where A(z) = log P (d |z)− log P (d |z0) and B = P (d ).

• a first loop over z ∈ Z

– finds, z0 the z such as P (d |z0) = arg maxz P (d |z)
– computes the values A(z) = log P (d |z) =∑w n(d , w) log P (w|z)

• the term log P (d ) is computed with the help of a second loop over z ∈ Z , which computes C =∑
z

P (z)
P (z0)

exp
�

A(z)−A(z0)
�

. We then compute B = log P (z0)+ log P (d |z0)+ log(C ) = log P (d ).

With this way of writing, C has the interesting property of measuring the degree to which the
P (z|d ) form a mask: if C = 1, the P (z|d ) form a perfect mask; if C = 1/|Z |, then all the P (z|d ) are
equal.

In practise, B is better computed as

log P (d |z0)+ log
∑

z
P (z)exp

�
A(z)−A(z0)

�
,

thus dispensing with the division by P (z0) and the addition of log P (z0), which can induce numerical
errors if P (z0)∼ 0.

3.2.3 Fisher kernels for Naive Bayes

This section is devoted to a formal derivation of the Fisher kernel for mixtures of multinomials.
The log-likelihood for a document in the Naive Bayes model is

L= log P (d ) = log
∑

z∈Z

P (z)P (d |z) = log
∑

z∈Z

P (z)
∏

w∈V

P (w|d )n(w,d ) (3.2.16)

We apply a square root re-parametrisation by replacing

• P (z) with ρ(z) = 2
p

P (z)
entailing P (z) = 1

4ρ
2(z) and ∂ P (z)

∂ ρ(z) =
1
2ρ(z) =

p
P (z)

• P (w|z) with ρ(w|z) = 2
p

P (w|z)
entailing P (w|z) = 1

4ρ
2(w|z) and ∂ P (w|z)

∂ ρ(w|z) =
1
2ρ(w|z) =

p
P (w|z)

We obtain the Fisher score by gradient of the log-likelihood, that is by deriving Ld by ρ(z) for all
z ∈ Z on one hand; and on the other, by deriving Ld by ρ(w|z) for all (w, z) pairs.

The derivation by ρ(z), we have

∂ Ld

∂ ρ(z = ζ )
=
∂ Ld

∂ P (z)

∂ P (z)

∂ ρ(z)
=
Æ

P (z)
P (d |ζ )
P (d )

=
Æ

P (z)
P (z|d )
P (z)

=
P (z|d )
p

P (z)
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For the derivation by ρ(w|z), let us begin by explicating the derivation by P (w|z):

∂ Ld

∂ P (w =ω|z = ζ ) =
P (d |ζ )

P (ω|ζ )n(d ,ω)
n(d ,ω)P (ω|ζ )n(d ,ω)−1 = P (d |ζ )

n(d ,ω)

P (ω|ζ ) .

The complete derivation by ρ(w, z), similar to that by ρ(z), then gives:

∂ Ld

∂ ρ(w =ω|z = ζ )
= n(d ,ω) ·

P (ζ |d )
p

P (ω|ζ )
.

Eventually, the Fisher score for a (d , q) couple is the sum of the above components for all w and z:

KNB(d , q) =
∑

z∈Z

P (z|d )P (z|q)
P (z)

+
∑

z∈Z

∑

w∈V

n(d , w)n(q , w)P (z|d )P (z|q)
P (w|z)

3.3 PLSI

PLSI is a latent topic-based generative model for textual document classification and Information Re-
trieval, introduced in [27].

This section will review the generative process of PLSI, describing its parameters and how they
are assumed to generate the observed documents. From the log-likelihood of the model, we derive the
classical EM machine learning scheme for PLSI. Eventually, we derive the Fisher kernel as a document-
query similarity.

3.3.1 The PLSI generative process

PLSI models the documents as realisations of a random choice of term-document pairs (d , w) knowing
some topics z ∈ Z : a topic is first chosen with probability P (z), then a term indice w and a document
indice d are chosen, with probabilities P (w|z) and P (d |z) respectively, as w and d are assumed to be
conditionally independent knowing z (see Fig. 3.2).

A realised document bd is then modeled as the set of all (d , w) pairs sharing the same document
indice d : bd0 = {(d , w) ∈ C |d ∈ D0}. Because it holds documents indices to be part of its parameters,
PLSI makes a distinction between observed documents and document indices.

The document indices d and words w are supposed to be independent knowing category z, i.e.
P (d , w|z) = P (w|z)P (d |z). Thus, a pair (d , w) is given by

P (d , w) =
∑

z
P (z, d , w) =

∑

z
P (z)P (d , w|z)

=
∑

z
P (z)P (w|z)P (d |z) (3.3.1)

The parameters of the PLSI model are thus

• P (d |z): probability of a document d knowing a category z;

• P (w|z): probability of a term w knowing a category z;

• P (z): probability of a latent category z.
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z

w

d
|C |

Figure 3.2: Graphical representation of the PLSI stochastic model. Category z chosen, then a (d , w)
pair is chosen knowing z. w and d are furthermore assumed to be conditionally independent knowing
z. The process is repeated a total of |C | times, where |C | is the number of term occurrences in the
entire collection.

3.3.2 Learning parameters of PLSI

The parameters for PLSI are estimated using the EM algorithm, maximising the likelihood of the ob-
served document collection C as follows :

E-Step To avoid overfitting, a tempered version of EM is used (TEAM), implementing simulated
annealing for quicker convergence [27].

Pβ(z|d , w) =
P (z)[P (d |z)P (w|z)]β

∑
ζ ∈Z P (ζ )[P (d |ζ )P (w|ζ )]β

for some parameter β which is controlled during learning.

M-Step

P (w|z) =
∑

d∈D n(d , w)P (z|d , w)

T (z)
, with T (z) =

∑

d ,w

n(d , w)P (z|d , w)

P (d |z) =
∑

w∈V n(d , w)P (z|d , w)

T (z)
,

P (z) =

∑
w∈V

∑
d∈D n(d , w)P (z|d , w)

|C |
,

where n(d , w) is the number of occurrences of term w in document d , and |C |=∑d ,w n(d , w).

Proof Let us recall that EM aims at finding

max
Θ
EY

h
log P (X ,Y |Θ)

���X ,Θold
i .
=max

Θ

∑

Y

log P (X ,Y |Θ) · P (Y |X ,Θold)

with X is the observable and Y , the hidden data.
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In the case of PLSI, the observable is X = {(wi , di )|i = 1, . . . , |C |}, the set of all the (wi , di ) pairs
that compose the document collection. The hidden variable is Y = {zi |i = 1, . . . , |C |}, the categories as-
sociated with the pairs of indices. In this notation, i denotes the indice of the experiment that generates
first zi and then (wi , di ).

To fix ideas, let us write the expectation for one single such experiment:

Ez =
∑

z∈Z

log P (w, d , z) · P old(z|w, d )

Now, for a document collection comprising |C | such experiments, we have

EY =
∑

z1∈Z

. . .
∑

z|C |∈Z

log P
�
(w1, d1, z1), . . . , (w|C |, d|C |, z|C |)

�
· P old

�
z1, . . . , z|C |

���(w1, d1), . . . , (w|C |, d|C |)
�

The IID nature of the PLSI process allows us to write P
�
(w1, d1, z1), . . . , (w|C |, d|C |, z|C |)

�
= P (w1, d1, z1)·

. . .·P (w|C |, d|C |, z|C |) and P
�

z1, . . . , z|C |
���(w1, d1), . . . , (w|C |, d|C |)

�
= P (z1|w1, d1) · · · . . . · · ·P (z|C ||w|C |, d|C |)

Thus,

EY =
∑

z1∈Z

. . .
∑

z|C |∈Z






|C |∑

i=1

log P (zi , wi , di )


 ·



|C |∏

j=1

P old(z j |w j , d j )







For each experiment i , we can reunite the relevant P old(zi |wi , di ) term with the log P (zi , wi , di ), as

EY =
∑

z1∈Z

. . .
∑

z|C |∈Z



|C |∑

i=1

P old(zi |wi , di ) · log P (zi , wi , di )


 ·

|C |∏

j 6=i

P old(z j |w j , d j )

The sums
∑

z1∈Z . . .
∑

z|C |∈Z that do not concern experiment i can then be moved inside the product.

As each
∑

z j∈Z P old(zi |wi , di ) = 1, the product cancels away, leaving

EY =
|C |∑

i=1

∑

zi∈Z

P old(zi |wi , di ) · log P (zi , wi , di )

Since, from PLSI, P (zi , wi , di ) = P (z)P (w|z)P (d |z), we can write a final expression of

EY =
|C |∑

i=1

∑

zi∈Z

P old(zi |wi , di ) ·
�

log P (z)+ log P (w|z)+ log P (d |z)
�

To maximise this quantity, we cancel the derivative, under the constraints

∑

z∈Z

P (z) = 1
∑

w∈V

P (w|z) = 1
∑

d∈D

P (d |z) = 1
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The Lagrange auxiliary function to derive is thus

Λ=
|C |∑

i=1

∑

zi∈Z

P old(zi |wi , di ) ·
�

log P (z)+ log P (w|z)+ log P (d |z)
�

+λ
�∑

z
P (z)− 1

�

+µ
�∑

w
P (w|z)− 1

�

+ ν
�∑

d

P (d |z)− 1
�

Derivation by P (z), at z = ζ given:

∂ Λ

∂ P (ζ )
=
|C |∑

i=1

P old(ζ |d , w)
1

P (ζ )
+λ

.
= 0

entailing that

P (ζ ) =−
∑|C |

i=1 P (ζ |d , w) 1
P (ζ )

λ
Knowing that

∑
z P (z) = 1, we can introduce this expression into the constraint to obtain

∑

z∈Z

−
∑|C |

i=1 P old(z|d , w) 1
P (z)

λ
= 1−→ λ=−

∑

z∈Z

|C |∑

i=1

P old(z|d , w)

yielding an expression for P (z) of

P (z) =

∑|C |
i=1 P (z|d , w)

∑
z∈Z
∑|C |

i=1 P old(z|d , w)

Let us now observe that the sum over the experiments,
∑|C |

i=1, can be expressed as a sum over the
occurrences of the different words in the different documents of the collection:

|C |∑

i=1

P (z|d , w) =
∑

w∈V

∑

d∈D

n(w, d )P old(z|d , w)

Furthermore,
∑

z∈Z P (z|d , w) = 1. Eventually, we arrive at a final expression of

P (z) =

∑
w∈V

∑
d∈D n(w, d )P old(z|d , w)

∑
w∈V

∑
d∈D n(w, d )

=

∑
w∈V

∑
d∈D n(w, d )P old(z|d , w)

|C |

Derivation by P (w|z), at z = ζ and w =ω given:

∂ Λ

∂ P (ω|ζ ) =
|C |∑

i=1

P old(zi |wi , di ) ·
1

P (ω|ζ ) +µ
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yielding

P (ω|ζ ) =−
∑|C |

i=1 P old(zi |wi , di )

µ

The value ofµ is computed as above by introducing the expression above into the constraint
∑

w∈V P (w|z) =
1, yielding an overall expression for P (ω|ζ ) of

P (ω|ζ ) =
∑|C |

i=1 P old(zi |wi , di )
∑

w∈V
∑|C |

i=1 P old(zi |wi , di )

Now, for a given word ω the sum
∑|C |

i=1 P old(zi |wi , di ) will run only over those of the wi that happen
to beω:

|C |∑

i=1

P old(zi |wi , di ) =
|C |∑

i=1

δwi ,ω
P old(zi |wi , di ) =

∑

w∈V

∑

d∈D

δwi ,ω
P old(zi |wi , di )

Clearly, the sum over the w can be removed to yield

|C |∑

i=1

P old(zi |wi , di ) =
∑

d∈D

n(w, d )P old(z|w, d )

From this stems the final expression for P (w|z):

P (w|z) =
∑

d∈D n(w, d )P old(z|w, d )
∑

w∈V
∑

d∈D n(w, d )P old(z|w, d )

Derivation by P (d |z), at z = ζ and d = δ given, will yield a development entirely parallel to that
detailed above, yielding a final expression of

P (d |z) =
∑

w∈W n(w, d )P old(z|w, d )
∑

d∈D
∑

w∈V n(w, d )P old(z|w, d )
�

3.3.3 Hofmann’s Fisher kernels for PLSI

When the PLSI model was initially proposed, no document similarities well-suited for it were deployed.
The first experiments were performed using two ad hoc variants of the cosine similarity, used in com-
bination with traditional tf-idf similarities in the direct word representation space (as exposed in
section 2.3, p. 24).

Soon afterwards, a variant of the Fisher kernel adapted to PLSI was proposed as a better theoreti-
cally grounded similarity, yielding significant improvements in retrieval performance [28]. This work
was revisited on a number of points by Nyffenegger et al. [61], who re-examined several simplifying
hypotheses1 made by Hofmann and gave evidences that by restricting some of them, yet better results
could be obtained.

1Notably one to the effect that the Fisher information matrix can be reduced to I with a square root re-parametrisation. All
the hypotheses are examined in details in table 4.1 (p. 60).
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As recalled in section 2.5.3 (p. 29), Fisher kernels are similarity measures between instances of
probabilistic models [29]: for two instances X and Y of a given family of stochastic models P (X |θ)
parametrised with θ, the Fisher kernel is defined as

K(X ,Y ) =UX (θ)
T G(θ)−1UY (θ) , (3.3.2)

where UX (θ) is the gradient of the log-likelihood: UX (θ) =∇θ log P (X |θ), and the Fisher information
matrix G(θ) is the covariance of this score:

G(θ) = EX [UX (θ)UX (θ)
T ] .

The Fisher kernel for PLSI was introduced in [28] with the form

KH (d , q) =
∑

z

P (z|d )P (z|q)
P (z)

+
∑

w

bP (w|d )bP (w|q)
∑

z

P (z|d , w)P (z|q , w)

P (w|z) (3.3.3)

Derivation The following is a development of the Fisher kernel for PLSI, as done in Nyffenegger et
al. [60]. The steps are largely identical to those taken by Hofmann, except for the Fisher information
matrix.

In order to compute the Fisher information matrix G(Θ), Hofmann used a square root re-parametrisation.
In the case of mixtures of multinomials, or more generally with any distribution of the exponential

family, the square root re-parametrisation entails that the metric tensor identifies with the identity
matrix:

G(Θ)≃ I . (3.3.4)

However, PLSI is not a combination of multinomials. We believe that G(Θ) can be fairly well
approximated by a diagonal matrix, but that this matrix is not the identity. We come back to this point
in section 5.2 (p. 66).

We will nevertheless follow Hofmann’s steps here, as to allow ourselves to discuss his kernel. Hence-
forth, we note this kernel KH The square root re-parametrisation entails

• P (z)→ ρ(z) = 2
p

P (z)
hence P (z) = 1

4ρ
2(z) and ∂ P (z)

∂ ρ(z) =
1
2ρ(z) =

p
P (z)

• P (d |z)→ ρ(d |z) = 2
p

P (d |z)
hence P (d |z) = 1

4ρ
2(d |z) and ∂ P (d |z)

∂ ρ(d |z) =
1
2ρ(d |z) =

p
P (d |z)

• P (w|z)→ ρ(w|z) = 2
p

P (w|z)
hence P (w|z) = 1

4ρ
2(w|z) and ∂ P (w|z)

∂ ρ(w|z) =
1
2ρ(w|z) =

p
P (w|z)

The Fisher score is obtained by the gradient of the likelihood with respect to θ:

Ubd0
(Θ) =∇θL bd0

(θ) =∇θ
∑

w∈V

n(d0, w) log

�∑

z
P (z)P (w|z)P (d0|z)

�

∂ Ld

∂ ρ(z)
=

∂ Ld

∂ P (z)

∂ P (z)

∂ ρ(z)
=

Æ
P (z)

∑

w

n(d , w)
P (d |z)P (w |z)

∑
ζ P (ζ )P (w |ζ )P (d |ζ )

(3.3.5)

∂ Ld

∂ ρ( bw|z)
=

∂ Ld

∂ P ( bw|z)
∂ P ( bw |z)
∂ ρ( bw|z)

=
Æ

P ( bw |z) · n(d , w) ·
P (d |z)P (z)

∑
ζ P (ζ )P ( bw|ζ )P (d |ζ )

(3.3.6)
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Note that equation (3.3.6) does not contain a sum over w since the derivation with respect for one given
bw ∈V cancels all the terms where w 6=ω.

The expectation is estimated as Ed [∇Ld∇LT
d
]∼∑d∈D ·∇Ld∇LT

d
. Let us define

αz =
∑

d

�
∂ Ld

∂ ρ(z)

�2

, γw,z =
∑

d

�
∂ Ld

∂ ρ(w|z)

�2

Then2

G(ρ) =




α1
. . .

αZ
γ11

. . .
γW Z




As G(ρ) is assumed to be diagonal, G(ρ)−1 is straightforwards, and this yields a two-component
kernel where the contributions of the categories alone and the contributions of the words are distinct:

KH(d , q) =
∑

z

∂ Ld

∂ ρ(z)
α−1

z

∂ Lq

∂ ρ(z)︸ ︷︷ ︸
Kz (d ,q): contribution of the z

+
∑

w

∑

z

∂ Ld

∂ ρ(w|z)γ
−1
w,z

∂ Lq

∂ ρ(w|z)︸ ︷︷ ︸
Kw (d ,q): contribution of the w

We note the contributions of the categories alone and the contributions of the words KH
z and KH

w ,
respectively. We can now give an explicit expression of these terms, function of the parametres of
PLSI: by introducing the expressions of equations 3.3.5 and 3.3.6 into the above kernel (and writing∑

z P (z)P (w|z)P (d |z) as P (d , w) for simplify notations), we obtain

KH
z (d , q) =

∑

z

Æ
P (z) ·

∑

w
n(d , w)

P (d |z)P (w|z)
P (d , w)

· ←− Ld

Æ
P (z) ·

∑

w
n(q , w)

P (q |z)P (w|z)
P (q , w)

· ←− Lq

 
P (z)

∑

d

∑

w

�
n(d , w)

P (d |z)P (w|z)
P (d , w)

�2!−1

←−G−1

(3.3.7)

2For two given documents d and q, d 6= q, the vectors ∂ L
∂ ρ(d |z) and ∂ L

∂ ρ(q |z) are orthogonal, which yields a component

∑

z

∂ Ld

∂ ρ(δ |z)G
−1
δ ,z

∂ Lq

∂ ρ(δ |z) = 0, ∀δ

.
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and KH
w (d , q) as

KH
w (d , q) =

∑

w

∑

z

Æ
P (w|z) · n(d , w)

P (d |z)P (z)
P (d , w)

· ←− Ld

Æ
P (w|z) · n(q , w)

P (q |z)P (z)
P (q , w)

· ←− Lq

 
P (w|z)

∑

d

�
n(d , w)

P (d |z)P (z)
P (d , w)

�2!−1

←−G−1

(3.3.8)

For the sake of simplicity and tractability, we seek more simple expressions of KH
z (d , q), KH

w (d , q),
α and γ .

KH
z component

KH
z =

∑

z
P (z) ·

∑

w
n(d , w)

P (d |z)P (w|z)
P (d , w)

·
∑

w
n(q , w)

P (q |z)P (w|z)
P (q , w)

Clearly the P (d |z) and P (q |z) are independent of w and can be taken out of the sums. Hence

KH
z =

∑

z
P (z)P (d |z)P (q |z)︸ ︷︷ ︸

=
P (d ,z)P (q,z)

P (z)

·
∑

w
n(d , w)

P (w|z)
P (d , w)︸ ︷︷ ︸

∼=1/|C |

·
∑

w
n(q , w)

P (w|z)
P (q , w)︸ ︷︷ ︸

∼=1/|C |

Hofmann introduces the following hypothesis:

• P (z)P (d |z)P (q |z) = P (d ,z)P (q ,z)
P (z) straightforwardly from Bayes’ rule

• ∑w n(d , w) P (w|z)
P (d ,w)

∼= 1/|C | because it is expected that, over all the w, the observed distribution

bP (d , w) tends to fit the probability P (d , w), and thus
∑

w
bP (d ,w)
P (d ,w)

∼= 1. Furthermore,
∑

w P (w|z)≡
1. Hence

∑
w
bP (d , w) P (w|z)

P (d ,w)
∼= 1.

As Hofmann makes the assumption with a n(d , w) instead of a bP (d , w), a |C |−2 factor is intro-
duced

KH
z =

1

|C |2
P (d , z)P (q , z)

P (z)

KH
w component

KH
w (d , q) =

∑

w

∑

z
P (w|z) · n(d , w)

P (d |z)P (z)
P (d , w)

· n(q , w)
P (q |z)P (z)

P (q , w)

Clearly the terms n(d , w) and n(q , w) are independent from z and can be taken out of
∑

z . We also
manipulate P (w|z) to make the expression P (w|z)P (d |z)P (z) appear twice inside the sum:

Kw(d , q) =
∑

w
n(d , w)n(q , w)

∑

z

P (w|z)P (d |z)P (z)
P (d , w)︸ ︷︷ ︸
P (z|d ,w)

P (w|z)P (q |z)P (z)
P (q , w)︸ ︷︷ ︸
P (z|q ,w)

1

P (w|z)
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This is justified by the fact that in the PLSI model,
∑

z P (w|z)P (d |z)P (z) = P (z, d , w). Hence,
∑

z
P (w|z)P (d |z)P (z)

P (d ,w) =
P (z,d ,w
P (d ,w)

Bayes
= P (z|d , w)

Substituting n(d ,w)
|C | for bP (d , w), we can write

KH
w (d , q) = |C |2

∑

w

bP (d , w)bP (q , w)
∑

z

P (z|d , w)P (z|q , w)

P (w|z)

α component

αz =
∑

d

�
∂ Ld

∂ ρ(z)

�2

=
∑

d

∑

z
P (z)

�∑

w
n(d , w)

P (d |z) · P (w|z)
P (d , w)

�2

Clearly the P (d |z) can be taken out of the sum over w, and

αz =
∑

d

∑

z
P (z) · P 2(d |z)

︸ ︷︷ ︸
P2(d ,z)

P (z)

�∑

w
n(d , w)

P (w|z)
P (d , w)

�2

︸ ︷︷ ︸
∼=1/|C |2

With a |C |2 factor like in KH
z , we have

αz = |C |2
∑

d

P 2(d , z)

P (z)
�

γ component

We have

γw,z =
∑

d

P (d ) ·
�
∂ Ld

∂ ρ(w|z)

�2

=
∑

d

P (w|z)
�

n(d , w)
P (d |z)P (z)

P (d , w)

�2

,

which can be written as

γw,z =
∑

d

 
n(d , w)

P (z|d , w)
p

P (w|z)

!2

�

Eventually, the kernel becomes

K(d , q) =

�
�
�1

|C |2
P (d , z)P (q , z)

P (z)
·



�
�|C |2
∑

d

P 2(d , z)

P (z)



−1

+

|C |2
∑

w

bP (d , w)bP (q , w)
∑

z

P (z|d , w)P (z|q , w)

P (w|z) ·

∑

d

n(d , w)2
P (z|d , w)2

P (w|z)



−1

We see a kernel composed of two additive parts that match those of Hofmann’s kernel (eq. 3.3.3);
however, each of these terms is multiplied by a term that is absent from Hofmann’s kernel. This term
accounts for the contribution of the Fisher information matrix, which acts as a metric tensor on the
new representation space.
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Furthermore, we see that the P (d |z) and bP (d |w) of Hofmann’s kernel have been replaced with
P (d , z) and bP (d , w), respectively, because Nyffenegger et al. did not introduce the hypothesis on nor-
malisation by document and query lengths.

The presence of a FIM term and the absence of document length normalisation distinguish Nyf-
fenegger’s kernels from Hofmann’s. We discuss these points in details in chapter 5.

3.3.4 Query folding-in

Folding-in [26, 27] is a technique to estimate P (d |z) parameters for unknown documents in PLSI; in
an ad hoc information retrieval framework, queries are typically concerned.

The parameters P (q |z) of the query are learnt by a simplified process that uses the P (w|z) learnt
from the corpus, by running EM on P (q |z) while keeping the P (z) and P (w|z) fixed. The P (d |z) are
then rescaled to accommodate the new P (q |z)> 0.

This method engenders problems, such as inaccuracies in log-likelihood estimation of the test
set [89], or their adequacy with the P (d |z) of the training set.

In the course of our experiments, we have deliberately refrained from implementing a “folding in”
system. Instead, we concatenate the queries and the corpus, and perform posterior estimation on both.
We then separate the queries from the document collection and perform the retrieval as usual.

3.4 Conclusions

We have reproduced and detailed the derivation of Nyffenegger et al. for two proeminent probabilistic
latent semantic models, Naive Bayes and PLSI. For both, the EM inference algorithm and the Fisher
kernel are provided.

In the case of models of the exponential family, the Fisher information matrix may be reduced to
G(Θ) = I at the price of a square root re-parametrisation. However, PLSI does not belong to this
family, and the Fisher information matrix for PLSI contributes to the Fisher kernel whatever the re-
parametrisation.

Because PLSI depends on parameters P (d |z), it is not a fully generative model, because it does
not provide a readily available representation for new documents. This causes practical problems for
queries, and prevents incremental indexing.

The kernels reproduced in this chapters are Hofmann’s kernel, normalised by |d | and |q | and whose
Fisher information matrix is approximated by the identity; and the unnormalised kernel by Nyffeneg-
ger et al., whose Fisher information matrix is also approximated by the identity; the “Vector Space”
kernel of Nyffenegger et al. is a combination of terms coming from the two former kernels. We have
also shown how the Fisher Information matrix can be approximated by its diagonal rather than by the
identity, as was done by Nyffenegger et al. These elements will be useful when the derivation of the
Fisher kernel will be redone from the ground up (chapter 4, p. 53), to study the contributions of the
different parts of the kernels (chapter 5, p. 63), and when the kernels of Hofmann and the different
kernels of Nyffenegger et al. (unnormalised, Vector Space and DFIM) will be evaluated (chapter 7,
p. 81).
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Chapter 4

PLSI: from I.I.D. processes to the
Fisher kernel

Abstract

In the previous chapter, we gave an overview of how the postulates of a probabilistic latent
semantics model yield the learning algorithms that generate the latent representations, as
well as the Fisher kernels that constitute an appropriate similarity measure between them.

In the present chapter, we re-work the derivation of the Fisher kernel for PLSI from the
ground up, i.e. from the very generative process of PLSI. From the observation that the
generative process of PLSI is an Independent, Identically Distributed (IID) process, and
through a lemma regarding the compositionality of Fisher kernels in this case; we derive a
new kernel form, which constitutes the actual, rigorous PLSI Fisher kernel.

We complete the discussion by comparing this kernel to previously published forms and
examining which conditions transform one into another. This will allow us to elaborate
on the different variants of the Fisher kernel that have been proposed, and to judge their
merits from on theoretical and practical points of views.

4.1 Introduction

In this chapter, we question the form of the Fisher kernel for PLSI from an even deeper level, and
re-develop it from the ground up. By remaining tightly linked to the generative process of PLSI while
developping the kernel, we take a different course than Hofmann and Nyffenegger et al., and reach
another form of the kernel. We then show that this form is in fact very close to that found by Hofmann,
bargaining exactly four hypothesis that we explain in detail (table 4.1, p. 60). By doing so, we can
clearly understand where the previously published kernels position themselves with respect to the ideal,
theoretically pure kernel.

4.2 Derivation of the Fisher kernel for IID models

As recalled in section 2.5.3 (p. 29), Fisher kernels are similarity measures between instances of proba-
bilistic models [29]: for two instances X and Y of a given family of stochastic models P (X |θ) parametrised

53
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with θ, the Fisher kernel is defined as

K(X ,Y ) = UX (θ)
T G(θ)−1UY (θ) , (4.2.1)

where UX (θ) is the gradient of the log-likelihood: UX (θ) =∇θ log P (X |θ), and the Fisher information
matrix G(θ) is the covariance of this score:

G(θ) = EX [UX (θ)UX (θ)
T ] .

4.2.1 Fisher kernel of documents: the document log-likelihoods and how they
combine

Writing the log-likelihood of documents is at the core of the derivation of the Fisher kernel, as the
gradient of this log-likelihood intervenes both in the Fisher score and in the Fisher matrix.

In developping his Fisher kernel for PLSI (see section 3.3.3,p. 46), Hofmann uses a length-normalised
log-likelihood of an observed document:

L bd0
(θ) =

1

| bd0|
log P ( bd0) =

1

| bd0|

∑

w∈ bd0

log P (d0, w) =
1

| bd0|

∑

w∈V

n(w, d0) log P (d0, w) (4.2.2)

We, on the other hand, propose to compute the Fisher kernel from the original nature of PLSI: an
IID process on pairs of indices (d , w). Instead of writing an overall log-likelihood for a realised docu-
ment and deriving a kernel from there, we will keep the log-likelihood associated to individual (d , w)
instances, and derive the associated Fisher kernels; we go on to demonstrate that these elementary
Fisher kernels combine into the overall Fisher kernel for documents.

To this effect, we provide a lemma on compositionality of Fisher kernels in an IID framework.

Lemma 4.2.1 The Fisher kernel between two instances X n
1 and Y m

1 of an independent and identically-
distributed (IID) stochastic process is the sum of the Fisher kernels between the individual random variables
Xi and Y j , divided by the number of variables in the processes:

K(X n
1 ,Y m

1 ) =
1

n

1

m

n∑

i=1

m∑

j=1

K(Xi ,Y j ) . (4.2.3)

Proof Let us consider X n
1 a n-element-long instance of an IID stochastic process. To simplify nota-

tions, we shall henceforth write X =X n
1 . Its log-likelihood is expressed by log P (X ) =

∑n
i=1 log P (Xi ).

Linearity of derivation operators entails that the corresponding Fisher score is written UX (θ) =
∑n

i=1 UXi
(θ).

The Fisher information matrix for n-event instances of such an IID stochastic process is by defi-
nition G(θ) = EX

�
UX (θ)UX (θ)

T
�

and for a single instance: G1(θ) = EXi

�
UXi
(θ)UXi

(θ)T
�

(which



4.2. DERIVATION OF THE FISHER KERNEL FOR IID MODELS 55

exact Xi is independent ofi , since the process is IID). G(θ) can be written as:

G(θ) = EX




 
n∑

i=1

UXi
(θ)

!


m∑

j=1

UX j
(θ)




T

 (4.2.4)

=
n∑

i=1

 
EX

�
UXi
(θ)UXi

(θ)T
�
+
∑

j 6=i

EX

h
UXi
(θ)UX j

(θ)T
i!

(4.2.5)

=
n∑

i=1

 
GXi
(θ)+EXi

�
UXi
(θ)
�∑

j 6=i

EX j

h
UX j
(θ)
iT

︸ ︷︷ ︸
=0

!
=

n∑

i=1

G1(θ) (4.2.6)

= n ·G1(θ) . (4.2.7)

As in [29], the “natural gradient” φX is obtained from the ordinary gradient UX (Θ) via

φX =G(Θ)−1UX (Θ).

In the case of IID stochastic processes, the previous results lead to

φX =G(Θ)−1UX (Θ) =
1

n
·

n∑

i=1

G1(Θ)
−1UXi

(Θ) =
1

n
·

n∑

i=1

φXi
.

Eventually, the Fisher kernel between two instances X n
1 and Y m

1 of an IID process is given by

K(X n
1 ,Y m

1 ) = φX
T G1(Θ)φY =

 
1

n

n∑

i=1

G1(Θ)
−1UXi

(Θ)

!T

G1(Θ)




1

m

m∑

i= j

G1(Θ)
−1UY j

(Θ)




=
1

n ·m
n∑

i=1

m∑

i= j

U T
Xi
(Θ)G1(Θ)

−1UY j
(Θ) =

1

n ·m
n∑

i=1

m∑

i= j

K(Xi ,Y j ) .

�

With Lemma 4.2.1, we are empowered to develop the Fisher kernel for PLSI in a way that stems
directly from the very nature of PLSI: an IID process of (d , w) pairs probabilised by1

P (d , w) =
∑

z

P (z)P (w|z)P (d |z) ,

4.2.2 Derivation of the PLSI Fisher kernel

From the aforementioned derivation of the Fisher kernel (lemma 4.2.1, p. 54), in which the terms Xi
and Yi correspond to

Xi = (d , w) Yi = (q , w ′) ,

for two document models d and q , and two terms w and w ′ from vocabulary V , we have

K IID(d , q) =
1

|d |
1

|q |
∑

w∈V

∑

w ′∈V

n(d , w)n(q , w ′)K
�
(d , w), (q , w ′)

�
, (4.2.8)

where n(d , w) is the number of occurrences of word w in document d , |d |=∑w n(d , w), and K
�
(d , w), (q , w ′)

�

is the “atomic kernel” between a pair of terms w and w ′ belonging to documents d and q respectively.

1See equation 3.3.1 (p. 42) for more details.
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Note: Notice the two indices w and w ′ the summation above: in contrast to former formulations
(section 3.3.3,p. 46), these pairs of (w, d ) indices do not necessarily share the same w. The score as-
sociated to the match between two document models d and q is not only a term-by-term comparison
(a single summation over the terms of the vocabulary); instead, it yields a double summation, as the
contribution of each term of the query is itself a summation of the kernels of this query term against
all document terms (see figure 4.1). In particular, this entails that the IID model can yield a non-zero
contribution for a term present only in one of the documents but not in both.

q : lion cat . . . zoo

d : cat lion . . . . . . . . . ocelot

etc.

(a) IID kernel

q : lion cat . . . zoo

d : cat lion . . . . . . . . . ocelot

(b) Hoffman’s kernel

Figure 4.1: Summation of contributions within the two forms of the Fisher kernel: in the IID kernel
(4.1a), each word appearing in document q yields a summation over all the words in d , producing a
double summation. Pairs of different words — for instance (
at,o
elot) — contribute, entailing that
terms that appear in only one document contribute. In Hofmann’s kernel (4.1b), each word appearing
in document q yields one single term with from instances of the same word in d . Pairs of different
words do not contribute, entailing that terms that appear in only one document are ignored.

4.2.3 Atomic kernel

Lemma 4.2.2 For PLSI, the “atomic kernel” between two term occurrences is written as

K
�
(d , w), (q , w ′)

�
=

P (d |z)
P (d , w)

P (q |z)
P (q , w ′)

·
∑

z


P (w|z)P (w ′|z)α(z)+δw,w ′γ (w, z)


 , (4.2.9)

with δw,w ′ the Kronecker delta between w and w ′. The terms α(z) and γ (w, z) denote the contribution of
the Fisher Information Matrix:

α−1(z) =
∑

d∈D

∑

w∈V

n(d , w)
�

P (w|z)P (d |z)
P (d , w)

�2

γ−1(w, z) =
∑

d∈D

n(d , w)
�

P (d |z)
P (d , w)

�2

Proof The derivation of the Fisher kernel goes in three stages: in the first stage, the Fisher score is com-
puted from the log-likelihood associated with the model; in the second, the Fisher Information Matrix is
computed, as the expectation of the Fisher Score over the known sample; eventually, the Fisher kernel
itself is obtained by combining the Fisher Information Matrix with the Fisher scores of the elements to
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be compared.

The Fisher score for one pair of indices (d , w) in PLSI is U(d ,w)(θ) =∇θ log P (d , w). The gradient
is, on our case, computed by performing derivations with respect to the parameters P (z), P (d |z) and
P (w|z) for all terms w, document indices d and categories z. Let us write δ and ω the indices of the
document and the term with respect to which derivations of P (d , w) are performed. Since P (d , w) =∑

z P (z)P (w|z)P (d |z), we have

U(d ,w)(θ) = ∇θ log P (d , w) =




∂ log P (d ,w)
∂ P (z)

∂ log P (d ,w)
∂ P (ω|z)
∂ log P (d ,w)
∂ P (δ |z)



=




P (w|z)P (d |z)
P (d ,w)

δω,w
P (d |z)P (z)

P (d ,w)

δδ ,d
P (w|z)P (z)

P (d ,w)




,

with δω,w the Kronecker delta betweenω and w, and similarly for δ and d .
When comparing two documents, a scalar product is performed on their Fisher scores. In this

product, the “document dimensions”2 can yield a non-zero contribution if, and only if, the documents
being compared have the same document indice — that is if they are the same document model. In
other cases, two different documents are always orthogonal in the “document dimensions”. Since this
only non-zero case is trivial, the “document dimensions” of the Fisher score can thus be ignored in the
kernel.

At this stage, for the sake of consistency with former derivations (see section 3.3.3), a square root
re-parametrisation can be introduced:

θ(z)→ ρ(z) = 2
Æ

P (z) and θ(w|z)→ ρ(w|z) = 2
Æ

P (w|z) . (4.2.10)

With this re-parametrisation, ∂ P (z)
∂ ρ(z) =

1
2ρ(z) =

p
P (z) and ∂ P (w|z)

∂ ρ(ω|z) = δω,w
1
2ρ(w|z) = δω,w

p
P (w|z).

Hence,

U(d ,w)(ρ) =




p
P (z) P (w|z)P (d |z)

P (d ,w)

δω,w

p
P (w|z) P (d |z)P (z)

P (d ,w)


 .

The Fisher information matrix for one instance (d , w) is

G1(θ) =E(d ,w)

�
U(d ,w)(θ)U(d ,w)(θ)

T
�

.

In general, this matrix is not tractable as such — in particular, computing its inverse is not practi-
cally feasible for document collections that contain over a few dozens documents and terms. We will
thus introduce the Diagonal Fisher Information Matrix (DFIM) hypothesis, i.e. the notion that G1(θ)
can be approximated by its diagonal.

Let us consider the parts of the matrix G1(θ) which stem from U(d ,w)(z) =
∂ log P (d ,w)
∂ P (z) (noted Gz )

and from U(d ,w)(ω|z) =
∂ log P (d ,w)
∂ P (ω|z) (noted Gw ) respectively. For a document collection C , the diagonal

of G1(θ) can be approximated by (e.g. [52]):

Gz (z) =
∑

(d ,w)∈C

U(d ,w)(z)
2, Gw (ω, z) =

∑

(d ,w)∈C

U(d ,w)(ω|z)2 , (4.2.11)

2That is the components of the Fisher score that pertain to the derivation by documents indices, ∂ log P (w,d )
∂ P (δ |z) and ∂ logP (w,q)

∂ P (δ |z) .
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which, for G(ρ), leads to

Gz (z) = P (z)
∑

d∈D

∑

w∈d

n(d , w)
�

P (w|z)P (d |z)
P (d , w)

�2

(4.2.12)

Gw (w, z) = P (w|z)P (z)2
∑

d∈D

n(d , w)
�

P (d |z)
P (d , w)

�2

. (4.2.13)

Note that the terms P (z) in equation 4.2.12 and P (w|z)P (z)2 in equation 4.2.13 stem solely from
the square root re-parametrisation, and cancel out in the kernel when combined with their homologues
of Ud (θ) and Uq (θ). This heralds the normalising role of G(θ).

The “atomic” Fisher kernel is finally obtained by assembling the Fisher scores U(d ,w)(Θ) and the
Fisher Information matrix G1(θ) as

K
�
(d , w), (q , w ′)

�
=U(d ,w)(Θ)G

−1
1 (Θ)U(q ,w ′)(Θ)

=U(d ,w)(ρ)G
−1
1 (ρ)U(q ,w ′)(ρ) .

The matrix G1(Θ) is assumed to be diagonal. We can separate the contributions of the “categories
dimensions” (the ∂ U/∂ P (z) terms) and those of the “term dimensions” (the ∂ U/∂ P (w|z) terms) by
writting

K
�
(d , w), (q , w ′)

�
= Kz

�
(d , w), (q , w ′)

�
+Kw

�
(d , w), (q , w ′)

�
,

with:

Kz

�
(d , w), (q , w ′)

�
=

∑

z
U(d ,w)(z)Gz (z)

−1 U(q ,w ′)(z) , and

Kw
�
(d , w), (q , w ′)

�
=

∑

z

∑

ω

U(d ,w)(ω|z)Gw (ω, z)−1 U(q ,w ′)(ω|z)

= δww ′
∑

z
U(d ,w)(w|z)Gw (w, z)−1 U(q ,w ′)(w|z) .

Combining these components with the general expression of the kernel, we eventually obtain that

K
�
(d , w), (q , w ′)

�
= (4.2.14)

∑

z

h P (w|z)P (d |z)
P (d , w)

P (w ′|z)P (q |z)
P (q , w ′)

P (z)Gz (z)
−1

+ δw,w ′
P (d |z)P (q |z)

P (d , w)P (q , w)
P (z)2P (w|z)Gw (w, z)−1

i
.

4.2.4 IID Fisher kernel

The final expression of the Fisher kernel for PLSI can now by obtained by injecting the expression of
the “atomic kernels” (equation 4.2.14), pertaining to one pair of indices (d , w) and (q , w ′) indices, into
the expression of the full IID kernel (equation 4.2.8). We find that

K IID(d , q) =
∑

w∈V

∑

w ′∈V

bP (w|d ) · bP (w ′|q) ·
P (d |z)
P (d , w)

P (q |z)
P (q , w ′)

·

·
∑

z


P (w|z)P (w ′|z) ·α(z)+δw,w ′ γ (w, z)


 , (4.2.15)
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where bP (w|d ) = n(d ,w)
|d | .

Note that α=Gz (θ)
−1 = P (z)Gz (ρ)

−1, and that γ =Gw (θ)
−1 = P (w|z)P (z)2Gw(ρ)

−1:

α(z) =

 ∑

d∈D

∑

w∈d

n(d , w)

�
P (w|z)P (d |z)

P (d , w)

�2!−1

= P (z)Gz (ρ)
−1

γ (w, z) =

 ∑

d∈D

n(d , w)
�

P (d |z)
P (d , w)

�2!−1

= P (w|z)P (z)2Gw (ρ)
−1

4.3 Relation between K IID(d , q) and KH(d , q)

We now examine equation 4.2.15 related to Hofmann’s original development of the Fisher kernel [28] 3

KH (d , q) =
∑

z∈Z

P (z|d )P (z|q)
P (z)

+
∑

w∈V

bP (w|d )bP (w|q)
∑

z∈Z

P (z|d , w)P (z|q , w)

P (w|z)
, (4.3.1)

Hofmann’s kernel stems partly from the assumption that, averaged over the entire vocabulary of
the document collection, the probabilities inferred by the learning system are good estimators of the
observed statistical features of the collection. The exact assumption used by Hofmann is

∑

w∈V

P (w|z)
bP (w|d )
P (w|d ) =

∑

w∈V

n(d , w)

|d |
P (w|z)
P (w|d ) ≃ 1 . (4.3.2)

We introduce a closely related term, distinct from the term that appear in Hofmann’s assumption
only by replacing the document length |d | with P (d ):

ζ (d , z) =
∑

w∈V

n(d , w)

P (d )

P (w|z)
P (w|d )

=
∑

w∈V

n(d , w)
P (w|z)
P (d , w)

,

Assumption 4.3.2 then yields

ζ (d , z)≃
|d |

P (d )
(4.3.3)

We re-write equation 4.2.15 with the ζ (d , z) notation, yielding

K IID(d , q) =
1

|d |
1

|q |
∑

z∈Z

P (d |z)P (q |z) ·

·

α(z)ζ (d , z)ζ (q , z)+

∑

w∈V

n(d , w)

P (d , w)

n(q , w)

P (q , w)
γ (w, z)


 . (4.3.4)

Now we can combine 4.3.4 and 4.3.3. Furthermore, as we experimentally verified that

P (d )≃
|d |
|C | , where |C |=

∑

w∈V

∑

d∈D

n(d , w) , (4.3.5)

to a precision inferior to 1%, we can state that

ζ (d , z) ≃ |C |
3Our derivation for this kernel is given in section 3.3.3 (p. 46).
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∑
w∈V P (w |z) n(w,d )/|d |

P (w |d ) =

=Ew

�
bP (w |d )
P (w |d )

���z
�
≃ 1

Over all words and all categories,
bP (w |d ) = n(w,d )

|d | is a good estimator of
P (w |d ).

eq. 4.3.2 (p. 59)

P (d )≃ |d |
|C | The probability of a document is

proportional to its length.
eq. 4.3.5 (p. 59)

θ(z)→ ρ(z) = 2
p

P (z)
θ(w |z)→ ρ(w |z) = 2

p
P (w |z)

Square root re-parametrisation. eq. 4.2.10 (p. 57)

G(ρ)≃ I The Fisher information matrix can be
approximated by I.

eq. 3.3.4 (p. 47)

Table 4.1: The four assumptions that link Hofmann’s kernel to the IID kernel.

For Kz : this entails that the Kz of the kernel above can be replaced by

Kappr
z =

∑

z∈Z

P (d |z)
P (d )

P (q |z)
P (q)

α(z) ;

assuming that G = 1, and assuming that α denotes G(ρ) (i.e. is the result of a square root re-parametrisation),
α= P (z), and

Kappr
z =

∑

z∈Z

1

P (z)

P (d |z)P (z)
P (d )︸ ︷︷ ︸
P (z|d )

P (q |z)P (z)
P (q)︸ ︷︷ ︸
P (z|q)

=
∑

z∈Z

P (z|d )P (z|q)
P (z)

For Kw : with the same assumptions on G, we have that γ = P (w|z)P (z)2; this entails that the Kw of
the kernel above can be replaced by

Kappr
w =

∑

w∈V

bP (w|d )bP (w|q)
∑

z∈Z

P (w|z)P (z)2

P (d , w)P (q , w)

=
∑

w∈V

bP (w|d )bP (w|q)
∑

z∈Z

1

P (w|z)
P (w|z)P (z)

P (d , w)︸ ︷︷ ︸
=P (z|d ,w)

P (w|z)P (z)
P (q , w)︸ ︷︷ ︸
=P (z|q ,w)

Combining Kappr
z and Kappr

w , we find the Hofmann’s kernel of equation 4.3.1.

Thus, at the price of four assumptions (table 4.1) Hofmann’s “matrixless” kernel can be seen as an
approximation of the IID one.

These approximations call for several comments:
Approximation 4.3.2 yields a very significant simplification of the computation by turning the

double sum over the w ∈ d and w ′ ∈ q in equation 4.2.15 into a single sum over w ∈ q , like in
equation 3.3.3 (see figure 4.1 p. 56). This yields computation of the order of 100 times faster4, as, for
every (d , q) pair, the IID computation in O(|Z | · |d | · |q |) is replaced with a computation in O(|Z | · |q |).

4For instance, a run on the SMART base TIME, with 32 categories, takes about 9 seconds for Hofmann’s kernel, and nearly
15 minutes for the IID kernel
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Approximation 4.3.5 is mostly technical and furthermore has some good theoretical arguments for
itself. It has been verified up to a small error.

On the other hand, that the Fisher information matrix can be approximated by I finds is not well
justified. This point is discussed further in section 5.2 (p. 66).

4.4 Implementation of the IID Kernel

In practise, (4.3.4) is more efficiently computed by taking into account that α(z) depends only on z
(neither on d nor on w): α(z) and ζ (d , z) can be pre-computed once for all for the entire corpus.
γ (w, z) and ζ (q , z) are best computed for each query, as to take advantage of the limited number of
different terms present in a query: γ (w, z) is computed only for w ∈ q (i.e. w ∈V such as n(w, q)> 0).
We have observed that processing is an order of magnitude quicker using these precomputations.

Furthermore, the computation of all Fisher kernels can be decomposed into two independent parts
Kz and Kw which stem from the contributions of the latent categories and of the terms, respectively;
for instance using (4.3.4):

K IID(d , q) = K IID
z (d , q)+K IID

w (d , q),

where

K IID
z (d , q) =

1

|d |
1

|q |
∑

z∈Z

P (d |z)P (q |z)α(z)ζ (d , z)ζ (q , z) ,

and

K IID
w (d , q) =

1

|d |
1

|q |
∑

z∈Z


P (d |z)P (q |z) ·

∑

w∈V

n(d , w)

P (d , w)

n(q , w)

P (q , w)
γ (w, z)


 .

In spite of the optimisation that we present here, computation of the IID kernel remains quite
costly, as it yields a double loop on the terms of the query and the terms of the documents. In this
perspective, it is interesting that a kernel such as Hofmann’s would exist, as it gives insights for further
approximations that would combine the theoretical foundations and the good results of the IID kernel
with the computational advantages of Hofmann’s kernel.

4.5 Conclusions

We developed the true Fisher kernel for PLSI, based on the IID nature of its generative process. The IID
Fisher kernel features normalisation by document length and contributions of the Fisher information
matrix; in Hofmann’s original kernel, the first was present but not justified beyond an analogy totf-idf models, while the second was absent.

The resulting kernel outperforms Hofmann’s original kernel (see chapter 7, p. 81). It is much more
expensive to compute, but the two kernels can be linked by four simplifying assumptions (table 4.1,
p. 60). Examining these assumptions could result in a kernel combining the merits of both IID and
Hofmann’s kernel; this is the object of the following chapter.
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Chapter 5

The components of the Fisher kernel
for PLSI and their roles

Abstract

The previous chapter has heralded theoretically founded similarities for PLSI by deriving
the Fisher kernel that stems directly from the IID nature of the PLSI generative process.
In this chapter, we study in detail the contributions of the various terms that compose
the kernel. In particular, we study the role of the Fisher information matrix, neglected
by Hofmann. We also address the Fisher kernels “word component” Kw and “category
components” Kz .

These studies allow us to answer the questions raised by Nyffenegger et al. [61]: what
are the consequences of the normalisation of the document log-likelihood by document
length, introduced by Hofmann in his legacy kernel? Should the Fisher information matrix
be approximated by the identity, as Hofmann does, or not? We also address the so-called
“Vector Space” kernel that attempted to bring balance in the Fisher kernel by normalising
only its Kz part.

This study vindicates the validity of the normalisation by document length as introduced
by Hofmann, and confirms the necessity to account for the Fisher information matrix.

5.1 Ratios between kernel components

In the preceding chapter, we introduced the “term dimensions” Kw and the “categories dimensions” Kz
of the Fisher kernel. The complete Fisher kernel is a sum of these two terms:

K(d , q) = Kz (d , q)+Kw (d , q)

Nyffenegger et al. [61] studied in which proportions these two components contribute to the
overall retrieval performance. This question stems from a normalisation by document length in Hof-
mann’s legacy kernel [28], justified by analogy with the tf-idf model but not strongly theoretically
grounded1. Questioning this normalisation led them to propose two alternative variants of the Fisher
kernel:

1In chapter 4, we have shown how regarding PLSI as a stochastic IID process explains the origin of these terms, and justifies
their introduction in a simplified kernel.
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Kz Kw

Unnormalised kernel [61] KU
z KU

w

Hofmann [28] 1
P (d )P (q)K

U
z

|C |2
|d ||q |K

U
w

Vector Space [61] KU
z

|C |2
|d ||q |K

U
w

Table 5.1: Components of Hofmann’s kernel KH and the Vector Space kernel KVS with respect to those
of the kernel KU derived from unnormalised log-likelihoods

1. an un-normalised kernel, denoted KU

2. a hybrid derivative called Vector Space (VS), in which only the second part of the kernel is nor-
malised. This version is not justified beyond experimental considerations.

Nyffenegger et al. go on to compare KH and the Vector Space Kernel KVS — though giving no results
for KU.

We take a step further by evaluating KU, the kernel where normalisation is removed from both
components. Furthermore, for all these kernels, we provide experimental results for the components
“categories part” and the “term part” alone (denoted KH

z and KH
w , and similarly for U and VS).

As mentioned in section 4.2.1, the term that Hofmann uses in his derivation is not exactly the log-
likelihood for documents L bd0

(θ) (eq 4.2.2), but rather L bd0
(θ)/|d |, which comprises a normalisation by

document length. His legacy kernel, KH, stems from this basis.
Derivation of the kernel from an un-normalised log-likelihood led to the kernels KU and KVS.

These normalisations of log-likelihoods are echoed more of less explicitly in the kernel components Kz
and Kw ; table 5.1 shows the Kz and Kw components for Hofmann’s kernel KH, the Vector Space kernel
KVS and the unnormalised kernel KU, taking KU as a reference.

Given the typical orders of magnitude of |C | (size of the document collection) versus typical |d |
and |q |, it quite clear that the VS kernel is largely dominated by its Kw component, which it inherits
from KH:

KVS ≃ KH
w (5.1.1)

This was confirmed experimentally, as shown in detail in chapter 7.
When the log-likelihood is multiplied by a constant, the Fisher kernel is left unchanged. However,

if the log-likelihood is multiplied by a function of d not depending on the parameters, i.e. l new
d
(θ) =

λ(d )l
d
(θ), s.t. ∇θλ= 0, then

Gnew(θ) = Ed

�
(∇ρ l new

d (ρ)) (∇ρl new
d (ρ))T

�

= Ed

�
λ(d )2(∇ρ ld (ρ)) (∇ρld (ρ))

T
�

,

and
Knew
θ
(d , q) = λ(d )λ(q) (∇θ ld (θ))

T Gnew(θ)−1 (∇θ ld (θ)),

which cannot, in the most general case, be expressed in terms of Kθ(d , q).
However, if the contribution of the Fisher information matrix G(θ) is neglected (i.e. if G(θ) ≃ 1),

as in Hofmann’s derivation, then the two kernels do come in relation:

Knew
θ
(d , q) = λ(d )λ(q)Kθ(d , q).
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Thus, under the assumption that G(θ) is approximated by I, we expect to find

KH(d , q) =
1

|d | |q |
KU(d , q).

The reason why this is not verified in table 5.1 stems from slightly different assumptions made in
their computations: with assumption 4.3.2 (p. 59), Hofmann states that

∑

w

bP (w|d )
P (w|d )

P (w|z)≈ 1 ,

where Nyffenegger et al. make a similar but slightly different assumption on the joint probabilities
rather than on the conditional probabilities:

∑

w

bP (d , w)

P (d , w)
P (w|z)≈ 1.

The two relations are linked by

∑

w

bP (w|d )
P (w|d )

P (w|z) = P (d )
|C |
|d |

∑

w

bP (d , w)

P (d , w)
P (w|z).

Replacing the first approximation with the second amounts to turning |d |/|C | into P (d ), well in line
with assumption 4.3.5 (p. 59). Substitution leads directly to the formulae of table 5.1, as expected.

We could thus consider three similar “Hofmann”-like kernels: KH as originally computed and
described above, but also KH1 =

|C |2
|d | |q |K

U, which has the same kz as KH but a different kw , and

KH2 = 1
P (d )P (q)K

U, which has the same kw as KH but a different kz .
We evaluated these three kernels and no change occurred in the results; observed differences in

the document similarities were in the order of 10−4%. This is because |d |/|C | is indeed a very good
estimator of P (d ) =

∑
z P (d |z)P (z).

For coherence with existing literature, we focused on KH rather than KH1 or KH2 .



66 CHAPTER 5. COMPONENTS OF PLSI FISHER KERNELS

5.2 Role of the Fisher Information matrix

The Fisher kernel (eq. 2.5.7 p. 30) is defined as a dot product on an alternative representation space; as
such, it contains a metric tensor that denotes the topology of this alternative space. This tensor, the
Fisher Information matrix G(θ), is the covariance of the Fisher score UX (θ) (see equations 2.5.5 and
2.5.6 p. 29):

G(θ) =EX [UX (θ)UX (θ)
T ]

The Fisher kernel for PLSI derived by Hofmann [28] was deemed to neglect the contribution of
the Fisher information matrix G(θ): Hofmann identified G(θ) with the identity matrix through a
re-parametrisation suited for multinomial models; however, PLSI is neither a multinomial, nor in an
exponential family, and G(θ)may significantly differ from identity in such a case [61].

Besides, the formal derivation of the actual PLSI kernel, through the IID point of view as detailed
in chapter 4, yields a tensor which is indeed not close to the identity matrix (see figure 5.1, p. 68, for an
example).

All attempts to take G(θ) into account were carried out with the assumption that G(θ) can be
approximated by its diagonal.

This can be justified by theory to some extent: equation 4.2.15 (p. 58) contains a δww ′ term; the
terms of G(θ) stem from a similar expression. G(θ) is thus genially diagonal in its “word part”. We
extend this hypothesis to the “topic part” also.

The reason for this is mostly computational: the complete tensor G(θ) holds |Z |2 + (|Z | · |V |)2
terms, which in itself entails an enormous amount of computation. Furthermore, it is the invert of
G(θ) that appears in the Fisher kernel: inverting such a matrix is conceivable only in the most succinct
of document collections.

To distinguish clearly the different cases and hypothesis, we shall label the forms that derive from
the postulate that G(θ) can be approximated by its diagonal as DFIM (for “Diagonal Fisher Informa-
tion Matrix”); in contrast, models that do not take G(θ) into account will be called IFIM (for “Identity
Fisher Information Matrix”).

Nyffenegger et al. [61] present a comparative study of the Hofmann kernel KH, the Vector Space
Kernel KVS — that amounts to KH

w , see equation 5.1.1 (p. 64); and the DFIM-VS Kernel KDFIM-VS (which
similarly amounts to KDFIM-H

w ). We took the matter further by introducing several other measures:

• KDFIM-H, similarly built upon KH (also known as K IFIM-H);

• the unnormalised Fisher kernel KU, already encountered in section 5.1 – which we also call
K IFIM-U to underline the assumption on G(θ);

• the unnormalised Fisher kernel KU with the Fisher information matrix enabled, denoted KDFIM-U;

• all the relative topic and word parts of these kernels.

Table 5.2 lists the resulting expressions depending of the assumptions on G(θ) and on log-likelihood
normalisation that are selected.

Examination of the DFIM family reveals the normalising role of G(θ):

• all the terms that are independent of d cancel out, as they can be factorised in α(z) or γ (w, z).
This is the factor which balances Kz with respect to Kw ;
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kz kw

IFIM-U
Theory P (d ,z)P (q ,z)

P (z)

∑
z
bP (d , w)bP (q , w) P (d |z)P (q |z)

P (d ,w)P (q ,w) · P 2(z)P (w|z)

Impl. P (d |z)P (q |z)P (z) 1
|C |2

n(d ,w)
P (d ,w)

∑
z υq (w, z)P (d |z)P (w|z)P 2(z)

IFIM-H
Theory P (z|d )P (z|q)

P (z)

∑
z
bP (w|d )bP (w|q) P (d |z)P (q |z)

P (d ,w)P (q ,w) · P 2(z)P (w|z)

Impl. 1
P (d )P (q) P (d |z)P (q |z)P (z) 1

|d | |q |
n(d ,w)
P (d ,w)

∑
z υq (w, z)P (d |z)P (w|z)P 2(z)

DFIM-U
Theory P (d ,z)P (q ,z)

P (z)

�∑
d

P 2(d ,z)
P (z)

�−1 ∑
z
bP (d , w)bP (q , w) P (d |z)P (q |z)

P (d ,w)P (q ,w) ·
h∑

d
bP 2(d , w) P 2(d |z)

P 2(d ,w)

i−1

Impl. P (d |z)P (q |z)/αDFIM-F (z) n(d ,w)
P (d ,w)

∑
z
υq (w,z)P (d |z)
γDFIM-F(w,z)

DFIM-H
Theory P (z|d )P (z|q)

P (z)

�∑
d

P 2(z|d )
P (z)

�−1 ∑
z
bP (w|d )bP (w|q) P (d |z)P (q |z)

P (d ,w)P (q ,w) ·
h∑

d
bP 2(w|d ) P 2(d |z)

P 2(d ,w)

i−1

Impl. 1
P (d )P (q)

P (d |z)P (q |z)
αDFIM-H(z)

1
|d | |q |

n(d ,w)
P (d ,w)

∑
z
υq (w,z)P (d |z)
γDFIM-H(w,z)

With

P (d ) =
∑

z P (d |z)P (z) αDFIM-U(z) =
∑

d P 2(d |z) γDFIM-U(w, z) =
∑

d

�
P (d |z)n(d ,w)

P (d ,w)

�2

P (d , w) =
∑

z P (z)P (w|z)P (d |z) αDFIM-H(z) =
∑

d
P 2(d |z)
P 2(d )

γDFIM-H(w, z) =
∑

d

�
P (d |z)n(d ,w)

P (d ,w)
1
|d |

�2

υq (w, z) = n(q ,w)P (q |z)
P (q ,w)

Note: substitution of an expression by a variable in the implementation formula reflects actual pre-computation or separate computation of the
relevant quantities in the code.



68 CHAPTER 5. COMPONENTS OF PLSI FISHER KERNELS

 0

 2
e+

17

 4
e+

17

 6
e+

17

 8
e+

17

 1
e+

18

 1
.2

e+
18

 1
.4

e+
18

 1
.6

e+
18

 1
.8

e+
18

 2
e+

18

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

G
am

m
a 

co
m

po
na

nt
s

ad
m

in
is

tr
at

io
n

B
ud

dh
is

t
D

ie
m

K
en

ne
dy

Figure 5.1: Values of the Fisher information matrix G(θ) for four in the TIME collection, on 32 cat-
egories. They are clearly not equal, and the approximation G(Θ) ≃ I would not result in a good
estimator of G(Θ).
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• kz and kw are close to the form a·b
a2+b 2+c2 , which is bounded by 0.5 — this form is exact when

q ∈C . In practise, this allows implementing a trigger which cuts out impossible values stemming
from numerical divergence caused by very small values, and diminishes the risks of numerical
errors due to a form where both Ud (z)Uq (z) and α, or both Ud (w|z)Uq (w|z) and γ , would tend
to zero.

Hence, in practise, the Fisher Information Matrix effectively prevents Kz from yielding larger and
larger scores as the number of categories grows and from overwhelming Kw (see figure 5.1). This had
been the original idea behind the “Vector Space” kernel: by normalising only its Kz component, KVS

managed to keep its values lower, thus obtain better results as the contributions of Kz could be seen.
KVS was however a crude attempt at balancing the kernel, and introducing the Fisher information ma-
trix to build KDFIM-VS resulted in an unjustifiable kernel.

To reconnect with theoretical considerations of chapter 4, expressing the contribution of G(θ)
comes closer to the actual PLSI Fisher kernel that stems from IID processes. There are thus both
theoretical and practical reasons to properly accounting for the contribution of G(θ).

5.3 Conclusions

The normalisation by document length was introduced in Hofmann’s kernel as an analogy with tf-idf,
but had no further justification. It was then challenged by Nyffenegger et al., who proposed an unnor-
malised version. From the IID kernel of chapter 4, we know that this normalisation stems from the
IID nature of the PLSI process.

Based on empirical reasons, Nyffenegger et al. also proposed a “Vector Space” version, where only
the Kz part of the kernel was normalised. We show this version of the kernel appeared to work because
it artificially moderates the contribution of Kz , giving more relative importance to Kw . Our study
of the Fisher information matrix shows that such an effect is indeed desirable for both practical and
theoretical reasons, but that the proper way to obtain it is to account for the contribution of the Fisher
information matrix rather than approximate it by the identity.

We come to the conclusion that the Fisher kernel to deploy on PLSI, combining light computa-
tional requirements, adequate theoretical justifications and good performances, is KDFIM-H:

KDFIM-H =
P (z|d )P (z|q)

P (z)

 ∑

d

P 2(z|d )
P (z)

!−1

+
∑

z

bP (w|d )bP (w|q)
P (d |z)P (q |z)

P (d , w)P (q , w)
·

∑

d

bP 2(w|d )
P 2(d |z)
P 2(d , w)



−1

Eventally, we also provide a table of equivalent formulations of the different kernels as to aid to practical
implementation.
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Chapter 6

Latent-based Smoothed Dirichlet

Abstract

Chapters 4 and 5 have discussed in details the similarities available for PLSI. We saw that the
non-generative nature of PLSI hinder its use in IR as incremental indexing is impossible.
These shortcomings warrant the study of alternative topic-based IR models; one of the
requirements for the new models would be to be fully generative.

Generative models for IR are composed of two components: one generates the topics (the
P (z) part); the other generates the words (the P (w|z) part). An abundant literature al-
ready exists for perfecting topic generation (LDA, Correlated Topics,. . . ). On the other
hand, word generation for topic models was paid relatively little attention, in spite of the
literature available in the domain [83]. Notably, most topic models generate their words
using multinomials, though they are known to account poorly for burstiness and markably
underestimate the tail of Zipf’s law.

In this chapter, we propose to include better word generation (one that would account
for word burstiness) in a probabilistic latent semantic model. To this effect, we study
the Smoothed Dirichlet distribution, designed specifically to account for burstiness, and
advertised as usable as a “new building block for topical models”. After experimenting
with SD in a classical IR setting, we propose a generative topic model constituted by a
simple mixture of SD distributions; we call this model Latent-based Smoothed Dirichlet. We
provide the inference scheme as well as the Fisher kernel for it.

6.1 Introduction

The preceding chapters contribute to the framework of PLSI in two ways. On one hand, the accurate
derivation of the PLSI Fisher kernel provides a better understanding of its nature and clearly heralds
the links between it and the Hofmann’s legacy kernel, provides markably better performances and
theoretical justifications with the Fisher information matrix, and details the computational difficulties
of implementing and running it. On the other hand, the similarity based on language models provides
a theoretically sound alternative to the Fisher kernel that entirely bypass the process of “folding in”, a
step that features practical difficulties and is not well-justified.

Nevertheless, in spite of the theoretically sound IR scheme allowed by Language Models, PLSI itself
retains undesirable features which make it difficult to deploy on large collections. Due to its P (d |z)
parameter, it is fundamentally not a completely generative model, in the sense that it cannot straight-
forwardly provide the representation of a new document without re-processing the entire database.
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Furthermore, the learning phase runs over expectation of the parameters P (z), P (d |z) and P (w|z),
and the maximisation of a quantity P (z|w, d ), a three-dimensional tensor with |V | · |D| · |Z | terms, a
number that grows quickly as the collection grows; this forces to either re-compute the same terms
over and over again, extending the running time of the learning algorithm, or storing large amounts of
data in memory, which can consume tens of gigabytes of RAM with collection that are by no means
exceptionally large.

These drawbacks call for new models that would

1. be fully generative

2. display performances surpassing those of PLSI1

The first requirement entails that the new models would be composed of only two components: the
first one to generate the topics, and the second part to generate the words appearing in the documents
of the collection. The second requirement calls for advances in either of these components or in both

Perfecting the generation of topics has been a subject of much recent research. The Latent Dirichlet
Allocation (LDA) model [7] replaced the simple mixture of Naive Bayes with a Dirichlet distribution;
using multinomials to generate words after choosing the topics with a Dirichlet couples the multino-
mial with its conjugate prior distributions. This makes the Dirichlet-multinomial couple an appealing
package for a latent model.

Further proposals have been made to account for topic-specific phenomenons, like using the logis-
tic distribution to account for the correlation between topics [6].

Contrasting with the literature devoted to sophisticated generation of topic models, there are no
proeminent topic models putting a specific effort in an accurate generation of words in documents —
though specific efforts are beginning to appear [16]. In non-topic IR, this issue has generated much
debate since the early days of tf-idf and until recently [51].

We attempt to contribute to the issue of word generation in topic models by challenging the multi-
nomial generation of terms and replacing it with a better term generating distribution, grounded in
experimental evidences and observations on document collections. Specifically, we will attempt to ac-
curately model word burstiness by importing techniques developed for non-topical IR and using them
to generate words within a probabilistic latent semantic model.

6.2 Smoothed Dirichlet

Experimental observation of document collections indicate that rare terms tend to appear in “bursts”
— that is, if a rare term does appear in a text, it is experimentally observed that it tends to appear
more than once (by contrast to rare terms that do not appear at all). Indeed, appearance of a rare term
often reflects that it is at the core the document topic, making it locally more likely to occur than
what multinomials over the entire document collection predict. This phenomenon induces a marked
underestimation of the tail of Zipf’s law by multinomial distributions.

The Dirichlet Compound Multinomial [51] was proposed as a way to better match experimentally
observed distributions of terms and improve estimation of the tail of Zipf’s law. However, this model
entails intractable non-closed-form expressions, which makes it impractical for actual utilisation. In or-
der to actually deploy a well-suited term-distribution estimator based on DCM, approximations were
proposed.

1we do not satisfy ourselves with Naive Bayes or with non-topic models
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Smoothed Dirichlet
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Figure 6.1: The Smoothed Dirichlet distribution simplex plotted for three variables of priors values as
indicated.

The Smoothed Dirichlet Distribution constitutes such an approximation [58]. It is a generative pro-
cess that provides theoretically founded approximations for the Dirichlet distribution and that yields
closed-form expressions. These expressions are similar in complexity to those entailed by multinomials,
but they retain the desired features of heavy-tailed distributions.

Nallapati’s original work uses a scheme based on language models to compare documents and
queries. A “relevant” model is built from the query, while a “non-relevant” model is built from the
entire collection. To give more substance to the sample from which the “relevant” model is built, a
second pass is made using a handful of the most relevant documents found during the first pass as data,
in the fashion of pseudo-relevance feedback.

6.3 Latent Smoothed Dirichlet

6.3.1 The Latent Smoothed Dirichlet model

The Latent Smoothed Dirichlet model is an attempt to combine the advantages of Smoothed Dirichlet
(realistic modeling of term generation) with those of generative latent semantics models. The frame-
work in which we operate is that described in 1.1 (page 19). For a first attempt, in order to test the
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P (z)

αz P s P u n(d , w)

λ

P GE |d |

Figure 6.2: The Smoothed Dirichlet graphical model

validity of using Smoothed Dirichlet as a basic functional element for latent topic models, we chose the
very simple topics scheme of the Naive Bayes model, modeling the document collection as a mixture
of topics where each document stems from a single category.

The principle is to generate terms with several Smoothed Dirichlet distributions, each associated
with a category z through its parameter αz ; concretely, this translates into terms α(w|z) whose role
mimics that of the P (w|z) in Naive Bayes.

The model thus summarises as:

1. draw a language model αz with probability P (z)

2. draw a smoothed distribution P s from Smoothed Dirichlet with parameter αz

3. using λ and P GE, unsmooth the distribution into P u as done in [58]:

P u =
1

λ

�
P s− (a−λ) · P GE

�

4. draw n(d , w) from P u

The original Smoothed Dirichlet distribution is

P (d |α) =
SS

ZSD

∏

w∈V

�
θd (w)

�α(w)−1
(6.3.1)

with ZSD =
∏

w∈V α(w)
α(w), S =

∑
w∈W α(w), and θd (w) = λ · n(d ,w)

|d | +(1−λ)P GE

From eq. (6.3.1), we can write

P (d , z|α) =
P (z)

ZSD(z)

∏

w∈V

�
θd (w)

�αz (w)−1
(6.3.2)

with ZSD(z) =
∏

w∈V αz (w)
αz (w)

6.3.2 Posterior inference and parameter estimation

The parameters Θ of the model are the |Z | language priors αz , and their respective probabilities P (z).
We observe the documents of the training set d ∈ D by their term occurrences Y = {n(d , w)}; the
length |d | and P GE are also known.
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The Expectation-Maximisation algorithm is very much similar to the one for Naive Bayes, which
we developed in details in section 3.2.2 (p. 39), except that the term ∂ Q

∂ P (w|z) of NB is replaced by a term

in ∂ Q
∂ αz (w)

Terms: We derive Q(Θ,Θold)with respect to the αζ (w), for a given category ζ ∈ Z and wordω ∈V .

∂ Q(Θ,Θold)

∂ αz (w)
=
∑

d

Pold(ζ |d ) ·
∂ log P (d |ζ )
∂ αζ (ω)

In the Smooth Dirichlet model log P (d |z) amounts to:

log P (d |z) = log(Sz
Sz )− log(Zz )+

∑

w

�
αz (w)− 1

�
log P̃ (w|z)

with log(Zz ) =−
∑

w αz (w) logαz (w). The derivation goes

∂ Q(Θ,Θold)

∂ αz (w)
=
∑

d

Pold(ζ |d ) ·
�
−
�

logαz (w)+ 1
�
+ log P̃ (w|d )

�
=µ

with µ the Lagrange multiplier and P̃ (w|d ) the smoothed estimator of P (w|d ), typically P̃ (w|d ) =
λ n(d ,w)
|d | +(1−λ)PGE(w). With the usual probabilistic form for Lagrange multipliers α=µ ·T =⇒ α=

T∑
i Ti

, we find

logαz (w) =
∑

d

P (z|d )
∑

d P (z|d )
· log P̃ (w|d )+K (6.3.3)

with constant K such as
∑

w αz (w) = S (S is a free parameter chosen by the user). We thus have

K =
S

∑
w ᾱ(z, w)

with ᾱ(z, w) = exp
�∑

d P (z|d ) log P̃ (w|d )�, the unnormalised values for the α.

Summary: EM learning for LSD can be implemented as:

E-step P (z|d ) = P (d ,z)∑
ζ ∈Z P (d ,ζ )

M-step P (z) =
∑

d P (z|d )∑
d
∑

z P (z|d )

logαz (w) =
∑

d P (z|d ) log P̃ (w|d )+K

with:

• P (d , z) = P (z) SSz
z

Z(z)

∏
w P̃ (w|d )αz (w)−1

→ log P (d , z) = log P (z)+ S log(S)− log Z(z)+
∑

w(αz (w)− 1) log P̃ (w|d )
with log Z(z) =

∑
w αz (w) logαz (w)

• K = (normaliser)
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Implementation

The E-step tends to yield very small values in its numerator and its denominator. To avoid situations
where P (z|d ) → 0

0 , we consider the log of the expression: log P (z|d ) = log P (d , z) − log
∑

z P (d , z).
Because of the log

∑
z P (d , z) term, it is not tractable. We use the trick

log
∑

z∈Z

P (d , z) = log
∑

z∈Z

P (d , z)

P (d , z0)
+ log P (d , z0)

with log P (d , z0) = maxz log P (d , z). In this configuration,
∑

z∈Z
P (d ,z)
P (d ,z0)

is a sum of elements smaller
than 1, which prevents it from diverging for |Z | small (a few hundreds at most).

The parameter P (z) poses no particular problem and can be written straightforwardly:

P (z) =

∑
d P (z|d )

∑
z
∑

d P (z|d )
Additionally,

∑
z
∑

d P (z|d ) = |D|, number of documents in the corpus.

The parameter α(z, w) is computed by is logarithm.

logαz (w) =
∑

d

P (z|d ) log P̃ (w|d )− log K

It can yield very large quantities, yielding a problem similar to that posed P (z|d ).
Again, the

∑
w ᾱ(z, w) can yield large values. We thus write

K =
K

κ
κ=

S
∑

w ᾱ(z, w) ·κ ·κ

with κ a constant chosen as to keep ᾱ(z, w) ·κ= exp
�∑

d P (z|d ) log P̃ (w|d ) +κ� small enough to be
tractable. We finally compute

logα(z, w) =
h∑

d

P (z|d ) log P̃ (w|d )
i
−
h

log
S

∑
w exp{log ᾱ(z, w)+κ}

i
+ logκ.

We typically choose κ=−maxz ᾱ(z, w)

6.3.3 Fisher kernels for LSD

The fundamental equation for the LSD model is

P (d , z) = P (z)
Sz

Sz

Z(z)

∏

w
P̃ (w|d )α(w|z)−1

This entails that the log-likelihood of a document for given values of the parameters is

Ld (θ) = log P (d ) = log

�∑

z

P (z)

Z(z)

∏

w
P̃ (w|d )α(w|z)−1

�
+ Sz

Sz

The Fisher kernel is given by

K(d , q) = U T
d G−1Uq = U T

d

�
Ed Ud U T

d

�−1
Uq =

with Ud =∇Ld . This amounts to deriving Ld by the parameters: P (z) and α(w|z).
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Derivation by P (z):

∂ Ld

∂ P (z)
=

∂

∂ P (z)
log P (d ) =

1

P (d )

∂ P (d )

∂ P (z)
=

P (d |z)
P (d )

=
P (z|d )
P (z)

Derivation by α(w|z):
∂ Ld

∂ α(w|z) =
∂

∂ α
log P (d ) =

1

P (d )

∂

∂ α
P (d )

∂ Ld

∂ α(w|z)
=

1

P (d )

∂

∂ α


∑

z
P (z)

∏

w

P̃α−1

αα


 SS

Two observations arise:

• Derivation by α(w|ζ ) cancels out the terms of the sum for which z 6= ζ
• Derivation by α(ω|z) turns all the terms of the product for which w 6=ω into constants

This entails that

∂ Ld

∂ α(w|z) =
P (z)

P (d )



∏

w 6=ω

P̃α−1

αα


 ·

∂

∂ α(w|z)
P̃α−1

αα
· SS (6.3.4)

=
P (z)

P (d )


P (d |z) ·


 P̃α−1

αα



−1

 ·

∂

∂ α(w|z)
P̃α−1

αα
· SS (6.3.5)

The details of the derivation of ∂
∂ α(w|z)

P̃α−1

αα
is:

∂

∂ α

P̃α−1

αα
=

1

αα
∂

∂ α
P̃α−1− P̃α−1 (αα)−2 ∂

∂ α
αα (6.3.6)

=
log P̃ · P̃α−1

αα
−

P̃α−1αα · (logα+ 1)

(αα)2
(6.3.7)

=
P̃α−1

αα
�

log P̃ − logα− 1
�

(6.3.8)

Therefore, injecting 6.3.5 into 6.3.8, we have

∂ Ld

∂ α(w|z) =
P (z)P (d |z)

P (d ) �
�

�P̃α−1

αα
�

log P̃ − logα− 1
�

�
�

�
�

� 
P̃α−1

αα

!−1

(6.3.9)

= P (z|d )
�

log P̃ − logα− 1
�

(6.3.10)

Fisher information matrix The components can be written

Gz (z) =
∑

d

P 2(z|d )
P 2(z)

=
1

P 2(z)

∑

d

P 2(z|d )

Gα(w, z) =
∑

d

P 2(z|d )
�

log P̃ (w|d )− logα(w|z)− 1
�2
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Fisher kernel With u(w, z, d ) = log P̃ (w|d )− logα(w|z)− 1, the components can be written

Kz (d , q) =
∑

z

P (z|d )P (z|q)
∑
δ P 2(z|δ)

Kα(d , q) =
∑

w

∑

z

P (z|d )P (z|q)u(w, z, d )u(w, z, q)
∑
δ P 2(z|δ)u2(w, z,δ)

=
∑

z
P (z|d )P (z|q)

∑

w

u(w, z, d )u(w, z, q)

Gα(w,z)

We thus eventually reach

KLSD =
∑

z∈Z

P (z|d )P (z|q)· (6.3.11)

·

 1
∑
δ∈D P (z|δ)2

+
∑

w∈V

u(w, z, d )u(w, z, q)
∑
δ∈D [P (z|δ)u(w, z,δ)]2




Note that the original Smoothed Dirichlet scheme relies on a Language model approach to rank
documents. Here, we have changed the point of view and built a Fisher kernel that can be used in the
usual IR scheme.

Unfortunately, shortage of time did not allow us to perform conclusive experiments to validate the
model. Specifically, we have not yet been able to have the EM process converge towards non-trivial
values.

We have noted that in his work, Nallapati sets the value of the S parameter to S =
∑

w∈V αw = 1.
Doing so, he forces all αw to have values lesser than 1. However, the domain α ∈ [0;1] is where the
Smoothed Dirichlet approximation of the Γ function ceases to be a good estimator of Γ (see figure 6.3).

When α → 0, the
∏

w∈V

�
θd (w)

�αz (w)−1
part yields a product over numerous terms (

∏
w∈V )

smaller than zero (θd (w)) powered by a term than tends to −1 (αz (w)− 1); therefore, this term tends
to explode as α→ 0. In the actual Dirichlet distribution, the behaviour is compensated by a similarly
divergeant Γ function at the denominator. Bounding the approximation prevents this moderation from
taking effect.

6.4 Conclusions

Building upon Smoothed Dirichlet, a state-of-the-art distribution for word generation, we propose a
probabilistic latent semantic model whose word generation accounts for word burstiness, thus better
modelling experimentally observed corpora than what can be done using multinomials. From the
fundamental hypothesis of the generation model as a mixture of Smoothed Dirichlet distributions, we
provide inference equations and derive the Fisher kernel adapted to the model. In the course of our
developments, we raise the issue of the S =

∑
w∈V α(w) parameter, which Nallapati sets to 1, thereby

concentrating on the domain where his distribution diverges from Dirichlet distribution.
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Figure 6.3: The Smoothed Dirichlet approximation of Γ. The approximation of Γ for α→ 0, while Γ
diverges.
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Chapter 7

Experimental results

Abstract

The three previous chapters have proposed and discussed a variety of document similari-
ties for probabilistic latent semantic models. Chapter 4 (p. 53) develops the Fisher kernel
from the IID nature of the generative process, and links the resulting kernel to the kernels
proposed by Hofmann in [28]. Chapter 5 (p. 63) discusses the respective contributions of
the different parts that constitute the Fisher kernel for PLSI. Eventually, chapter 6 (p. 71)
presented the Smoothed Dirichlet distribution and a new generative model constituted by
a mixture of SD distributions.

This chapter provides comparatives results for these different models, both between each
other and with respect to the strong baseline provided by the BM25 model [66], as well as
the Language Model approach (section 2.5.2, p. 27) applied to PLSI.

We show that Hofmann’s legacy kernel KDFIM-H mimics the behaviour of the K IID ker-
nel; that DFIM versions of kernels generally outperform IFIM versions; that Kw performs
much better than Kz , to the point where the contribution of Kz may as well be discarded
altogether; and that Language Models provide similarities that can match KDFIM-H given
enough latent categories. The best document similarities, stemming either from Fisher
kernels or from Language Models, can compete with BM25, and even outperform it in
specific circumstances.

7.1 Introduction

The previous chapters provide us with a number of different document similarity measures:

• the Fisher kernels developed by Hofmann, KH – section 3.3.3 (p. 46) – and by Nyffenegger et al.
– section 5.1 (p. 63).

• the new IID-based Fisher kernel K IID — equation 4.2.3 (p. 54);

• components Kz and Kw alone for the above kernels (section 5.1 p. 63);

• the Smoothed Dirichlet scheme and the mixture of SD, chapter 6 (p. 71).

In addition, we will consider similarities based on Language models (section 2.5.2, p. 27). We specifi-
cally developed Language Model-based similarities for PLSI and compared them to the various Fisher
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kernels listed above.

This chapter experimentally addresses the following questions:

1. Are there significant differences between all the possible variants of the Fisher kernel? Which
one is the best?

2. How does the IID kernel compete with variants of Hofmann’s kernel on PLSI?

3. How do the document similarities based on language models fare, between each other and with
respect to the Fisher kernels?

4. How do these compare to the IR baselines like BM25 [66]?

7.2 Experimental framework

To address the above questions, we experimented on the standard Information Retrieval benchmarks
from the SMART collection1: CACM, CISI, MED, CRAN and TIME.

These bases might appear very small with respect to the current trend of “terabyte” collections.
We use them because they are in line with previously published work on PLSI, thus allowing use to
compare our work with that of Hofmann and others.

Another major experimental issue is the non-generative nature of PLSI for unknown document
models (section 3.3.4, p. 51): because PLSI representation is not readily available for a particular docu-
ment outside of the collection, the learning process to be applied to the entire collection as a whole —
in other terms, it is not possible to perform an iterative indexation of the document collection.

Parameter estimation on the entire document collection quickly becomes intractable as the size of
the collection increases. In practise, it is therefore impossible to use PLSI on collections of the same
order of magnitude as those of TREC, for instance.

In order to explore the limits of PLSI learning tractability, we experimented on a collection signifi-
cantly bigger than the SMART ones. The new collection is constituted of the 7466 first documents of
the TREC–AP 89 corpus [24] 2, which amounts to over 5 times as many documents and 10 times as
many word occurrences as in the SMART collection.

As such, the EM learning process at 128 categories took 45 hours of CPU time and used 6.7 Gb of
RAM on a dedicated computer server with one octo-core 2-GHz Intel Xenon processor and 32 Gb of
memory. This collection was evaluated against queries 1 to 50.

For all the experiments, stemming was performed using the Porter algorithm of Xapian 3. Eval-
uation results were obtained using the standard tre
_eval tool 4. The main characteristics of the
evaluation corpora (SMART and AP) are given in Table 7.2 (p. 83).

For experiments on the SMART collection, 6 runs with different learning initial conditions were
performed for all the models, and for different numbers of topics: |Z | ∈ {1,2,8,16,32,64,128} For the
TREC-AP part, due to its size, a single run was performed for each |Z | ∈ {1,32,48,64,80,128}.

1ftp://ftp.
s.
ornell.edu/pub/smart/
2Documents AP890101-0001 to AP890131-0311.
3http://xapian.org/
4http://tre
.nist.gov/tre
_eval/
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CACM CRAN TIME CISI MED AP89_01XX
# Terms (stems) 4 911 4 063 13 367 5 545 7 688 13 379

# occurrences (|C |) 90 927 120 973 114 850 87 067 76 571 1 321 482
Documents

# 1 587 1 398 425 1 460 1 033 7 466
avg. |d | 56.8 85.1 268.6 56.7 73.8 177.2

Queries
# 64 225 83 112 30 50

avg. |q | 12.7 8.9 8.2 37.7 11.4 79.3

Table 7.1: Characteristics of the document collections used for evaluation.

We mostly use the standard Mean Average Precision (MAP) to display the results: we plot the MAP
against the number of latent topics |Z |, averaged over all experiments and with error bars corresponding
to 1-standard deviation. The conclusions are exactly the same using either 5-point precision or R-
precision, except on MED; we come back to this latter point at the end of this section.

7.3 The IID-based kernel and Hofmann’s kernel

Chapter 4 (p. 53) introduces the IID-based Fisher kernel K IID and relates it to Hofmann’s kernels with
four assumptions (see section 4.3, p. 59). The only assumption likely to bear a significant impact on the
performances of the kernel (like seen with the VS and DFIM-VS kernels) is the approximation of FIM
by the identity. This leads us to predict that

• There will be a qualitative difference in behaviour between the IFIM and DFIM kernels; the
DFIM are expected by behave better than the IFIM kernels;

• For a same approximation of FIM, there is no significant difference between the K IID and KH

families — i.e., K IFIM-IID is expected to behave in a similar manner as K IFIM-H, and KDFIM-IID is
expected to behave in a similar manner as KDFIM-H.

Figure 7.1 presents the performances of the K IFIM-IID, K IFIM-H, KDFIM-IID and KDFIM-H kernels, evaluated
on five of the SMART bases for different numbers of topics. The performance is assessed in terms of
Mean Average Precision (MAP).

As predicted, we see the two IFIM kernels and the two DFIM kernels exhibiting similar behaviours.
This experimentally validates the idea that for a same approximation of FIM, Hofmann’s kernel (with
normalisation by document and query length) constitutes an approximation of the IID-based kernel:
K IFIM-IID ≃ K IFIM-H, and KDFIM-IID ≃ KDFIM-H.

This result has interesting practical implications, since computation of a single document-query pair
is more costly for IID-based kernels than for Hofmann’s kernels — O(|d | · |q | · |Z |) for K IID, but only
in O(|q | · |Z |) for KH. Since the FIM terms in DFIM kernels can be pre-computed for all topics (for Kz )
and for all word-topic pairs (for Kw ), the DFIM approximation does not critically impact computation
costs in comparison to the IFIM versions of the kernels.

Regarding the DFIM and IFIM approximations, we confirm previously published results [61] indi-
cating superior performances of the DFIM kernels over the IFIM kernels.
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Figure 7.1: Behaviours (MAP vs |Z |) of the K IID and KH kernels, both for IFIM and DFIM variants.
K IFIM-IID and K IFIM-H have very similar behaviours, as do KDFIM-IID and KDFIM-H to a slightly lesser
extend. The DFIM kernels generally outperform the IFIM kernels. The IFIM kernels suffer from a
markable drop in retrieval performance as |Z | increases, while the DFIM kernels are much more stable
to this respect.
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7.4 Kz and Kw components of the kernels

The behaviour of the individual parts of the Fisher kernel, detailed in chapter 5 (p. 63), is worthy
of specific examination. This study will explain the differences in behaviour between the different
normalisations of the Fisher kernel: Hofmann’s, where both Kz and Kw are normalised by |d | and |q |;
VS, where only the Kz is normalised; and the unnormalised kernel.

Figures 7.2 through 7.7 show results for Hofmann’s kernel and the unnormalised kernel, both in
IFIM and DFIM versions, as well as the Kz and Kw sub-parts of these 4 kernels. The VS kernel uses the
Kz of the unnormalised kernel, and the Kw of Hofmann’s kernel (see table 5.1, p. 64). These kernels
and kernel parts are evaluated over the SMART collections, as well as over a subset of the AP collection
from the TREC terabyte track.

These graphs all display three families of curves:

The Kz parts, which describe the contribution of the topics to the kernels, have a very low perfor-
mance for low numbers of topics, and improve as the number of topics increases. After the
number of topics has increased to a certain point, this performance reaches a plateau (evident on
MED, figure 7.5). The maximum performance is nevertheless rather low. This behaviour can
be observed consistently for all Kz parts, with IFIM or DFIM approximations of FIM, and with
either normalisation (Hofmann’s or unnormalised);

The Kw parts, which describe the contribution of the “words knowing topics” to the kernels, start
with a reasonable performance, which may increase a bit until it reaches a plateau; this plateau is
found quicker for Kw than it is found for Kz . Good illustrations of this behaviour can be seen on
figure 7.4 or figure 7.5. On figure 7.7, there are some fluctuations of these components, but the
overall behaviour still corresponds to this. Again, this behaviour can be observed consistently
for all Kw parts, with IFIM or DFIM approximations of FIM, and with either normalisation
(Hofmann’s or unnormalised);

The complete kernels exhibit two strikingly contrasting behaviours: the DFIM kernels remain, overall
consistant with the behaviour of the Kz parts; the IFIM kernels, on the other hand, start at low
number of topics with performances comparable to those of the Kw parts, but collapse quickly
until they reach a minimum, after which they rise slowly and converge with the performances of
the Kz part.

The behaviour of the IFIM kernels brings a clue to experimentally understand the relative abso-
lute values of the Kz and Kw parts of the kernel: from its results, it s clear that the IFIM kernels are
dominated by their Kw part at a low number of topics, and by their Kz part at a high number of topics.

7.5 Language models

7.5.1 Log-likelihood and Kullback-Leibler divergence

We developed and tested two Language Model (LM) approaches (section 2.5.2, p. 27) for PLSI:

Maximisation of the query log-likelihood: as opposed to the usual approach, in the case of PLSI, we
write the likelihood using the joint probability P (d , w), in line with the fundamental assump-
tions of PLSI as an IID model generating (d , w) pairs (see section 3.3.1, p. 42), yielding L(bq) =∏

w∈V P (d , w)n(q ,w) . For a given query, we seek the document that maximises the log-likelihood
with respect to the model P (d , w):

SLogL(d , q) =
∑

w∈q∩d

n(q , w) log P (d , w), (7.5.1)
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Figure 7.2: Relative performances of the subparts of the different variants of the
Fisher kernel for PLSI (MAP vs |Z |), for the CACM collection; results
for other collections are given in figures 7.3 through 7.7.
IFIM versions in minuscules, DFIM in capitals; “F” or “f” is the unnor-
malised version of the kernel, “H” or “h” is is the normalised version;
the “W” or “w” prefix indicates that only the word part of the kernel is
considered, and “Z” or “z” indicates the same for the topics part.
This illustrates that the latent-topic part Kz (ZF, ZH, zf and zh) per-
forms poorly in comparison to the word part Kw (WF, WH, wf and
wh), and impairs the combined kernels: notice how KH (h) starts from
KH

w (wh) at low |Z |, and degrades to KH
z (zh) as |Z | grows.

The horizontal bar represents the MAP of state-of-the-art BM25 model
(which does not depend on |Z |).



7.5. LANGUAGE MODELS 87

CISI

1 8 16 32 64 128

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

WF
WH
ZF
ZH
f
h
wf
wh
zf
zh

Figure 7.3: Same as figure 7.2 (p. 86), for the CISI collection.



88 CHAPTER 7. EXPERIMENTAL RESULTS

CRAN

1 8 16 32 64 128

0.
0

0.
1

0.
2

0.
3

0.
4

WF
WH
ZF
ZH
f
h
wf
wh
zf
zh

Figure 7.4: Same as figure 7.2 (p. 86), for the CRAN collection.
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Figure 7.5: Same as figure 7.2 (p. 86), for the MED collection.
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Figure 7.6: Same as figure 7.2 (p. 86), for the TIME collection.
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Figure 7.7: Same as figure 7.2 (p. 86), for the AP collection.
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where n(q , w) is the number of occurrences of word w in query q , and “w ∈ q ∩ d” denotes all
the words appearing in q (i.e. n(q , w)> 0) and such that P (d , w)> 0.

Minimisation of the Kullback-Leibler divergence, i.e. maximisation of

SKL(d , q) =−KL
�bP (w|q), P (w|d )

�

=
∑

w∈q∩d

bP (w|q) log
P (w|d )
bP (w|q)

, (7.5.2)

where bP (w|q) = n(q , w)/|q |, the number of occurrences of word w in query q divided by the
length |q | of query q .

The former straightforwards expressions of SKL and SLogL use the normalised raw term count
bP (w|q) = n(w, q)/|q | as estimator for P (w|q). However, any other estimator could be used in this
place; in particular, smoother estimators could be tried [98]. We experimented with the two simplest
smoothings: Jelinek-Mercer smoothing, and pseudo-feedback [11, 38].

Our experiments (Figures 7.11 and 7.12) show that in this case, both smoothings degrade the per-
formances rather than improve them.

7.5.2 Relation between LogL and KL in the case of PLSI

Our log-likelihood-based and Kullback-Leibler-based similarities are related, as already mentioned by
Lafferty and Zhai [37], but not exactly equivalent: in our case, the log-likelihood similarity is based on
a joint probability (rather than a conditional probability), motivated by the PLSI model of generation
of (w, d ) pairs of indices. Thus:

SKL(d , q) =
∑

w∈q∩d

bP (w|q) log
P (w|d )
bP (w|q)

=
∑

w∈q∩d

n(q , w)

|q |

�
log

P (d , w)

P (d )
− log bP (w|q)

�

=
1

|q |

�∑

w
n(q , w) log P (d , w)− |q | log P (d )

�
−
∑

w

bP (w|q) log bP (w|q)

=
1

|q |

 ∑

w
n(q , w) log P (d , w)

︸ ︷︷ ︸
=SLogL(d ,q)

−|q | log P (d )

!
−
∑

w

bP (w|q) log bP (w|q)
︸ ︷︷ ︸

indep. of d

=
1

|q |
�
SLogL(d , q)− |q | log P (d )

�
− f (q)

When performing retrieval, that is maximising S (d , q) with respect to d for a given query q , the two
approaches thus differ by an additive factor of |q | log P (d ).

Using the conditional probability P (w|d ) instead of the joint probability would remove the |q | log P (d )
term and make the two document similarities rank-equivalent5. As shown in figures 7.8 through 7.10,
the similarity SKL based on P (w|d ) (Eq. 2.5.1) outperforms SLogL based on P (d , w) (Eq. 7.5.1). Their

5Straightforwardly, P (d , w) = P (w |d )P (d ), and SLogL(d , q) =
∑

w∈q∩d n(q, w) log P (d |w) =∑w∈q∩d n(q, w)[log P (d , w)+
log P (d )].
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Figure 7.8: The similarity SKL based on P (w|d ) (Eq. 2.5.1, noted “KL” on the graph) outperforms
SLogL based on P (d , w) (Eq. 7.5.1, noted “LogL” on the graph). MAP averaged over 6 different runs and
corresponding 1-standard deviation bars are displayed versus the number |Z | of latent-topics for these
two models. We also compare them with the latent-topic parts of Fisher kernels, KH

z (ZH) and KN
z

(ZN). Results for CACM and CISI are provided here, and for other collections, in figures 7.9 and 7.10
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Figure 7.9: Same as figure 7.8 (p. 93), for CRAN and MED
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Figure 7.10: Same as figure 7.8 (p. 93), for TIME

general behaviour, low performance with few latent topics, rising asymptotically as the number of la-
tent topics grow, is comparable to the behaviour of the latent-topic parts of Fisher kernels, KH

z and
KN

z .
The joint probability of SLogL affects its ranking performances [34], making it perform poorly

compared to SKL which is based on a conditional probability.

7.5.3 Language model similarities and Fisher kernels

We compare SKL, the best of the language model similarities, to significant Fisher kernels: KH (H),
KDFIM-H

w (WDFIMH) and KH
w (WH). As Figure 7.13 (p. 98) shows, at 128 categories, the performances

of SKL often competes favourably with the best of the Fisher kernels. This illustrates the respective
advantages and drawbacks of the Fisher kernels and the language model similarities: the best of the
Fisher kernels, KDFIM-H

w , exhibits stable performances with respect to the number of topics, but they
require PLSI representation of the queries; the language model similarity SKL does not require a PLSI
representation of the queries, but needs to large number of latent topics to perform well.

7.5.4 Conclusions on Language Models applied to PLSI

The parameters of PLSI can be used to implement similarities that stem from the language model
paradigms. These similarities have simple forms and are quick to compute (unlike the IID-based Fisher
kernel of chapter 4). We have discussed two straightforwards examples: query log-likelihood SLogL

(based on P (w, d )), and Kullback-Leibler divergence SKL. Of the two, SKL performs experimentally
better (see figure 7.8, page 93); it is rank-equivalent with query log-likelihood based on P (w|d ).
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Figure 7.11: A typical example on TIME illustrating how Jelinek-Mercer-smoothed estimates for
P (q |w) degrade the performances of SKL andSLogL compared to raw estimate bP (q |w) (“l0”), for differ-
ent values of λ.
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Figure 7.12: A typical example on TIME illustrating how pseudo-feedback retrieval (right) estimates
for P (q |w) degrade the performances of SKL and SLogL, compared to raw estimate bP (q |w) (“1 step”),
for different values of N .
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Figure 7.13: Results (MAP vs |Z |) obtained on the six corpora considered for different models: KH (H),
SKL (KL), KDFIM-H

w (WDFIMH), and KH
w (WH). The performances of KDFIM-N

z (ZN) are also provided
for the AP collection. The performances of SKL increase asymptotically as the number of latent topics
grows. At 128 categories, SKL often competes favourably with the best of the Fisher kernels. The
horizontal bar represents the MAP of state-of-the-art BM25 model (which does not depend on |Z |).
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Noticeably, these similarities entirely bypass the problematic of query representation in the PLSI
parameter space: in other words, they do not require P (q |z) and thus dispence from query projection
(“folding-in’, mentioned in section 3.3.4, p. 51). Document similarities for PLSI based on language
modeling are thus a theoretically sound answer to the question of folding-in.

7.6 Smoothed Dirichlet

We conducted experiments on the Smoothed Dirichlet distribution (see section 6.2, p. 72). As the
Smoothed Dirichlet uses Jelinek-Mercer smoothing (section 2.5.2, p. 28), we produced results for dif-
ferent values of λ, where λ = 0.1 indicates reliance mostly on P GE and λ = 0.9, mostly on P̃ (w|d ).
Figures 7.14 to 7.17 consistently indicate that a low value of λ produces the best results; only TIME, on
figure 7.18, features the opposite tendency.

Comparison with TF-IDF and BM25 is favourable, with performances matching those of BM25
at a high precision; Smoothed Dirichlet even significantly outperforms BM25 on the difficult CISI
collection (figure 7.15). TIME is the exception where Smoothed Dirichlet is outperformed by BM25
and struggles to equal the performances of TF-IDF (figure 7.18).

(The figures follow in the next pages)
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Figure 7.14: Top: precision-Recall curves for Smoothed Dirichlet at different values for λ. λ = 0.1
indicates reliance mostly on P GE and λ= 0.9, mostly on P̃ (w|d ). Bottom: MAP plotted against λ. The
corresponding curves for TF-IDF and BM25 are given. Results for CACM here, results for the other
collections in figures 7.15 through 7.18.
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Figure 7.15: Same as figure 7.14 (p. 100), for CISI.
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Figure 7.16: Same as figure 7.14 (p. 100), for CRAN.
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Figure 7.17: Same as figure 7.14 (p. 100), for MED.
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Figure 7.18: Same as figure 7.14 (p. 100), for TIME.
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w (W–H), and KDFIM-N(DFIM–N) ≃

KDFIM-N
w (W–DFIM–N).

7.7 Analysis

The main global results out of all these experiments, summarised in Table 7.2 (p. 108), are:

1. The kernels K IFIM-IID and K IFIM-H have very similar performances, which experimentally val-
idates the theoretical result that K IFIM-H approximates K IFIM-IID (see Fig. 7.1). KDFIM-IID and
KDFIM-H are a bit less similar, due to the slightly different form that G(θ) takes. However, the
K IID family is more computationally demanding than KH — at least one order of magnitude
slower.

2. As illustrated by Figure 7.19, KDFIM-VS, KDFIM-H
w , and KH (resp. KDFIM-N and KDFIM-N

w ) have
similar behaviours. The reason is that the normalising role of G(θ) makes Kz ≪ Kw for DFIM

kernels. Moreover, KVS ≃ KH
w since |C |2

|d ||q | ≫ 1.

The “VS” models [61], already not justified theoretically, are thus not worth considering, since
the behaviours of K IFIM-VS

w and KDFIM-VS
w are akin to those of the K IFIM-H

w and KDFIM-H
w component,

respectively.

3. Regarding the Fisher Information Matrix:
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(a) We can confirm that the DFIM Fisher kernels for PLSI outperform by their original IFIM
versions (Fig. 7.1). They are furthermore dominated by their Kw component.

(b) KDFIM-H
w and KDFIM-H have similar behaviours (Fig. 7.2 to 7.7). The reason is that the nor-

malising role of G(θ)makes Kz ≪Kw for DFIM kernels.

4. As illustrated by Figure 7.2 through 7.7 (pp. 86 through 91), Kz tends to deteriorate performances:
used alone, it performs poorly; furthermore in KH and KN, as its role becomes more important
for growing |Z |, the performances of these kernels decrease: starting from those of Kw at low |Z |,
the performances of KH and KN reach down Kz at higher |Z |.
On the other hand, Kw alone is always good, if not the best.

5. As illustrated by Figures 7.3 (p. 87) and 7.5 (p. 89), the best PLSI-based kernels can perform better
than BM25 in some circumstances6, especially on corpora which could be considered semanti-
cally more difficult: CISI, where few words are shared between queries and documents (thus
particularly suited to test the extend to which a retrieval models is robust to synonymy, or the
topics.)7, MED (specialised vocabulary), and TREC–AP.

6. SKL has the same type of behaviour as Kz (growing performance with |Z |), but performs notably
better. It can even outperform the best Fisher kernel on CRAN, and reaches similar perfor-
mances on MED and CISI. However it necessitates high numbers of latent categories to do so.

7. The Smoothed Dirichlet model SSD (which is not a latent topics model) is performs well in
comparison with BM25, particularly so on the difficult collections like CISI or MED (figures
7.14 and subsequent). The overall performance is better at low values for λ, indicating a strong
dependence on P GE.

The only collection where conclusions should be more nuanced is MED: the different models do
not behave in the same way at different recall values (Fig. 7.20); some are better at low recall and others
are better at higher recall. Global measures as MAP or R-Prec cannot represent such nuances.

7.8 Conclusions

These experiments show that the Fisher kernels that stem from our study of PLSI represent an improve-
ment over the legacy kernel proposed by Hofmann. The experimental results confirm the adequacy
of the IID kernel (chapter 4), as it displays superior performances; this validates the normalisation by
document length, and accounting for the Fisher information matrix.

The similarity in behaviour between KDFIM-IID and KDFIM-H shows that the later is indeed an ap-
proximation of the first. We advise using KDFIM-H in practise as it is less computationally costly — or
even KDFIM-H

w only, as Kz has poor performances and contributes little to the overall performances.
The language model approach is very dependant on the number of latent topics chosen in the model,

in contrast to the best of the Fisher kernels that display quite stable performances. SKL outperforms
SLogL. For high numbers of latent topics, the performances of SKL are on par with those of the best
Fisher kernels.

6Although fine-tuning of the parameters of BM25 could negate the advantage to PLSI in these cases. We deliberately centre
our study on “raw” models, without combining them or fine-tuning them to improve the results, and decide to leave techniques
like boosting outside the scope of this work.

7CISI is remarkable in the sense that some query-document matches are expected between queries and documents that do not
share any significant term (for instance query 1 with document 35).



7.8. CONCLUSIONS 107

MED

Recall

P
re

ci
si

on

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.
2

0.
4

0.
6

0.
8

BM25
DFIMH64
H32
KL128
WH32
ZH32

Figure 7.20: Precision vs Recall curves on MED for BM25, KDFIM-H for |Z |=64 (DFIMH64), KH for
|Z |=32 (H32), SKL for |Z |=128 (KL128), KH

w for |Z |=32 (WH32), and KH
z for |Z |=32 (ZH32). We see

that at a high recall, the Fisher kernels outperform BM25. Notice how the performances KH
z fluctuate
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CACM CRAN TIME CISI MED AP89_01XX

BM25 MAP 31.4 42.4 69.2 12.3 52.3 19.7
Best PLSI-kernel MAP 30.7 39.6 60.8 20.3 53.8 21.6
Best kernel is: KN

w SKL KDFIM-H
w KVS KH KDFIM-H

w

R
es

ul
ts

for |Z |= 16 128 8 8 32 48
KH

w MAP 30.0 33.6 55.6 20.2 49.8 16.5
KDFIM-H

w MAP 23.2 37.0 60.8 15.6 45.5 21.6
SKL−128 MAP 22.9 39.6 49.1 19.5 52.8 11.4

kernel PLSI > BM25? No No No YES yes yes
Kz helps? No No No No A bit No

C
on

cl
.

DFIM G(θ) helps? No Yes (Kw ) Yes (Kw ) No A bit Yes (Kw )

Table 7.2: Main results and conclusions

The PLSI similarities ( KDFIM-H and SKL) can compete effectively with the strong baseline consti-
tuted by BM25. We show that for semantically difficult collections, such as CISI, the latent topics are
an asset and allow PLSI document similarities to significantly outperform BM25.

The Smoothed Dirichlet distribution produces good results as a stand-alone IR system, outperform-
ing BM25 on difficult collections.



Chapter 8

Perspectives and conclusions

Abstract

In this last chapter, we give a brief summary of the work performed all through the thesis
and of the main results. We conclude by outlining trends for possible future work to
further the advances.

8.1 Summary of the work

The framework of this thesis is the study of the way in which probabilistic latent semantics models can
be used in Information Retrieval or Text classification, in which they can yield positive consequences
by accounting for properties of a document collection underlying to the mere word occurrences and
documents.

Probabilistic latent semantics models rely on assumptions about the process that generates the ob-
served documents; from these hypothesis, given observable data, values for the model parameter can
be inferred. Depending on the nature of the data and the validity of the assumptions of the model,
inference provides underlying information on the document collection, the latent topics.

Document similarities are then used to match documents of similar content. These document
similarities must be adapted to the nature of the model; the Fisher kernel features the necessary charac-
teristics for this role.

One of the proeminent probabilistic latent semantic models is PLSI; we found that a number of
questions relative to the document similarities for PLSI were still open, and decided to address them.
We derive the Fisher kernel for PLSI, reviewing previously published discusions on Hofmann’s orig-
inal kernel, the role of the Information matrix therein, and issues about normalisation by document
length. We expose Hofmann’s original formulation to be linked to a more exact form of the kernel,
a combination of “atomic” kernels on the elementary events that PLSI generates in an IID manner.
Considering compositionality of Fisher kernels in an IID context, we combine these “atomic” kernels
into a document kernel that accounts of the IID nature of the generative process. We discuss in de-
tails the four approximations that lead from this IID kernel to Hofmann’s (table 4.1, p. 60). Doing
so, we explain the results of the previous studies on PLSI Fisher kernels, validate the normalisation by
document length, and vindicate the role of the Fisher information matrix within this kernel.

We also propose an alternative similarity measure based on language models, that exhibits competi-
tive performances with the Fisher kernels. This application of language models also adverts the negative

109
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consequences of the incompletely generative nature of the PLSI process: while PLSI provides assump-
tions on document generation that yield representations for known documents, these assumptions
cannot be used to represent new documents or incoming queries. The language modeling approach
provides a theoretically well-grounded document similarity that relies solely on statistic features of the
query, entirely bypassing the issue of the PLSI representation of the query.

We complete our study of probabilistic latent semantic models by addressing the question of a latent
model generating words in a realistic manner, by accounting for word burstiness.

In this perspective, we review Nallapati’s Smoothed Dirichlet distribution. SD aims at provid-
ing a probabilistic distribution accounting for word generation in a realistic manner, and usable as a
“module” in the framework of a wider probabilistic model. We attempt to present a model based on
a mixtures of Smoothed Dirichlet distributions, the Latent-based Smoothed Dirichlet model. We pro-
vide the learning receipt and the Fisher kernel for this model. We were however unable not able to
extract meaningful parameter values from the inference process.

8.2 Contributions

This thesis has contributed to several points.

• We derive the Fisher kernel for PLSI as a combination of elementary kernels in a way that reflects
the IID nature of the PLSI generative process. This uncovers the rigorous form of the Fisher ker-
nel, puts the previously existing Fisher kernels for PLSI into perspective, and explains previously
published results.

• A language model approach to PLSI document similarities, providing a theoretically valid man-
ner to perform IR based on PLSI parameters for documents and only statistic traits of queries.
This bypasses the problem of “folding in” unknown documents or queries while remaining the-
oretically sound and providing competitive performances with Fisher kernels.

• A study of the contributions of the different parts of the Fisher kernel, as well as of the role
of the Fisher information matrix. Together with the considerations on IID kernel, this part
explains previously published results. It also shows why Hofmann’s kernel complete with its
Fisher information matrix, KDFIM-H, is the best document similarity to deploy in practise.

• A proposition for a novel probabilistic latent semantics model, called Latent-based Smoothed
Dirichlet, extending the Smoothed Dirichlet distribution to the realm of latent topics. This
provides a fully generative latent topics model built on a strong model of word generation. We
give the inference formulae and the Fisher kernel for the model.
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8.3 Future work

A number of avenues remain to be explored and complete this work.
The study of document similarities for PLSI has been extensive, but this is not yet the case of the

study of the Latent-based Smoothed Dirichlet (LSD). The discussion on this topic has been essentially
theoretical, as the current implementation is not yet mature enough to produce experimental results.
The present bottleneck is the inference process, which we have been unable to have produce non-
degenerated values for the parameters.

It is possible that mating a smoothed model and a mixture model yield compatibility issues, as
smoothing tends to bring points closer to the centre of the simplex, while the mixture models attempts
to find well-contrasted points of the simplex around which documents would gather.

For large values of S =
∑

w∈V αw , the general silhouette of the Dirichlet distribution becomes close
to that of the multinomial. The inference programme for Naive Bayes, which has been implemented
and tested successfully, could in this perspective serve as a reference to tune the implementation of the
LSD inference system.

The behaviour of the LSD model should then be studied with specific care for low values of S, as to
benefit from the specificities of Dirichlet and answer the questions raised by the bounded behaviour of
the approximation for the Γ function used by Nallapati.

Thanks to its fully generative nature, a working implementation of LSD would allow experimenta-
tion on large bases, like those of TREC: to this effect, a representative sample of the document collec-
tion should be extracted and used as a learning sample; the parameters learnt on this basis would then
feed a straightforward re-indexing system running over the entire collection. This re-indexing could be
incremental or run on a parallel architecture.

If experimental performances of the LSD model prove satisfying, then LSD would open interesting
opportunities for further, more refined models: two foreseeable developments would entail replac-
ing the simple mixture scheme of LSD with a latent Dirichlet allocation (similar to the ideas behind
DCMLDA [16]), or possibly with a logistic distribution (similar to the ideas behind [6]) as to model
the correlations between the latent topics.
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Appendix A

Software developed for the thesis

Xapian1 is a software framework for Information Retrieval. It does not natively provide PLSI, we have
implemented a version of PLSI as part of a more general software layer. This version was compared
against that of Lemur, and was found to yield more accurate results. 50 “documents” were generated
from a given probability distribution, and the algorithms were applied to the result to see how they
found the original distribution (see figure A.1).

One common technical problem of Information Retrieval engines is to hold and access to data. We
choose to use Xapian, a performant retrieval library focusing on probabilistic retrieval.

Modern Information Retrieval does not limit itself at representing documents in a vector space
via indexing. A transformation of the vector space can take place, often involving a reduction in di-
mensionality. Starting with the Latent Semantic Analysis (LSI) model, a number of models have been
developed in the past 10 years, including Probabilistic Latent Semantic Analysis (PLSI), Naive Bayesian
models, or Latent Dirichlet allocation.

We attempt at providing a general software framework to develop such models on the stable, fast
and generally efficient basis of Xapian.

This document describes Topian (“Topic-based Model layer for Xapian”), a software layer intended
to add support for topical models to Xapian.

A.1 Conception

Topian provides two trends to objects: objects directly linked to the documents, and abstract objects
dealing with the model. Document representation is implemented in Do
sRep objects which encapsu-
late Xapian objects like Xapian::Database. The Do
sRep is what makes the link between the clas-
sical document representation, and features of the intended models held in Parameters objects. TheParameters are abstract objects which represent the model describing statistical features of the doc-
ument topics and word topics. This architecture keeps the Parameters distinct and separated from
the Do
sRep, allowing for selective loading of the data when both direct data and model data are not
needed for a given process.

For instance, the PLSI model is a statistical model based on the parameters P (w|z) (probability that,
given a certain topic z, work w occurs), P (d |z) (probability that, given a certain topic z, document d
occurs), and P (z) (probability that a topic z occurs). On Topian, this translates into a PLSARep class
inheriting from Do
sRep data-wise, and a PLSAParams inheriting from Parameters, model-wise. The

1http://xapian.org/
113
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Figure A.1: Compared performances of the PLSA learning algorithm as implemented in Lemur, and as
implemented by us on Xapian. The “true” distribution used to generate the data is also shown.
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Figure A.2: Conception of the Topian layer for PLSITREC::Do
Id foobar, foo, bar, foo2Xapian::Do
Id 1, 2, 23, 42Topian::Do
Id 0, 1, 2, 3

Figure A.3: Example of document identifiers

classes PLSARep and Parameters have further children to take specificities of queries versus collection
documents into account.

A.2 Document identifiers

Document identifiers in NLP toolchains can take several types: int, string, etc. In the concrete case
of using Xapian and Topian to process TREC data, we find ourselves with three flavours of identifiers.
TREC identifiers are arbitrary strings; Xapian identifiers, typed Xapian::Do
Id are non-continuous
integers starting from 1, 0 being reserved for out-of-collection documents; and Topian uses continuous
integers starting with 0. We will name these three types of identifiers TREC::Do
Id, Xapian::Do
Id
and Topian::Do
Id (see figure A.3).

Xapian documents have a string container whose content can be accessed from Xapian::Do
ument::get_data() member. The Xapian::Do
Id of a document can be retrieved either from the document
itself with the Xapian::Do
ument::get_do
id() member, or by dereferencing an iterator over theXapian::Do
uments with the operator*() 
onst.

Over the course of the processing, we switch from the TREC identifiers to internal identifiers, and
back again. This allows abstracting the TREC format if necessary (for instance when using the software
on another format), and using more efficient algorithms that maps of strings.

Two standards containers of the std library could be used to map different types of docids: maps
and vectors. Vectors map continuous integer indices to a type. They have an access time in O(1). Maps
allow using any type as indice; in particular, they allow using strings or non-continuous integers as
indices. Their access time is in O(log n). Using an iterator, going through a whole container (map or
vector) is O(n). Hence it is advantageous to use vectors for punctual accesses, but performance is not
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lost if a whole map is processed linearly.
We propose to implement the translations between the formats as follow:

• Xapian to Topian: the corresponding Topian::Do
Id is stored in a std::map contained inDo
sRep. This data must not be contained in the data attribute of the Xapian::Do
uments
because we need it to contain the TREC::Do
Id, which is set there at indexing time. Further-
more, data is of the std::string type, and it is unclean to set Topian things in the Xapian
database.

• Topian to Xapian: a std::ve
tor of Xapian::Do
Id is created.Topian::Do
ID 0 1 2 3 . . .Xapian::Do
ID 1 2 23 42 . . .

Access being is O(n), this structure can be used for punctual access (by opposition to skimming
through the whole collection)

• Topian to TREC: a std::ve
tor of TREC::Do
Id is created. This vector can simply be con-
structed at indexing time, since the Xapian::Do
Id indexing scheme is trivial.Topian::Do
ID 0 1 2 3 . . .TREC::Do
ID foobar foo bar foo2 . . .

This makes it possible to access the TREC::Do
Id of any document in O(1).

It is straightforwards that Xapian to TREC is obtained through Topian, also in O(1). With the
orientation of the data flow, it is not necessary to translate TREC::Do
Id into the internal indicesXapian::Do
Id and Topian::Do
Id (which should stay transparent TREC-wise anyway). Hence, we
have a whole set of translators.

A.3 User’s manuals

The user’s manuals for the tools developed during the thesis are provided here, detailing the arguments
and options that can be used.

A.3.1 bayespian-learnbayespian-learn is a machine learning programme for Naive Bayes (mixture of multinomials) infer-
ence on Xapian databases. Given the name of a Xapian database, it performs Expectation-Maximisation
evaluation of the P (z) and P (w|z) parameters; these parameters are written in two text files, Pz.data
and PwKz.data, at the end of the process.

By default, bayespian-learn performs EM with 32 categories, from a random seed. It stops after
convergence or after a fixed number of iteration have been performed.

Usage: bayespian-learn [OPTION...℄ input_database
Example: bayespian-learn 
a
m.base.xapian-
, --
ategories=CATS : fixes the number of categories.-d, --debug : Outputs values of P(z), P(d|z) and P(w|z) at every iteration.-e, --eta=ETA : fixes eta.



A.3. USER’S MANUALS 117-i, --iterations=ITER : fixes the maximum number of iterations. Set to 0 to allow unlimited num-
ber of iterations. Default is 128.-m, --displayMemoryUsage : Reports on memory allocation during initialisation.-r, --random seed=SEED : fixes the seed for randomisation. Default is timer.-s, --silent : runs silently.-t, --tra
king : Outputs values of Beta, error and number of iteration while learning-v, --verbose : tells you more.-?, --help : Give a help list--usage Give a short usage message-V, --version : Print programme version

A.3.2 bayespian-comparebayespian-
ompare performs Information Retrieval on document collections using Fisher Kernels
on Naive Bayes (mixture of multinomials) latent topics representation spaces. Given two Xapian
databases, it will use the first one as a document collection and the second one as a query collection,
iteratively performing IR for each query over all the documents. At the end of the process, a standard
TREC topic file is produced (by default to output.top).

Usage: bayespian-
ompare [OPTION...℄ do
uments queries
Example: bayespian-
ompare 
a
m.base.xapian 
a
m.queries.xapian-f, --Fisher : utilises the Fisher kernel comparison method (original version).-g, --GFisher : utilises the Fisher kernel comparison method (modified version).-h, --Hofmann : utilises the Hofmann kernel.-i, --IID : utilises the IID kernel.-I, --DFIM-IID : utilises the IID kernel.-j, --Fisherbis : utilises the Fisher kernel comparison method (original version).-s, --sampleSize=SAMPLE : set sample size for PLS-IR to SAMPLE.-v, --verbose : tells you more.-?, --help : Give this help list--usage : Give a short usage message-V, --version : Print programme version
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A.3.3 displayPLSAcatsdisplayPLSA
ats is a visualisation tool that allows quick and intuitive review of PLSI parameters
produced by plsapian-learn on a document collection.

Usage: displayPLSA
ats [OPTION...℄ do
uments
Examples: testPLSA 
a
m.base.xapian 
a
m.query.xapian-
, --
ategories=NUMBER : display the NUMBER most probable categories-o, --output=FILE : sets output to FILE.-v, --verbose : tells you more.-w, --words=NUMBER : display the NUMBER most probable words for each displayed category-?, --help : Give this help list--usage : Give a short usage message-V, --version : Print programme version

A.3.4 plsapian-learnplsapian-learn is a machine learning programme for Probabilistic Latent Semantic Indexing (PLSI)
inference on Xapian databases. Given the name of a Xapian database, it performs Expectation-Maximisation
evaluation of the P (z), P (d |z) and P (w|z) parameters; these parameters are written in two text files,Pz.data PdKz.data, and PwKz.data, at the end of the process.

By default, plsapian-learn performs EM with 32 categories, from a random seed. It stops after
convergence or after a fixed number of iteration have been performed.

Usage: plsapian-learn [OPTION...℄ input_database
Examples: plsapian-learn 
a
m.base.xapian-
, --
ategories=CATS : fixes the number of categories.-d, --debug : Outputs values of P(z), P(d|z) and P(w|z) at every iteration.-e, --eta=ETA : fixes eta.-i, --iterations=ITER : fixes the maximum number of iterations. Set to 0 to allow unlimited num-

ber of iterations. Default is 128.-m, --displayMemoryUsage : Reports on memory allocation during initialisation.-r, --random seed=SEED : fixes the seed for randomisation. Default is timer.-s, --silent : runs silently.-t, --tra
king : Outputs values of Beta, error and number of current iteration while learning-v, --verbose : tells you more.-?, --help : Give this help list--usage : Give a short usage message-V, --version : Print programme version
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A.3.5 plsapian-splitplsapian-split splits a Xapian document collection on which PLSI learning has been performed us-
ing plsapian-learn into two document collections. The daughter collections have the same P (z) and
P (w|z) parameters than the mother collection, and the P (d |z) parameters are dispatched accordingly.
This is useful to dispense with “folding in” parameters of the queries, by transforming a text clustering
collection into a set of collections fit for Information Retrieval.

Usage: plsapian-split [OPTION...℄ NUMBER input_database
Examples: plsapian-split 64 
a
m.base.xapian: splits 
a
m.xapian into 
a
m.xapian.base

and 
a
m.xapian.queries, with 
a
m.xapian.queries containing the 64 last documents of 
a
m.xapian.-s, --silent : runs silently.-v, --verbose : tells you more.-?, --help : Give this help list--usage : Give a short usage message-V, --version : Print programme version

A.3.6 plsapian-compareplsapian-
ompare performs Information Retrieval on document collections using Fisher Kernels on
PLSI latent topics representation spaces. Given two Xapian databases, it will use the first one as a
document collection and the second one as a query collection, iteratively performing IR for each query
over all the documents. At the end of the process, a standard TREC topic file is produced (by default
to output.top).

Usage: plsapian-
ompare [OPTION...℄ do
uments queries
Examples: plsapian-
ompare 
a
m.base.xapian 
a
m.queries.xapian-a, --HzOnly : use the K IFIM-H

z kernel only-A, --DFIMHzOnly : use the KDFIM-H
z kernel only-b, --baseline : baseline (random answers)-f, --Fisher : utilises the unnormalised K IFIM-U kernel.-F, --DFIMF : utilises the unnormalised KDFIM-U kernel.-g, --GFisher : utilises the Fisher kernel comparison method (modified version).-G, --DFIMG : utilises the DFIMG kernel ( = KF

z + |C | ∗KF
w ).-h, --Hofmann : utilises Hofmann’s kernel K IFIM-H.-H, --DFIMH : utilises the DFIMH kernel KDFIM-H.-i, --iid : use the K IFIM-IID

z kernel-I, --DFIMiid : use the KDFIM-IID
z kernel with FIM normalisation-j, --Fisherbis : utilises the K IFIM-U Fisher kernel (different approximations of term probabilities).



120 APPENDIX A. SOFTWARE DEVELOPED FOR THE THESIS-l, --lamdba=LAMBDA : Smoothing factor. Default is 0.0 (not smoothed)-m, --Hofmannbis : utilises the Hofmann kernel K IFIM-H (bis).-M, --DFIMHbis : utilises the KDFIM-H kernel (bis).-o, --output=FILE : sets output to FILE.-q, --plsaQ : utilises the PLSA-Q comparison method (cosine-based).-r, --plsaR : utilises the Language Model comparison method.-s, --sampleSize=SAMPLE : set sample size for pseudo-feedback to SAMPLE.-t, --lowerbound=TRIGGER : in DFIM kernels, sets lower bound for kw to TRIGGER.-T, --upperbound=TRIGGER : in DFIM kernels, sets upper bound for kw to TRIGGER.-u, --plsaU : utilises the PLSA-U comparison method (cosine-based).-v, --verbose : tells you more.-w, --VS : utilises the Vector Space kernel K IFIM-VS
z .-W, --DFIMVS : utilises the KDFIM-VS

z kernel (= KF
z +KH

w ).-x, --HwOnly : use the K IFIM-H
w kernel only-X, --DFIMHwOnly : use the KDFIM-H

w kernel only-y, --FwOnly : use the K IFIM-F
w kernel only-Y, --DFIMFwOnly : use the KDFIM-F

w kernel only-z, --FzOnly : use the K IFIM-F
z kernel only-Z, --DFIMFzOnly : use the KDFIM-F

z kernel only-?, --help : Give this help list--usage : Give a short usage message-V, --version : Print programme version

A.3.7 plsapian-infoplsapian-info displays information on the latent-based features of a document collection in which
PLSI has been performed using plsapian-learn. This may be used for debugging purposes or for
intuitive illustrations of the effects of PLSI. Since the parameter files generated by plsapian-learn are
in plain text format, the functionalities of plsapian-info can be obtained from awk, grep and similar
tools.

Usage: plsapian-info [OPTION...℄ do
uments queries
Examples: plsapian-info 
a
m.base.xapian-d, --do
s : displays P (d ) =

∑
z∈Z P (z)P (d |z).
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sKz : displays P (d |z) and
∑

w∈V n(d , w)P (w|z).-w, --words : displays P (w) =
∑

z∈Z P (z)P (w|z).-?, --help : Give this help list--usage : Give a short usage message-V, --version : Print programme version

A.3.8 sdpian-comparesdpian-
ompare performs Information Retrieval on document collections using the Smoothed Dirich-
let similarity. Given two Xapian databases, it will use the first one as a document collection and the
second one as a query collection, iteratively performing IR for each query over all the documents. At
the end of the process, a standard TREC topic file is produced (by default to output.top).

Usage: sdpian-
ompare [OPTION...℄ do
uments queries
Examples: sdpian-
ompare 
a
m.base.xapian 
a
m.queries.xapian-b, --baseline : baseline (random answers)-l, --lambda=LAMBDA : sets lambda to given value. Default is 0.9-o, --output=FILE : sets output to FILE.-s, --samplesize=LAMBDA : sets sample size to given value. Default is 5-v, --verbose : tells you more.-?, --help : Give this help list--usage : Give a short usage message-V, --version : Print programme version

A.3.9 trecindextre
index is an indexer that indexes TREC files into the Xapian format.
Usage: tre
index [OPTION...℄ output_database TREC_
orpus_input_file stoplist
Examples: tre
index 
a
m.base.xapian 
a
m.base.tre
 --stoplist=english.stopword-e, --empty : indexes documents with empty text field.-l, --language=LANGUAGE : sets language to LANGUAGE for stemming. Default is English (en). See

below for details.-m, --min_word_size=SIZE : do not index words smaller than SIZE characters. Default is 2. Set to 0
to skip this.-n, --min_o

urren
es=NUMBER : do not index words occurring less than NUMBER times. Default
is 2.-q, --quiet : runs silently.-s, --stoplist=FILE : read stoplist in FILE



122 APPENDIX A. SOFTWARE DEVELOPED FOR THE THESIS-S, --stems : use only stems for indexing-t, --titleweight=WEIGHT : Weights occurrences in title with WEIGHT. Default is 1.-v, --verbose : tells you more.-?, --help : Give this help list--usage : Give a short usage message-V, --version : Print programme version

The stemmer uses the snowball algorithm. The language can be specified either by its name in
English, or by the two-letter ISO639 code. Supported languages are:

none - don’t stem terms;

danish (da);

dutch (nl);

english (en) - Martin Porter’s 2002 revision of his stemmer;

english_lovins (lovins) - Lovin’s stemmer;

english_porter (porter) - Porter’s stemmer as described in his 1980 paper [85];

finnish (fi);

french (fr);

german (de);

italian (it);

norwegian (no);

portuguese (pt);

russian (ru);

spanish (es)

swedish (sv).

A.3.10 xapiandbinfoxapiandbinfo displays statistical information on Xapian-indexed document collections. This pro-
gramme can also be used to examine document collections after Naive Bayes learning or PLSI learning
has been performed.

Usage: xapiandbinfo [OPTION...℄ <path to database> xapiandbinfo, a tool for dumping
Xapian Database directories.

See also delve(1), the Xapian tool that provides some similar functionalities.-d, --do
=DOC : Lists the terms and Term Frequencies in document DOC (Xapian::docid)-D, --do
names : Lists the document names
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=NUMBER : Gives the number of terms with number of occurrences equal or higher
than NUMBER-s, --stems : Lists stems-t, --term=STRING : Lists the Document Frequencies for terms beginning with STRING-v, --verbose : Increases level of output-V, --vo
 : Lists the indexing terms-?, --help : Give this help list--usage : Give a short usage message--version : Print programme version

A.3.11 xapiandbfilterxapiandbfilter allows filtering a document collection indexed by Xapian. It allows removing unnec-
essary terms, or removing non-stem indexing terms.

Usage: xapiandbfilter [OPTION...℄ input_database output_database-i, --use_index=FILE : keeps only those index terms that are also used to index FILE (a Xapian
Database).-s, --silent : runs silently.-S, --stems_only : keeps only stems.-v, --verbose : tells you more.-?, --help : Give this help list--usage : Give a short usage message-V, --version : Print programme version
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Appendix B

Evaluation tool: Treceval

Obtaining, compiling and using Treceval : TrecEval can be obtained from Michel Beigbeder’s pagehttp://www.emse.fr/~mbeig/IR/tools.html. It compiles quite straightforwardly with a simplemake in the source directory (further instructions are given the in the README file).
TrecEval is used via the command line in the following way:./tre
eval referen
e_file IR_programme_output_file
For instance, with a TrecEval compiled as above./tre
_eval test/qrels.test test/results.test
is a valid command in the source directory

Reference file: The reference file referen
e_file, which contains the “correct answers” for queries,
is relative to a particular document file/queries file couple (a TrecEval user will not need editing these
files). A sample of such a file is given as figure B.1. In such a file, each line holds a tuplequery_id iter do
_id rank

Spaces are used as delimiters.query_id : query identification number, a three-digit integer. Tuples are sorted by increasing query_id.iter : iteration constant, required, yet ignored, by TrecEval .do
_id : document identification “number” (in fact a string). It is given by the element found
between the “DOCNO” XML tags in the corpus (document) file.rank : the relevance of query query_id toward document do
no.1 0 511 11 0 513 12 0 80 12 0 90 1(...)

Figure B.1: Extract of a TrecEval reference file
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Result file: The result files IR_programme_output_file produced by the IR programme being
tested contain the rank and similarity of every possible document/query pair obtained by combining
the contents of the document and queries files (see figure B.1 for example). Each line of the file is of the
form query_id iter do
_id rank sim run_id

Spaces are used as delimiters.query_id : query identification number, a three-digit integer. The results are to be sorted by increas-
ing query_id.iter : iteration constant, required, yet ignored, by TrecEval .do
_id : document identification “number” (in fact a string). It is given by the element found
between the “DOCNO” XML tags in the corpus (document) file.rank : rank, an integer between 0 and 1000. Like iter, this value is required in the file format, but
ignored by TrecEval .sim : similarity, a “float” floating-point value which gives the numerical value of the mathematical
similarity computer for the couple (query, document)run_id : arbitrary name for the run (execution of the programme). This string is printed in the
output at runtime, but does not have any influence otherwise.1 0 15 20 0.0197334 01 0 1 21 0 02 0 71 1 0.213504 02 0 68 2 0.158238 0(...)

Figure B.2: Example of a TrecEval answer file (answers given by the programme being tested): queries
1 and 2 are compared to documents 15 and 1, and 71 and 68 respectively. The matching of the couple
(doc=71, query=2) ranks 1st, with a similarity of 0.213504; that of (doc=15, query=1) is 15th with
a similarity of 0.0197334; the couple (1, 1) comes last, since this query and document are orthogonal
(similarity 0).

Output: TrecEval output is given in a terminal, as seen in figure B.3. The various
Useful references:

• http://www.ir.iit.edu/~dagr/
s529/files/proje
t_files/tre
_eval_des
.htm
• http://www.
s.
olorado.edu/~martin/Cs
i7000/using_tre
_eval.txt
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$ ./ tre
_eval test/qrels.test test/results .testnum_q all 3num_ret all 1500num_rel all 561num_rel_ret all 131map all 0.1785gm_ap all 0.1051R-pre
 all 0.2174bpref all 0.1981re
ip_rank all 0.4064ir
l_prn .0.00 all 0.4665ir
l_prn .0.10 all 0.3884ir
l_prn .0.20 all 0.3186ir
l_prn .0.30 all 0.2732ir
l_prn .0.40 all 0.2666ir
l_prn .0.50 all 0.2184ir
l_prn .0.60 all 0.0822ir
l_prn .0.70 all 0.0348ir
l_prn .0.80 all 0.0312ir
l_prn .0.90 all 0.0312ir
l_prn .1.00 all 0.0312P5 all 0.2667P10 all 0.3000P15 all 0.3111P20 all 0.3667P30 all 0.3333P100 all 0.2467P200 all 0.1600P500 all 0.0873P1000 all 0.0437
Figure B.3: Example of a TrecEval terminal output. R-Pre
 gives the R-Precision, and map gives the
Mean Averable Precision. The series of ir
l_prn are the interpolation precisions at different values
of recall; they can be used to draw a Precision-Recall graph. P5, P10 . . . give the precision at 5, 10 etc.
retrieved documents.
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