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ABSTRACT
This paper addresses the problem of determining the node
locations in ad-hoc sensor networks when only connectiv-
ity information is available. In previous work, we showed
that the localization algorithm MDS-MAP proposed by Y.
Shang et al. is able to localize sensors up to a bounded er-
ror decreasing at a rate inversely proportional to the radio
range r. The main limitation of MDS-MAP is the assump-
tion that the available connectivity information is processed
in a centralized way.

In this work we investigate a practically important ques-
tion whether similar performance guarantees can be obtained
in a distributed setting. In particular, we analyze the per-
formance of the HOP-TERRAIN algorithm proposed by C.
Savarese et al. This algorithm can be seen as a distributed
version of the MDS-MAP algorithm. More precisely, assume
that the radio range r = o(1) and that the network consists
of n sensors positioned randomly on a d-dimensional unit
cube and d + 1 anchors in general positions. We show that
when only connectivity information is available, for every
unknown node i, the Euclidean distance between the esti-
mate x̂i and the correct position xi is bounded by

‖xi − x̂i‖ ≤ r0

r
+ o(1),

where r0 = Cd(log n/n)
1
d for some constant Cd which only

depends on d. Furthermore, we illustrate that a similar
bound holds for the range-based model, when the approxi-
mate measurement for the distances is provided.

Categories and Subject Descriptors
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1. INTRODUCTION
The problem we are interested in is determining the loca-

tion of individual sensor nodes in a wireless ad-hoc sensor
network. This problem of localization plays an important
role in wireless sensor networks when the positions of the
nodes are not provided in advance. One way to acquire the
positions is by equipping all the sensors with a global posi-
tioning system (GPS). This not only adds considerable cost
to the system, but more importantly, it does not work in in-
door environments. As an alternative, we want an algorithm
that can derive positions of sensors based on basic local in-
formation such as proximity (which nodes are within com-
munication range of each others) or local distances (pairwise
distances between neighboring sensors).

One consequence of the ad-hoc nature of the underly-
ing networks is the lack of a central infrastructure. This
fact renders the use of common centralized positioning al-
gorithms [BY04, SRZF04]. We are interested in distributed
algorithms which can be employed on large-scale ad-hoc sen-
sor networks. Many distributed algorithms have been pro-
posed where the success of them has mostly been measured
experimentally [SLR02, NN03, SPS03]. To the best of our
knowledge, the theoretical guarantees associated with the
performance of these existing algorithms is rare with few
exceptions such as [AEG+06]. Such analytical bounds on
the performance of distributed localization algorithms can
provide answers to practical questions: for example, how
large should the radio range be in order to get the error
within a threshold? With this motivation in mind, our work
takes a step in this direction. In particular, our analysis fo-
cuses on providing a bound on the performance of a popular
robust positioning algorithm [SLR02] when applied to sen-
sor localization from only connectivity information, which
is a highly challenging problem. We prove that using Hop-

TERRAIN [SLR02], we are able to localize sensors up to
a bounded error in a connected network where most of the
pairwise distances are unknown and only local connectivity
information is given.



1.1 Related work

Recently, a number of localization algorithms have been
proposed for sensor networks [SLR02, NN03, NSB03, RD07,
SPS03, BY04, SRZF04, Sin08]. Based on the approach of
processing the distance measurements, these algorithms can
be classified into two categories: centralized algorithms and
distributed algorithms. In centralized algorithms, all the
distance measurements are sent to a single processor where
the estimated positions are computed. Two well-known cen-
tralized localization algorithms are multidimensional scaling
(MDS) based approaches [SRZF04] and semidefinite pro-
gramming (SDP) based algorithms [BY04]. However, the
centralized algorithms typically have low energy efficiency
and low scalability due to dependency on a central proces-
sor and excessive communication overload.

Perhaps a more practical and interesting case is when
there is no central infrastructure. [LR03] identifies a com-
mon three-phase structure of three popular distributed sen-
sor localization algorithms, namely robust positioning [SLR02],
ad-hoc positioning [NN03] and N-hop multilateration [SPS03]
algorithm. Table 1 illustrates the structure of these algo-
rithms. In the first phase nodes share information to collec-
tively determine the distances from each of the nodes to a
number of anchors. Anchors are special nodes with a priori
knowledge of their own position in some global coordinate
system. In the second phase nodes determine their position
based on the estimated distances to the anchors provided by
the first phase and the known positions of the anchors. In
the last phase the initial estimated positions are iteratively
refined. It is empirically demonstrated that these simple
three-phase distributed sensor localization algorithms are
robust and energy-efficient [LR03]. However, depending on
which method is used in each phase there are different trade-
offs between localization accuracy, computation complexity
and power requirements. In [NSB03], a distributed algo-
rithm called the Gradient algorithm was proposed, which
is similar to ad-hoc positioning [NN03] but uses a different
method for estimating the average distance per hop.

Another distributed approach introduced in [IFMW04] is
to pose the localization problem as an inference problem on
a graphical model and solve it using Nonparametric Belief
Propagation (NBP). It is naturally a distributed procedure
and produces both an estimate of sensor locations and a
representation of the location uncertainties. The estimated
uncertainty may subsequently be used to determine the re-
liability of each sensor’s location estimate. Despite recent
developments in the algorithms for sensor localization lit-
tle is known about the theoretical analysis supporting their
empirical simulation results.

In an alternative line of work, the authors of [OKM10]
provided a bound on the performance of a centralized lo-
calization algorithm known as MDS-MAP. When n sensors
are randomly distributed in a unit d-dimensional hypercube,
MDS-MAP is able to localize sensors up to a bounded er-
ror with only the pair-wise connectivity information, namely
whether two nodes are within a given radio range r or not.
This result crucially relies on the fact that there is a cen-
tral processor with access to the inter-sensor distance mea-
surements. However, centralized algorithms suffer from the
scalability problem and require higher computational com-
plexity. Hence, a distributed algorithm with similar perfor-
mance bound is desirable. In this paper, we adapt the ap-

proach of [OKM10] to analyze the performance of a truly dis-
tributed sensor localization algorithm. We show that Hop-

TERRAIN introduced in [SLR02] achieves a bounded error
when only local connectivity information is given.

The organization of this paper is as follows. Section 2
describes a distributed sensor localization algorithm known
as Hop-TERRAIN [SLR02] and states the main results on
the performance. In Section 3, we provide detailed proof of
the main theorems.

2. DISTRIBUTED LOCALIZATIONALGO-
RITHM

In this section, we first define the basic mathematical
model for the sensors and the measurements. We then de-
scribe the distributed localization algorithm and give a bound
on the error between the correct position of the sensors and
the estimated positions returned by the algorithm.

2.1 Model definition
Before discussing the distributed localization algorithm in

detail, we first define the mathematical model. First, we as-
sume that we have no fine control over the placement of the
sensors which we call the unknown nodes (e.g., the nodes
are dropped from an airplane). Formally, n sensors, or un-
known nodes, are distributed uniformly at random within
the d-dimensional hypercube [0, 1]d. Additionally, we as-
sume that there are m special sensors, which we call anchors,
with a priori knowledge of their own positions in some global
coordinate. The anchors are assumed to be distributed uni-
formly at random in [0, 1]d as well. However, it is reasonable
to assume that we have some control over the positions of
these special sensors, or the anchors, and in the following
we show that we get similar performance bound with the
minimum number of anchors (m = d + 1) if the positions of
the anchors are chosen properly.

Let Va = {1, . . . , m} denote the set of m vertices corre-
sponding to the anchors and Vu = {m+1, . . . , m+n} the set
of n vertices corresponding to the unknown nodes. We con-
sider the random geometric graph model G(n, r) = (V, E, P )
where V = Vu ∪ Va, E ⊆ V × V is a set of undirected
edges that connect pairs of sensors which are close to each
other, and P : E → R

+ is a non-negative real-valued func-
tion. We consider the function P as a mapping from a
pair of connected nodes (i, j) to the approximate measure-
ment for the distance between i and j, which we call the
proximity measurement. Let || · || be the Euclidean norm
in R

d. Define a set of random positions of n + m sen-
sors X = {x1, . . . , xm, xm+1, . . . , xm+n}, where xa ∈ R

d for
a ∈ {1, . . . , m} is the position of anchor a and and xi ∈ R

d

for i ∈ {m+1, . . . , m+n} is the position of unknown node i.
We assume that only the anchors have a priori information
about their own positions. Then, a common model for the
random geometric graph is the disc model where node i and
j are connected if the Euclidean distance di,j = ||xi −xj || is
less than or equal to a positive radio range r. More formally,

(i, j) ∈ E ⇔ di,j ≤ r .

To each edge (i, j) ∈ E, we associate the proximity mea-
surement Pi,j between sensors i and j, which is a function
of the distance di,j and random noise. In an ideal case when
our measurements are exact, we have Pi,j = di,j . On the
other extreme, when we are given only network connectivity



Table 1: Distributed localization algorithm classification
Phase Robust positioning Ad-hoc positioning N-hop multilateration
1. Distance DV-hop Euclidean Sum-dist
2. Position Lateration Lateration Min-max
3. Refinement Yes No Yes

r





r

 



Figure 1: An example of a random geometric graph
model in two dimensions where unknown sensors and
anchors are distributed randomly. A node is connected
to all other nodes that are within distance r of itself.

information and no distance information, we have constant
Pi,j ’s for all (i, j) ∈ E (see Figure 1).

The sensor localization algorithms can be classified into
two different categories. For the connectivity-based model,
which is alternatively also known as the range-free model,
only the connectivity information is available. Formally,

Pi,j =



r if (i, j) ∈ E,
∗ otherwise,

where a ∗ denotes that di,j > r.
For the range-based model, which is also known as the

range-aware model, the distance measurement is available
but may be corrupted by noise or have limited accuracy.

Pi,j =



[di,j + zi,j ]+ if (i, j) ∈ E,
∗ otherwise,

where zi,j models the measurement noise (in the noiseless
case zi,j = 0), possibly a function of the distance di,j , and
[a]+ ≡ max{0, a}. Common examples are the additive Gaus-
sian noise model, where the zi,j ’s are i.i.d. Gaussian ran-
dom variables, and the multiplicative noise model, where
Pi,j = [(1 + Ni,j)di,j ]+, for independent Gaussian random
variables Ni,j ’s.

In distributed sensor network localization not all the
information is available at each node. Given the graph
G(n, r) = (V, E, P ) with associated proximity measurements
for each edges in E, we assume that each of the nodes is
aware of the proximity measurements between itself and its
adjacent neighbors and each of the anchors is also aware of

its own position. Moreover, communication is only possible
between adjacent neighboring nodes. The goal of distributed
sensor network localization is for each node to find its esti-
mated position that best fits the measured proximity with
small number of communications.

The main contribution of this paper is that, to the best of
our knowledge, we provide, for the first time, a performance
bound for a distributed sensor localization algorithm when
only the connectivity information is available. However, the
algorithm can be readily applied to the range-based model
without any modification. Further, given G(V, E, P ) from
from the range-based model we can easily produce G′(V, E,P ′)
where P ′

i,j = r for all (i, j) ∈ E. This implies that the per-
formance under the range-based model is also bounded by
the main result in Theorems 2.1 and 2.2.

2.2 Algorithm
Based on the robust positioning algorithm introduced in

[SLR02], the distributed sensor localization algorithm con-
sists of two steps :

Algorithm : Hop-TERRAIN [SLR02]
1: Each node i computes the shortest paths

{d̂i,a : a ∈ Va} between itself and the anchors;
2: Each node i derives an estimated position x̂i

by triangulation with a least squares method.

According to the three phase classification presented in Ta-
ble 1, this is closely related to the first two phases of the
robust positioning algorithm. This algorithm uses a slightly
different method for computing the shortest paths, which is
compared in detail later in this section. Hence, through out
this paper, we refer to this algorithm as Hop-TERRAIN,
which denotes the first two steps of robust positioning algo-
rithm in [SLR02].

Distributed shortest paths. The goal of the first step
is for each of the unknown nodes to estimate the distances
between itself and the anchors. This approximate distances
will be used in the next triangulation step to derive an es-
timated position. The shortest path between an unknown
node i and an anchor a in the graph G provides an estimate
for the Euclidean distance di,a = ||xi − xa||, and for a care-
fully chosen radio range r this shortest path estimation is
close to the actual distance as will be shown in Lemma 3.1.

Formally, the shortest path between an unknown node i
and an anchor a in the graph G = (V, E, P ) is defined as a
path between two nodes such that the sum of the proximity
measures of its constituent edges is minimized. We denote
by d̂i,a the computed shortest path and this provides the
initial estimate for the distance between the node i and the
anchor a. When only the connectivity information is avail-
able and the corresponding graph G = (V, E,P ) is defined
as in the connectivity-based model, the shortest path d̂i,a is
equivalent to the minimum number of hops between a node
i and an anchor a multiplied by the radio range r.

In order to find the minimum number of hops from an
unknown node i ∈ Vu to an anchors a ∈ Va in a distributed



way, we use a method similar to DV-hop [NN03]. Each
unknown node maintains a table {xa, ha} which is initially
empty, where xa ∈ R

d refers to the position of the anchor a
and ha to the number of hops from the unknown node to the
anchor a. First, each of the anchors initiate a broadcast con-
taining its known location and a hop count of 1. All of the
one-hop neighbors surrounding the anchor, on receiving this
broadcast, record the anchor’s position and a hop count of 1,
and then broadcast the anchor’s known position and a hop
count of 2. From then on, whenever a node receives a broad-
cast, it does one of the two things. If the broadcast refers to
an anchor that is already in the record and the hop count
is larger than or equal to what is recorded, then the node
does nothing. Otherwise, if the broadcast refers to an an-
chor that is new or has a hop count that is smaller, the node
updates its table with this new information on its memory
and broadcast the new information after incrementing the
hop count by one. When every node has computed the hop
count to all the anchors, the number of hops is multiplied
by the radio range r to estimate the distances between the
node and the anchors. Note that to start triangulation, not
all the hop counts to all the anchors are necessary. A node
can start triangulation as soon as it has estimated distances
to d + 1 anchors. There is an obvious trade-off between
number of communications and performance.

The above step of computing the minimum number of
hops is the same distributed algorithm as described in DV-

hop. However, the main difference is that instead of mul-
tiplying the number of hops by a fixed radio range r, in
DV-hop, the number of hops is multiplied by an average
hop distance. The average hop distance is computed from
the known pairwise distances between anchors and the num-
ber of hops between the anchors. While numerical simula-
tions show that the average hop distance provides a better
estimate, the difference between the computed average hop
distance and the radio range r becomes negligible as n grows
large.

We are interested in a scalable system of n unknown nodes
for large value of n. As n grows large, it is reasonable to
assume that the average number of connected neighbors for
each node should stay constant. This happens, in our model,
if we chose the radio range r = C/n1/d. However, the num-
ber of hops is well defined only if the graph G is connected.
If G is not connected there might be a set of unknown nodes
that are connected to too few anchors, resulting in under-
determined series of equations in the triangulation step. In
the unit square, assuming sensor positions are drawn uni-
formly at random as define in the previous section, the graph
is connected, with high probability, if πr2 > (log n + cn)/n
for cn → ∞ [GK98]. A similar condition can be derived
for generic d-dimensions as Cdrd > (log n + cn)/n, where
Cd ≤ π is a constant that depends on d. Hence, we focus
in the regime where the average number of connected neigh-
bors is slowly increasing with n, namely, r = α(log n/n)1/d

for some positive constant α such that the graph is connected
with high probability.

As will be shown in Lemma 3.1, the key observation of
the shortest paths step is that the estimation is guaranteed
to be arbitrarily close to the correct distance for properly
chosen radio range r = α(log n/n)1/d and large enough n.
Moreover, this distributed shortest paths algorithm can be
done efficiently with total complexity of O(n m).

Triangulation using least squares. In the second step,
each unknown node i ∈ Vu uses a set of estimated distances
{d̂i,a : a ∈ Va} together with the known positions of the
anchors to perform a triangulation. the resulting estimated
position is denoted by x̂i. For each node, the triangula-
tion consists of solving a single instance of a least squares
problem (Ax = b) and this process is known as Lateration
[SRB01, LR03].

For an unknown node i, the position vector xi and the
anchor positions {xa : a ∈ {1, . . . , m}} satisfy the following
series of equations:

||x1 − xi||2 = d2
i,1 ,

...

||xm − xi||2 = d2
i,m .

This set of equations can be linearized by subtracting each
line from the next line.

||x2||2 − ||x1||2 + 2(x1 − x2)
T xi

= d2
i,2 − d2

i,1 ,

...

||xm||2 − ||xm−1||2 + 2(xm−1 − xm)T xi

= d2
i,m − d2

i,m−1 .

By reordering the terms, we get a series of linear equations
for node i in the form Axi = b(i)

0 , for A ∈ R
(m−1)×d and

b ∈ R
m−1 defined as

A ≡

2

6

4

2(x1 − x2)T

...
2(xm−1 − xm)T

3

7

5
,

b(i)
0 ≡

2

6

4

||x1||2 − ||x2||2 + d2
i,2 − d2

i,1

...
||xm−1||2 − ||xm||2 + d2

i,m − d2
i,m−1

3

7

5
.

Note that the matrix A does not depend on the particular
unknown node i and all the entries are known exactly to all
the nodes after the distributed shortest paths step. However,
the vector b(i)

0 is not available at node i, since di,a’s are not
known. Hence we use an estimation b(i), which is defined
from b(i)

0 by replacing di,a by d̂i,a everywhere. Then, finding
the optimal estimation x̂i of xi that minimizes the mean
squared error is solved in a closed form using a standard
least squares approach:

x̂i = (AT A)−1AT b(i) . (1)

For bounded d = o(1), a single least squares has complex-
ity O(m), and applying it n times results in the overall com-
plexity of O(n m). No communication between the nodes is
necessary for this step.

2.3 Main results
Our main result establishes that Hop-TERRAIN [SLR02]

achieves an arbitrarily small error for a radio range r =
α(log n/n)1/d with a large enough constant α, when we
have only the connectivity information as in the case of the



connectivity-based model. The same bound holds immedi-
ately for the range-based model, when we have an approx-
imate measurements for the distances, and the same algo-
rithm can be applied without any modification. The extra
information can be readily incorporated into the algorithm
to compute better estimates for the actual distances between
the unknown nodes and the anchors.

Define

r0 ≡ 8
√

3 d3/2

„

log n
n

« 1
d

, (2)

Theorem 2.1. Assume n sensors and m anchors are dis-
tributed uniformly at random in the [0, 1]d hypercube for a
bounded dimension d = O(1). For a given radio range r > r0

and the number of anchors m = Ω(log n), the following is
true with high probability. For all unknown nodes i ∈ Vu, the
Euclidean distance between the estimate x̂i given by Hop-

TERRAIN and the correct position xi is bounded by

||xi − x̂i|| ≤
r0

r
+ O(r) , (3)

where r0 is defined in Eq. (2).

The proof is provided in Section 3. In the regime where
r = o(1), the above theorem implies that the error is in-
versely proportional to the radio range r. As described in
the previous section, we are interested in the regime where
r = α(log n/n)1/d for some constant α. Given a small posi-
tive constant δ, this implies that Hop-TERRAIN is guaran-
teed to produce estimated positions that satisfy ||xi − x̂i|| ≤
δ for all i ∈ Vu with a large enough constant α and large
enough n.

When the number of anchors is bounded and the posi-
tions of the anchors are chosen randomly, it is possible that,
in the triangulation step, we get an ill-conditioned matrix
AT A, resulting in an large estimation error. This happens,
for instance, if three anchors fall close to a line. However,
as mentioned in the previous section, it is reasonable to as-
sume that, for the anchors, the system designer has some
control over where they are placed. In that case, the next
remark shows that when the positions of anchors are prop-
erly chosen, only d+1 anchors suffice to get a similar bound
on the performance. Note that this is the minimum num-
ber of anchors necessary for triangulation. For simplicity
we assume that one anchor is placed at the origin and d an-
chors are placed at positions corresponding to d-dimensional
unit vectors. Namely, the position of the d + 1 anchors are
{[0, . . . , 0], [1, 0, . . . , 0], [0, 1, 0, . . . , 0], [0, . . . , 0, 1] }. (see fig-
ure 2)

Theorem 2.2. Assume that n sensors are distributed uni-
formly at random in the [0, 1]d hypercube for a bounded di-
mension d = O(1). Also, assume that there are d + 1 an-
chors, one of which is placed at the origin, and the position
vectors of the d remaining anchors are the d-dimensional
unit vectors. For a given radio range r > r0, the follow-
ing is true with high probability. For all unknown nodes
i ∈ Vu, the Euclidean distance between the estimate x̂i given
by Hop-TERRAIN and the correct position xi is bounded
by

||xi − x̂i|| ≤
r1

r
+ O(r) , (4)

where r0 is defined in Eq. (2) and r1 ≡ d r0/2
√

3.

r




r

Figure 2: Three anchors in fixed positions for a two-
dimensional sensor localization.

The proof of this remark closely follows that of Theorem
2.1, and is provided in Section 3. However, there is nothing
particular about the position of the anchors in unit vectors.
Any d+1 anchors in general position will give similar bound.
Only difference is that the constant term in the definition of
r1 changes with the anchor positions.

When r = α(log n/n)1/d for some positive parameter α,
the error bound in (4) is ||xi − x̂i|| ≤ C1/α+ C2α

p

log n/n
for some numerical constants C1 and C2. The first term is
inversely proportional to α and is independent of n, where
as the second term is linearly dependent in α and vanishes
as n grows large. This is illustrated in Figure 3, which shows
numerical simulations with n sensors randomly distributed
in the 2-dimensional unit square. We used 100 random sam-
ples for each point in the figure to compute the root mean
squared error, {(1/n)

Pn
i=1 ||xi−x̂i||2}1/2, averaged over the

100 samples. In the first figure, where we have only the con-
nectivity information, we can see both contributions: the
linear term which depends on n and the 1/α term which
is less sensitive to n. In the second figure, where we have
the exact distance measurements without noise, we can see
that the linear term almost vanishes even for n = 5000,
and overall error is much smaller. A network of n = 200
nodes randomly placed in the unit square is shown in Fig-
ure 4. Three anchors in fixed positions are displayed by solid
blue circles. In this experiment the distance measurements
are from the range based model with multiplicative noise,
where Pi,j = [(1 + Ni,j)di,j ]+ for i.i.d. Gaussian Ni,j with
zero mean and variance 0.1. The noisy distance measure-
ment is revealed only between the nodes within radio range
r =

p

0.8 log n/n. Figure 5 shows the final solution of Hop-

TERRAIN. The circles represent the correct positions and
the solid line represents the errors of the estimation from
the correct position. The average error in this example is
about 0.075.

2.4 Some technical remark and notations
In the following, whenever we write that a property A

holds with high probability (w.h.p.), we mean that P(A)
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Figure 3: Average distance between the correct position
{xi} and estimation {x̂i} using Hop-TERRAIN as a func-
tion of α, for r = α

p

log n/n with n sensors in the unit
square under connectivity based model (above) and range

based model (below).

approaches 1 as the number of sensors n goes to infinity.
Given a matrix A ∈ R

m×n, the spectral norm of A is denoted
by ||A||2, and the Frobenius norm is denoted by ||A||F . For a
vector a ∈ R

n, ||a|| denotes the Euclidean norm. Finally, we
use C to denote generic constants that do not depend on n.

3. PROOF OF THE MAIN THEOREMS
In this section we provide the proofs of the theorems 2.1

and 2.2. Detailed proofs of the technical lemmas are pro-
vided in the following sections.

For an unknown node i, the estimation x̂i is given in
Eq. (1).

||xi − x̂i|| = ||(AT A)−1AT b(i)
0 − (AT A)−1AT b(i)||

≤ ||(AT A)−1AT ||2||b(i)
0 − b(i)|| ,

First, to bound ||b(i)
0 − b(i)||, we use the following key result

on the shortest paths. The main idea is that, for sensors
with uniformly random positions, shortest paths provide ar-
bitrarily close estimation to the correct distances for large
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Figure 4: 200 nodes randomly placed in the unit square
and 3 anchors in fixed positions. The radio range is r =
p

0.8 ∗ log n/n.

enough radio range r. Define

r̃0(β) ≡ 8
√

d

„

(1 + β) log n
n

« 1
d

. (5)

For simplicity we denote r̃0(0) by r̃0.

Lemma 3.1. (Bound on the shortest paths) Under the hy-
pothesis of Theorem 2.1, w.h.p., the shortest paths between
all pairs of nodes in the graph G(V, E, P ) are uniformly
bounded by

d̂2
i,j ≤ (1 +

r̃0

r
)d2

i,j + O(r) ,

for r > r0, where r̃0 is defined as in Eq. (5) and r0 as in
Eq. (2).

The proof of this lemma is given in Section 3.1. Since d2
i,j ≤

d for all i and j, we have

||b(i)
0 − b(i)|| =

“

m−1
X

k=1

`

d2
k,2 − d2

k,1 − d̂2
k,2 + d̂2

k,1

´2
”1/2

≤
√

m − 1
r̃0

r
d + O(

√
mr) , (6)

Next, to bound ||(AT A)−1AT ||2, we use the following lemma.

Lemma 3.2. Under the hypothesis of Theorem 2.1, the
following are true. Assuming deterministic anchor model,
where m = d + 1 anchors are placed on the positions x1 =
[1, 0, . . . , 0], x2 = [0, 1, 0, . . . , 0], x3 = [0, . . . , 0, 1] and xm =
[0, 0, . . . , 0].

||(AT A)−1AT ||2 ≤ d
2

.

Assuming random anchor model, for m = Ω(log n) anchors
chosen uniformly at random among n sensors,

||(AT A)−1AT ||2 ≤
r

3
m − 1

,

with high probability.

and this finishes the proof of Theorems 2.1 and 2.2.
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Figure 5: Location estimation using Hop-TERRAIN.

3.1 Proof of the bound on the shortest paths
In this section, we prove a slightly stronger version of

Lemma 3.1. We will show that under the hypothesis of
Theorem 2.1, for any β ≥ 0 and all sensors i /= j, there
exists a constant C such that, with probability larger than

1 − Cn−β

(1+β) log n , the shortest paths between all the pairs of
nodes are uniformly bounded by

d̂2
i,j ≤ (1 +

r̃0(β)
r

)d2
i,j + O(r) , (7)

for r > r0, where r̃0(β) is defined as in Eq. (5) and r0 as in
Eq. (2). Especially, Lemma 3.1 follows if we set β = 0.

We start by applying bin-covering technique to the ran-
dom geometric points in [0, 1]d in a similar way as in [MP05].
We cover the space [0, 1]d with a set of non-overlapping hy-
percubes whose edge lengths are δ. Thus there are total
01/δ1d bins, each of volume δd. In formula, bin (i1, . . . , id)
is the hypercube [(i1 − 1)δ, i1δ) × · · · × [(id − 1)δ, idδ), for
ik ∈ {1, . . . , 01/δ1} and k ∈ {1, . . . , d}. When n nodes are
deployed in [0, 1]d uniformly at random, we say a bin is
empty if there is no node inside the bin. We want to en-
sure that, with high probability, there are no empty bins.

For a given δ, define a parameter β ≡ (δd n/ log n) − 1.
Since a bin is empty with probability (1 − δd)n, we apply
union bound over all the 01/δ1d bins to get,

P(no bins are empty) ≥ 1 −
l1
δ

md
(1 − δd)n (8)

≥ 1 − C n
(1 + β) log n

“

1 − (1 + β) log n
n

”n
(9)

≥ 1 − C n−β

(1 + β) log n
, (10)

where in (9) we used the fact that there exists a constant C
such that 01/δ1d ≤ C/δd, and in (10) we used (1− 1/n)n ≤
e−1, which is true for any positive n.

Assuming that, with high probability, no bins are empty,
we first show that the shortest paths is bounded by a func-
tion F (di,j) that only depends on the distance between the
two nodes. Let d̂i,j denote the shortest path between nodes
i and j and di,j denote the Euclidean distance. Define a

function F : R
+ → R

+ as

F (y) =



r if y ≤ r ,
(k + 1)r if y ∈ Lk for k ∈ {1, 2, . . .} ,

where Lk denotes the interval (r + (k − 1)(r − 2
√

d)δ, r +
k(r − 2

√
d)δ].

We will show, by induction, that for all pairs (i, j),

d̂i,j ≤ F (di,j) . (11)

First, in the case when di,j ≤ r, by definition of connectivity
based model, nodes i and j are connected by an edge in the
graph G, whence d̂i,j = r.

Next, assume that the bound in Eq. (11) is true for all
pairs (l, m) with dl,m ≤ r + (k − 1)(r − 2

√
d)δ. We consider

two nodes i and j at distance di,j ∈ Lk. Consider a line
segment li,j in a d-dimensional space with one end at xi and
the other at xj , where xi and xj denote the positions of
nodes i and j, respectively. Let p be the point in the line
li,j which is at distance r −

√
dδ from xi. Then, we focus

on the bin that contains p. By assumption that no bins are
empty, we know that we can always find at least one node
in the bin. Let k denote any one of those nodes in the bin.
Then we use following inequality which is true for all nodes
(i, k, j).

d̂i,j ≤ d̂i,k + d̂k,j .

Each of these two terms can be bounded using triangular
inequality. To bound the first term, note that two nodes in
the same bin are at most distance

√
dδ apart. Since p and xk

are in the same bin and p is at distance r−
√

dδ from node xi

by construction, we know that di,k ≤ ||xi−p||+||p−xk|| ≤ r,
whence d̂i,k = r. Analogously for the second term, dk,j ≤
||xj − p||+ ||p− xk|| ≤ r + (k − 1)(r − 2

√
d)δ, which implies

that d̂k,j ≤ F (dk,j) = kr. Hence, we proved that if Eq. (11)
is true for pairs (i, j) such that di,j ≤ r +(k− 1)(r− 2

√
d)δ,

then d̂i,j ≤ (k + 1)r for pairs (i, j) such that di,j ∈ Lk. By
induction, this proves that the bound in Eq. (11) is true for
all pairs (i, j).

Let µ = (r/2
√

d)
“

n/((1 + β) log n)
”1/d

. Then, the func-

tion F (y) can be easily upper bounded by an affine function
Fa(y) = (1+1/(µ−1))y+r. Hence we have following bound
on the shortest paths between any two nodes i and j.

d̂i,j ≤

0

B

@
1 +

1

r
2
√

d

“

n
(1+β) log n

”1/d
− 1

1

C

A
di,j + r . (12)

Figure 6 illustrates the comparison of the upper bounds
F (di,j) and Fa(di,j), and the trivial lower bound d̂i,j ≥ di,j

in a simulation with parameters d = 2, n = 6000 and
r =

p

64 log n/n. The simulation data shows the distri-
bution of shortest paths between all pairs of nodes with re-
spect to the actual pairwise distances, which confirms that
shortest paths lie between the analytical upper and lower
bounds. While the gap between the upper and lower bound
is seemingly large, in the regime where r = α

p

log n/n with
a constant α, the vertical gap r vanishes as n goes to infinity
and the slope of the affine upper bound can be made arbi-
trarily small by increasing the radio range r or equivalently
taking large enough α. The bound on the squared shortest
paths d̂2

i,j can be derived from the bound on the shortest
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Figure 6: comparison of upper and lower bound of
shortest paths {d̂i,j} with respect to the correct distance
{di,j} computed for n = 6000 sensors in 2-dimensional
square [0, 1]2 under connectivity based model.

paths in Eq. (12) after some calculus.

d̂2
i,j ≤

n µ
µ − 1

di,j + r
o2

(13)

=
µ2

(µ − 1)2
d2

i,j + r2 + 2
µ

µ − 1
di,j r (14)

=
“

1 +
2µ − 1

(µ − 1)2

”

d2
i,j + O(r) (15)

≤
“

1 +
4
µ

”

d2
i,j + O(r) . (16)

where in (15) we used the fact that (µ/(µ − 1))di,j = O(1),
which follows from the assumptions (r/4

√
d)d > (1+β) log n/n

and d = O(1). In (16), we used the inequality (2µ− 1)/(µ−
1)2 ≤ 4/µ, which is true for µ ≥ 2 +

√
3. Substituting µ in

the formula, this finishes the proof of the desired bound in
Eq. (7).

Note that although for the sake of simplicity, we focus
on [0, 1]d hypercube, our analysis easily generalizes to any
bounded convex set and homogeneous Poisson process model
with density ρ = n. The homogeneous Poisson process
model is characterized by the probability that there are
exactly k nodes appearing in any region with volume A :

P(kA = k) = (ρA)k

k! e−ρA. Here, kA is a random variable
defined as the number of nodes in a region of volume A.

3.2 Proof of Lemma 3.2
By using the singular value decomposition of a tall m−1×

d matrix A, we know that it can be written as A = UΣV T

where U is an orthogonal matrix, V is a unitary matrix and
Σ is a diagonal matrix. Then,

(AT A)−1A = UΣ−1V T .

Hence,

||(AT A)−1A||2 =
1

σmin(A)
, (17)

where σmin(A) is the smallest singular value of A. This
means that in order to upper bound ||(AT A)−1A||2 we need
to lower bound the smallest singular value of A.

3.2.1 Deterministic Model
By putting the sensors in the mentioned positions the d×d

matrix A will be Toeplitz and have the following form.

A = 2

2

6

6

6

6

6

4

1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
. . .

. . .
...

0 · · · 0 1 −1
0 · · · 0 0 1

3

7

7

7

7

7

5

.

We can easily find the inverse of matrix A.

A−1 =
1
2

2

6

6

6

6

6

4

1 1 1 · · · 1
0 1 1 · · · 1
...

...
. . .

. . .
...

0 · · · 0 1 1
0 · · · 0 0 1

3

7

7

7

7

7

5

.

Note that the maximum singular value of A−1 and the min-
imum singular value of A are related as follows.

σmin(A) =
1

σmax(A−1)
. (18)

To find the maximum singular value of A−1 need to calculate

the maximum eigenvalue of A−1
`

A−1
´T

which has the form

A−1 `A−1´T =
1
4

2

6

6

6

6

6

4

d d − 1 d − 2 · · · 1
d − 1 d − 1 d − 2 · · · 1

...
...

. . .
. . .

...
2 · · · 2 2 1
1 · · · 1 1 1

3

7

7

7

7

7

5

.

Using the Gershgorin circle theorem (see appendix B) we
can find an upper bound on the maximum eigenvalue of

A−1
`

A−1
´T

.

λmax

“

A−1 `A−1´T
”

≤ d2

4
, (19)

Hence, by combining (17) and (19) we get

||(AT A)−1A||2 ≤ d
2
. (20)

3.2.2 Random Model
Let the symmetric matrix B be defined as AT A. The

diagonal entries of B can be written as

bi,i = 4
m−1
X

k=1

(xk,i − xk+1,i)
2, (21)

for 1 ≤ i ≤ d and the off-diagonal entries as

bi,j = 4
m−1
X

k=1

(xk,i − xk+1,i)(xk,j − xk+1,j), (22)

for 1 ≤ i /= j ≤ d where xk,i is the i-th element of vector xk.
In the following lemmas, we show that with high probability
as m increases the diagonal entries of B will all be of the
order of m, i.e., bi,i = Θ(m), and the off-diagonal entries

will be bounded from above by m
1
2 +ε, i.e., bi,j = o(m).

Lemma 3.3. For any ε > 0 the diagonal entries of B are
bounded as follows.

P

“

|bi,i − 2(m − 1)/3| > 4m
1
2+ε
”

≤ 4e−m2ε

.



The idea is to use Hoeffding’s Inequality (see appendix A)
for the sum of independent and bounded random variables.
To this end, we need to divide the sum in (21) into sums of
even and odd terms as follows:

bi,i = bi
e + bi

o,

where

bi
e = 4

X

k∈even

(xk,i − xk+1,i)
2, (23)

bi
o = 4

X

k∈odd

(xk,i − xk+1,i)
2. (24)

This separation ensures that the random variables in sum-
mations (23) and (24) are independent. Let the random
variable zi

k denote the term 4(xk,i − xk+1,i)
2 in (23). Since

zi
k ∈ [0, 4] and all the terms in bi

e are independent of each
other, we can use Hoeffding’s Inequality to upper bound the
probability of the deviation of bi

e from its expected value:

P

“

|bi
e − (m − 1)/3| > 2m

1
2+ε
”

≤ 2e−m2ε

, (25)

for any fixed ε > 0. The same bound holds for bo. Namely,

P

“

|bi
o − (m − 1)/3| > 2m

1
2+ε
”

≤ 2e−m2ε

. (26)

Hence,

P

“

|bi,i − 2(m − 1)/3| > 4m
1
2+ε

”

(a)
≤ P

“

|be − (m − 1)/3| + |bo − (m − 1)/3| > 4m
1
2 +ε

”

(b)
≤ 4e−m2ε

,

where in (a) we used triangular inequality and in (b) we
used the union bound.

Lemma 3.4. For any ε > 0 the off-diagonal entries of B
are bounded as follows.

P

“

|bi,j | > 16m
1
2+ε
”

≤ 4e−m2ε

.

The proof follows the same lines as the proof of Lemma 3.3.
Using the Gershgorin circle theorem (see appendix B) we

can find a lower bound on the minimum eigenvalue of B.

λmin(B) ≥ min
i

(bi,i − Ri), (27)

where

Ri =
X

j &=i

|bi,j |.

Now, let Bii denote the event that {bi,i < 2(m − 1)/3 −
4m

1
2 +ε} and Bij (for i /= j) denote the event that {bi,j >

16m
1
2+ε}. Since the matrix B is symmetric, we only have

d(d + 1)/2 degrees of freedom. Lemma 3.3 and 3.4 provide
us with a bound on the probability of each event. Therefore,
by using the union bound we get

P

0

@

[

i≤j

Bij

1

A ≤ 1 −
X

i≤j

P(Bij)

= 1 − 3d2e−m2ε

.

Therefore with probability at least 1 − 3d2e−m2ε

we have

bi,i − Ri ≥
2(m − 1)

3
− 16d · m

1
2+ε, (28)

for all 1 ≤ i ≤ d. As m grows, the RHS of (28) can be lower
bounded by (m− 1)/3. By combining (27) and (28) we can
conclude that

P

„

λmin(B) ≥ (m − 1)
3

«

≥ 1 − 3d2e−m2ε

. (29)

As a result, from (17) and (29) we have

P

 

||(AT A)−1A||2 ≤
r

3
m − 1

!

≥ 1 − 3d2e−m2ε

, (30)

which shows that as m grows with high probability we have

||(AT A)−1A||2 ≤
q

3
m−1 .

4. CONCLUSION
In many applications of wireless sensor networks, it is cru-

cial to determine the location of nodes. Distributed localiza-
tion of nodes is a key to enable most of these applications.
For this matter, numerous algorithms have been recently
proposed where the efficiency and success of them have been
mostly demonstrated by simulations. In this paper, we in-
vestigated the distributed sensor localization problem from a
theoretical point of view and provided analytical bounds on
the performance of such an algorithm. More precisely, we
analyzed the HOP-TERRAIN algorithm and showed that
even when only the connectivity information was given, the
Euclidean distance between the estimate and the correct po-
sition of every unknown node is bounded and decays at a
rate inversely proportional to the radio range. In the case of
noisy distance measurements, we observe the same behavior
and a similar bound holds.
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APPENDIX
A. HOEFFDING’S INEQUALITY

Hoeffding’s inequality [Hoe63] is a result in probability
theory that gives an upper bound on the probability for
the sum of random variables to deviate from its expected
value. Let z1, z2, . . . , zn be independent and bounded ran-
dom variables such that zk ∈ [ak, bk] with probability one.
Let sn =

Pn
k=1 zk. Then for any δ > 0, we have

P (|sn − E[sn]| ≥ δ) ≤ 2e
− 2δ2

Pn
k=1

(bk−ak)2 .

B. GERSHGORIN CIRCLE THEOREM
The Gershgorin circle theorem [HJ85] identifies a region

in the complex plane that contains all the eigenvalues of a
complex square matrix. For an n × n matrix A, define

Ri =
X

j &=i

|ai,j |.

Then each eigenvalue of A is in at least one of the disks

{z : |z − ai,i| ≤ Ri}.


