In this paper, we propose a novel method to register images defined on spherical meshes. Instances of such spherical images include inflated cortical feature maps in brain medical imaging or images from omnidirectional cameras. We apply the Geodesic Active Fields (GAF) framework locally at each vertex of the mesh. Therefore we define a dense deformation field, which is embedded in a higher dimensional manifold, and minimize the weighted Polyakov energy. While the Polyakov energy itself measures the hyperarea of the embedded deformation field, its weighting allows to account for the quality of the current image alignment. Iteratively minimizing the energy drives the deformation field towards a smooth solution of the registration problem. Although the proposed approach does not necessarily outperform state-of-the-art methods that are tightly tailored to specific applications, it is of methodological interest due to its high degree of flexibility and versatility.