Connectivity reflects coding: a model of voltage-based STDP with homeostasis

Electrophysiological connectivity patterns in cortex often have a few strong connections, which are sometimes bidirectional, among a lot of weak connections. To explain these connectivity patterns, we created a model of spike timing–dependent plasticity (STDP) in which synaptic changes depend on presynaptic spike arrival and the postsynaptic membrane potential, filtered with two different time constants. Our model describes several nonlinear effects that are observed in STDP experiments, as well as the voltage dependence of plasticity. We found that, in a simulated recurrent network of spiking neurons, our plasticity rule led not only to development of localized receptive fields but also to connectivity patterns that reflect the neural code. For temporal coding procedures with spatio-temporal input correlations, strong connections were predominantly unidirectional, whereas they were bidirectional under rate-coded input with spatial correlations only. Thus, variable connectivity patterns in the brain could reflect different coding principles across brain areas; moreover, our simulations suggested that plasticity is fast.


Published in:
Nature Neuroscience, 13, 3, 344-352
Year:
2010
Publisher:
Nature Publishing Group
ISSN:
1546-1726
Keywords:
Laboratories:




 Record created 2010-02-04, last modified 2018-01-28

External link:
Download fulltext
n/a
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)