
Leveraging Parallel Nesting in Transactional Memory∗

João Barreto
INESC-ID/Technical University Lisbon,

Portugal
joao.barreto@inesc-id.pt

Aleksandar Dragojević
Swiss Federal Institute of Technology,

Lausanne, Switzerland
aleksandar.dragojevic@epfl.ch

Paulo Ferreira
INESC-ID/Technical University Lisbon,

Portugal
paulo.ferreira@inesc-id.pt

Rachid Guerraoui
Swiss Federal Institute of Technology, Lausanne,

Switzerland
rachid.guerraoui@epfl.ch

Michał Kapałka
Swiss Federal Institute of Technology, Lausanne,

Switzerland
michal.kapalka@epfl.ch

Abstract
Exploiting the emerging reality of affordable multi-core architec-
tures goes through providing programmers with simple abstractions
that would enable them to easily turn their sequential programs into
concurrent ones that expose as much parallelism as possible. While
transactional memory promises to make concurrent programming
easy to a wide programmer community, current implementations
either disallow nested transactions to run in parallel or donot scale
to arbitrary parallel nesting depths. This is an important obstacle to
the central goal of transactional memory, as programmers can only
start parallel threads in restricted parts of their code.

This paper addresses the intrinsic difficulty behind the support
for parallel nesting in transactional memory, and proposesa novel
solution that, to the best of our knowledge, is the first practical
solution to meet the lowest theoretical upper bound known for the
problem.

Using a synthetic workload configured to test parallel transac-
tions on a multi-core machine, a practical implementation of our
algorithm yields substantial speed-ups (up to 22x with 33 threads)
relatively to serial nesting, and shows that the time to start and com-
mit transactions, as well as to detect conflicts, is independent of
nesting depth.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming - Parallel programming

General Terms Algorithms.

Keywords Nested parallel programs, fork-join, work-stealing,
transactional memory.

∗ This work is funded by the Velox FP7 European project, by the
Swiss National Science Foundation grant 200021-116745/1 and by
the Portuguese National Science Fundation (FCT) Mercury project
(PTDC/EIA/66589/2006).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPoPP’10, January 9–14, 2010, Bangalore, India.
Copyright c© 2010 ACM 978-1-60558-708-0/10/01. . . $10.00

1 atomic { /* transaction t0 */
2 /* transfers a given amount from account A to B */
3 parallel {
4 atomic { /* transaction t1, child of t0 */
5 n = read(A.balance);
6 write(A.balance, n-amount);
7 }
8 ||
9 atomic { /* transaction t2, child of t0 */
10 n = read(B.balance);
11 write(B.balance, n+amount);
12 }
13 }
14 print("New balance of B is " + read(B.balance));
15 }

Figure 1. Example of parallel nested transactional program.

1. Introduction
Multicore architectures are on their way to becoming the norm for
computing devices in a near future. Yet, the power of multicore
requires concurrent programs. However, such programs are signif-
icantly more difficult to code than sequential ones. By encapsulat-
ing the difficult issue of concurrency control, transactional memory
(TM) [9] is a prominent abstraction for simplifying this task.

Using TM, a programmer just needs to (i) create threads, and
(ii) delimit which regions of her program must run atomically. A
concurrent program is then as simple as depicted in Figure 1.As
program execution enters each atomic region, a new transaction
begins; nested transactions are created when an atomic region is
entered inside an outer atomic region.

Conceptually, the execution of a concurrent program yieldsa
dynamic tree of active transactions, inter-connected by child-parent
relations, as Figure 1 illustrates. At any moment, some of the
transactions will be running in some processors, while others will
be waiting (for instance, for some processor to become available, or
waiting for their children to commit). The TM runtime must ensure
that, whenever a given transaction wishes to read or write tosome
shared memory location, it does not violate correctness.

Given two distinct active transactions, when both access the
same object, if at least one transaction tries to write the object, and
neither one is an ancestor of the other [1], TM detects a conflict. As
an example, consider an execution of the previous example where
both accounts happen to be the same (A = B). Assume thatt1
accessesA.balance (line 5) and, beforet1 commits, t2 tries to
read/write to the same object (lines 10,11). The TM will verify
that t1, which is still active, has already accessed the object and is

not an ancestor oft2; hence, conflict exists and eithert1 or t2 will
rollback and abort. If otherwise,t1 had already committed, then the
object would have been inherited byt0’s write-set. In this case, the
TM will conclude that, although a currently active transaction (t0)
holds the object,t0 is an ancestor oft2, thus no conflict exists.

Answering the above ancestor query in an efficient manner is
crucial for the TM’s overall performance [1]. Most TM systems
that support nesting simplify this ancestor test by disallowing child
transactions to execute in parallel [4, 8, 12]; i.e. they exclusively
support serial nesting. In this case, if some parent transaction
creates child transactions, then the children will run in the same
thread that runs the parent transaction, one after another.Enforcing
serial nesting means that the ancestor test is reduced to comparing
thread identifiers: only if the thread identifier of the transaction
requesting access is the same as the thread identifier of someactive
transaction that has accessed the desired object, then necessarily
the latter is an ancestor of the former.

While serial nesting achieves acceptable performance levels
[5, 13], it imposes a decisive limitation on the potential parallelism
that is made available to programmers, who can only create threads
in code locations that lie outsideatomic blocks. Hence, it severely
restricts composability of parallel programs [16], as a program can-
not call a parallel library function from inside a transaction with-
out serializing the function [1]. Or, alternatively, the programmer
cannot decompose long transactions into parts that do not conflict
among each other (at least not too much). Recalling the program in
Figure 1, the debit and credit transactions (t1 andt2, respectively)
would have to run sequentially, as they run inside transaction t0.
More generally, any finer grained parallelism that may existinside
the transaction tree is simply neglected. The full power of novel
and ambitious paradigms that exploit fine-grained intra-transaction
parallelism, such as Free Objects [7], Automatic Mutual Exclusion
[10] and dynamic languages as XCilk [1], is greatly hinderedby
the current TM state-of-the-art.

The main technical challenge of supporting nested parallelism
in TM is the intrinsic difficulty of efficiently answering theancestor
test in such a context. This is especially important for composabil-
ity: deep nesting can create long chains of ancestors.

As some authors emphasize [1, 16], effective support for par-
allel nesting must gracefully scale to such arbitrary depths. Oth-
erwise, the programmer will be discouraged to expose parallelism
that may exist in parts of her programs at reasonable nestingdepths.
Experience with real transactional programs suggests thatnesting
is frequent and, often, relatively deep (e.g. [17]). Furthermore, even
programs with relatively shallow transactional trees can be called
from inside other programs, and hence run at deeper nesting levels.

Agrawal et al. have proposed an algorithm that supports parallel
nested transactions such that no-conflict executions of a program1

with workT1 and a critical-path lengthT∞ (which clearly grows as
nesting depth grows) complete inO(T1/P +PT∞) time, whereP
is the number of threads available [1]. Despite being the best known
upper bound up to date, it does not lead directly to a practical
implementation. Agrawal et al.’s complex algorithm potentially
queries a large number of data structures on each object access,
expectedly yielding unacceptable performance penalties [1], and so
has not been implemented in practice. More recently, new proposed
solutions have moved closer towards the goal of practical parallel
nesting. However, they either support significantly limited forms of
parallel nesting [14, 16]; or fail to achieve the above upperbound
because per-transaction and per-access overhead grow linearly with
depth [2].

In this paper we propose the first practical solution for paral-
lel nested TM to achieve depth-independent times to create and
commit transactions, as well as to detect conflicts, as implicit in
Agrawal et al.’s theoretical upper bound. In our solution, depth-

1 Assuming all accesses are writes.

parallel(thread Ti, block parBlocks[])
1: contBlock = copy ofTi.block;
2: contBlock .program = the remainder ofTi.block.program
3: for each blockb in parBlocks do
4: b.baseTx = Ti.tx;
5: b.minEp = Ti.ep;
6: b.succBlock = contBlock ;
7: contBlock .precBlocks + +;
8: enterMonitor(queue);
9: for each blockb in parBlocks do

10: queue.enqueue(b);
11: leaveMonitor(queue);

stealBlock(threadTi)
1: enterMonitor(queue);
2: b = freeBitnumQueue.reserveFreeBit();
3: while isEmpty(queue) do
4: wait(queue)
5: Ti.block= queue.dequeue();
6: if Ti.block.succBlock is not null then
7: lock(Ti.block.succBlock);
8: Ti.block.succBlock .precBitnums+ = b;
9: if Ti.block.succBlock .precBlocks == 1 then

10: discardBitnum(Ti.block.Ti.block, Ti.ep);
11: unlock (Ti.block.succBlock);
12: leaveMonitor(queue);
13: Ti.ep= max{Ti.block.minEp; Ti.block.bn.minEp};
14: Ti.tx = Ti.block.baseTx ;
15: Ti.block.bn = b;

finishBlock(thread Ti)
1: discardBitnum(Ti.block.bn, Ti.ep);
2: if b = Ti.block.succBlock is not null then
3: lock(b);
4: comDesc− = (discarding + comMask[b.minEp]);
5: comDesc+ = Ti.block.bn;
6: b.precBlocks −−;
7: b.precBitnums− = Ti.block.bn;
8: b.minEp = max{Ti.ep; b.minEp};
9: if b.precBlocks == 1 andb.precBitnums 6= 0 then

10: discardBitnum(b.precBitnums , Ti.curEp);
11: if b.precBlocks == 0; then
12: Ti.block= b;Ti.ep= b.minEp; Ti.tx = b.baseTx ;
13: runb;
14: unlock(b);

discardBitnum(bitnum, lastEpoch)
1: Ti.lastComEp[bitnum] = lastEpoch ;
2: Ti.discardBitnum[bitnum] = TRUE ;

Figure 2. Work-stealing.

independence is verified as long as the number of threads is
bounded by CPU word size (e.g. up to 64 threads in 64-bit comput-
ers), in contrast to Agrawal et al.’s unbounded result.

As proof of concept, we have completely implemented and
evaluated our algorithm as a Java library. The experimentalresults
confirm competitive speed-ups relatively to serial nesting(up to
22x with 33 threads). Furthermore, results support our theoretical
claim that the time taken by our algorithm to start and commit
transactions, as well as detecting conflicts on each object access is
independent of nesting depth, for the evaluated number of threads.

Overview

At the heart of our algorithm, we rely on a very lightweight,
constant-time ancestor query algorithm that only supportsa bounded
number of transactions. However, as we show later in the paper,
such a bounded query is sufficient to support any execution with an
unbounded number of transactions, at an unbounded nesting depth.

The key data structures arebit vectorsof fixed size,N , which
we use in diverse parts of our algorithm to identify the ancestor sets
of our transactions. The fixed dimension,N , is given by2P , where

beginTx(thread Ti)
1: Ti.tx.bitnum = Ti.block.bn;
2: Ti.tx.beginEp = Ti.ep;
3: Ti.tx.anc+ = Ti.tx.bitnum

commitTx(thread Ti)
1: Ti.lastComEp[Ti.tx.bitnum] = Ti.ep;
2: Ti.ep+ +;
3: Ti.tx = Ti.block.baseTx ;

write(object x, valuev, thread Ti)
1: lock(x);
2: if x.stack .isEmpty() then
3: x.stack .push(Ti.tx.anc, x.value);
4: x.value = v;
5: else ifx.stack .top().anc == Ti.tx.anc and

Ti.tx.beginEp ≤ x.stack .top().ep ≤ Ti.ep then
6: x.value = v;
7: else ifnoConflict(x.stack .top(), Ti) then
8: x.stack .push(Ti.anc, x.value);
9: x.value = v;

10: else
11: Handle conflict.
12: unlock(x);

noConflict(stackEntry e, thread Ti)
1: xanc = activeAncestors(e, Ti);
2: return (xanc ∧ ((xanc ⊕ Ti.anc)) == 0);

Figure 3. Basic transactional support.

P is the number of threads on which the underlying STM runs
a given program. We identify transactions by abitnum,a unique
index (ranging from0 to N − 1) of all bit vectors that our system
maintains. Hence, given any bit vector, the set of transactions it
represents is given by the transactions whose bitnum is set to 1.

In order to check whether some transactioni, whose ancestor
set isanci , is an ancestor of another transactionj, with ancestor
setancj , it suffices to determine ifanci is a subset ofancj . With
our bit vector representation ofanci andancj , we can answer such
a query with a couple of bitwise operations, by checking whether
(anci ∧ (anci ⊕ ancj)) == 0.

Our TM maintains ancestor bit vectors along each object, in or-
der to denote the ancestors of the current active transactions that
have accessed that object. We further enrich our solution with tech-
niques such as bitnum re-use, lazy bit reclaim, immediate commit-
ment propagation and single-child transaction optimization, which
we describe next.

The core of our algorithm is presented in detail in Figures 2 and
3. In the remainder of the paper we revisit these figures, describing
and discussing each line in detail.

The following sections are organized as follows. Section 2 starts
by introducing the notations and assumptions of the paper. Section
3 describes the work stealing system, the framework underlying our
TM. Section 4 then introduces the basic algorithms for creating and
committing transactions, and detecting conflicts. We then address
advanced aspects of our algorithm: Section 5 describes lazybitnum
reclaiming, while Section 6 explains how our bounded bit vector
structure can, in fact, support unbounded transaction trees. Section
7 evaluates the algorithm. Section 8 surveys related work. Finally,
we draw conclusions in Section 9.

2. Basic Notation and Assumptions
Hereafter, when considering two bit vectors,x andy, we usex+ y
andx−y to denotex∨y andx∧y, respectively, wherey is the bit
inversion ofy. When no ambiguity exists, when referring to a given
bitnum,b, we either mean the integer representing the position of
b in any bit vector (from0 to N − 1), or the bit vector where the
only 1-bit is the one corresponding tob. Moreover, we writex + b

or x − b (wherex is a bit vector andb a bitnum) to denote the bit
vector resulting from setting/clearing (respectively)b’s bit in x.

We assume that individual memory writes are atomic when no
write contention to the same variable exists (i.e. any concurrent
read to the same single variable will always read a consistent value).
This is supported by most modern multi-core machines and run-
time platforms (e.g. [6]).

3. Epoch-based Work Stealing
We depart from an XCilk-like [1] programming language and work
stealing system [3]. For simplicity of presentation, we consider an
elementary work stealing system, based on a global queue; this is
without loss of generality, as it is straightforward to extend our
solution to more efficient multi-queue work stealing systems [3].

Since the work stealing system forms the framework on which
our TM will operate, we start by describing the work stealing
system next, enriching it with additional features required by our
TM. We assume a multi-core computer runningP worker threads,
T0, ..TP .2 A central assumption in the remainder of the text is that
P is bounded by word size, so that comparing bit vectors of size
N = 2P becomes possible in one or two hardware instructions.

When no ambiguity exists, we simply refer to worker threads as
threads. Each thread,Ti, can either be idle, or running someblock
that it has stolen from the global queue [3]. We assume that, at each
moment,Ti is running in the context of some transaction.

As later sections explain, our TM needs to reason about the
happens-before relation [11] between events concerning different
transactions. Namely, such events include the beginning and com-
mitment of any transaction, as well as each memory access any
transaction makes. Threads support that by maintaining logical
clocks [11], which we callepochs.

At each moment, each running thread is executing a given block,
and is at a particular epoch. During execution of a block, a thread
can evolve to greater epochs than the one in which it started running
the block, in situations which we shall explain in the next section.
The current epoch of a thread increases monotonically only,and it
can differ from other threads’ current epochs.

Summing up, each thread,Ti, maintains the following local
state:

• Ti.ep, the current epoch number;

• Ti.tx, the current transaction identifier (addressed in the next
section);

• Ti.block, the block being executed;

Additionally,Ti maintains the following attributes, whose meaning
we clarify shortly:

• Ti.lastComEp

• Ti.discardBitnum

Blocks encapsulate program fragments, which threads can run. A
block can be in one of three states: (i)waiting, meaning that the
block cannot run yet, as it is dependent on one or more blocks to
complete; (ii)enqueued, meaning that any thread that becomes idle
can steal and run it; (iii)running, at some threadTi. Every block
starts in the waiting state, and eventually it moves to the enqueued
and running states, in this order.
In either state, a block has the following attributes:

• b.program , the block’s program;

• b.baseTx , the transaction in which the block is when its execu-
tion starts;

2 Ideally, P is less than the number of available cores, but there can also
exist more (swapping) threads than cores.

• b.bn, the bitnum reserved for this block, which is unassigned in
the waiting and enqueued states;

• b.minEp, the minimum epoch at which the thread that steals
the block has to be to start running it;

• b.precBlocks , the number of blocks that need to complete be-
fore this block can be enqueued; when enqueued or running,
b.precBlocks is 0.

• b.precBitnums , a bit vector denoting the set of reserved bits of
every block whichb is waiting for; when enqueued or running,
b.precBitnums is empty.

• b.blockWaitingForMe , the block (if any) that is waiting for
this block (and possibly others) to complete.

The next sections explain the need of each attribute above.

3.1 Forking into parallel blocks

Initially, only one block exists, called theroot blockwhich contains
the main program. As a running block (e.g. the root block) finds a
parallel statement, it ceases its execution and decomposes itself
into multiple smaller blocks. The resulting blocks comprise: the in-
ner parallel blocks, which are enqueued, and a continuationblock,
which contains the remainder of the program after theparallel

statement, and whose state is set to waiting, until the innerblocks
finish. It is straightforward to extend the work stealing system to
support other models. For instance, when the root block continues
to execute, instead of waiting for the spawned blocks to finish.

Hereafter, we say that the inner parallel blocks in aparallel

statement aresibling blocks(as any transactions they create will
be sibling transactions). Moreover, we say that the inner parallel
blocks are thepreceding blocksof the continuation block, which in
turn is thesucceeding blockof the inner parallel blocks.

Procedureparallel from Figure 2 details how we initialize the
blocks resulting from aparallel statement found by some thread,
Ti.

Each block resulting from theparallel statement is created
in the context ofTi’s current transaction whenTi reached the
statement (lines 2 and 4). We designate such a transaction the
blocks’ base transaction.

Other threads may later steal the blocks resulting from the
parallel statement. Therefore, such threads’ epochs need to re-
flect the fact that the events that the original block has seenhappen-
before the new blocks. We ensure that by associating a minimum
epoch with each new block, which we set to the last epoch at which
the original block ran (lines 2 and 5).

3.2 Running and stealing blocks

During execution, a block may initiate new child transactions of
its base transaction, as the block’s execution enters newatomic

regions. We impose that, in the program of a single block, at most
one nesting level ofatomic regions can exist.3

As the next section describes, for a thread to initiate a transac-
tion, it needs to hold a reserved bitnum, which will serve to iden-
tify that transaction. We obtain such a bitnum from a globalfree
bitnum queue. Each entry in the free bitnum queue contains a bit-
num and the minimum epoch at which the thread wishing to use
the free bitnum must be. The minimum epoch attribute is necessary
because bitnums can be re-used for different transactions at differ-
ent epochs. As we describe shortly, we set the minimum epoch of
each free bitnum to a value that is greater than the epochs at which

3 Note that this internal restriction is not visible to the programmer. The
programmer can still transparently code programs with multiple nesting
levels inside a block, such asatomic{atomic{...}}. A pre-compiler can
then seamlessly translates such a program to an equivalent one with single-
level blocks:atomic{parallel{atomic{...}}}.

the previous transactions that have used the bitnum have commit-
ted. This way, we ensure that epochs correctly reflect the happens-
before relation between transactions that have shared a bitnum.

Since different threads can try to concurrently reserve a bit-
num, we ensure mutual exclusion when accessing the free bitnum
queue by locking. Acquiring a lock each time a new transaction
started would be prohibitively expensive. Instead, we minimize
synchronization overhead by reserving, on steal-time of a given
block, one bitnum. We then use (and re-use) that bitnum for any
transaction that that block may initiate.

We can finally define all the steps a thread,Ti, needs to take
before being able to run a block. Such steps occur whenTi steals
the block, as ProcedureStealBlock in Figure 2 presents.

Essentially,Ti starts by reserving a free bit for the block it
will steal (line 2). Then,Ti dequeues one block from the queue
(line 5) and saves the bit reserved for the stolen block in the
precBitnums attribute of its succeeding block (if any) (line 8).
The need for line 8 is not evident now; we return to it in Section
6. The previous two steps require mutual exclusion, which wecan
safely achieve with only one lock associated with the queue.Thread
Ti then advances its current epoch in order to satisfy the minimum
epochs of the block and the reserved bit (line 12), and setsTi’s
current transaction as the block’s base transaction. Finally, Ti can
start running the block’s program.

3.3 Finishing a block

Finally, when a block’s program finishes, the thread runningit
proceeds as in ProcedurefinishBlock of Figure 2.

Essentially,finishBlock has two goals. Firstly, a call todiscard-
Bit notifies the system about the fact that threadTi has finished
using bitnumTi.block.bn, at epochTi.ep. We publish such infor-
mation in theTi.lastComEpandTi.discardBitnumvectors ofTi’s
state, in the position corresponding to the bitnum to discard. No
locking is required since, while holding the reserved bitnum, only
this thread can write to these vectors.

After setting such values, the thread immediately returns.Even-
tually, after the call todiscardBit, the system will asynchronously
place the discarded bitnum in the free bitnums queue again, with
a minimum epoch that is greater than the epoch at whichTi dis-
carded it. For the moment, we are not concerned about how such
an asynchronous task takes place. Section 5 addresses that.

Secondly, we update the finishing block’s succeeding block,b
(if any). This means removing any reference to the finishing block
in b’s attributes (lines 6 and 7). Furthermore, imposing that, onceb
starts running, it will not be at an earlier epoch than the epoch at
which b’s preceding blocks have finished (line 8). Otherwise, we
would be inconsistent with the happens-before relation between
preceding blocks and their successor. If the finishing blockis the
last oneb is waiting for, this means thatb is finally ready andTi can
immediately run it (line 13). After runningfinishBlock , Ti become
idle again, thus it then tries to steal a new block.

4. Basic Transactional Memory Algorithm
In the previous section, we have laid the ground on which our TM
will work. This section finally introduces the base algorithms that
support transactions in our programs. We start by explaining how
we identify transactions and represent their position within a tree
of other transactions. Then we proceed to describe how we ensure
the safety of memory accesses.

4.1 Transactions

We identify each transaction,t, by a bitnum. However, the lim-
ited size of the bitnum space (N) requires us to re-use bitnums to
identify new transactions, as soon as the previous transaction that
has used the bitnum has committed. Therefore,t’s identifier is only
valid when we consider an epoch during whicht was active; out-

side that period, that bitnum can be identifying another transaction.
Consequently, we can only univocally identifyt by the pair com-
prising its bitnum and some epoch at whicht was active.

Besides identifying, we need to be able to determine position
of t within the transactional tree. For that, we maintaint’s ancestor
set as a bit vector whose bitnums corresponding tot’s ancestors
(t included) are set to 1. Once again,t’s ancestor set is only valid
with respect to an epoch at whicht was active (thus, all its ancestors
too).

So far, we know that each block,b, has a base transaction.
The corresponding attribute,b.baseTx , has three fields:bitnum,
beginEp andanc, which respectively denote the transaction’s bit-
num, first active epoch and ancestor set.

Another transaction relevant to blockb is its current transac-
tion whenb is running at some thread,Ti. Ti maintains, atTi.tx,
the same fields as above,bitnum andanc, concerning its current
transaction. Upon stealingb, Ti.tx is b.baseTx . However, when ex-
ecution enters anatomic region, a new child of the base transaction
starts. Starting such a new transaction is a very lightweight opera-
tion, which essentially involves devising the bitnum,beginEp and
anc attributes for the new transaction, as ProcedurebeginTx in
Figure 3 shows. As we know, the bitnum of the new transaction
is the one that has been reserved a priori for the block. The initial
epoch is the current one ofTi. Finally, we easily updateanc by set-
ting the new transaction’s bitnum to 1, since all the other ancestors
were already present inanc.

Eventually, the child transaction will commit.
Committing the current transaction is, again, a very simple

operation, as ProcedurecommitTx in Figure 3 shows. We start
by updatinglastEpoch to the last epoch where the thread used its
reserved bitnum with some transaction (line 1). Although line 1
may seem intuitive we have not motivated the need for it; we return
to this line in next section.

Before returning to the base transaction, we advanceTi’s cur-
rent epoch (line 2). This ensures that, shouldTi initiate subsequent
transactions in the same block, they use the same bitnum (i.e. the
bitnum reserved for that block), it will be at a distinct epoch than
the epochs at which the committing transaction was active.

4.2 Basic Conflict Detection

We maintain a stack attached to each object, where we push the
ancestor set of each transaction that accesses the object; i.e. when
transactiont accesses an object, we pusht.anc and t.ep into the
object’s stack. As it will become evident next, the topmost entry
of each object’s stack will always denote a transaction thatis a
descendant of any other entry in the object’s stack.

During a transaction’s lifetime, a thread can perform read and
write accesses to objects. Of course, conflicts can occur with con-
current transactions, which must be avoided in order to ensure cor-
rectness [1]. Our approach to conflict detection is eager-validation.4

Hence, before accessing some object, a transaction must test for
conflicts. For space restrictions, in this paper we considerall ac-
cesses as writes. Prior to any access, we run Procedurewrite from
Figure 3.

Each time some thread,Ti, wishes to access a given object with
a non-empty stack, we simply peek the topmost ancestor vector in
the object’s stack and check whether a conflict exists.

Firstly, we look for the easy cases: where the stack is empty
(line 2) and where the transaction trying to access the object was the
latest one to do it (line 5). Otherwise, we need to answer the hard
question of whether the transaction,tx, on top of the object’s stack,
is an ancestor of the transaction requesting access to the object.
Another way of making the same question is whether the set of

4 Adapting a late-validation solution to the case of parallelnesting seems
straightforward. However, as discussed in [1], late-validation necessarily
implies doing work that is proportional to transaction depth at commit.

activeancestors oftx is asubsetof the ancestor set of transaction
the requesting access to the object. By taking advantage of our
representation of ancestor sets as bit vectors, we answer such a
query with the couple of bitwise operations in line 2 of Procedure
noConflict in Figure 3.

If the above answer is yes, then the transaction trying to access
the object is necessarily a descendant of the all the active trans-
actions that have accessed the object, and thus can access ittoo.
Otherwise, a conflict exists and at least one of the contending trans-
actions must abort.

The main challenge in the conflict test above is in determin-
ing which is the set of currently active ancestors oftx (function
activeAncestorsin ProcedurenoConflict in Figure 3). One naive
solution is to, when some transaction,t, is about to commit, go
through the stack of every object in thatt’s write-set (i.e. the objects
accessed byt and by everyt’s descendant), and cleart’s bitnum in
the corresponding stack entries (hence, automatically propagating
the object to the write-set oft’s parent).5 Let us call such a step
bitnum reclaiming.

Obviously, on-commit bitnum reclaiming would incur a consid-
erable overhead. Namely, it requires extensive locking, the work
performed during bitnum reclaiming of some transaction is re-
peated at each of its ancestors (i.e. it is multiplied by the nesting
depth of the transaction), and it implies maintaining explicit write-
sets along with each transaction. In the next section we describe
our alternative, which eliminates all the above shortcomings, keep-
ing commitTx as simple as defined in Section 4.

5. Lazy Bitnum Reclaiming
Our algorithm employs lazy bitnum reclaiming, instead of on-
commit bitnum reclaiming. Intuitively, we accomplish thatby post-
poning bitnum reclaiming of committed transactions to a much
later period, where we reclaim the bitnums from transactions that
have committed recently all together. As we show next, the pe-
riod between batch bitnum reclaiming sessions is proportional to
the maximum number of epochs,E, and can be substantially long.
Thus, the set of transactions whose bitnum reclaiming is batched
can be considerably large. Consequently, for such a large set of
transactions, we avoid repetitive (thus redundant) bitnumreclaim-
ing of common stack entries (the pathological effect discussed in
the previous section).

The key challenge is, thus, to ensure that accesses to objects
that have been accessed by already committed, but not yet bitnum-
reclaimed transactions are correctly handled.Committed masks(as
well as the notion of epoch) help us solve such a problem, as we
explain next. We maintain a global array of bit vectors, eachcalled a
committed mask, one per epoch (0..E). Intuitively, each committed
mask centralizes information about which transactions that were
active at the corresponding epoch have already committed.

We denote the committed mask of epoche ascomMask[e]. Nat-
urally, each committed mask starts with all bits set to 0. Eventu-
ally, as each transactiont commits, the corresponding bitnum in
the committed mask of every epoch during which the transaction
was active will be set to 1. By then, we say thatt is published.

We address the publication process shortly. For now, let us
simply assume that a transaction is instantaneously published once
it commits.

activeAncestors(stackEntrye, thread Ti)
1: return e.anc − comMask[e.epoch]

Above, we show how we resort to the information centralized
in committed masks to implement theactiveAncestors function
of our conflict test algorithm (recallnoConflict from Figure 3).

5 In this case, functionactiveAncestorswould do nothing.

1: loop
2: for each worker threadTi do
3: for each bitnum0 ≤ bn ≤ N − 1 do
4: if Ti.lastComEp[bn] > lastEpochInMask [bn] then
5: for e = lastEpochInMask [bn] + 1 to Ti.lastComEp[bn]

do
6: comMask[e]+ = bn;
7: lastEpochInMask [bn] + +;
8: if Ti.discardBitnum[bn] = TRUE then
9: discarding [bn] = TRUE ;

10: maxCurEp = max0≤k<P (Tk.ep);
11: for e = lastEpochInMask [bn] + 1 to maxCurEp do
12: comMask[e]+ = bn;
13: lastEpochInMask [bn] = maxCurEp;
14: discarding [bn] = FALSE ;
15: Ti.discardBitnum[bn] = FALSE ;
16: enterMonitor(queue);
17: freeBitnumQueue.addFreeBit(b, maxCurEp + 1);
18: leaveMonitor(queue);

Figure 4. Publisher thread.

Essentially, we filter out the bitnums of the transactions that, being
active at the epoch at which the access took place, have committed
in the meantime. Those are the ones published in that epoch’s
committed mask (line 3).

activeAncestors works correctly no matter the nesting depth
of the transaction,t, that originally accessed the object. Whent
commits and is published, the ancestor set stored at the object’s
stack entry, when consulted byactiveAncestors , will retain every
bitnum exceptt’s; thus, it will becomet’s parent’s ancestor set.
Implicitly, this is equivalent to mergingt’s write-set witht’s parent
write-set at the moment when we publishedt. The same thing
happens whent’s parent commits, and so forth.

5.1 Publishing Committed Transactions

The assumption, made in the previous section, of instantaneous
publication is not a realistic one. Publishing a transaction entails
updatingO(e) committed masks, wheree is the number of epochs
of the transaction’s lifetime. Pushing that task into thecommitTx
function would increase its time complexity toO(e) (rather than
O(1)) and would require expensive locking in order to synchronize
access to the shared committed masks.

We eliminate both shortcomings by delegating such a task to
a single specialized thread, called thepublisher . The publisher
is the only thread that writes to the committed masks, therefore
avoiding the need for any locking. When a worker threads runs
the simple, constant-time commit procedure described in Procedure
commitTx in Figure 3, it can immediately continue its execution,
without having to wait until the committed transaction is finally
published.

The publisher works in background, guided by the information
it collects from theTi.lastComEpvectors that each worker thread
maintains. Recall, fromcommitTx , that each time a thread,Ti,
commits some transaction,t, it sets the corresponding entry in
Ti.lastComEpto its current epoch (before advancing to the next
epoch). Moreover, when threadTi completes executing a block,
it discards its reserved bitnum by setting the bitnum’s entry in
Ti.discardBitnumto true.

The publisher thread continuously loops in the algorithm in
Figure 4. The algorithm periodically reads theTi.lastComEpand
Ti.discard vectors of each threadTi, checking for modifications in
either one.

On the one hand, each time the publisher finds a thread whose
Ti.lastComEp[b], for some bitnumbn , is greater than the epoch at
which the publisher last setbn as committed (line 4), it means that,
in the meantime, one or more transactions have committed using

that bitnum. Hence, the publisher setsbn in the committed masks
of every epoche ≤ Ti.lastComEp[b].

While this necessarily implies that masks of the epochs at which
the committed transaction was active will show that transaction as
committed, it can also set the transaction as committed in epochs
during which the transaction did not exist. However, this does not
affect the safety of our conflict detection algorithm, as it is easy to
show that, in the latter epochs, no other (non-aborted) transaction
was or will be active. Hence, no object stack may have an ancestor
set timestamped with one of those epochs and having bitnumbn
set.

On the other hand, the above algorithm is also responsible for
freeing bitnums that have been discarded because the block that
held them finished. In such a case, the publisher adds such a bit-
num to the free bitnum queue (lines 15 to 18). The minimum epoch
attribute of such a new free bitnum will be greater than the epoch
after the last epoch at which a transaction with such a bitnum
committed (line 17). Before actually freeing a bitnum, the publisher
may need to set some additional epochs as committed for the bit-
num being discarded (line 12); only after those epochs can the bit-
num be re-used again. In the next sections we turn our attention
to lines 9 to 14, explaining the need for such additional committed
epochs.

If enough cores are available, one can easily parallelize the
publisher into multiple parallel threads. We would simply need to
partition the bitnum space and have each thread responsiblefor
publishing the bitnums in one particular partition.

However, no matter how parallel the publisher is, having a back-
ground publisher has an important impact on our conflict detection
test, as we illustrate now. Consider some transaction,ta, that has
committed, and some active transaction,tb, which may wish to ac-
cess objects thatta previously accessed. We say thatta’s commit-
ment has propagated totb oncetb becomes aware of the fact that
ta has committed.

So far, we have seen that, afterta commits, the committed
masks of the epochs at whichta was active will be temporarily
stale, until ta is finally published in background. Consequently,
if tb calls activeAncestors (see previous section) during such
a period,tb may detect false conflicts with objects thatta has
accessed. False conflicts do not harm safety, as abortingtb (and
retrying some time after) is always safe. Nevertheless, unnecessary
aborts degrade performance. We address such a problem in the
next section, showing that, for the most relevant situations, we
can actually prevent false conflicts, regardless of how longthe
publication latency is.

5.2 Preventing Pathological False Conflicts

So far, we have seen how commitment of one transaction,ta,
propagates to the remaining active transactions by publishing ta.
Since publication may take a significant time, our algorithmmay
detect false conflicts if, in the meantime, any active transaction, tb,
requests access to any object that the committed transaction had
accessed.

However, the gravity of such false conflicts varies substantially,
depending on the relation betweenta and tb. More precisely, we
can distinguish the three following cases:

1. ta andtb have the same parent transaction, andtb runs sequen-
tially after tb (at the same block);

2. tb is ta’s parent, which blocked until the block runningta

completed, before resuming execution (in the same block ofta

or not);

3. tb andta are concurrent transactions;

Clearly, the programmer’s expectations concerning the possibility
of conflicts betweenta andtb in each case vary radically. Whereas,
in case 3, the programmer already expects conflicts to occur oc-

casionally (after all, the program has two concurrent transactions
accessing a common object), his expectation in cases 1 and 2 is
that conflicts betweenta andtb will never occur. Consequently, the
programmer will try to minimize accesses to objects that areshared
with concurrent transactions (case 3).

However, he will not be reluctant to (and will often) have pro-
grams such as the one in Figure 1 from Section 1. The program
illustrates a very common case of case 2 (one can easily thinkof
a similar program with case 1), whereta is t2 andtb is t0. Natu-
rally, the programmer expects that line 14, which accesses ashared
object (B) that, in turn, a previous transaction (ta, i.e., t2) has ac-
cessed, is conflict-free. In fact, the programmer knows that, at that
point, ta will necessarily have committed.

Therefore, false conflicts due to the non-immediate commit-
ment propagation fromta to tb are particularly problematic in cases
1 and 2, in contrast to case 3. Case 2 is especially delicate since a
false conflict whentb tries to access an object accessed by its com-
mitted descendant,ta, will imply abortingtb and, consequently,ta

and all other descendants. For these reasons, we call cases 1and 2
pathologicalfalse positives.

Fortunately, we can prevent pathological false positives with
no or few lightweight modifications to the algorithm described
so far. Most importantly, such modifications neither increase the
time complexity of our algorithm, nor require additional locking.
Intuitively, our approach is to find alternative means to propagate
ta’s commitment totb in cases 1 and 2, avoidingtb’s need to wait
for the general-case propagation through the publisher.

Perhaps surprisingly, the conflict detection test in Procedure
write in Figure 3 already prevents false conflicts in case 1. Recall-
ing the algorithm, one can see that, if the contending transactions
have the same ancestor set, the algorithm never yields a conflict
(independently of whetherta is already published or not). This is
clearly what happens in case 1, whereta andtb have the same an-
cestors, and have the same identifier bitnum (the one reserved for
the block containing both). In this case,write knows thatta (whose
ancestor set is in the object’s stack) has necessarily committed al-
ready. Otherwise, its bitnum could not have been subsequently re-
used bytb.

False conflicts are harder to prevent in case 2. The additional
difficulty results from the fact thatta’s bitnum now has already
been discarded (since the containing block has already completed,
in contrast to case 1) and, thus, can already be in use by some con-
current thread. Still, we are able to prevent false conflictsin case 2
with few lightweight modifications to the algorithm constructed so
far and, most importantly, with no need for additional locking. For
that purpose, we need maintaining one additional attribute, called
comDesc, along with each block. Intuitively,comDescincludes the
bitnums of transactions that the block knows to have committed,
but might not have been published yet. We start by tackling case 2
wheretb has only one descendant transaction,ta, before we pro-
ceed to the more generic case of multiple descendants with distinct
bitnums.

In the single-descendant case, whenta’s block finishes (calling
functionfinishBlock , defined in Section 3), we addta’s bitnum to
thecomDescattribute of its succeeding block (which will run in the
context oftb).

ThecomDescattribute can be seen as a note that the thread that
has completed the block containingta leaves to whichever thread
steals its succeeding block, which runs in the context oftb. Such a
note allows the latter thread to immediately learn about thefact that
ta has committed, probably beforeta is published. We ensure this
by adding two relatively lightweight andO(1)-time changes to the
activeAncestors function, as Figure 5 shows.

In line 3, tb’s thread takes advantage of the information in
comDescand ignoresta’s bitnum in any ancestor set of stack
entries of objectstb tries to access. Hence, no matter how long

activeAncestors(stackEntrye, thread Ti)
1: if Ti.comDesc6= 0 then
2: Ti.comDesc− = comMask[Ti.block.minEp];
3: return e.anc − comMask[e.epoch]− Ti.comDesc;

Figure 5. New version ofactiveAncestors.

ta’s publication takes,tb will never run into false conflicts when
accessing objects thatta had accessed.

Evidently,tb’s thread can only do that as long asta’s bitnum has
not yet been re-used for new transactions. Iftb kept ignoringta’s
bitnum in that situation, conflicting accesses (to objects accessed
by concurrent transactions that re-useta’s bitnum) could be incor-
rectly granted totb.

Fortunately,ta’s bitnum is only freed (i.e., new transactions can
re-use it) afterta has been published. Hence, we first check whether
ta has already been published (line 2). If so, we cease ignoringta’s
bitnum (by clearing it fromcomDesc), in line 2. We know whether
ta is already published by reading from the committed mask ofta’s
commit epoch (which, in the single-descendant case, is the epoch
set in theminEp attribute of the block runningtb).

6. Supporting Unbounded Transaction Trees
The algorithm described so far does not support more thanN
transactions to be simultaneously active (whereN is the bit vector
size). This is not a problem with parallel programs with no nesting,
as long asN ≥ P (the number of worker threads). In fact, a flat
program withm > N parallel (flat) transactions will attain as much
parallelism as it would if an unbounded number of transactions
was supported, since onlyP transactions can be running at a given
moment. Hence, onlyN = P simultaneously active transactions
need to be supported in this case: as soon as some thread commits
one transaction, the corresponding bitnum will be freed andthen
become available for that thread to start the next transaction.

6.1 Limiting Parent Transactions

A problem, however, arises when we consider nesting. A worst-
case program can have a transactional tree of depthP (with in-
termediate transactionst0, .., tP , whereti is ti+1’s parent), where
eachti decomposes into two blocks: one starting the next-level
transaction and anotherwork block, wi, with some flat program that
does some useful work. In this case, we haveP active transactions,
t0, .., tP , each consuming one bitnum.

If N = P , then no free bitnums would be available at this
point. This means that the worker blocks (wi) that, at each nesting
level, had been queued up for other threads to steal, would not be
stealable, as no bitnums would remain to run them. In contrast to
the flat program example, there are now some transactions that have
blocked (i.e., eachti, awaiting for their descendants to commit),
consuming bitnums that otherwise could allow parallel blocks to
run. Consequently,P − 1 threads are forced to remain idle, even
when there are enqueued parallel work blocks.

A solution to this situation is to impose a limit,L, on the number
of bitnums that can be used for parent transactions. This way, there
will always remain (at least)P bitnums left for leaf blocks (i.e.
blocks with no sub-blocks) to run by each thread.

We ensure the limitL by maintaining, along with the free bit-
num queue, a counter of how many bitnums have been reserved so
far for transactions that, subsequently have become parenttransac-
tions. When a block that has started an (initially childless) trans-
action reaches aparallel statement and is about to enqueue the
inner parallel blocks it has found, we conservatively increment such
a counter (as each such a block can potentially start child transac-
tions of the outer transaction). (If the limit is reached, anerror is
returned and queuing of the inner blocks is disallowed, a situation
to which we return shortly.)

A good choice forL is L = P − 1, thus we setN to 2P − 1.
Such a value ofL is sufficient if each parent transaction has at least
two parallel child blocks (as in the example above): it meansthat
P − 1 parent transactions will queue enough leaf blocks (at least
P), which theP threads can steal and run. A lower value ofL could
restrict the number of blocks that would be made available for other
thread to run; and, as we show next, a higher value is not necessary.

6.2 Single-Child Transactions

Limiting the number of bitnum reservations for parent transactions
is sufficient to attain maximum parallelism in the particular exam-
ple above. Still, it is not generic enough for arbitrary transaction
trees, namely: (case (i)) when some parent transactions have only
one child block; and/or (case (ii)) when nesting depth is higher than
P .

The key insight to solving both cases is that single-child trans-
actions do not need a distinguishing bitnum, and can simply borrow
their parent’s bitnum. Consider some transaction,tp, that has a sin-
gle child transaction,tc. Clearly, every ancestor oftp is also an an-
cestor oftc, and every concurrent transaction (i.e. neither ancestor
nor descendant) oftp is also concurrent withtc. This means that,
being a single child,tc can borrow its parent identifiers without
affecting the safety of our conflict tests.

This observation directly solves case (i). In the case of a
parallel statement with a single inner block, any transaction in
that block will not consume a free bitnum, as it inherits its parent’s
bitnum.

Case (ii) is more intricate but we can solve it with few simple
modifications to our algorithm. Let us recall transactionTP at depth
P from the example in Section 6.1. Assume that the block in which
TP runs has aparallel{b1,b2,..,bn} statement. Assume that
threadTi runs such a block. Being at depthP , we know that we
have reached limitL, and thusTi will not be allowed to enqueue
the new parallel inner blocks.

Instead of haltingTi, we resort to a better alternative:Ti can
simply treatparallel{b1,b2,..,bn} as blockb1 (sequentially)
followed by parallel{b2,..,bn}. This alternative means that
any transaction starting atb0 will now be a single child transaction,
and hence it can borrow its base transaction’s bitnum as its own.
As b1 completes, the same process is repeated: the free bitnum
queue is checked for an available bitnum; if such a bitnum exists
(we explain next how), the remaining blocks are enqueued andcan
finally run in parallel while, if not, the serial execution ofthe next
block (b2, b3, ...) proceeds until the next iteration.

Of course, this option discards the parallelism among the paral-
lel blocks in theparallel statement, which may seem to contra-
dict our main goal. However, it is fundamental to observe that the
reason why the system reached theL limit is that, for each non-
single-child parent transaction started, there exist sufficient queued
parallel blocks to allow all the remainingP −1 threads to steal and
run in parallel.

However, some time after such an initial moment, the remaining
threads will inevitably complete the enqueued parallel blocks (and
any parallel blocks arising from them). In a worst case scenario, Ti

can eventually become the only thread running. Unfortunately, in
such a situation,Ti will be running a set of parallel blocks (and any
sub-blocks) serially while, paradoxically, the remainingthreads are
idle because no more blocks are enqueued.

Recall that such a pathological situation arises from the fact that
all L bitnums for parent transactions have been consumed. To solve
such a situation, it is crucial to observe that, once other threads
complete the available parallel leaf blocks that had been queued in
the context of a given parent transaction,t, only one sub-block will
remain: the one containing the next parent transaction,ti+1.

Therefore, whereas, originally,ti+1 was not guaranteed to be
a single child (as there existed parallel blocks which could, in
turn, initiate siblings ofti+1), now ti+1 has become a single child.

Hence, from that point on, we can maketi+1 discard its own bit-
num and useti’s bitnum, thus making one bitnum available for new
parent transactions. Upon regaining such a bitnum,Ti will finally
be able to queue the parallel blocks it currently runs in a serial
manner, therefore delivering parallel work to the remaining threads.

The challenge is that, in the moment thatti+1’s last sibling
completes andt becomes a single child, different threads may be
running in the context ofti+1 or any of its descendants. Therefore,
such threads, each running at possibly distinct epochs, maybe
accessing objects and leaving at each object’s stack an ancestor set
containingti+1’s original bitnum. Therefore, discardingt’s bitnum
implies: (i) reclaimingti+1’s bitnum from all such ancestor sets,
and (ii) forcing all the threads running in the context ofti+1 or any
descendant ofti+1 to removeti+1’s bitnum from their ancestor
sets.

Perhaps surprisingly, we achieve step (i) very easily: whenthe
thread,Tk, of ti+1’s last sibling block completes, it unilaterally
discardsti+1’s bitnum, as ifTk was the thread runningti+1. Inde-
pendently ofTk ’s current epoch, we know (by Algorithm 4) that,
eventually,ti+1’s bitnum will be set in all committed masks up to
an epoch,m, that is greater or equal than the current epoch of any
thread running in the context ofti+1 or any descendant ofti+1. In
other words, we achieve goal (i), as all accesses such threads made
up to epochm will haveti+1’s bitnum automatically filtered out by
the committed masks.

More precisely, this implies lines 9 and 10 of Procedure
finishBlock from Figure 2. This is, however, insufficient since the
threads running in the context ofti+1 or any descendant ofti+1

can evolve to later epochs thanm and continue accessing objects
usingti+1’s bitnum in their ancestor sets. Hence, we need to force
each such thread to eraseti+1’s bitnum before advancing to such
epochs. We ensure that by having each thread, before advancing
its current epoch while executing some block, verify whether any
bitnum of its current transaction’s ancestor set has been published
as committed in the meantime. Hence, we must add the following
line before every time we change a thread’s current epoch:

Ti.tx .anc− = (discarding + comMask[Ti.ep]);

This happens in ProceduresstealBlock andcommitTx (Fig-
ures 2 and 3, respectively).

It is easy to show that, if the nextTi.ep is greater thanm, then
ti+1’s bitnum is necessarily set in thediscarding vector or the
committed mask of the epoch at whichcommitTx is being called.
Therefore, we ensure that any thread running in the context of ti+1

or any descendant ofti+1 will eraseti+1’s bitnum from the thread’s
current ancestor sets before the thread reaches epochm + 1.

To sum up, with a few lock-free modifications to the algorithm,
we ensure that, as theL limit is reached and, subsequently, the
parallel blocks that have been queued for other threads complete,
the system regains the ability to make more parallel blocks avail-
able. This cycle shows that supporting a fixed number of transaction
identifiers can actually be sufficient to handle unbounded trees of
parallel nested transactions.

7. Evaluation
In our evaluation we try to answer two simple questions:What is the
benefit of parallel over serial nesting?, andIs transaction handling
(begin, commit and conflict detection) performance independent of
nesting depth?

To this end we devise a simple benchmark in which a single
transactionT is executed.T consists of leaf transactionsTli . Ev-
eryTli first sleeps for a random period of time (up to 2s) and then
writes to 2000 shared objects. The first half of objects accessed by
Tli is also accessed byTli−1

and the second half is accessed by
Tli+1

. In order to executeT atomically, an STM that only sup-
ports serial nesting has to execute allTli in a single thread, one

 0

 5

 10

 15

 20

 25

1 2 4 8 16 32 64

S
pe

ed
up

Total transactions (N)

Depth (D)
0
1
2
3
4
5
6

Figure 6. Speedup of our parallel nesting vs. serial nesting using
our algorithm.

by one. On the other hand, an STM that supports parallel nesting
can execute differentTli concurrently in different threads and thus
speed upT , while still executing it atomically. Our experimental
setup ensures: (1) transactions that are sufficiently long to measure
their duration with enough precision (2000 objects), (2) overlap-
ping write sets to avoid trivial conflict detection (where the object
stack is empty and the ancestor query is skipped) and (3) not too
many conflicts (randomized wait of 1s on average).

We use different numbers of leaf transactionsN and organize
them in trees of parallel transactions of different depths in our ex-
periments. With serial nesting all leaf transactions are executed se-
rially inside a single transaction (this means there is no parallelism).
In this case work stealing is disabled (one thread runs all transac-
tions serially without any dequeuing or locking after each transac-
tion completes) and conflict detection always implies reading the
top object stack and verifying that it is empty (which is always the
case in the benchmark).

With nesting depth ofD, transactions are organized in a binary
tree that isD levels deep. Each leaf of this binary tree executes
N/2D transactions in parallel. This means that whenD is 0, all Tli

are children of the root transaction and they are executed inparallel,
when it is1 there are two transactions that are children of the root
transaction, each of which executesN/2 leafTli transactions as its
children in parallel, etc.

We ran our experiments on a SPARC Niagara 2 machine that
supports 64 hardware threads. We use at most 32 worker threads
and bit vector size of 64 bits because our prototype implementation
does not support more than that.6 We repeat each experiment 10
times.

Figure 6 shows the speedup of our algorithm with parallel over
serial nesting for different values ofD. The x-axis shows the
total number of transactions executed and the y-axis shows the
speedup over serial nesting. Each data point in the graph depicts
the speedup with differentD (it does not make sense to have2D >
N and this is why not all data points appear for all transaction
counts). The figure depicts that parallel nesting yields performance
improvements already with two total transactions andD = 0. As
the number of total transactions increases, the performance benefits
are higher. On the other hand, a single level of nesting (D = 0)
performs better than higher levels of nesting for all transaction
counts. This is a consequence of two factors that are out of the
scope of our contribution.

6 An extension to this is straightforward.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2 4 8 16 32 64

In
di

vi
du

al
 tr

an
sa

ct
io

n
tim

e

Total transactions (N)

Depth (D)
0
1
2
3
4
5
6

Figure 7. Time to begin/access objects/commit on average over
all transactions, considering different levels of nesting(normalized
relatively to depth 0).

First, additional depth implies more blocks and inter-block de-
pendency, thus more work stealing synchronization overhead. In
other words, the critical path (T∞) is larger, hence theO(PT∞)
term from the upper bound mentioned in Section 1 inevitably be-
comes visible. This is a consequence of Agrawal et al.’s upper
bound [1], and we do not avoid it.

A less evident secondary effect of depth is the increase in con-
flict ratio. In fact the experiments show that, for the same set of leaf
transactions (accessing some fixed write-set), conflicts are more
frequent if such transactions are distributed on a deeper tree. In-
tuitively, this is explained by the fact that, in shallower trees the
deepest common ancestor of any pair of transactions will, onaver-
age, be at a smaller distance from both transactions than in adeeper
tree. Hence, if both transactions share an object in their write-sets
and one accesses it and commits, the object will propagate faster
to the write-set of the ancestor of the second transaction; thus, the
period before the second transaction can safely access the shared
object is shorter in shallower trees, on average, which implies less
conflicts, hence less aborts.

The main contribution of our paper, however, related to the sec-
ond term of the asymptotical upper bound in Section 1, concerning
the work,T1, performed by a program (outside its critical path).
In order to ensure thatT1 completes inO(T1/P), any transactions
thatT1 may run may take the same time, no matter at which depth
they run. Our results confirm the analysis of the algorithm inthe
previous sections. They show that the average times to begin, run
and commit a successful transaction (i.e. one that does not abort)
do not grow with nesting depth at which the leaf transactionsrun.
Figure 7 shows such results for different amounts ofT1 (2, .., 64
leaf transactions) and for different depths. For the same amount of
work, clearlyT1 is relatively stable and, most importantly, does not
exhibit a tendency to grow with depth, thus confirming our claims.

8. Related Work
The closest algorithm to ours was proposed by Agrawal et al.
for the CWSTM STM [1]. Their algorithm has shown that depth-
independent conflict queries are possible but, to the best ofour
knowledge, has never been implemented nor evaluated in practice.
CWSTM shares some general design principles with our solution,
namely they employ eager validation and updates, lazy update of
object stacks and the absence of explicit read/write-sets.

While following the above principles, our solution is crucially
different than CWSTM. We employ a different algorithm for an-
cestor queries, based on bit-wise logic. Our algorithm supports a

bounded number of active transactional identifiers, whereas their
conflict detection model relies on a practically unbounded transac-
tion identifier space. Hence, most of our contribution is related to
re-using transactional identifiers, which is not an issue intheir al-
gorithm. Most importantly, while asymptotically equivalent to our
solution, each memory access CWSTM potentially queries a large
number of data structures, expectedly yields unacceptableperfor-
mance penalties [1].

More recently, new proposed solutions have moved closer to-
wards the goal of practical parallel nesting, namely NePaLTM [16],
NesTM [2] and SSTM [14]. NePalTM supports parallel threads
to be forked inside a transaction. As long as the sub-transactional
threads create no sub-transactions, they run in parallel, thus un-
veiling parallelism that serial nesting TMs prohibit. Nevertheless,
should such thread create sub-transactions, NePalTM has the severe
limitation of requiring such sibling transactions to run inmutual
exclusion. In other words, NePalTM does not support fully-parallel
nesting.

NesTM does support parallel nesting and has been implemented
and evaluated. However, its transaction handling overheads (begin-
ning, committing and detecting conflicts) grow linearly with nest-
ing depth [2], which makes it an adequate solution for low nesting
depths only.

SSTM [14] follows an alternative model of parallel nested trans-
actions, called Xfork. Supporting the Xfork model with our al-
gorithm is straightforward. Although fully supporting theXfork
model requires solving the same ancestor query test we address,
the authors do not describe how nor whether SSTM solves it effi-
ciently.

9. Conclusions
Support for parallel nesting is intrinsically difficult because un-
bounded depth is a crucial requirement for the novel and ambitious
paradigms that parallel nesting promises to enable. Although recent
solutions try to reach closer to the goal of parallel nesting, they fail
to achieve the lowest theoretical upper bound known for the prob-
lem [1].

In this paper we propose a novel solution that, to the best of our
knowledge, is the first solution that meets the upper bound while, in
practice, imposing reasonably low overheads. Experimental results,
obtained by running a complete implementation of our algorithm
on a multi-core machine, show substantial speed-ups (up to 22x
with 33 threads) relatively to serial nesting, and support the hardest
requirement to meet the upper bound: that the time to start and
commit transactions, as well as to detect conflicts, is independent
of nesting depth.

While this paper focuses on the central problem of efficient
conflict detection and handling of write-only transactions, lever-
aging parallel nesting in transactional memory exposes other new
research directions that, to the best of our knowledge, remain un-
solved. Firstly, efficient support for parallel nesting when read ac-
cesses can occur is a harder problem, since one wants to optimize
such accesses by allowing multiple (possibly conflicting) transac-
tions to simultaneously read from a common object. The main con-
sequence is that the conflict detection test must be extendedto an-
swer ancestor queries between one transaction anda set of multiple
transactions. Ensuring this efficiently is not trivial.

Secondly, as some authors already claim, the semantics of fork-
join parallel nested programs are not always intuitive to the general
programmer, thus simpler language constructs such as Free Objects
[7] or Xfork primitives [14] are highly desirable.

Finally, traditional contention managers [15], obliviousof par-
allel nesting, are not adequate when one considers parallelnested
programs. For instance, assume that some transaction,Ti, is run-
ning in parallel with one of its children transactions,Tk, and both
wish to write to the same object. Contention managers that are

oblivious of parallel nesting could decide to abortTi. However,
clearly such an option is not adequate, since abortingTi would im-
plicitly abort every children ofTi, includingTk. Novel contention
managers that are aware of the ancestor-descendant relationships
would avoid such a pathological decision.

References
[1] K. Agrawal, J. T. Fineman, and J. Sukha. Nested parallelism in trans-

actional memory. InPPoPP ’08: Proceedings of the 13th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Program-
ming, pages 163–174, 2008.

[2] W. Baek and C. Kozyrakis. NesTM: Implementing and Evaluating
Nested Parallelism in Software Transactional Memory. InProceed-
ings of the 9th International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2009.

[3] R. Blumofe, C. Joerg, B. C. Kuszmaul, C. Leiserson, K. Randall, and
Y. Zhou. Cilk: An efficient multithreaded runtime system. InJournal
of Parallel and Distributed Computing, pages 207–216, 1995.

[4] B. D. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. C. Minh,
C. Kozyrakis, and K. Olukotun. The Atomos transactional program-
ming language. SIGPLAN Notices (Proceedings of the 2006 PLDI
Conference), 41(6):1–13, 2006.

[5] J. Chung, C. Cao Minh, B. Carlstrom, and C. Kozyrakis. Parallelizing
specjbb2000 with transactional memory. InWorkshop on Transac-
tional Memory Workloads. 2006.

[6] B. Goetz. Java theory and practice: Managing volatility. IBM devel-
operWorks, 2007.

[7] R. Guerraoui. A Smooth Concurrency Revolution with FreeObjects.
Internet Computing, 11(4):84.87, 2007.

[8] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Composable
memory transactions. InPPoPP ’05: Proceedings of the 10th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, pages 48–60, 2005.

[9] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. InProceedings of the 20th
Annual International Symposium on Computer Architecture, pages
289–300, 1993.

[10] M. Isard and A. Birrell. Automatic mutual exclusion. InHOTOS’07:
Proceedings of the 11th USENIX Workshop on Hot Topics in Operat-
ing Systems, pages 1–6, 2007.

[11] L. Lamport. Time, clocks, and the ordering of events in adistributed
system.Communications of the ACM, 21(7):558–565, 1978.

[12] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill, B.Liblit,
M. M. Swift, and D. A. Wood. Supporting Nested Transactional
Memory in LogTM. SIGPLAN Notices (Proceedings of the 2006
ASPLOS Conference), 41(11):359–370, 2006.

[13] Y. Ni, V. S. Menon, A.-R. Adl-Tabatabai, A. L. Hosking, R. L. Hudson,
J. E. B. Moss, B. Saha, and T. Shpeisman. Open nesting in software
transactional memory. InPPoPP ’07: Proceedings of the 12th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, pages 68–78, 2007.

[14] H. Ramadan and E. Witchel. The xfork in the road to coordinated sib-
ling transactions. In4th ACM SIGPLAN Workshop on Transactional
Computing (TRANSACT 2009), 2009.

[15] W. N. Scherer, III and M. L. Scott. Advanced contention management
for dynamic software transactional memory. InPODC ’05: Proceed-
ings of the 24th annual ACM Symposium on Principles of Distributed
Computing, pages 240–248, 2005.

[16] H. Volos, A. Welc, A.-R. Adl-Tabatabai, T. Shpeisman, X. Tian,
and R. Narayanaswamy. NePaLTM: Design and Implementation of
Nested Parallelism for Transactional Memory Systems. InProceed-
ings of the 23rd European Conference on Object-Oriented Program-
ming (ECOOP), pages 123–147, 2009.

[17] F. Zyulkyarov, V. Gajinov, O. S. Unsal, A. Cristal, E. Ayguadé, T. Har-
ris, and M. Valero. Atomic quake: using transactional memory in an
interactive multiplayer game server. InPPoPP ’09: Proceedings of the
14th ACM SIGPLAN Symposium on Principles and Practice of Paral-
lel Programming, pages 25–34, 2009.

