Leveraging Parallel Nesting in Transactional Memory*

Joao Barreto

INESC-ID/Technical University Lisbon,
Portugal

joao.barreto@inesc-id.pt

Rachid Guerraoui

Swiss Federal Institute of Technology, Lausanne,
Switzerland

rachid.guerraoui@epfl.ch

Abstract

Exploiting the emerging reality of affordable multi-corechitec-
tures goes through providing programmers with simple abstns
that would enable them to easily turn their sequential ogrinto
concurrent ones that expose as much parallelism as pasaihle
transactional memory promises to make concurrent progiagim
easy to a wide programmer community, current implementiatio
either disallow nested transactions to run in parallel onooscale
to arbitrary parallel nesting depths. This is an importd#tacle to
the central goal of transactional memory, as programmersohy
start parallel threads in restricted parts of their code.

This paper addresses the intrinsic difficulty behind theosup
for parallel nesting in transactional memory, and prop@sesvel
solution that, to the best of our knowledge, is the first pecatt
solution to meet the lowest theoretical upper bound knowritfe
problem.

Using a synthetic workload configured to test parallel taans
tions on a multi-core machine, a practical implementatibow
algorithm yields substantial speed-ups (up to 22x with 38ats)
relatively to serial nesting, and shows that the time td stadl com-
mit transactions, as well as to detect conflicts, is independf
nesting depth.

Categories and Subject Descriptors D.1.3 [Programming Tech-
nique$: Concurrent Programming - Parallel programming

General Terms Algorithms.

Keywords Nested parallel programs, fork-join, work-stealing,
transactional memory.

*This work is funded by the Velox FP7 European project, by the
Swiss National Science Foundation grant 200021-116745%/d by
the Portuguese National Science Fundation (FCT) Mercurgjepr
(PTDCI/EIA/66589/2006).

Permission to make digital or hard copies of all or part o thork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’10, January 9-14, 2010, Bangalore, India.
Copyright© 2010 ACM 978-1-60558-708-0/10/01. . . $10.00

Aleksandar Dragojevit

Swiss Federal Institute of Technology,
Lausanne, Switzerland

aleksandar.dragojevic@epfl.ch

Paulo Ferreira

INESC-ID/Technical University Lisbon,
Portugal

paulo.ferreira@inesc-id.pt

Michat Kapatka
Swiss Federal Institute of Technology, Lausanne,
Switzerland

michal.kapalka®epfl.ch

1 atomic { /* transaction tO */

2 /* transfers a given amount from account A to B x/
3 parallel {

4 atomic { /* transaction t1, child of t0O */
5 n = read(A.balance);

6 write(A.balance, n-amount);

7 ¥

8 I

9 atomic { /* transaction t2, child of t0O */
10 n = read(B.balance);

11 write(B.balance, n+amount);

12 T

13 }

14 print("New balance of B is " + read(B.balance));
15 }

Figure 1. Example of parallel nested transactional program.

1. Introduction

Multicore architectures are on their way to becoming themtor
computing devices in a near future. Yet, the power of mutéco
requires concurrent programs. However, such programsgmi-s
icantly more difficult to code than sequential ones. By esoégi-
ing the difficult issue of concurrency control, transacéibmemory
(TM) [9] is a prominent abstraction for simplifying this tas

Using TM, a programmer just needs to (i) create threads, and
(i) delimit which regions of her program must run atomigai\
concurrent program is then as simple as depicted in Figufes 1.
program execution enters each atomic region, a new traosact
begins; nested transactions are created when an atomanregi
entered inside an outer atomic region.

Conceptually, the execution of a concurrent program yields
dynamic tree of active transactions, inter-connected by-garent
relations, as Figure 1 illustrates. At any moment, some ef th
transactions will be running in some processors, whilerstiagl|
be waiting (for instance, for some processor to becomeahlail or
waiting for their children to commit). The TM runtime mustseme
that, whenever a given transaction wishes to read or wrigetoe
shared memory location, it does not violate correctness.

Given two distinct active transactions, when both access th
same object, if at least one transaction tries to write theabband
neither one is an ancestor of the other [1], TM detects a @bnfls
an example, consider an execution of the previous exampézevh
both accounts happen to be the samie£ B). Assume that,
accessesd.balance (line 5) and, before; commits, ¢ tries to
read/write to the same object (lines 10,11). The TM will feri
thatt;, which is still active, has already accessed the objectsand i

not an ancestor ak; hence, conflict exists and eitharor ¢z will
rollback and abort. If otherwise; had already committed, then the
object would have been inherited hys write-set. In this case, the
TM will conclude that, although a currently active trangact(zo)
holds the objectt is an ancestor af;, thus no conflict exists.

Answering the above ancestor query in an efficient manner is
crucial for the TM’s overall performance [1]. Most TM system
that support nesting simplify this ancestor test by diséilg child
transactions to execute in parallel [4, 8, 12]; i.e. theyl@sigely
support serial nesting In this case, if some parent transaction
creates child transactions, then the children will run ie fame
thread that runs the parent transaction, one after an@héorcing
serial nesting means that the ancestor test is reduced tpacog
thread identifiers: only if the thread identifier of the tracison
requesting access is the same as the thread identifier ofactive
transaction that has accessed the desired object, theasasite
the latter is an ancestor of the former.

While serial nesting achieves acceptable performancesleve
[5, 13], itimposes a decisive limitation on the potentialgielism
that is made available to programmers, who can only creetads
in code locations that lie outsideomic blocks. Hence, it severely
restricts composability of parallel programs [16], as agpaon can-
not call a parallel library function from inside a transaatiwith-
out serializing the function [1]. Or, alternatively, theogrammer
cannot decompose long transactions into parts that do mélicto
among each other (at least not too much). Recalling the anogn
Figure 1, the debit and credit transactionsgndt., respectively)
would have to run sequentially, as they run inside transact.
More generally, any finer grained parallelism that may exiside
the transaction tree is simply neglected. The full power @fah
and ambitious paradigms that exploit fine-grained intaasaction
parallelism, such as Free Objects [7], Automatic Mutuall&sion
[10] and dynamic languages as XCilk [1], is greatly hindebyd
the current TM state-of-the-art.

The main technical challenge of supporting nested paisttel
in TM is the intrinsic difficulty of efficiently answering thencestor
test in such a context. This is especially important for cosail-
ity: deep nesting can create long chains of ancestors.

As some authors emphasize [1, 16], effective support for par
allel nesting must gracefully scale to such arbitrary dep®th-
erwise, the programmer will be discouraged to expose padisati
that may existin parts of her programs at reasonable ned¢ipins.
Experience with real transactional programs suggestsnésting
is frequent and, often, relatively deep (e.g. [17]). Funtiare, even
programs with relatively shallow transactional trees carcalled
from inside other programs, and hence run at deeper nestiets!

Agrawal et al. have proposed an algorithm that supportdipbra
nested transactions such that no-conflict executions obgrant
with work 77 and a critical-path lengthi, (which clearly grows as
nesting depth grows) complete@(7: /P + PT.) time, whereP
is the number of threads available [1]. Despite being thekresvn
upper bound up to date, it does not lead directly to a prdctica
implementation. Agrawal et al’s complex algorithm potalhy
queries a large number of data structures on each objecssacce
expectedly yielding unacceptable performance penaltiesafd so
has not been implemented in practice. More recently, neygaed
solutions have moved closer towards the goal of practicadlieh
nesting. However, they either support significantly lidiferms of
parallel nesting [14, 16]; or fail to achieve the above upgpeund
because per-transaction and per-access overhead granyingth
depth [2].

In this paper we propose the first practical solution for para
lel nested TM to achieve depth-independent times to creade a
commit transactions, as well as to detect conflicts, as oitph
Agrawal et al’s theoretical upper bound. In our solutioepith-

1 Assuming all accesses are writes.

parallel(thread T3, block par Blocks|])
1: contBlock = copy ofT;.block:
: contBlock.program = the remainder of’;.block program
: for each bloclkb in parBlocks do
b.baseTr = T;.tx;
b.minEp =T;.ep
b.succBlock = contBlock;
contBlock.precBlocks + +;
. enterMonitor(queue);
9: for each blockb in parBlocks do
10: queue.engueue(b);
11: leaveMonitor(queue);

stealBlock(thread T7;)

: enterMonitor(queue);

1 b = freeBitnumQueue.reserveFreeBit();

: while isEmpty(queue) do

wait(queue)

. T;.block= queuedequeue();

. if T;.block succBlock is not nullthen

lock(T;.block suceBlock);

T; .block succBlock.precBitnums+ = b;

if T;.block succBlock.precBlocks == 1 then
discardBitnum (T;.block T; .block T;.ep);

unlock (T; .block succBlock);

. leaveMonitor(queue);

. T;.ep= mazx{T;.block min Ep; T;.block bn.min Ep};

: T;.tx = T;.block base T'x;

. T;.block bn = b;

finishBlock(thread T;)

1: discardBitnum (T;.block bn, T;.ep);
2: if b = T;.block succBlock is not nullthen

2
3
4
5:
6
7
8

=

3: lock(b);

4: comDese- = (discarding + comMaskb.min Ep]);

5: comDeseg- = T;.block bn;

6: b.precBlocks — —;

7: b.precBitnums— = Tj.block bn;

8: b.minEp = max{T;.epb.minEp};

9: if b.precBlocks == 1 andb.precBitnums # 0 then
10: discardBitnum (b.precBitnums, T;.curEp);
11: if b.precBlocks == 0; then
12: T;.block= b; T;.ep= b.min Ep; T; .tX = b.baseTz;
13: runb;

14: unlock(b);

discardBitnum(bitnum, lastEpoch)

1: T;.lastComEpbitnum] = lastEpoch;
2: T;.discardBitnunibitnum| = TRUE;

Figure 2. Work-stealing.

independence is verified as long as the number of threads is
bounded by CPU word size (e.g. up to 64 threads in 64-bit compu
ers), in contrast to Agrawal et al.'s unbounded result.

As proof of concept, we have completely implemented and
evaluated our algorithm as a Java library. The experimeetaillts
confirm competitive speed-ups relatively to serial nesfiag to
22x with 33 threads). Furthermore, results support ourrttel
claim that the time taken by our algorithm to start and commit
transactions, as well as detecting conflicts on each objeetss is
independent of nesting depth, for the evaluated numbereats.

Overview

At the heart of our algorithm, we rely on a very lightweight,

constant-time ancestor query algorithm that only supootsunded

number of transactions. However, as we show later in therpape

such a bounded query is sufficient to support any executitmam

unbounded number of transactions, at an unbounded nestpil.d
The key data structures abé vectorsof fixed size,IN, which

we use in diverse parts of our algorithm to identify the ataresets

of our transactions. The fixed dimensidW, is given by2 P, where

beginTx(thread T3)

1: T;.tX.bitnum = T;.block bn;
2: T; tX.beginEp = T;.ep,

3. T; . tX.anc+ = T; .tX.bitnum

commitTx(thread T;)

1: T;.lastComERT; .tx.bitnum] = T;.ep,
2: Ti.ep+ +;

3: T;.tx = T;.block base Tx;

write(object x, value v, thread T7;)
1: lock(z);
2: if z.stack.isEmpty() then
3: x.stack.push(T;.tx.anc, z.value);
4: z.value = v;
5: else ifz.stack.top().anc == T;.tx.anc and
T; .tX.beginEp < x.stack.top().ep < T;.epthen
6: z.value = v;
7: else ifnoConflict(x.stack.top(), T;) then
8: z.stack.push(T;.anc, z.value);
9: z.value = v;
10: else
11: Handle conflict.
12: unlock(z);

noConflict(stackEntry e, thread T;)

1: zanc = activeAncestors(e, T;);
2: return (zanc A ((zanc ® T;.anc)) == 0);

Figure 3. Basic transactional support.

P is the number of threads on which the underlying STM runs
a given program. We identify transactions byitnum, a unique
index (ranging fronD to N — 1) of all bit vectors that our system
maintains. Hence, given any bit vector, the set of trangastit
represents is given by the transactions whose bithum i det t

In order to check whether some transactipnvhose ancestor
set isanc;, is an ancestor of another transactiprwith ancestor
setanc;, it suffices to determine ifinc; is a subset ofinc;. With
our bit vector representation afic; andanc;, we can answer such
a query with a couple of bitwise operations, by checking Wwaet
(anc; A (anc; @ anc;)) == 0.

Our TM maintains ancestor bit vectors along each objectr-in o
der to denote the ancestors of the current active transactiat
have accessed that object. We further enrich our solutitmtech-
nigues such as bitnum re-use, lazy bit reclaim, immediatencit-
ment propagation and single-child transaction optimargtivhich
we describe next.

The core of our algorithm is presented in detail in Figurea@ a
3. In the remainder of the paper we revisit these figures ritesg
and discussing each line in detail.

The following sections are organized as follows. Sectiom&s
by introducing the notations and assumptions of the papetiGh
3 describes the work stealing system, the framework unicerbyur
TM. Section 4 then introduces the basic algorithms for éngand
committing transactions, and detecting conflicts. We thddress
advanced aspects of our algorithm: Section 5 describediemym
reclaiming, while Section 6 explains how our bounded bitteec
structure can, in fact, support unbounded transactios t&ection
7 evaluates the algorithm. Section 8 surveys related warlallly,
we draw conclusions in Section 9.

2. Basic Notation and Assumptions

Hereafter, when considering two bit vectarsandy, we usexr + y
andz — y to denoter \V y andx A7, respectively, wherg is the bit
inversion ofy. When no ambiguity exists, when referring to a given
bitnum, b, we either mean the integer representing the position of
b in any bit vector (from0 to NV — 1), or the bit vector where the
only 1-bit is the one corresponding toMoreover, we writer + b

or x — b (wherex is a bit vector and a bithnum) to denote the bit
vector resulting from setting/clearing (respectivélig)bit in x.

We assume that individual memory writes are atomic when no
write contention to the same variable exists (i.e. any comect
read to the same single variable will always read a congistdue).
This is supported by most modern multi-core machines and run
time platforms (e.qg. [6]).

3. Epoch-based Work Stealing

We depart from an XCilk-like [1] programming language andkvo
stealing system [3]. For simplicity of presentation, we sider an
elementary work stealing system, based on a global queiseisth
without loss of generality, as it is straightforward to exteour
solution to more efficient multi-queue work stealing systdsj.

Since the work stealing system forms the framework on which
our TM will operate, we start by describing the work stealing
system next, enriching it with additional features requiiby our
TM. We assume a multi-core computer runniRgvorker threads,
To, ..Tr.2 A central assumption in the remainder of the text is that
P is bounded by word size, so that comparing bit vectors of size
N = 2P becomes possible in one or two hardware instructions.

When no ambiguity exists, we simply refer to worker threagls a
threads. Each thread;, can either be idle, or running sorbéock
that it has stolen from the global queue [3]. We assume thagch
moment,T; is running in the context of some transaction.

As later sections explain, our TM needs to reason about the
happens-before relation [11] between events concernifigreit
transactions. Namely, such events include the beginnidgcam-
mitment of any transaction, as well as each memory access any
transaction makes. Threads support that by maintainingdbg
clocks [11], which we calépochs

At each moment, each running thread is executing a giverkbloc
and is at a particular epoch. During execution of a block raati
can evolve to greater epochs than the one in which it stantadmg
the block, in situations which we shall explain in the nexttia.
The current epoch of a thread increases monotonically any,it
can differ from other threads’ current epochs.

Summing up, each thread;, maintains the following local
state:

e T;.ep, the current epoch number;

e T;.tx, the current transaction identifier (addressed in the next
section);

o T;.block the block being executed;

Additionally, T; maintains the following attributes, whose meaning
we clarify shortly:

o T;.lastComEp
o T;.discardBitnum

Blocks encapsulate program fragments, which threads aanAru
block can be in one of three states: \(iaiting, meaning that the
block cannot run yet, as it is dependent on one or more blarks t
complete; (i)enqueuedmeaning that any thread that becomes idle
can steal and run it; (iifunning at some thread’;. Every block
starts in the waiting state, and eventually it moves to thened
and running states, in this order.

In either state, a block has the following attributes:

e b.program, the block’s program;

e bh.baseTz, the transaction in which the block is when its execu-
tion starts;

2|deally, P is less than the number of available cores, but there can also
exist more (swapping) threads than cores.

* b.bn, the bitnum reserved for this block, which is unassigned in
the waiting and enqueued states;

® b.minEp, the minimum epoch at which the thread that steals
the block has to be to start running it;

e b.precBlocks, the number of blocks that need to complete be-
fore this block can be enqueued; when enqueued or running,
b.precBlocks is 0.

* b.precBitnums, a bit vector denoting the set of reserved bits of
every block whichb is waiting for; when enqueued or running,
b.precBitnums is empty.

e b.blockWasitingForMe, the block (if any) that is waiting for
this block (and possibly others) to complete.
The next sections explain the need of each attribute above.

3.1 Forking into parallel blocks

Initially, only one block exists, called threot blockwhich contains
the main program. As a running block (e.g. the root block)diad

the previous transactions that have used the bithum havengem
ted. This way, we ensure that epochs correctly reflect thpdrap
before relation between transactions that have sharedanbit

Since different threads can try to concurrently reserveta bi
num, we ensure mutual exclusion when accessing the freerbitn
queue by locking. Acquiring a lock each time a new transactio
started would be prohibitively expensive. Instead, we miné
synchronization overhead by reserving, on steal-time oivang
block, one bithnum. We then use (and re-use) that bitnum fgr an
transaction that that block may initiate.

We can finally define all the steps a thredd, needs to take
before being able to run a block. Such steps occur vifiesteals
the block, as Procedut&ealBlock in Figure 2 presents.

Essentially, T; starts by reserving a free bit for the block it
will steal (line 2). ThenT; dequeues one block from the queue
(line 5) and saves the bit reserved for the stolen block in the
precBitnums attribute of its succeeding block (if any) (line 8).
The need for line 8 is not evident now; we return to it in Sattio
6. The previous two steps require mutual exclusion, whictcare
safely achieve with only one lock associated with the qu&beead

parallel statement, it ceases its execution and decomposes itselfT; then advances its current epoch in order to satisfy the mimim

into multiple smaller blocks. The resulting blocks comerithe in-
ner parallel blocks, which are enqueued, and a continuatimrk,
which contains the remainder of the program aftergheallel
statement, and whose state is set to waiting, until the ibloaks
finish. It is straightforward to extend the work stealingteys to
support other models. For instance, when the root blockimees
to execute, instead of waiting for the spawned blocks toHinis

Hereafter, we say that the inner parallel blocks ipazallel
statement araibling blocks(as any transactions they create will
be sibling transactions). Moreover, we say that the innealfeh
blocks are th@receding blocksf the continuation block, which in
turn is thesucceeding blockf the inner parallel blocks.

Procedureparallel from Figure 2 details how we initialize the
blocks resulting from @arallel statement found by some thread,
T;.
Each block resulting from thearallel statement is created
in the context ofT;’s current transaction wheff; reached the
statement (lines 2 and 4). We designate such a transacten th
blocks’ base transaction

Other threads may later steal the blocks resulting from the
parallel statement. Therefore, such threads’ epochs need to re-
flect the fact that the events that the original block has keppen-
before the new blocks. We ensure that by associating a mmimu
epoch with each new block, which we set to the last epoch attwhi
the original block ran (lines 2 and 5).

3.2 Running and stealing blocks

During execution, a block may initiate new child transacsiof
its base transaction, as the block’s execution enters atewic
regions. We impose that, in the program of a single block, @gtm
one nesting level oftomic regions can exist.

As the next section describes, for a thread to initiate sstien
tion, it needs to hold a reserved bitnum, which will serveden-
tify that transaction. We obtain such a bithum from a glola¢
bitnum queueEach entry in the free bitnum queue contains a bit-
num and the minimum epoch at which the thread wishing to use
the free bithnum must be. The minimum epoch attribute is rezags
because bitnums can be re-used for different transactiatiffer-
ent epochs. As we describe shortly, we set the minimum epbch o
each free bithum to a value that is greater than the epochkietiw

3Note that this internal restriction is not visible to the grammer. The
programmer can still transparently code programs with ipialtnesting
levels inside a block, such asomic{atomic{...}}. A pre-compiler can
then seamlessly translates such a program to an equivalerwith single-
level blocks:atomic{parallel{atomic{...}}}.

epochs of the block and the reserved bit (line 12), and Bgss
current transaction as the block’s base transaction. Igiril can
start running the block’s program.

3.3 Finishing a block

Finally, when a block’s program finishes, the thread runriing
proceeds as in Procedufi@ishBlock of Figure 2.

Essentiallyfinish Block has two goals. Firstly, a call @iscard-
Bit notifies the system about the fact that thrdadhas finished
using bitnumT;.block bn, at epochl;.ep. We publish such infor-
mation in theT;.lastComEpandT;.discardBitnumvectors ofT;'s
state, in the position corresponding to the bithum to dikchio
locking is required since, while holding the reserved hitnwnly
this thread can write to these vectors.

After setting such values, the thread immediately retugnsn-
tually, after the call taliscardBit the system will asynchronously
place the discarded bitnum in the free bithums queue agaih, w
a minimum epoch that is greater than the epoch at wiictis-
carded it. For the moment, we are not concerned about how such
an asynchronous task takes place. Section 5 addresses that.

Secondly, we update the finishing block’s succeeding bléck,
(if any). This means removing any reference to the finishiogk
in b’s attributes (lines 6 and 7). Furthermore, imposing thated
starts running, it will not be at an earlier epoch than thecapat
which b’s preceding blocks have finished (line 8). Otherwise, we
would be inconsistent with the happens-before relationvéeh
preceding blocks and their successor. If the finishing bisdke
last oneb is waiting for, this means thatis finally ready and’; can
immediately run it (line 13). After runningnishBlock, T; become
idle again, thus it then tries to steal a new block.

4. Basic Transactional Memory Algorithm

In the previous section, we have laid the ground on which ddr T
will work. This section finally introduces the base algamith that
support transactions in our programs. We start by explgihiow
we identify transactions and represent their position withtree
of other transactions. Then we proceed to describe how waens
the safety of memory accesses.

4.1 Transactions

We identify each transactior, by a bitnum. However, the lim-
ited size of the bitnum spacéV() requires us to re-use bithums to
identify new transactions, as soon as the previous trainsaittat
has used the bithum has committed. Therefdsddentifier is only
valid when we consider an epoch during whictvas active; out-

side that period, that bitnum can be identifying anotherdeation.
Consequently, we can only univocally identifyoy the pair com-
prising its bithnum and some epoch at whiclvas active.

Besides identifying, we need to be able to determine pwositio
of ¢ within the transactional tree. For that, we maintéénancestor
set as a bit vector whose bithums corresponding’d@ncestors
(t included) are set to 1. Once agaiis ancestor set is only valid
with respect to an epoch at whi¢kvas active (thus, all its ancestors
too).

So far, we know that each block, has a base transaction.
The corresponding attributé,base Tz, has three fieldshitnum,
beginEp and anc, which respectively denote the transaction’s bit-
num, first active epoch and ancestor set.

Another transaction relevant to bloékis its current transac-
tion whenb is running at some thread;. T; maintains, aff;.tx,
the same fields as abov@¢num and anc, concerning its current
transaction. Upon stealirig 7;.tx is b.base Tx. However, when ex-
ecution enters aatomic region, a new child of the base transaction
starts. Starting such a new transaction is a very lightwesglera-
tion, which essentially involves devising the bitnubaginEp and
anc attributes for the new transaction, as Procedhitgn Tz in
Figure 3 shows. As we know, the bithum of the new transaction
is the one that has been reserved a priori for the block. Titialin
epoch is the current one @f. Finally, we easily updatenc by set-
ting the new transaction’s bitnum to 1, since all the otheeators
were already present imc.

Eventually, the child transaction will commit.

Committing the current transaction is, again, a very simple
operation, as Procedur@®mmitTz in Figure 3 shows. We start
by updatinglastEpoch to the last epoch where the thread used its
reserved bithum with some transaction (line 1). Althougte IiL
may seem intuitive we have not motivated the need for it; viigrne
to this line in next section.

Before returning to the base transaction, we advah&ecur-
rent epoch (line 2). This ensures that, shdlildnitiate subsequent
transactions in the same block, they use the same bitnunthee
bitnum reserved for that block), it will be at a distinct epdban
the epochs at which the committing transaction was active.

4.2 Basic Conflict Detection

activeancestors of; is asubsetf the ancestor set of transaction
the requesting access to the object. By taking advantageurof o
representation of ancestor sets as bit vectors, we answharau
query with the couple of bitwise operations in line 2 of Pidoe
noConflict in Figure 3.

If the above answer is yes, then the transaction trying tessc
the object is necessarily a descendant of the all the actwrest
actions that have accessed the object, and thus can acdess it
Otherwise, a conflict exists and at least one of the contertdams-
actions must abort.

The main challenge in the conflict test above is in determin-
ing which is the set of currently active ancestorstof(function
activeAncestorin ProcedurenoConflict in Figure 3). One naive
solution is to, when some transactian,is about to commit, go
through the stack of every object in th& write-set (i.e. the objects
accessed byand by every's descendant), and cle#és bithum in
the corresponding stack entries (hence, automaticallgguating
the object to the write-set afs parent)® Let us call such a step
bitnum reclaiming

Obviously, on-commit bithum reclaiming would incur a catisi
erable overhead. Namely, it requires extensive locking,wiork
performed during bitnum reclaiming of some transactioneis r
peated at each of its ancestors (i.e. it is multiplied by testing
depth of the transaction), and it implies maintaining e{plirite-
sets along with each transaction. In the next section weritesc
our alternative, which eliminates all the above shortcaajrkeep-
ing commitTx as simple as defined in Section 4.

5. Lazy Bithum Reclaiming

Our algorithm employs lazy bithum reclaiming, instead of on
commit bitnum reclaiming. Intuitively, we accomplish thmstpost-
poning bitnum reclaiming of committed transactions to a imuc
later period, where we reclaim the bithums from transastithat
have committed recently all together. As we show next, the pe
riod between batch bitnum reclaiming sessions is propuatito
the maximum number of epochE, and can be substantially long.
Thus, the set of transactions whose bithum reclaiming isheat
can be considerably large. Consequently, for such a largefse
transactions, we avoid repetitive (thus redundant) bitnechaim-

We maintain a stack attached to each object, where we push theing of common stack entries (the pathological effect disedsin

ancestor set of each transaction that accesses the obgeethen
transactiont accesses an object, we pushnc andt.ep into the
object’s stack. As it will become evident next, the topmastre
of each object’s stack will always denote a transaction ihat
descendant of any other entry in the object’s stack.

During a transaction’s lifetime, a thread can perform read a
write accesses to objects. Of course, conflicts can occir aoib-
current transactions, which must be avoided in order torensor-
rectness [1]. Our approach to conflict detection is eagkdaison *
Hence, before accessing some object, a transaction mugbtes
conflicts. For space restrictions, in this paper we considleac-
cesses as writes. Prior to any access, we run Procegtute from
Figure 3.

Each time some thread;, wishes to access a given object with
a non-empty stack, we simply peek the topmost ancestor viecto
the object’s stack and check whether a conflict exists.

Firstly, we look for the easy cases: where the stack is empty
(line 2) and where the transaction trying to access the ohias the
latest one to do it (line 5). Otherwise, we need to answer #rd h
question of whether the transactiop, on top of the object’s stack,
is an ancestor of the transaction requesting access to jeetob
Another way of making the same question is whether the set of

4 Adapting a late-validation solution to the case of paratiesting seems
straightforward. However, as discussed in [1], late-al@h necessarily
implies doing work that is proportional to transaction degt commit.

the previous section).

The key challenge is, thus, to ensure that accesses to ®bject
that have been accessed by already committed, but not yeinpit
reclaimed transactions are correctly handiédmmitted maski@s
well as the notion of epoch) help us solve such a problem, as we
explain next. We maintain a global array of bit vectors, ezadled a
committed mask, one per epoch.). Intuitively, each committed
mask centralizes information about which transactions Wexre
active at the corresponding epoch have already committed.

We denote the committed mask of epecaiscomMaske]. Nat-
urally, each committed mask starts with all bits set to O.riwe
ally, as each transactioncommits, the corresponding bitnum in
the committed mask of every epoch during which the transacti
was active will be set to 1. By then, we say thés published

We address the publication process shortly. For now, let us
simply assume that a transaction is instantaneously hdalisnce
it commits.

activeAncestors(stackEntrye, thread T;)
1: return e.anc — comMaske.epoch|

Above, we show how we resort to the information centralized

in committed masks to implement thetive Ancestors function
of our conflict test algorithm (recaltoConflict from Figure 3).

5|n this case, functiomctiveAncestorsvould do nothing.

;5 '°°onr cach worker thread: do that bitnum. Hence, the publisher sétsin the committed masks
:) i of every epocle < T;.lastComEfpb].

‘31: for each bitnumd < bn < ¥ — 1 do While this necessarily implies that masks of the epochs &ttwh

5

if T;.lastComEpbn] > lastEpochInMask[bn] then - - p h .
for e = last EpochInMask[bn] + 1 to T.lastComEfbn] the committed transaction was active will show that tratisaas

do committed, it can also set the transaction as committed dclep
6: comMaske]+ = bn; during which the transaction did not exist. However, thiesloot
7 lastEpochInMask[bn] + +; affect the safety of our conflict detection algorithm, asieasy to
8: if T;.discardBitnunibn] = TRUE then show that, in the latter epochs, no other (non-abortedséetion
9: discarding[bn] = TRUE; was or will be active. Hence, no object stack may have an #orces
10: mazCurEp = mazo<i<p(Tk-p); set timestamped with one of those epochs and having bithwm
11: for e = lastEpochInMask[bn] + 1 to maxzCurEp do set.
ig last??%ﬁ%(;zb%?_ e On the other hand, the above algorithm is also responsible fo
1w danp ding|bn] — FALSE: P freeing bitnums that have been discarded because the Hiatk t
15: T;.discardBitnunfibn] = FALSE; held them flnlshgd. In such a case, the publisher adds sudh a bi
16: enterMonitor(queue); num to the free bitnum queue (lines 15 to 18). The minimum kpoc
17: freeBitnum Queue.addFreeBit (b, mazCurEp + 1); attribute of such a new free bitnum will be greater than thechp
18: leaveMonitor(queue); after the last epoch at which a transaction with such a bitnum
- - committed (line 17). Before actually freeing a bitnum, thublisher
Figure 4. Publisher thread. may need to set some additional epochs as committed for the bi

num being discarded (line 12); only after those epochs cabith
num be re-used again. In the next sections we turn our aitenti
to lines 9 to 14, explaining the need for such additional cdteah
epochs.

If enough cores are available, one can easily parallelize th
publisher into multiple parallel threads. We would simpbed to
partition the bitnum space and have each thread resporfsible
publishing the bithums in one particular partition.

However, no matter how parallel the publisher is, havingakba
ground publisher has an important impact on our conflictalite
test, as we illustrate now. Consider some transactignthat has
committed, and some active transactitn,which may wish to ac-
cess objects that, previously accessed. We say thaks commit-
ment has propagated g oncet, becomes aware of the fact that
t, has committed.

So far, we have seen that, after commits, the committed

Essentially, we filter out the bitnums of the transactiorad,theing
active at the epoch at which the access took place, have dtedmi
in the meantime. Those are the ones published in that epoch’s
committed mask (line 3).

active Ancestors works correctly no matter the nesting depth
of the transactiont, that originally accessed the object. When
commits and is published, the ancestor set stored at thettsbje
stack entry, when consulted laytive Ancestors, will retain every
bitnum exceptt’s; thus, it will becomet’s parent's ancestor set.
Implicitly, this is equivalent to mergingjs write-set witht's parent
write-set at the moment when we publishedThe same thing
happens wheris parent commits, and so forth.

5.1 Publishing Committed Transactions masks of the epochs at whiah was active will be temporarily
The assumption, made in the previous section, of instantene Stale, until, is finally published in background. Consequently,
publication is not a realistic one. Publishing a transactatails if ¢, calls activeAncestors (see previous section) during such
updatingO(e) committed masks, wheteis the number of epochs @ period,t, may detect false conflicts with objects that has
of the transaction’s lifetime. Pushing that task into thewmit T accessed. False conflicts do not harm safety, as abaififand

function would increase its time complexity @(e) (rather than ~ T'etrying some time after) is always safe. Neverthelessecessary
O(1)) and would require expensive locking in order to synchreniz ~ aborts degrade performance. We address such a problem in the
access to the shared committed masks. next section, showing that, for the most relevant situatiome
We eliminate both shortcomings by delegating such a task to ¢an actually prevent false conflicts, regardless of how Ity
a single specialized thread, called theblisher. The publisher ~ Publication latency is.
is the only thread that writes to the committed masks, tloeeef 5.2 Preventing Pathological False Conflicts
avoiding the need for any locking. When a worker threads runs ™
the simple, constant-time commit procedure describeddndiure So far, we have seen how commitment of one transactipn,
commitTz in Figure 3, it can immediately continue its execution, propagates to the remaining active transactions by pubgsh .
without having to wait until the committed transaction isafig Since publication may take a significant time, our algoritimay
published. detect false conflicts if, in the meantime, any active tratien, ¢,
The publisher works in background, guided by the infornmatio requests access to any object that the committed transduid
it collects from theT;.lastComEpvectors that each worker thread —accessed.
maintains. Recall, fromeommit Tz, that each time a thread}, However, the gravity of such false conflicts varies subsiiint
commits some transaction, it sets the corresponding entry in ~ depending on the relation betweenandt,. More precisely, we
T; lastComEpto its current epoch (before advancing to the next can distinguish the three following cases:
epoch). Moreover, when threal completes executing a block, .
it discards its reserved bithum by setting the bitnum’s yeiirr L fi‘; I?)r;g?tbet‘z,v(eamﬁszglneqgglrce)(r:]li)t'ransacnOn, uins sequen-
T;.discardBitnunto true. ’

The publisher thread continuously loops in the algorithm in 2. ¢ is ¢,'s parent, which blocked until the block running

Figure 4. The algorithm periodically reads thglastComEpand completed, before resuming execution (in the same blocek of
T;.discard vectors of each thredH;, checking for modifications in or not);
either one.

. . ! 3. t, andt, are concurrent transactions;
On the one hand, each time the publisher finds a thread whose b .

T;.lastComEfp], for some bitnunbn, is greater than the epoch at Clearly, the programmer’s expectations concerning thaipiisy
which the publisher last séi as committed (line 4), it means that, of conflicts between, andt;, in each case vary radically. Whereas,
in the meantime, one or more transactions have committedjusi in case 3, the programmer already expects conflicts to oazur o

casionally (after all, the program has two concurrent tmatiens activeAncestors(stackEntrye, thread T7)
accessing a common object), his expectation in cases 1 asd 2 i 1: if T;.comDesc# 0 then
that conflicts betweet), andt,, will never occur. Consequently, the ~ 2 Ti.comDese- = comMasKr;.block min Ep];
programmer will try to minimize accesses to objects thashezed 3: retum e.anc — comMaske.epoch] — T;.comDesg
with concurrent transactions (case 3).

However, he will not be reluctant to (and will often) have pro
grams such as the one in Figure 1 from Section 1. The program

illustrates a very common case of case 2 (one can easily dfink ; -5 pyplication takest, will never run into false conflicts when

Figure 5. New version ofactiveAncestors

a similar program with case 1), whetg is t> andt, is to. Natu- accessing objects that had accessed.

rally, the programmer expects that line 14, which accesseaied Evidently,#,'s thread can only do that as longtass bitnum has

object (B) that, in turn, a previous transactid,(i.e.,t2) has ac- ot yet been re-used for new transactions, Ikept ignoringt,’s

cessed, is conflict-free. In fact, the programmer knows tiahat bitnum in that situation, conflicting accesses (to objecteased

point, ¢, will necessarily have committed. _ _ by concurrent transactions that re-us& bitnum) could be incor-
Therefore, false conflicts due to the non-lmmedlgtg commit- rectly granted tds,.

ment propagation from, to ¢, are particularly problematic in cases Fortunatelyz,’s bitnum is only freed (i.e., new transactions can

1 and 2, in contrast to case 3. Case 2 is especially delicate 8i re.se it) aftet,, has been published. Hence, we first check whether
false conflict whert,, tries to access an object accessed by its com- ; has already been published (line 2). If so, we cease igneogiag

mitted descendant,,, will imply aborting¢, and, consequently,, bitnum (by clearing it frontomDesy; in line 2. We know whether
and all o;her descendgnts. For these reasons, we call cases21 t, is already published by reading from the committed mask ‘sf
pathologicalfalse positives. commit epoch (which, in the single-descendant case, isfibete

Fortunately, we can prevent pathological false positivéth w gatin themin Ep attribute of the block running,).
no or few lightweight modifications to the algorithm desedb

so far. Most importantly, such modifications neither inseghe . .
time complexity of our algorithm, nor require additionatking. 6. Supporting Unbounded Transaction Trees
Intuitively, our approach is to find alternative means topamgate The algorithm described so far does not support more tNan
ta’s commitment ta, in cases 1 and 2, avoiding’s need to wait transactions to be simultaneously active (wh&tés the bit vector
for the general-case propagation through the publisher. size). This is not a problem with parallel programs with netire,
Perhaps surprisingly, the conflict detection test in Praced as long asV > P (the number of worker threads). In fact, a flat
write in Figure 3 already prevents false conflicts in case 1. Recall program withm > N parallel (flat) transactions will attain as much
ing the algorithm, one can see that, if the contending tictieses parallelism as it would if an unbounded number of transastio
have the same ancestor set, the algorithm never yields aatonfl was supported, since only transactions can be running at a given
(independently of whethet, is already published or not). Thisis moment. Hence, onlW = P simultaneously active transactions
clearly what happens in case 1, whegeandt, have the same an- need to be supported in this case: as soon as some threadtsommi
cestors, and have the same identifier bithum (the one reséove one transaction, the corresponding bitnum will be freed theh
the block containing both). In this caserite knows that, (whose become available for that thread to start the next trarmacti
ancestor set is in the object’s stack) has necessarily ctietral- o)
ready. Otherwise, its bitnum could not have been subselyuent 6.1 Limiting Parent Transactions

used byts.) . . A problem, however, arises when we consider nesting. A worst
False conflicts are harder to prevent in case 2. The additiona ¢ase program can have a transactional tree of d&pgith in-
difficulty results from the fact that,’s bithum now has already termediate transactiorts, .., t p, wheret; is t;1's parent), where

been discarded (since the containing block has already leteap eacht; decomposes into two blocks: one starting the next-level
in contrast to case 1) and, thus, can already be in use by smme ¢ ransaction and anothesork block w;, with some flat program that
current thread. Still, we are able to prevent false conflittase 2 does some useful work. In this case, we h&vactive transactions,
with few lightweight modifications to the algorithm constted so to, .., tp, each consuming one bitnum.

far and, most importantly, with no need for additional lauki For If N = P, then no free bitnums would be available at this
that purpose, we need maintaining one additional attrjmzted point. This means that the worker blocks;] that, at each nesting
comDesc¢along with each block. Intuitivel)comDesdncludes the level, had been queued up for other threads to steal, woultdeno

bitnums of transactions that the block knows to have coneaiitt gtealable, as no bithums would remain to run them. In conteas
but might not have been published yet. We start by tacklis@@ the flat program example, there are now some transactionisaie

wheret, has only one descendant transaction,before we pro- piocked (i.e., each;, awaiting for their descendants to commit),

ceed to the more generic case of multiple descendants veitinti consuming bitnums that otherwise could allow parallel kéoto

bitnums. . . run. ConsequentlyP — 1 threads are forced to remain idle, even
In the single-descendant case, witgis block finishes (calling when there are enqueued parallel work blocks.

function finishBlock, defined in Section 3), we add’s bitnum to A solution to this situation is to impose a limit, on the number

thecomDesa@ttribute of its succeeding block (whichwillruninthe of pitnums that can be used for parent transactions. This thae

context oft). . will always remain (at leastP bitnums left for leaf blocks (i.e.
ThecomDesattribute can be seen as a note that the thread that p|ocks with no sub-blocks) to run by each thread.

has co_mpleted th(_e block conta@ning Iea_/es to whichever thread We ensure the limif, by maintaining, along with the free bit-

steals its succeeding block, which runs in the context o8uch a num queue, a counter of how many bitnums have been reserved so

note allows the latter thread to immediately learn aboufabtthat far for transactions that, subsequently have become paeatsac-

ta has committed, probably befote is published. We ensure this tions. When a block that has started an (initially child)esans-
by adding two relatively lightweight an@(1)-time changes tothe action reaches parallel statement and is about to enqueue the
activeAncestors function, as Figure 5 shows. , __inner parallel blocks it has found, we conservatively inceat such
In line 3, #y's thread takes advantage of the information in 3 counter (as each such a block can potentially start chifuséc-
comDescand ignorest,’s bitnum in any ancestor set of stack tions of the outer transaction). (If the limit is reached,earor is
entries of objects; tries to access. Hence, no matter how long returned and queuing of the inner blocks is disallowed, wasitn
to which we return shortly.)

A good choice forL is L = P — 1, thus we sefV to 2P — 1.
Such a value ot is sufficient if each parent transaction has at least
two parallel child blocks (as in the example above): it metas
P — 1 parent transactions will queue enough leaf blocks (at least
P), which theP threads can steal and run. A lower valud.afould
restrict the number of blocks that would be made availabletioer
thread to run; and, as we show next, a higher value is not sages

6.2 Single-Child Transactions

Limiting the number of bithnum reservations for parent tegi®ns

is sufficient to attain maximum parallelism in the particidaam-
ple above. Still, it is not generic enough for arbitrary saction
trees, namely:dase (i) when some parent transactions have only
one child block; and/orase (ii) when nesting depth is higher than
P.

The key insight to solving both cases is that single-chiah$r
actions do not need a distinguishing bitnum, and can simisolv
their parent’s bitnum. Consider some transactignthat has a sin-
gle child transaction.. Clearly, every ancestor of, is also an an-
cestor oft., and every concurrent transaction (i.e. neither ancestor
nor descendant) df, is also concurrent with.. This means that,
being a single child¢. can borrow its parent identifiers without
affecting the safety of our conflict tests.

This observation directly solves case (i). In the case of a
parallel statement with a single inner block, any transaction in
that block will not consume a free bitnum, as it inherits idsent’s
bitnum.

Case (i) is more intricate but we can solve it with few simple
modifications to our algorithm. Let us recall transacfignat depth
P from the example in Section 6.1. Assume that the block in twhic
Tp runs has garallel{bl,b2,..,bn} statement. Assume that
threadT; runs such a block. Being at depth, we know that we
have reached limif., and thusT; will not be allowed to enqueue
the new parallel inner blocks.

Instead of haltindl;, we resort to a better alternativé; can
simply treatparallel{b1,b2,..,bn} as blockb1 (sequentially)
followed by parallel{b2,..,bn}. This alternative means that
any transaction starting 86 will now be a single child transaction,
and hence it can borrow its base transaction’s bithum asiits o

As b1 completes, the same process is repeated: the free bithum

queue is checked for an available bitnum; if such a bitnurstexi
(we explain next how), the remaining blocks are enqueuectand
finally run in parallel while, if not, the serial execution thfe next
block (b2, b3, ...) proceeds until the next iteration.

Of course, this option discards the parallelism among thalpa
lel blocks in theparallel statement, which may seem to contra-
dict our main goal. However, it is fundamental to observe tha
reason why the system reached thdimit is that, for each non-
single-child parent transaction started, there exist@afit queued
parallel blocks to allow all the remaining — 1 threads to steal and
run in parallel.

However, some time after such an initial moment, the remgini
threads will inevitably complete the enqueued paralletkso(and
any parallel blocks arising from them). In a worst case sGena;
can eventually become the only thread running. Unfortupaie
such a situatioril; will be running a set of parallel blocks (and any
sub-blocks) serially while, paradoxically, the remainthgeads are
idle because no more blocks are enqueued.

Recall that such a pathological situation arises from thetfat
all L bitnums for parent transactions have been consumed. Te solv
such a situation, it is crucial to observe that, once otheratths
complete the available parallel leaf blocks that had beeued in
the context of a given parent transactiomonly one sub-block will
remain: the one containing the next parent transactian,

Therefore, whereas, originally;+1 was not guaranteed to be
a single child (as there existed parallel blocks which coind
turn, initiate siblings of;+1), nowt;+1 has become a single child.

Hence, from that point on, we can make; discard its own bit-
num and use;’s bithum, thus making one bitnum available for new
parent transactions. Upon regaining such a bitniimyill finally

be able to queue the parallel blocks it currently runs in @&@bker
manner, therefore delivering parallel work to the remairthreads.

The challenge is that, in the moment that’s last sibling
completes and becomes a single child, different threads may be
running in the context of;+; or any of its descendants. Therefore,
such threads, each running at possibly distinct epochs, Ineay
accessing objects and leaving at each object’s stack astancet
containingt;1's original bitnum. Therefore, discardirip bithnum
implies: (i) reclaimingt;11’s bithum from all such ancestor sets,
and (ii) forcing all the threads running in the contextpf; or any
descendant of;;1 to removet;+1’s bithum from their ancestor
sets.

Perhaps surprisingly, we achieve step (i) very easily: wthen
thread, T}, of t;+1's last sibling block completes, it unilaterally
discard<;+1’s bithum, as ifT}, was the thread running.;. Inde-
pendently of7y’s current epoch, we know (by Algorithm 4) that,
eventually,t;+1’s bitnum will be set in all committed masks up to
an epochmn, that is greater or equal than the current epoch of any
thread running in the context ofy; or any descendant of;;. In
other words, we achieve goal (i), as all accesses such threade
up to epochn will havet;41’s bitnum automatically filtered out by
the committed masks.

More precisely, this implies lines 9 and 10 of Procedure
finishBlock from Figure 2. This is, however, insufficient since the
threads running in the context of;1 or any descendant df ;
can evolve to later epochs tham and continue accessing objects
usingt;+1's bitnum in their ancestor sets. Hence, we need to force
each such thread to erase;’s bitnum before advancing to such
epochs. We ensure that by having each thread, before adganci
its current epoch while executing some block, verify whetey
bitnum of its current transaction’s ancestor set has bebtighed
as committed in the meantime. Hence, we must add the follpwin
line before every time we change a thread’s current epoch:

(discarding + comMasKT’;.ep);

This happens in Procedureteal Block and commit Tz (Fig-
ures 2 and 3, respectively).

It is easy to show that, if the nefff;.epis greater thamn, then
ti+1’S bitnum is necessarily set in théscarding vector or the
committed mask of the epoch at whielbhmmit Tz is being called.
Therefore, we ensure that any thread running in the confext @
or any descendant of1 will eraset;+1’s bitnum from the thread’s
current ancestor sets before the thread reaches epogh.

To sum up, with a few lock-free modifications to the algorithm
we ensure that, as the limit is reached and, subsequently, the
parallel blocks that have been queued for other threads levenp
the system regains the ability to make more parallel blodedl-a
able. This cycle shows that supporting a fixed number of &retitan
identifiers can actually be sufficient to handle unboundedstrof
parallel nested transactions.

T; .tr.anc—

7. Evaluation

In our evaluation we try to answer two simple questidiibat is the
benefit of parallel over serial nesting&ndls transaction handling
(begin, commit and conflict detection) performance inddpatof
nesting depth?

To this end we devise a simple benchmark in which a single
transaction” is executedT” consists of leaf transactiorfs, . Ev-
ery T;, first sleeps for a random period of time (up to 2s) and then
writes to 2000 shared objects. The first half of objects ammkdy
T;, is also accessed ¥, , and the second half is accessed by
Ti,,,- In order to executd’ atomically, an STM that only sup-
ports serial nesting has to execute Bj| in a single thread, one

Depth (D)

25

0 —3
1 ==
2
20 | {3 ===
4 ==
5 ==
6
o 15+t E
=}
S
Ja}
Ja}
=3
o 10} i
5. -
0

64

32

1 2 4 8 16
Total transactions (N)

Depth (D)
12 0—=
o 1
1| 12—
o O ncnncn |
£ 4 =
c 5=
s 08rf 16
S
2
g 0.6 E
E
S 04r7r i
=
©
£
0.2 E

2 4 8 16 32 64

Total transactions (N)

Figure 6. Speedup of our parallel nesting vs. serial nesting using
our algorithm.

by one. On the other hand, an STM that supports parallelngesti
can execute differerif;, concurrently in different threads and thus
speed ugl’, while still executing it atomically. Our experimental
setup ensures: (1) transactions that are sufficiently lomgeasure
their duration with enough precision (2000 objects), (2¢rtap-
ping write sets to avoid trivial conflict detection (where tbbject
stack is empty and the ancestor query is skipped) and (3)oaot t
many conflicts (randomized wait of 1s on average).

We use different numbers of leaf transactid¥isand organize

them in trees of parallel transactions of different depthetir ex-
periments. With serial nesting all leaf transactions aeceted se-
rially inside a single transaction (this means there is malfgism).
In this case work stealing is disabled (one thread runs aatistic-
tions serially without any dequeuing or locking after eaemsac-
tion completes) and conflict detection always implies negdhe
top object stack and verifying that it is empty (which is ajwdhe
case in the benchmark).

With nesting depth oD, transactions are organized in a binary
tree that isD levels deep. Each leaf of this binary tree executes
N/2D transactions in parallel. This means that wiiers 0, all 77,
are children of the root transaction and they are executpdrilel,
when it is1 there are two transactions that are children of the root
transaction, each of which execut®g2 leafT;, transactions as its
children in parallel, etc.

Figure 7. Time to begin/access objects/commit on average over
all transactions, considering different levels of nesfimgrmalized
relatively to depth 0).

First, additional depth implies more blocks and inter-klde-
pendency, thus more work stealing synchronization overhba
other words, the critical pathl{.) is larger, hence th&®(PT.)
term from the upper bound mentioned in Section 1 inevitalely b
comes visible. This is a consequence of Agrawal et al.'s uppe
bound [1], and we do not avoid it.

A less evident secondary effect of depth is the increaserin co
flict ratio. In fact the experiments show that, for the sam®&keaf
transactions (accessing some fixed write-set), conflicsnaore
frequent if such transactions are distributed on a deeper tn-
tuitively, this is explained by the fact that, in shalloweeds the
deepest common ancestor of any pair of transactions wikhven-
age, be at a smaller distance from both transactions thadeeer
tree. Hence, if both transactions share an object in thetewsets
and one accesses it and commits, the object will propagaterfa
to the write-set of the ancestor of the second transactiws, the
period before the second transaction can safely accesaneds
object is shorter in shallower trees, on average, whichigspéss
conflicts, hence less aborts.

The main contribution of our paper, however, related to e s
ond term of the asymptotical upper bound in Section 1, caricgr
the work, Ti, performed by a program (outside its critical path).
In order to ensure thaf; completes irO (71 /P), any transactions
that7h may run may take the same time, no matter at which depth

We ran our experiments on a SPARC Niagara 2 machine that they run. Our results confirm the analysis of the algorithnthig
supports 64 hardware threads. We use at most 32 worker thread previous sections. They show that the average times to begin

and bit vector size of 64 bits because our prototype impleatiem
does not support more than tifat\Ve repeat each experiment 10
times.

Figure 6 shows the speedup of our algorithm with parallet ove
serial nesting for different values db. The x-axis shows the
total number of transactions executed and the y-axis shbess t
speedup over serial nesting. Each data point in the grapictdep
the speedup with differerd (it does not make sense to had/é >
N and this is why not all data points appear for all transaction
counts). The figure depicts that parallel nesting yieldégparance
improvements already with two total transactions @d= 0. As
the number of total transactions increases, the perforena@eefits
are higher. On the other hand, a single level of nestiig=f 0)
performs better than higher levels of nesting for all tratisa
counts. This is a consequence of two factors that are outeof th
scope of our contribution.

6 An extension to this is straightforward.

and commit a successful transaction (i.e. one that doeshuot)a
do not grow with nesting depth at which the leaf transactioms
Figure 7 shows such results for different amountdof(2, .., 64
leaf transactions) and for different depths. For the sameuaitnof
work, clearlyT; is relatively stable and, most importantly, does not
exhibit a tendency to grow with depth, thus confirming ouimaka

8. Related Work

The closest algorithm to ours was proposed by Agrawal et al.
for the CWSTM STM [1]. Their algorithm has shown that depth-
independent conflict queries are possible but, to the besupf
knowledge, has never been implemented nor evaluated itiggac
CWSTM shares some general design principles with our swiuti
namely they employ eager validation and updates, lazy epofat
object stacks and the absence of explicit read/write-sets.

While following the above principles, our solution is craity
different than CWSTM. We employ a different algorithm for-an
cestor queries, based on bit-wise logic. Our algorithm eugpa

bounded number of active transactional identifiers, wtethair
conflict detection model relies on a practically unboundedgac-
tion identifier space. Hence, most of our contribution isted to
re-using transactional identifiers, which is not an issuthéir al-
gorithm. Most importantly, while asymptotically equivateo our
solution, each memory access CWSTM potentially queriesge la
number of data structures, expectedly yields unacceptahi®r-
mance penalties [1].

More recently, new proposed solutions have moved closer to-
wards the goal of practical parallel nesting, namely NeR4I[T6],
NesTM [2] and SSTM [14]. NePalTM supports parallel threads
to be forked inside a transaction. As long as the sub-traioset
threads create no sub-transactions, they run in parafieg tin-
veiling parallelism that serial nesting TMs prohibit. Neteless,
should such thread create sub-transactions, NePalTM éagstere
limitation of requiring such sibling transactions to runritutual
exclusion. In other words, NePalTM does not support fublyablel
nesting.

NesTM does support parallel nesting and has been implehente
and evaluated. However, its transaction handling ovesh@aebin-
ning, committing and detecting conflicts) grow linearly lvitest-
ing depth [2], which makes it an adequate solution for lowtings
depths only.

SSTM [14] follows an alternative model of parallel nesteahs-
actions, called Xfork. Supporting the Xfork model with our a
gorithm is straightforward. Although fully supporting thé&ork
model requires solving the same ancestor query test we sgjdre
the authors do not describe how nor whether SSTM solves it effi
ciently.

9. Conclusions

Support for parallel nesting is intrinsically difficult beese un-
bounded depth is a crucial requirement for the novel and @onisi
paradigms that parallel nesting promises to enable. Aghoacent
solutions try to reach closer to the goal of parallel nestihgy fail

to achieve the lowest theoretical upper bound known for tobp
lem [1].

In this paper we propose a novel solution that, to the bestiof o
knowledge, is the first solution that meets the upper bouritbywh
practice, imposing reasonably low overheads. Experinhesgalts,
obtained by running a complete implementation of our atbari
on a multi-core machine, show substantial speed-ups (u@xo 2
with 33 threads) relatively to serial nesting, and supguetitardest
requirement to meet the upper bound: that the time to statt an
commit transactions, as well as to detect conflicts, is irddpnt
of nesting depth.

While this paper focuses on the central problem of efficient
conflict detection and handling of write-only transactiolever-
aging parallel nesting in transactional memory exposesraibw
research directions that, to the best of our knowledge, ireoma
solved. Firstly, efficient support for parallel nesting whead ac-
cesses can occur is a harder problem, since one wants toizgptim
such accesses by allowing multiple (possibly conflictimghsac-
tions to simultaneously read from a common object. The maim ¢
sequence is that the conflict detection test must be exteiocsat
swer ancestor queries between one transactiomaetl of multiple
transactions Ensuring this efficiently is not trivial.

Secondly, as some authors already claim, the semanticskef fo
join parallel nested programs are not always intuitive toganeral
programmer, thus simpler language constructs such as FBijeet®
[7] or Xfork primitives [14] are highly desirable.

Finally, traditional contention managers [15], oblivioofspar-
allel nesting, are not adequate when one considers panaktéd
programs. For instance, assume that some transadjpis run-
ning in parallel with one of its children transactioffs,, and both
wish to write to the same object. Contention managers that ar

oblivious of parallel nesting could decide to ab@it However,
clearly such an option is not adequate, since aboffingould im-
plicitly abort every children off’;, including 7. Novel contention
managers that are aware of the ancestor-descendant meldtie
would avoid such a pathological decision.

References

[1] K. Agrawal, J. T. Fineman, and J. Sukha. Nested parsitein trans-
actional memory. IlPPoPP '08: Proceedings of the 13th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Peogr
ming, pages 163-174, 2008.

[2] W. Baek and C. Kozyrakis. NesTM: Implementing and Evéh@a
Nested Parallelism in Software Transactional Memory.Ptoceed-
ings of the 9th International Conference on Parallel Arebtures and
Compilation Technigues (PACT)009.

[3] R. Blumofe, C. Joerg, B. C. Kuszmaul, C. Leiserson, K. &dh and
Y. Zhou. Cilk: An efficient multithreaded runtime system.Journal
of Parallel and Distributed Computingrages 207-216, 1995.

[4] B. D. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. C. Minh
C. Kozyrakis, and K. Olukotun. The Atomos transactionalgoaon-
ming language. SIGPLAN Notices (Proceedings of the 2006 PLDI
Conference)41(6):1-13, 2006.

[5] J. Chung, C. Cao Minh, B. Carlstrom, and C. Kozyrakis.&falizing
specjbb2000 with transactional memory. Workshop on Transac-
tional Memory Workloads2006.

[6] B. Goetz. Java theory and practice: Managing volatiligM devel-
operWorks, 2007.

[7] R. Guerraoui. A Smooth Concurrency Revolution with Fédgiects.
Internet Computing11(4):84.87, 2007.

[8] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Qasable
memory transactions. IRPoPP '05: Proceedings of the 10th ACM
SIGPLAN Symposium on Principles and Practice of Parallelgpam-
ming, pages 48-60, 2005.

[9] M. Herlihy and J. E. B. Moss. Transactional memory: Atebtural
support for lock-free data structures. Rroceedings of the 20th
Annual International Symposium on Computer Architegtyrages
289-300, 1993.

[10] M. Isard and A. Birrell. Automatic mutual exclusion. HOTOS'07:
Proceedings of the 11th USENIX Workshop on Hot Topics in &@per
ing Systemspages 1-6, 2007.

[11] L. Lamport. Time, clocks, and the ordering of events idistributed
system.Communications of the ACN21(7):558-565, 1978.

[12] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill, Biblit,
M. M. Swift, and D. A. Wood. Supporting Nested Transactional
Memory in LogTM. SIGPLAN Notices (Proceedings of the 2006
ASPLOS Conferenced1(11):359-370, 2006.

[13] Y. Ni, V. S. Menon, A.-R. Adl-Tabatabai, A. L. Hosking, R. Hudson,
J. E. B. Moss, B. Saha, and T. Shpeisman. Open nesting inareftw
transactional memory. IRPoPP '07: Proceedings of the 12th ACM
SIGPLAN Symposium on Principles and Practice of Parallelgpam-
ming, pages 68-78, 2007.

[14] H. Ramadan and E. Witchel. The xfork in the road to camatid sib-
ling transactions. I@th ACM SIGPLAN Workshop on Transactional
Computing (TRANSACT 2002009.

[15] W. N. Scherer, lll and M. L. Scott. Advanced contentioamagement
for dynamic software transactional memory.R®ODC '05: Proceed-
ings of the 24th annual ACM Symposium on Principles of Diated
Computing pages 240-248, 2005.

H. Volos, A. Welc, A.-R. Adl-Tabatabai, T. Shpeisman, Xian,
and R. Narayanaswamy. NePalLTM: Design and Implementation o
Nested Parallelism for Transactional Memory SystemsProceed-
ings of the 23rd European Conference on Object-Orientedyfaim-
ming (ECOOP)pages 123-147, 2009.

F. Zyulkyarov, V. Gajinov, O. S. Unsal, A. Cristal, E. gyadé, T. Har-
ris, and M. Valero. Atomic quake: using transactional meinoran
interactive multiplayer game server. MPoPP '09: Proceedings of the
14th ACM SIGPLAN Symposium on Principles and Practice o&lPar
lel Programming pages 25-34, 2009.

[16]

[17]

