000143929 001__ 143929
000143929 005__ 20180913055621.0
000143929 022__ $$a09538984
000143929 022__ $$a1361648X
000143929 02470 $$2Scopus$$a2-s2.0-58149352734
000143929 02470 $$2ISI$$a000260859300042
000143929 02470 $$2Scopus$$a2-s2.0-58149352734
000143929 0247_ $$2doi$$a10.1088/0953-8984/20/49/494241
000143929 037__ $$aARTICLE
000143929 245__ $$aA method for the enumeration of the floppy modes and the calculation of the associated entropy
000143929 260__ $$c2008
000143929 269__ $$a2008
000143929 336__ $$aJournal Articles
000143929 520__ $$aWe present a method that is based on the Ladd-Frenkel (LF) thermodynamic integration for the study of the rigidity of networks of particles bonded together by short-ranged square well attractive potentials. We show that, by taking the limit of the attractive range going to zero, the celebrated Baxter limit, the degrees of freedom per particle of the system reduces to the fraction of floppy modes, i.e.those modes associated with movements at constant bonding distance. This method allows us to enumerate this fraction in a straightforward way and to calculate precisely the entropy associated with the sampling of phase space due to these floppy modes. Inparticular, we shall discuss how this quantity changes in the case of three (3D) and two dimensions (2D). © 2008 IOP Publishing Ltd.
000143929 700__ $$0241994$$aFoffi, G.$$g167844
000143929 773__ $$j20$$k49$$q494241$$tJournal of Physics Condensed Matter
000143929 8560_ $$fnada.guerraoui@epfl.ch
000143929 909C0 $$0252261$$pGR-FO$$xU11946
000143929 909CO $$ooai:infoscience.tind.io:143929$$particle
000143929 937__ $$aGR-FO-ARTICLE-2008-002
000143929 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000143929 980__ $$aARTICLE