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Here we report on a validation study on brain–machine interfaces (BMIs)

performed during the December 2007 ESA parabolic flight campaign. We inves-

tigated the feasibility of using BMIs for space applications by performing tests in

microgravity. Brain signals were recorded with noninvasive electroencephalography

before (calibration sessions) and during the parabolic flights on two subjects with

prior BMI experience. The results of our experiments show that an experienced

BMI user can achieve stable performance in all gravity conditions examined and,

hence, demonstrate the feasibility of operating noninvasive BMIs in space.
I. Introduction
Triggered by the promising review of three Ariadna1 studies (Carpi and

De Rossi, 2006; Millán et al., 2006; Tonet et al., 2006) initiated by ESA’s Advanced

Concepts Team, we experimentally evaluated the functionality of BMIs in

diVerent gravity conditions, including microgravity, onboard a parabolic flight
nced
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(47th ESA PFC campaign).2 Brain signals were recorded with noninvasive electro-

encephalogram (EEG), currently the most promising BMI for space applications

(see other chapters for the nature of EEG and the possibilities that BMI open up to

astronauts). In this chapter we report the performance of two healthy volunteer

subjects with some previous BMI experience during various experimental condi-

tions, including the calibration session run on ground prior to the parabolic flights

that is used as a baseline to compare flight performance. The analysis focuses on

two diVerent aspects of BMI, the mental commands sent by the user to drive the

BMI and the error potentials (ErrP) generated by a feedback that does not match

the subject’s intent. These ErrP can be used as a verification procedure: if an ErrP

follows the feedback associated to the BMI response, the system can cancel the

command and therefore filter errorsmade by theBMI. Ferrez andMillán (2008a,b)

describe ErrP for BMI and demonstrate their benefits.
II. Methods
Figure 1 shows the task subjects have to perform. It consists of mentally

moving a virtual blue balloon on a standard computer display from a start

position at the top of a pyramid to pseudo-randomly selected targets either on

the left or on the right bottom of the pyramid. Every 2 s, the balloon goes down

one step, either to the left or to the right depending on the BMI’s interpretation of

the user’s mental command. The BMI continuously analyzes the subject’s EEG

signals to recognize his intent and makes a decision every 2 s. This classification

process continues until the balloon reaches the bottom row. In parallel, after each

single step of the balloon, the BMI analyzes a small time window to check the

presence of an ErrP which would indicate an erroneous feedback (i.e., wrong

response of the BMI).

During the parabola of the flight, subjects reached two targets per gravity

phase (intertrial interval of around 2 s, for a total of around 18 s). As shown in

Fig. 2, a parabola consists of five phases of 20 s each: normal gravity (1g),

hypergravity (1.8g), microgravity (0g), hypergravity (1.8g), and normal gravity

(1g). Each subject executed 15 parabolas. In addition, subjects performed 10

calibration sessions on ground a few days before the flight, each consisting of 10

targets equally distributed.

Data from the calibration sessions were used to build a classifier (see Section III

for details). Then, during the parabolic flight, EEG preprocessing and classifica-

tion was done online. However, the feedback delivered to the subjects was not the
2ESA Parabolic flight campaign: http://www.spaceflight.esa.int/users/index.cfm?act=default.

page&level=11&page=paraf
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FIG. 1. Experimental task. The balloon (blue) appears at the top of the pyramid.The goal is to bring it

to the green target (left in this example) that is chosen randomly. The subject executes the corresponding

mental task (imagination of a left arm movement) until the balloon reached the bottom of the pyramid.

The balloon makes a step down every 2 s, either to the left or to the right.
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actual response of the BMI. Instead, the balloon moved with a 30% error rate—

that is, at each step there was a 0.3 probability that the balloon moved to the

wrong direction, thus replicating the performance of the online BMI (see Section

III. A). It is our experience that this approach facilitates initial user training (either

in early stages or in complex novel conditions) and yields EEG data of higher

quality, even if the subjects are aware of the nature of the feedback. The reason is

that it helps users to maintain their concentration and avoid frustration or

confusion because of a poor performance of the BMI, which in our case can be

due to dramatic changes in the EEG induced by hyper- or microgravity (Pletser

and Quadens, 2003). Ultimately, this approach eliminates a potential showstop-

per during the first assessment of BMI for space applications.

In order to deliver mental commands, subjects were instructed to execute

two mental tasks in a self-paced way—that is, at their own pace without needing

any external stimulation. The two mental tasks were imagination of left hand

movements, which is associated to the command ‘‘left,’’ and words association,

for the command ‘‘right.’’ The words association task consists in searching for

words starting with the same letter chosen randomly at the beginning of the trial.

EEG signals were processed following the protocol described by Ferrez and

Millán (2008a) and Millán et al. (2008). As a reminder, for recognition of mental

tasks, we analyze EEG in the frequency domain and compute 112 EEG samples

during the 8 s that lasts a trial; for ErrP detection, analysis is performed

in the time domain and there are four EEG samples per trial, one per step of

the balloon.
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FIG. 2. Stability of features for subject 1 over the diVerent gravity conditions. Top: Degree of relevance of frequencies. Bottom: Degree of relevance of EEG

electrodes. Data for subject 2 are similar and omitted due to space restrictions.
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We use machine learning techniques at two levels, namely feature selection

and training the two classifiers embedded in the BMI. The approach aims at

discovering subject-specific patterns embedded in the continuous EEG signal.

At the first level, we select those features that are more relevant for recognizing

either the mental tasks or ErrP. Thus, we select spatio-frequency features for

mental tasks (relevant electrodes and frequency components) and relevant elec-

trodes for ErrP. Ferrez (2007) and Millán et al. (2008) provide details of the

diVerent feature selection methods we use.

The vector of relevant features is extracted from each EEG sample and fed to a

statistical Gaussian classifier. Its output is an estimation of the posterior class

probability distribution for a single EEG sample; that is, the probability that the

sample belongs to one of the two classes (left or right for mental commands, and

error or correct for ErrP). In this statistical classifier, everyGaussian unit represents

a prototype of one of the classes to be recognized, andwe use several prototypes per

class. During learning, the centers of the Gaussian units are pulled toward the

samples of the class they represent and pushed away from the samples of the other

class (see Millán et al., 2004). For the classification of mental commands, the BMI

combines the outputs of the Gaussian classifier over 2 s; while for ErrP recognition,

the BMI simply takes the output of the classifier to each single sample.

No artifact rejection algorithm was applied and all EEG samples were kept for

analysis. It is worth noting, however, that after a visual a posteriori check of

the samples we found no evidence of eye/muscular artifacts that could have

contaminated one condition diVerently from the other.
III. Experimental Results
For each of the two subjects, data from the calibration sessions performed on

ground were split in two groups of five consecutive sessions. The first one, training

set, was used to select the features and build a classifier. The performance of this

classifier was tested on the second group, testing set, to have a baseline against

which to compare the subjects’ performance during the parabolic flights. Regard-

ing the data from the parabolic flight, we split it in three groups of five consecutive

parabolas. Then, we built a classifier for each group and type of gravity condition,

which was tested on the next group. Final performance for each gravity condition

is the average for the three groups, which yields a more robust estimation of the

BMI performance since we are always testing it on new data recorded on later

parabolas than those used for building the classifiers. This procedure is the same

for both aspects of the BMI, namely the mental commands and the ErrP.

Relevant features, selected on the training set of the calibration sessions, are

kept fixed for the parabolic flight sessions. For the recognition of mental



194 MILLÀN et al.
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commands, the relevant features are electrodes {C1, C3, C5, CP3, CP5, C2, C4,

C6, CP4, CP6} and frequencies {14, 16} Hz for subject 1, and electrodes {FC3,

C1, C3, C4} and frequencies {12, 14} Hz for subject 2. These features are in

agreement with previous studies where sensorimotor rhythms over the two hemi-

spheres have allowed operating a BMI (Pfurtscheller and Neuper, 2001). Interest-

ingly, the relevant features for ErrP detection are similar for both subjects, namely

electrodes FCz and Cz, in accordance with our previous experiments. This is also

in agreement with all neurophysiological evidence that ErrP has a centro-frontal

focus along the midline (Falkenstein et al., 2000).
A. CLASSIFICATION OF MENTAL COMMANDS

Although the overall task for the subjects was to reach the target at the

bottom of the pyramid, here we analyze the classification accuracy at the level

of each single EEG sample. This is a much harder task, but yields a better picture

of the short-time performance and stability of subjects during parabolic flights.

Task-level performance is, in general, better than single-sample performance

(provided the latter is above chance level), as each step taken by the balloon is a

combination of the outputs of the classifier to several consecutive samples. Also,

achieving the task only requires getting closer to the target than to the opposite

corner. Thus, correct performance at the task level can accommodate errors

at the sample level.

Performance is above chance level for all gravity conditions (or phases) for

both subjects, with a global accuracy in between 72 and 79% (Table I). Despite

the stress, noise, and novelty of parabolic flight, performance during the flight

does not degrade much with respect to ground (our baseline) for subject 1 and is
TABLE I

PERCENTAGES (MEAN AND STANDARD DEVIATION) OF CORRECTLY CLASSIFIED SINGLE SAMPLES FOR THE

TWO EXPERIMENTAL SUBJECTS

Left arm (%) Words association (%) Accuracy (%)

Subject 1 Subject 2 Subject 1 Subject 2 Subject 1 Subject 2

1g (ground) 84.5 73.5 73.7 73.6 79.1 � 7.6 73.6 � 0.1

1g (flight) 74.8 � 12.5 76.2 � 4.2 69.5 � 1.5 77.6 � 2.9 72.2 � 3.7 76.9 � 1.0

2g 77.6 � 13.0 77.4 � 8.8 75.8 � 6.9 80.0 � 2.8 76.7 � 1.3 78.7 � 1.8

0g 81.4 � 3.6 74.0 � 1.4 62.8 � 1.9 74.1 � 0.7 72.1 � 13.2 74.1 � 0.1

2g 89.7 � 0.5 78.2 � 7.4 68.1 � 13.9 79.3 � 1.0 78.9 � 15.3 78.8 � 0.8

1g (flight) 88.4 � 1.3 76.0 � 2.4 57.4 � 3.1 81.3 � 12.9 72.9 � 21.9 78.7 � 3.7

Average 82.7 � 5.9 75.9 � 1.8 67.9 � 6.9 77.7 � 3.2 75.3 � 3.3 76.8 � 1.2
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even better for subject 2. While subject 2 achieves a well-balanced accuracy

among both mental tasks, subject 1 has a bias toward ‘‘left.’’

The stability of the EEG patterns during the diVerent gravity conditions

of the flight (and with respect to ground) is a key requirement for a successful

and reliable BMI in space applications. To check it, we have run the feature

selection algorithms to identify the relevant features characterizing each gravity

condition. Remarkably, the relevant features, frequencies and electrodes, are

very similar for all conditions (Fig. 2 for subject 1). Indeed, the most relevant

frequencies are 14 and 16 Hz, whereas the most relevant electrodes are located

around C3 and C4. Subject 2 also exhibits a high stability of relevant features

for all conditions.
B. RECOGNITION OF ERROR-RELATED POTENTIALS

ErrP are similar for both subjects and, on average, above 80% for both error

and correct steps (Tables II and III for subjects 1 and 2, respectively). These

recognition rates are similar to the performances of all subjects we have worked

with until now (Ferrez, 2007). The benefit of integrating ErrP detection into a

BMI becomes obvious since it always improves its bit-rate—that is, how many

correct bits it can communicated per step—for any gravity condition (Tables II

and III). On average, ErrP detection doubles the bit-rate of the BMI for both

subjects (see Ferrez, 2007 for bit-rate computation of a BMI).
TABLE II

PERCENTAGES (MEAN AND STANDARD DEVIATION) OF CORRECTLY CLASSIFIED ERROR

SAMPLES AND CORRECT SAMPLES, GLOBAL ACCURACY OF THE BMI (FROM TABLE I),

BIT-RATE OF THE BMI, AND INCREASE IN PERFORMANCE INTRODUCED BY ERRP DETECTION

Error (%) Correct (%) BMI (%)

Bit-rate

Increase (%)No ErrP ErrP

1g (ground) 82.8 78.9 79.1 0.260 0.459 76

1g (flight) 85.0 � 7.1 91.7 � 7.1 72.2 0.147 0.475 223

2g 90.6 � 13.3 77.1 � 3.0 76.7 0.217 0.477 120

0g 90.6 � 2.4 82.7 � 1.7 72.1 0.146 0.466 219

2g 70.3 � 9.4 89.6 � 9.5 78.9 0.256 0.456 78

1g (flight) 77.5 � 3.5 83.4 � 7.4 72.9 0.157 0.374 138

Average 82.8 � 7.9 83.9 � 5.8 75.3 0.193 0.445 130

Performances for subject 1 over all gravity conditions.



TABLE III

PERCENTAGES (MEAN AND STANDARD DEVIATION) OF CORRECTLY CLASSIFIED ERROR SAMPLES

AND CORRECT SAMPLES, GLOBAL ACCURACY OF THE BMI (FROM TABLE I), BIT-RATE OF THE BMI,

AND INCREASE IN PERFORMANCE INTRODUCED BY ERRP DETECTION

Error (%) Correct (%) BMI (%)

Bit-rate

Increase (%)no ErrP ErrP

1g (ground) 84.6 84.4 73.6 0.167 0.441 163

1g (flight) 85.0 � 7.1 87.1 � 1.3 76.9 0.220 0.505 129

2g 89.9 � 1.4 88.4 � 1.8 78.7 0.253 0.578 128

0g 86.4 � 6.4 77.6 � 2.4 74.1 0.175 0.416 138

2g 81.2 � 1.7 68.8 � 1.1 78.8 0.255 0.372 46

1g (flight) 80.8 � 11.5 86.6 � 5.3 78.7 0.253 0.496 96

Average 84.7 � 3.4 82.2 � 7.6 76.8 0.218 0.467 113

Performances for subject 2 over all gravity conditions.

196 MILLÀN et al.

Author's personal copy
IV. Discussion
The results of the December 2007 ESA campaign show that it is possible for a

subject with some prior BCI experience to achieve stable performances in normal

gravity as well as in microgravity and hypergravity, and hence demonstrate the

feasibility of operating noninvasive BMI in space. Both subjects show encouraging

performance despite their little experience in microgravity. On average, both of

them reached 75% of global accuracy for the recognition of two mental

commands and more than 80% of correct classification for ErrP. Although the

BMI performance does not achieve the results of experiments run on ground, they

are still satisfactory considering the various sensorial stress experienced during

parabolic flights. As previous BMI research shows, these performances can be

improved with further training and experience of the subjects in the use of BMI

during parabolic flights. These results, and hypothesis, need to be confirmed with

further experiments in future parabolic flight campaigns that should involve more

subjects suYciently trained previously on ground.
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