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Abstract: This paper is concerned with input adaptation in dynamic processes in order to
guarantee feasible and optimal operation despite the presence of uncertainty. For optimal control
problems having mixed control-state constraints, two sets of directions can be distinguished
in the input function space: the so-called sensitivity-seeking directions, along which a small
input variation does not affect the active constraints, and the complementary constraint-seeking
directions, along which an input variation does affect the respective constraints. Two selective
input adaptation scenarios can be defined, namely, adaptation along each set of input directions.
This paper proves the important result that the cost variation due to the adaptation along the
sensitivity-seeking directions is typically smaller than that due to the adaptation along the
constraint-seeking directions.
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1. INTRODUCTION

Transient processes constitute an important class of en-
gineering processes. Many processes in resource industries
and alternative energy-generation systems are either inher-
ently transient or operated in an unsteady-state manner.
Batch and semi-batch processes in chemical engineering
are examples of processes characterized by the absence of
a steady state.

We will consider the problem of optimal control of tran-
sient processes for which the uncertainties in the process
model are represented in the form of parametric variations.
If the optimal input profiles that are computed off-line,
are applied to the process in an open-loop manner, plant-
model mismatch and process disturbances can result in
suboptimal process operation or, worse, infeasible oper-
ation. One way to avoid re-solving the optimal control
problem is to adapt the nominal optimal inputs in accor-
dance with the magnitude of the parametric variations.
In this approach, one needs a sensitivity analysis of the
parametric optimal control problems, i.e., a study of the
effect of parametric variations on the optimal inputs. See
Ito and Kunisch [1992, 2008] and Maurer and Augustin
[2001] for extensive references to sensitivity analysis of
parametric optimal control problems.

The use of sensitivity analysis to adapt all parts of the
input profiles is difficult in practice, and may not be
necessary from a performance viewpoint. Hence, partial or

⋆ This work was supported by the Swiss National Science Founda-
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selective input adaptation strategies that result in accept-
able performance loss compared to optimal operation of
the perturbed process have a great potential for practical
applications. The main focus of this work will be to define
certain components of the input variations, which will help
implement selective input adaptation schemes

For optimal control problems having control-state path
constraints, the possibility of splitting the input space,
at each time instant, into so-called pointwise sensitivity-
and constraint-seeking directions has been discussed in
Deshpande et al. [2009]. A small input variation along the
former set of directions at a given time does not change the
values of the active path constraints at that time. However,
note that, since the system is dynamic, it is necessary
to consider the current and all past input variations for
computing the change in path constraints and capture the
dynamic essence of the problem.

The latter approach is developed in this paper. In this case,
a sensitivity-seeking direction turns out to be the solution
of a certain set of linear integral equations. Thus, in this
case, the sensitivity- and constraint-seeking directions are
directions in the input function space C[t0, tf ]

nu as opposed
to directions in the Euclidean space IR

nu at each time
instant as in Deshpande et al. [2009], where t0 and tf are
the initial and final times, respectively, and nu represents
the number of input variables. The main result of this
paper is that, for small parametric variations, the cost
variation due to the adaptation along the sensitivity-
seeking directions is typically smaller than that due to
the adaptation along the constraint-seeking directions.
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The practical significance of the result is that, for small
parametric variations, meeting the active constraints will
have a greater impact on optimality than forcing the
sensitivity condition to zero.

The outline of the paper is as follows. The general math-
ematical formulation of the parametric optimal control
problem involving path constraints is given in Section 2. A
summary of the necessary conditions of optimality (NCO)
and the terminology of switching times and related nota-
tion are also introduced in this section. In Section 3, the
sensitivity- and constraint-seeking directions are defined,
and the concept of selective input adaptation along either
one of these directions is introduced. Section 4 presents a
quantitative analysis of the cost variation brought about
by selective input adaptation on response to parametric
variations. In Section 5, a numerical approach is proposed
to compute the sensitivity- and constraint-seeking direc-
tions. A numerical case study is presented in Section 6.
Finally, Section 7 summarizes the results and identifies
future research directions.

2. PRELIMINARIES

This section comprises the general mathematical formula-
tion of the parametric optimal control problem involving
path constraints and a summary of the NCOs. The termi-
nology of switching times is also introduced.

2.1 Problem Formulation and Assumptions

The following parametric optimal control problem in the
parameters θ, subject to the mixed control-state inequality
constraints Ω ≤ 0, with given initial time t0 and terminal
time tf , is considered (OC(θ)): 1

ẋ(t) = f(t,x(t),u(t),θ); x(t0) = h(θ), (1)

Ωi(t,x(t),u(t),θ) ≤ 0, i ∈ InΩ
, (2)

min
u(t)

J(u) = ψ(tf ,x(tf),θ)+

∫ tf

t0

φ(t,x(t),u(t),θ) dt, (3)

where t ∈ [t0, tf ], u(t) ∈ IR
nu and x(t) ∈ IR

nx . Moreover,
the functions f , Ωi, ψ and φ are assumed to be continu-
ously differentiable with respect to all their arguments.

Let the nominal values of the system parameters be θ0,
and let (u∗(t),x∗(t)) be an optimal pair for the problem
OC(θ0). We assume the following constraint qualification
to hold [Maurer and Augustin, 2001]: 2

rank{Ωa
u
(t,x∗(t),u∗(t),θ0)} = nΩa(t), ∀ t ∈ [t0, tf ],

where nΩa(t) denotes the number of active path con-
straints at time t. Introducing the Hamiltonian function
H,

H(t,x,u,λ,µ,θ) := φ(t,x,u,θ) + λT f(t,x,u,θ)

+ µT Ω(t,x,u,θ),

and assuming that the problem OC(θ0) is not abnormal,
the first-order necessary conditions of optimality must hold
almost everywhere (a.e.) in [t0, tf ] [Hartl et al., 1995]:

1 The following notation is used throughout the paper: In :=
{1, . . . , n}.
2 The notation gz is used for the Jacobian matrix of the vector
function g with respect to the vector z.

0 = Hu(t,x∗(t),u∗(t),λ∗(t),µ∗(t),θ0), (4)

λ̇
∗

(t) = −Hx(t,x∗(t),u∗(t),λ∗(t),µ∗(t),θ0), (5)

λ∗(tf) = ψx(tf ,x
∗(tf),θ0)

0 = µ∗

i (t)Ωi(t,x
∗(t),u∗(t),θ0), ∀ i ∈ InΩ

, (6)

0 ≤ µ∗

i (t), ∀ i ∈ InΩ
,

for some λ∗(t) ∈ IR
nx , µ∗(t) ∈ IR

nΩ , t ∈ [t0, tf ], along with
(1) and (2).

Two additional assumptions are introduced:

• Strict complementarity slackness holds, i.e. the mul-
tiplier functions µ∗

i (t), ∀ t ∈ [t0, tf ], corresponding to
the active mixed control-state constraints are strictly
nonzero. The vector of these multiplier functions at
time t is denoted by µa(t).

• The Hamiltonian function is regular, which implies
that the optimal inputs u∗(t) are continuous in [t0, tf ]
[Maurer and Augustin, 2001].

2.2 Switching Times

For problems having mixed control-state constraints, a
constraint can be active over several time intervals. Let the
structure of the nominal optimal inputs be such that the
constraint Ωi is active on Ni disjoint intervals [aik, bik] ⊂
[t0, tf ], k ∈ INi

. Therefore,

Ωi(t,x
∗(t),u∗(t),θ0) = 0, i ∈ InΩ

,

for t ∈ {[ai1, bi1], . . . , [aiNi
, biNi

]}.

The time instants aik and bik are called the switching times
for the constraint Ωi, and the vector of active constraints
at time t is denoted by Ωa(t,x∗(t),u∗(t),θ0). Henceforth,
the set of all switching times in the nominal solution,
including the initial and final times, is represented by

T = {t∗0, . . . , t
∗

N} ,

with t0 = t∗0 < · · · < t∗N = tf . It is important to note that
the set of active constraints in any subinterval [t∗k−1, t

∗

k] is
constant, while the sets of active constraints in different
subintervals [t∗p−1, t

∗

p] and [t∗k−1, t
∗

k] are different.

3. SENSITIVITY- AND CONSTRAINT-SEEKING
DIRECTIONS

In this section, the sensitivity- and constraint-seeking di-
rections in input space are characterized by considering
small variations of the inputs around their nominal opti-
mal values u∗(t).

Consider a small variation around the nominal optimal
inputs u∗(t) in the directions ξu ∈ Ĉ[t0, tf ]

nu ,

ũ(t; η) = u∗(t) + η ξu(t), ∀ t ∈ [t0, tf ], (7)

with |η| ≪ 1, and where Ĉ[t0, tf ]
nu stands for the linear

space of piecewise-continuous functions on [t0, tf ].

Let x̃(t) denote the resulting perturbed states so that the
pair (x̃(t), ũ(t)) satisfies (1) for the parameter values θ0.
From the continuous differentiability of f with respect to
the inputs and states at (x∗(t),u∗(t)), Taylor expansion of
f around (x∗(t),u∗(t)) gives: 3

3 The compact notation y∗[t] := y(t, x∗(t), u∗(t), θ0) is used
throughout the paper.
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˙̃x(t) − ẋ∗(t) = f(t, x̃(t), ũ(t),θ0) − f∗[t]

= f∗
x
[t] {x̃(t) − x∗(t)} + η f∗

u
[t]ξu(t) +O(η2).

A first-order approximation of x̃(t; η) is obtained as

x̃(t; η) = x∗(t) + η ξx(t) +O(η2), (8)

where ξx(t) is the solution of

ξ̇
x

(t) = f∗x [t]ξx(t) + f∗u[t]ξu(t), ∀ t ∈ [t0, tf ],

ξx(t0) = 0. (9)

The unique solution of the above linear system can be
written in the following form [Rugh, 1993],

ξx(t) =

k−1
∑

i=1

∫ t∗i

t∗
i−1

Φf
∗

x (t, s)f∗
u
[s]ξu(s) ds

+

∫ t

t∗
k−1

Φf
∗

x (t, s)f∗
u
[s]ξu(s) ds, (10)

for each t ∈ (t∗k−1, t
∗

k], k ∈ IN , where ΦA(t, s) stands
for the state-transition matrix of the homogeneous linear
system

ż(t) = A(t)z(t), ∀ t ≥ t0; z(t0) = z0. (11)

The variation of the active constraints Ωa at time t ∈
[t0, tf ] caused by the input variation (7) is given by the
Gâteaux derivative [Cesari, 1983] of Ωa in the direction
ξu(t) at u∗(t):

δΩa(u∗; ξu) :=
∂

∂η
Ωa(t, x̃(t; η), ũ(t; η),θ0)

∣

∣

∣

∣

η=0

= Ωa∗
x

[t]ξx(t) + Ωa∗
u

[t]ξu(t).

Using (10), this variation can be rewritten as

δΩa(u∗; ξu) = Ωa∗
x

[t]
k−1
∑

i=1

∫ t∗i

t∗
i−1

Φf
∗

x (t, s)f∗
u
[s]ξu(s) ds

+ Ωa∗
x [t]

∫ t

t∗
k−1

Φf
∗

x (t, s)f∗u[s]ξu(s) ds+ Ωa∗
u [t]ξu(t). (12)

If the value of Ωa is unaffected by a small variation in the
direction ξu(t) around u∗(t), for all t ∈ [t0, tf ], then ξu(t)
is called a sensitivity-seeking (SS) direction at u∗(t). This
concept is formalized in the following definition.

Definition 1. (Sensitivity-Seeking Directions). A function

ξu ∈ Ĉ[t0, tf ]
nu is called a sensitivity-seeking direction for

the optimal control problem OC(θ0) at u∗(t) if

0 = DΩa,tξ
u := Ωa∗

x
[t]

k−1
∑

i=1

∫ t∗i

t∗
i−1

Φf
∗

x (t, s)f∗
u
[s]ξu(s) ds

+ Ωa∗
x

[t]

∫ t

t∗
k−1

Φf
∗

x (t, s)f∗
u
[s]ξ

u
(s) ds+ Ωa∗

u
[t]ξu(t),

(13)

for t ∈ (t∗k−1, t
∗

k], k ∈ IN .

Thus, a SS direction is a solution of the linear integral
equation (13) for all t ∈ [t0, tf ]. Clearly, any linear combi-
nation of SS directions is itself a SS direction. Therefore,
the set of SS directions for OC(θ0) at u∗(t), denoted by

Vs := {ξ ∈ Ĉ[t0, tf ]
nu : DΩa,tξ = 0, t ∈ [t0, tf ]},

yields a linear subspace of Ĉ[t0, tf ]
nu . It will be referred to

as the sensitivity-seeking subspace for OC(θ0) at u∗(t).

Next, a constraint-seeking (CS) direction is defined as one
that is orthogonal to the sensitivity-seeking subspace.

Definition 2. (Constraint-Seeking Directions). A function

ξu ∈ Ĉ[t0, tf ]
nu is called a constraint-seeking direction for

the optimal control problem OC(θ0) at u∗(t) if ξu(t) is
orthogonal to Vs,

0 = 〈ξu,ϕ〉 , ∀ϕ ∈ Vs,

where 〈·, ·〉 stands for any inner product on Ĉ[t0, tf ]
nu .

Let Vc denote the set of all CS directions for OC(θ0) at
u∗(t) by Vc. By the sesquilinearity property of an inner

product, Vc is itself a linear subspace in Ĉ[t0, tf ]
nu and

will be referred to as the constraint-seeking subspace for
OC(θ0) at u∗(t).

Lemma 3. No non-zero vc ∈ Vc satisfies (13), that is,

Vs ∩ Vc = {0} .

Proof: Let ξ ∈ Vs∩Vc. By construction, we have 〈ξ, ξ〉 =
0, which by the elementary properties of an inner product
implies ξ = 0. 2

At this point, the concept of selective input adaptation can
be introduced.

Definition 4. (Selective Input Adaptation). The process of
adapting the nominal optimal inputs u∗(t) according to (7)
in any nonzero direction ξu ∈ Vs is called selective input
adaptation in a sensitivity-seeking direction. Likewise, the
process of adapting u∗(t) in any nonzero direction ξu ∈ Vc

is called selective input adaptation in a constraint-seeking
direction.

4. SELECTIVE INPUT ADAPTATION UNDER
PARAMETRIC UNCERTAINTY

Parametric perturbations from θ0 to θ̃(η) := θ0 + η ξθ,
with |η| ≪ 1, are considered in this section. Suppose that
one wishes to avoid repeating the whole solution procedure
to compute the optimal inputs ũ∗(t) for the perturbed
system. Either one of two options are possible:

(1) No Input Adaptation: The nominal optimal inputs
u∗ are applied ‘as is’ to the perturbed system. Let
the pair of perturbed states and resulting cost be
denoted by (x̂(t), Ĵ). Thus, (x̂(t),u∗(t)) satisfies (1)

for θ̃. Because of the continuous differentiability of
f with respect to x and θ, x̂(t) has a first-order
approximation around x∗(t) as

x̂(t; η) = x∗(t) + ηξx̂(t) +O(η2),

where

ξ̇
x̂

(t) = fx[t]ξx̂(t) + fθ[t]ξθ, (14)

ξx̂(t0) = hθ(θ0)ξ
θ.

(2) Selective Input Adaptation: The nominal optimal in-
puts are adapted along a general direction ξu ∈
Ĉ[t0, tf ] and the resulting inputs (7) are then applied
to the perturbed system. Let the pair of perturbed
states and resulting cost be denoted by (x̃(t), J̃),

respectively. Thus, (x̃(t), ũ(t)) satisfies (1) for θ̃. Be-
cause of the continuous differentiability of f with
respect to x, u and θ, x̃(t) also has a first-order
approximation around x∗(t) as

x̃(t; η) = x∗(t) + ηξx̃(t) +O(η2),
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where

ξ̇
x̃

(t) = fx[t]ξx̃(t) + fu[t]ξu(t) + fθ[t]ξθ, (15)

ξx̃(t0) = hθ(θ0)ξ
θ.

Subscript s or c will be added to various notations
when the direction of input adaptation ξu(t) under
consideration is a SS or a CS direction, respectively.

Evidently, both of the above options will result in sub-
optimal process operation, although Option 2 can be ex-
pected to perform better under judicious choice of the in-
put adaptation directions. The cost difference between se-
lective adaptation and no adaptation is given by δJ(ξu) :=

J̃− Ĵ . The objective here is to compare the cost variations
δJ(ξu

s ) and δJ(ξu

c ).

Following common practice in optimal control theory
[Bryson and Ho, 1975], the cost functionals are augmented
as

Ja := ψ(tf ,x(tf),θ) +

N
∑

k=1

∫ t∗k

t∗
k−1

φ(t,x(t),u(t),θ) dt

+
N

∑

k=1

∫ t∗k

t∗
k−1

π(t)T (f(t,x(t),u(t),θ) − ẋ(t)) dt,

for some multiplier functions π ∈ C1[t0, tf ]
nx —the linear

space of continuously differentiable functions on [t0, tf ].
It should be clear that Ja = J for any such multiplier
function provided that the pair (x(t),u(t)) satisfies (1)
for θ. In this case, minimizing J with respect to u is
equivalent to minimizing Ja with respect to u. Using
integration by parts, then Taylor expansions of various
terms in the expression of δJ(ξu) around (x̂(t),u∗(t)), and
finally suitable rearrangement, gives: 4

δJ(ξu) = η

{

[

ψ̂x[tf ]
T − π(tf)

T
] [

ξx̃(t) − ξx̂(t)
]

+

N
∑

k=1

∫ t∗k

t∗
k−1

[

φ̂x[t]T + π(t)T f̂x[t] + π̇(t)T
] [

ξx̃(t) − ξx̂(t)
]

dt

+

N
∑

k=1

∫ t∗k

t∗
k−1

[

φ̂u[t]T + π(t)T f̂u[t]
]

ξu(t) dt

}

+O(η2).

(16)

Choosing the multiplier functions π to be the (unique)
solution π̂ of the linear system:

˙̂π(t) = −f̂x[t]T π̂(t) − φ̂x[t]; π̂(tf) = ψ̂x[tf ], (17)

and Taylor expanding the terms φ̂u[t], f̂x[t] and f̂u[t]
around (x∗(t),u∗(t),θ0), the cost difference reduces to:

δJ(ξu) = η

N
∑

k=1

∫ t∗k

t∗
k−1

[

φ∗
u
[t]T + π̂(t)T f∗

u
[t]

]

ξu(t) dt

+O(η2). (18)

Since the optimality condition (4) holds along the nominal
optimal trajectory u∗(t), (18) can be rewritten as

δJ(ξu) = η

N
∑

k=1

∫ t∗k

t∗
k−1

[

β̂(t)T f∗u[t] − µa(t)T Ωa∗
u [t]

]

ξu(t) dt

+O(η2), (19)

4 The compact notations ŷ[t] := y(t, x̂(t), u∗(t), θ̃), and ỹ[t] :=
y(t, x̃(t), ũ(t), θ̃) are used in the remainder of the paper.

where β̂(t) := π̂(t) − λ∗(t).

It can be shown that β̂(t) = β∗(t) + O(η), where β∗(t) is
the unique solution of

β̇
∗

(t) = −f∗
x
[t]T β∗(t) + Ωa∗

u
[t]T µa(t); β∗(tf) = 0.

Substituting the expression of β∗(t) in (19), gives

δJ(ξu) = O(η2) − η

N
∑

k=1

∫ t∗k

t∗
k−1

µa(t)T Ωa∗
u [t]ξu(t) dt

− η

N
∑

k=1

∫ t∗k

t∗
k−1

{

∫ t∗k

t

µa(s)T Ωa∗
x

[s]Φf
∗

x (s, t)f∗
u
[t] ds

+
N

∑

i=k+1

∫ t∗i

t∗
i−1

µa(s)T Ωa∗
x

[s]Φf
∗

x (s, t)f∗
u
[t] ds

}

ξu(t) dt.

By changing the order of integration in all double integral
terms in the last expression, then a suitable rearrangement
of the double sum term, and finally using (13), we get

δJ(ξu) = −η

N
∑

k=1

∫ t∗k

t∗
k−1

µa(t)T (DΩa,tξ
u) dt+O(η2).

(20)

The main result of the paper can now be stated:

Theorem 5. (Order of Selective Input Adaptation). Let u∗

be an optimal solution for the optimal control problem
OC(θ0), and consider parametric variations of the form

θ̃(η) = θ0 + η ξθ, with |η| ≪ 1. The variation in cost upon
selective input adaptation is O(η2) in any (nonzero) SS
direction ξu

s ∈ Vs, whereas it is O(η) in any (nonzero) CS
direction ξu

c ∈ Vc.

Proof: By Definition 1, ξu

s satisfies (13). Therefore, from
(20), δJ(ξu

s ) = O(η2). On the other hand, no nonzero
direction in Vc satisfies (13) from Lemma 3. Since strict
complementarity slackness holds for the path constraints
at u∗ by assumption, it follows that the first-order term
in (20) is nonzero in general, that is, δJ(ξu

c ) = O(η). 2

5. NUMERICAL PROCEDURE TO COMPUTE
SENSITIVITY- AND CONSTRAINT-SEEKING

DIRECTIONS

This section proposes a numerical procedure to compute
SS and CS directions.

Let ξu(t) denote a given direction in the input function
space. We would like to compute the SS and CS compo-
nents ξu

s ∈ Vs and ξu

c ∈ Vc of ξu(t), respectively.

To avoid the difficulty of computing projections on the
infinite-dimensional function spaces Vc and Vs, we propose
to approximate the optimal control problem by a nonlinear
programming problem (NLP) as follows:

(1) Approximate the input profiles u(t) using a control
vector parameterization (e.g., piecewise constant or
affine) in terms of n parameters, the vector of which
will be denoted by ω. Thus, we have the following
expression relating ω to u(t):

u(t) = U(t,ω), ∀ t ∈ [t0, tf ]. (21)
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(2) Transform the optimal control problem into an NLP
in terms of the decision variables ω. Note that the
path constraints in the original optimal control prob-
lem will have to be transformed into a set of m dis-
crete –typically nonlinear– constraints in the variables
ω. m may be chosen equal to n.

(3) Solve the resulting NLP numerically to obtain the
optimal values ω∗, and denote by Ga the set of active
constraints of the NLP at ω∗.

(4) From the singular value decomposition of Ga
ω

at ω∗,
find the orthogonal matrices Vc and Vs that define
the CS and SS directions, respectively, of the NLP
problem; see Chachuat et al. [2008] for details.

(5) Parameterize the given direction ξu(t) in terms of the
vector ξω ∈ IR

n, such that:

ξu(t) = U(t, ξω), ∀ t ∈ [t0, tf ].

(6) Compute the orthogonal projections of the vector ξω

on the column space of Vc and Vs, respectively:

ξω

c =VcVc
T ξω,

ξω

s =VsVs
T ξω.

(22)

(7) ξω

c and ξω

s provide the approximations of the desired
profiles ξu

c (t) and ξu

s (t), respectively, under the same
parameterization as used in Step 1, i.e.,

ξu

c (t) = U(t, ξω

c ), ∀ t ∈ [t0, tf ],

ξu

s (t) = U(t, ξω

s ), ∀ t ∈ [t0, tf ].

Steps 5 to 7 are depicted in Figure 1.

ξu(t) ξω

ξω

c , ξω

sξu

c (t), ξu

s (t)

VcVc
T ,

VsVs
T

Fig. 1. Approximate computation of SS and CS direc-
tions. Exact computations (dotted arrow). Approxi-
mate computations (solid arrows).

In practice, one can expect the approach to yield better
approximations of the desired directions ξu

c (t) and ξu

s (t)
as the number n of parameters in the control parameteri-
zation increases.

In case of small parametric variations around θ0, a possible

choice of the input adaptation direction is ξu
∗

(t), where

ξu
∗

(t) = U(t, ξω
∗

), ∀ t ∈ [t0, tf ], (23)

ξω
∗

being the (first-order) sensitivity of the NLP optimal
solution ω∗ with respect to the uncertain parameters at θ0.
Such sensitivity information can be computed, under mild
conditions, via linearization of the first-order optimality
conditions (KKT conditions); see Fiacco [1983] for details.
Steps 5 to 7 above will then yield the specific input

adaptation directions ξu
∗

c ∈ Vc and ξu
∗

s ∈ Vs, respectively.

6. ILLUSTRATIVE EXAMPLE

Consider the following parametric optimal control problem
with one input variable and one path constraint:

min
u(t)

∫ 1

0

(

x2
1(t) + x2

2(t) + 0.005u2(t)
)

dt, (24)

s.t. ẋ1(t) = x2(t); x1(0) = 0,

ẋ2(t) = −x2(t) + θ u(t); x2(0) = −0.2,

x2(t) − u(t) + 0.5 − 8(t− 0.5)2 ≤ 0, 0 ≤ t ≤ 1,

where θ stands for the uncertain system parameter, with
nominal value θ0 = 1.

The nominal solution u∗(t) = U(t,ω∗) for Problem (24)
is shown in Figure 2. This solution was obtained upon
applying a piecewise-constant control vector parameteri-
zation on n = 200 equidistant stages and discretizing the
path constraint at the end of each stage. It can be inferred
from this plot that u∗(t) consists of 3 arcs: an interior arc,
followed by a boundary arc, and finally another interior
arc.
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Fig. 2. Optimal nominal solution.

It is found that 144 constraints are active at the solution
ω∗ of the NLP problem. The projection matrices VcVc

T

and VsVs
T are computed in Step 4 of the numerical

procedure described in Section 5.

With the choice of the input adaptation direction as in
(23), Steps 5 to 7 yield the corresponding CS and SS

directions. The adaptation direction ξu∗

(t) as well as its

projections on the CS and SS subspaces, ξu∗

c (t) and ξu∗

s (t),
respectively, are shown in Figure 3.

The two scenarios of −4% and −8% variation in the
parameter value are considered, i.e. for ξθ = 1, η = −0.04
and η = −0.08, respectively. For these scenarios, the costs
Jc and Js resulting from selective input adaptation along
the CS and SS directions are calculated. The cost Jf

due to full first-order input adaptation, i.e. uf (t, η) =

u∗(t) + ηξu∗

(t), is also computed. In Table 1, the results
are compared with the costs associated with no input
adaptation (Ĵ) and with the perturbed optimal cost (J̃∗).

In either scenario, adaptation along the CS direction
results in larger cost improvement compared to adaptation
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Table 1. Costs of the perturbed system re-
sulting from various input adaptations, and
corresponding fractional cost recovery. Ĵ : cost
with no adaptation; Js: cost with adaptation
along the SS directions; Jc: cost with adapta-
tion along the CS directions; Jf : cost with full

first-order adaptation; J̃∗: perturbed optimal
cost.

η = −0.04 η = −0.08

Ĵ 6.6078 × 10−3 6.6447 × 10−3

Js 6.5819 × 10−3 6.5395 × 10−3

Jc 6.4988 × 10−3 6.4659 × 10−3

Jf 6.4587 × 10−3 6.3087 × 10−3

J̃∗ 6.4537 × 10−3 6.2895 × 10−3

Ĵ−Js

Ĵ−J̃∗
16.8% 29.6%

Ĵ−Jc

Ĵ−J̃∗
70.7% 50.3%

Ĵ−Jf

Ĵ−J̃∗
96.7% 94.6%

along the SS direction. However, the relative improvement
of an adaptation along the CS direction with respect to
the full first-order adaptation decreases as the uncertainty
gets bigger.

7. CONCLUSIONS

Due to the complexity of solving optimal control prob-
lems, methods that do not require recomputing the exact
solution appear to be very much desirable.

For problems involving mixed control-state constraints,
the directions in the input function space along which
small variation in the nominal optimal inputs do not
cause any change in the active constraints for all t ∈
[t0, tf ] are defined as the SS directions. They are shown
to be solutions of certain linear integral equations. The
directions orthogonal to the set of SS directions are defined
as the CS directions.

For the case of the parametric variation θ0 + ηξθ, it is
shown that the cost improvement due to selective input
adaptation along SS directions –over no adaptation– is
O(η2), whereas it is O(η) with selective input adaptation
along CS directions. Hence, the main implication of the
theory developed in this paper for optimal control prob-
lems with path constraints is that, for small parametric
variations, adapting the inputs along the CS directions has
the largest impact on cost, while the consequences of not
adapting the inputs along the SS directions will remain
small in comparison.

These results might prove applicable in the field of a
recently developed methodology for constrained optimal
control problems called NCO tracking [Srinivasan and
Bonvin, 2007], in which parts of the input profiles can
be adapted selectively. Hence, prioritization of selective-
adaptation strategies is crucial for developing practical
NCO-tracking controllers.

Extensions of these results to problems involving discon-
tinuous u∗(t), problems having non-regular Hamiltonians
and singular arcs as well as problems having a combination
of terminal and path constraints will be addressed in future
work.
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