
i

Acknowledgment

I would like to thank Dr. Nasser Yazdani, my advisor in this thesis. Also, I would like

to say a special thank you to Mr. Sajjad Zarifzadeh for his generous helps and advices

throughout the thesis.

ii

iii

1 Contents

1 Contents .. iii

1 Introduction ... 1

1.1 Benefits of multipath transferring ... 2

1.1.1 Load balancing .. 3

1.1.2 More aggregate bandwidth .. 3

1.1.3 More reliability or error-resilience .. 4

1.2 Challenges in concurrent multipath transferring .. 4

1.2.1 TCP timeout .. 5

1.2.2 Reordering ... 6

1.3 Thesis structure ... 8

2 Multipath routing strategies .. 10

2.1 Operating phase .. 10

2.1.1 Creating multiple paths ... 10

2.1.2 Transferring through multiple paths.. 10

2.2 Deployment environment ... 12

2.2.1 Wired networks ... 12

2.2.2 Wireless networks ... 12

2.3 Split point .. 13

2.4 Implementation layer .. 14

2.4.1 Application layer ... 14

iv

2.4.2 Transport layer .. 15

2.4.3 IP layer .. 17

3 Approaches for TCP and UDP .. 19

3.1 Network Model ... 19

3.2 The proposed method for TCP connections ... 23

3.2.1 Preventing TCP Retransmission Timeouts ... 24

3.2.2 Conditions for preventing TCP fast-retransmit 27

3.3 The proposed method for UDP connections .. 37

3.3.1 Sociological Perspective ... 37

3.3.2 The proposed algorithm .. 40

3.3.3 Analyzing the Required Buffer Space .. 44

4 Experimental Results ... 49

4.1 Simulation Model ... 49

4.2 Simulation Results for TCP .. 50

4.3 Simulation Results for UDP ... 58

5 Conclusion and future works ... 62

5.1 Reordering problem in UDP ... 62

5.2 Reordering problem in TCP.. 62

5.3 Future works ... 63

6 Bibliography .. 64

1

1 Introduction

According to IP networks definition, along the path of a flow from the source to the

destination, any node (router) including the source can change the forwarding path of

the packets (Figure ‎1-1). One step further, the node can intelligently split the received

packets among available forwarding paths. This can balance the load on the network

routers and hence i) avoids congestions in bottleneck nodes and ii) makes efficient

use of underutilized routers for which considerable amount of money have already

been invested. This technique is called multipath routing.

Figure ‎1-1: The possibility of routing through multiple paths in IP networks.

The special case of multipath routing in which the source is the split point between

the packets is known as multipath transferring. If the source transfers the packets of

the same flow through multiple paths, then it is called concurrent multipath

transferring. A host can apply multipath transferring if i) it is connected to the

Internet through multiple network interfaces or ii) it uses multiple gateways to access

the Internet.

The rapid development of IP networks and specially the widespread deployment of

wireless networks has provided the users with the option of choosing among several

available interfaces for accessing the Internet (Figure ‎1-2). For example, a user might

have access to the Internet through different technologies such as Ethernet, 802.11,

Bluetooth, 3G, and PSTN Modem, such that each technology has its own Internet

service provider (ISP). Selecting one of the available services for accessing the

2

Internet is a dynamic optimization problem which should consider variety of metrics

including network bandwidth, end-to-end delay, delay variance, Quality of Service

(QoS), cost, power consumption, signal interference, battery lifetime, and traffic

patterns.

Some organizations provide their users with several gateways to access the Internet.

Even with one interface card, each user can take advantage of multipath transferring

by splitting its traffic among the available gateways.

Figure ‎1-2: The capability of nowadays hosts to support concurrent multipath transferring

Bandwidth is usually a scarce resource especially in wireless networks. Hence, the

users of mobile nodes or cell phones might prefer to use multiple network interfaces

concurrently. Another motivation for using more than one network interface is error

resilience; if one of the network interfaces fails or router congestion happens along its

corresponding path, then the connection will still carry on via the other paths.

By concurrently transferring the packets of a same flow over multiple paths, the

packets which take different paths will experience different delays. As a

consequence, they will be delivered to the destination reordered. The reordering

causes different problems for different transport protocols. The goal of this thesis is

to address these issues by making only small modifications at the IP layer.

1.1 Benefits of multipath transferring

3

We briefly mentioned some benefits of transferring through multiple paths. In this

section, we explain the benefits of multipath transferring in detail.

1.1.1 Load balancing

Congestion is one of the top open problems of computer networks. When the rate of

incoming packets exceeds the outbound capacity, the router keeps the incoming

packets into a buffer. This addresses the momentary increase in the load. However, if

the rate of incoming packets stays high, the buffer finally overloads and the router

has to drop some packets. The router is then called congested. At the same time that

some bottleneck routers are congested, there might be lots of routers spread over the

Internet that are working way below their optimum capacity.

Load balancing is one way to address the congestion problem. The goal is to move

part of traffic from the overloaded routers to the other idle ones. Load balancing on

one hand decreases the probability of congestion in bottleneck nodes and on the other

hand makes an efficient use of other underutilized routers whose deployment has

already cost us.

In the context of wireless ad hoc networks, unbalanced traffic makes the bottleneck

nodes to run out of battery sooner than the others. By balancing the load, we can

make sure that they will be serving for longer times.

Multipath transferring (and multipath routing in general) is one of the proposed

approaches for load balancing. By splitting the traffic over multiple paths, there will

be less traffic carried on each path and thus the load will be more balanced on the

intermediate routers.

1.1.2 More aggregate bandwidth

The‎today‟s‎end‎hosts‎have‎access‎to‎the‎Internet‎through‎different‎technologies‎such‎

as Ethernet, 802.11, Bluetooth, 3G, and PSTN Modem, such that each technology has

possibly its own ISP. The application throughput is either limited by the interface

bandwidth or at a gateway by some Internet service providers (it can be the ISP to

which we directly connect or a higher level ISP). By concurrently using multiple

4

interfaces or gateways, we can achieve an aggregate throughput which is more than

the available bandwidth through each of the interfaces or gateways individually.

In wireless ad hoc networks, bandwidth is a scarce resource and the intermediate

nodes can split the outgoing traffic among multiple forwarders to alleviate the limited

bandwidth problem.

1.1.3 More reliability or error-resilience

Several reasons can be the cause of a link failure including the failure of the node to

which the link is connected, cable cut (after a shark attacks undersea cables for

example), or congestion at the overloaded router that the link ends into. Having an

alternate route ready to use, the nodes can pass over the failed link by transmitting the

packets over another routes. The same argument holds for the multipath transferring:

a connection does not break after a path failure if the end host has been using

multiple paths for the connection.

Furthermore, the quality of service (QoS) provided by different paths is proportional

to their cost; the paths which provide QoS are more expensive and the paths that

work based on best-effort policy are cheaper. To optimize the cost, we can split the

traffic over multiple paths in a way that the most important data go though the high

quality path and the rest of traffic which are less important are transmitted via cheap,

best-effort paths. Thus, the connection does not break even after an error in the best-

effort path, although the overall quality decreases. For example, in multimedia

applications, part of traffic is vital to have a basic communication and the other parts

only increase the quality of the received stream. Some multimedia protocols such as

H.263 support two separate output streams for this purpose.

1.2 Challenges in concurrent multipath transferring

There are certain challenges in concurrently transferring the packets of the same flow

over multiple paths. Plainly, such a scheme causes the packets which are transmitted

over different paths, to experience different delays. In wired networks the selected

paths can have different delays because of i) different traffic loaded on intermediate

5

routers, ii) different path lengths in terms of number of intermediate routers, and iii)

different network media such as satellite vs. optimal links.

Wireless networks have to deal with another problem that is the potential interference

between paths which leads to more packet loss or longer transmission delays. To

overcome this deficiency, the selected paths should be completely disjoint and also

geographically separated, as far as possible. Utilizing more diverse paths implies

more discrepancy between their delays. On the other hand, recent study (Ganjali &

Keshavarzian, 2004) shows that load balancing cannot be really achieved in

multipath schemes, unless numerous paths are used to convey the packets. However,

using more paths entails more variations among their delays.

In the following, we discuss the problems caused by different paths delays as well as

specifically packet reordering.

1.2.1 TCP timeout

TCP offers reliable transmission in the sense that it detects packet loss through the

received acknowledgements (ACKs) from the destination and retransmit them. If the

received ACKs do not indicate the receipt of a packet, after passing RTO

(Retransmission Timeout) unit of time, TCP deduces that the packet is lost and thus

retransmits the packet. Besides, to avoid any possible congestion, it quickly backs off

by reducing the congestion window to zero, i.e., the throughput drops to zero. The

process is depicted in Figure ‎1-3.

One problem of TCP under concurrent multipath transferring is that the RTT (Round

Trip Time) estimation is not accurate; different delays over different paths lead to

unstable RTT estimation and incorrect RTO setting. For example, if the RTT

difference of the longest path and the shortest path is large, TCP could prematurely

timeout packets on the longest path due to the incorrect RTT estimation.

The unnecessary timeout of the packets has two major negative impacts on TCP:

1. The unnecessary retransmission of the packets which wastes the network

bandwidth.

6

2. In addition, after each timeout, TCP drastically scales down its congestion

window size to zero and invokes the slow-start mechanism, and causes

underutilizing the paths and further degrading the performance of multipath

scheme.

In this thesis, we specify the conditions that holding them will avoid the unnecessary

timeout in TCP.

1.2.2 Reordering

The different path delays yield the packets to be delivered reordered. The more

difference between end-to-end path delays, the more packets are delivered out-of-

order. This causes problems both in TCP and UDP which we explain in the

following.

1.2.2.1 Unnecessary trigger of fast-retransmit/recovery in TCP

ACKs in TCP are accumulative, meaning that the ACK for sequence number x

indicates that all the bytes with less sequence number are received and the receiver is

now expecting sequence number x (recall that TCP is stream-oriented protocol, hence

the ACKs are for byte and not packets). A duplicate ACK for sequence number x can

implies that the packet which included byte x is not received yet, perhaps reordered.

Receiving more duplicate ACKs is good signal that probably the packet is lost. Most

TCP‎implementations‎include‎the‎„„fast-retransmit/recovery‟‟‎mechanism (Jacobson,

April 1990) which is illustrated in Figure ‎1-3. In short, fast-retransmit/recovery

mechanism by receipt of the dupthresh duplicate ACK (which is mostly set to three),

assumes that the packet is lost. It then retransmits the packet and also reduces the

congestion window size by half. The latter is to avoid probable congestion in an

intermediate router.

In concurrent multipath transferring, even if the RTO is set high enough to prevent

the false timeouts, fast-retransmit/recovery may still incur another serious problem.

Here, we bring a simple example to illuminate this issue. Suppose the ratio of the

RTTs of two employed paths is four. Furthermore, assume that the first packet is

7

transmitted on the slower path and the next four packets are transmitted over the

faster path. The receipt of packets 2, 3, and 4 at the destination will cause the

receiver-side TCP to signal a fast-retransmit/recovery of the first packet, hence

wasting the prior transmission on the slower path. Worse yet, the recovery phase

following a fast-retransmit/recovery scales down the congestion window to the half

of its current size, resulting in a high degradation in the throughput of the

connections.

Recent studies have shown that false fast-retransmit/recovery can be reduced by

increasing the triggering threshold, dupthresh, according to the underlying network

conditions (Blanton, et al., 2002)(Zhang, et al., 2003). However, the approach in

(Zhang, et al., 2003) imposes excessive computational and storage overheads to

construct a reordering histogram, whereas the techniques proposed in (Blanton, et al.,

2002) may not well adapt to changing network conditions promptly. Moreover, (Ma,

et al., 2004) has studied this approach under multipath network scenarios while it

does not investigate the performance of the proposed method in networks with

diverse delays and bandwidths.

All these approaches have the drawback of interfering with normal operation of TCP.

Moreover, like other proposals which need modifications in the transport layer, the

wide-spread deployment of the solution would encounter serious challenges and thus

is unlikely to happen. We will discuss it more in the next section when we explain the

category of the solutions which operate on the transport layer. In this thesis, we

propose a novel approach at the IP layer to alleviate this problem.

1.2.2.2 Need for larger buffers at the receiver side

As multipath transferring intensifies the reordering problem, the application layer

demands larger buffers to keep out of order received packets. This raises difficulties

for usage of multipath transferring scheme in receiver devices with limited resources,

such as handled PDA and sensor.

8

Furthermore, since the receiver has to wait for the packets sent through the slower

path to be received, the overall observed delay by the application is the delay of the

slower path. In other words, no matter how fast is the other path, the receiver

application can not benefit from it.

Even though UDP based protocols such as RTP has been extended to support

multipath schema (Mao, et al., 2003), but they do not propose solutions for the

reordering caused by the multipath transferring.

Figure ‎1-3: The changes in TCP congestion window size.
1

1.3 Thesis structure

In this thesis, we propose two approaches at the IP layer to address the reordering

problem of TCP and UDP. In the case of TCP, the key observation is that the

interleaved reception of the packets sent via multiple paths, at the destination does

not trigger the fast-retransmit/recovery timer, even though the packets are received

reordered. Therefore, the IP layer who is in charge of alternating the packets among

the multipath available paths needs to linger on the slower path for at least the delay

difference between the paths. Moreover, we introduce an analytical model to estimate

the probability of triggering fast-retransmit/recovery by our method. In the case of

1
 The picture is borrowed from http://www.cs.nccu.edu.tw/~lien/TALK/SAHNS07/hardcopy.htm

9

UDP, we first analyze the reordering problem through a sociological perspective.

Under the light of the presented model, we propose to schedule the packets at the

source to have them received in-order at the destination. We also present an

analytical model to compute the buffer size at the destination.

In Section ‎2, we categorize the possible strategies for multipath transferring (and in

general multipath routing). At the end of the section, we demonstrate the position of

the proposed approaches in this thesis among the explained categories. This section

also covers examples of some most important related works which have tackled the

reordering problem in concurrent multipath transferring. In Section ‎3, we introduce

novel approaches operating at the IP layer, to address the reordering problem of

concurrent multipath transferring schemes in TCP and UDP. We also develop an

analytical model to demonstrate the efficiency of the proposed approaches. Section ‎4

evaluates the performance of the proposed approaches through simulation results. We

conclude the thesis in Section ‎5 and discuss the future works. The reported results in

the thesis have been published in two journal papers (Yabandeh, et al., March 2007)

(Yabandeh, et al., 2007) and one conference paper (Yabandeh, et al., 2008).

10

2 Multipath routing strategies

In this section, we categorize the different strategies for multipath routing. At the end

of this section, we identify the position of the proposed approaches in this thesis

among the explained categories.

2.1 Operating phase

Multipath routing consists of two basic phases: i) creating a set of paths and making

them available and ii) transferring data via the created paths. These two phases are

separate and each of them has its own design issues(Yabandeh, et al., 2007). Each

multipath routing algorithm might operate over one of the phases or both of them.

In this thesis, we assume that the paths have been already created and are ready to

use. The proposed algorithms then focus on transferring the data through the

available multiple paths. In the following, we briefly explain each phase.

2.1.1 Creating multiple paths

As explained above, the first phase of multipath routing is to create the multiple

paths. Creating the paths can be as simple as accessing multiple network interfaces

which are already available on the machine, or as difficult as creating multiple node-

disjoint paths in wireless ad hoc networks. Some organizations provide the users with

multiple gateways. The IP layer then can split the outgoing traffic between the

gateways.

In the general multipath routing where a intermediate router is in charge of creating

multiple paths, the router can split the incoming traffic between multiple next hub

(router).

2.1.2 Transferring through multiple paths

There are different strategies in transferring data through multiple paths. If the only

aim of multipath routing is achieving error-resilience, one possible strategy could be

redundant transferring of data through all of the paths. In this way, by a failure in one

path, the data is still delivered uninterruptedly via other paths.

11

In other applications such as load balancing and achieving more aggregate

bandwidth, the transmitted traffic through paths are disjoint. However, the sender can

have several strategies for splitting the traffic among multiple paths. On one hand, it

can split the flows among the paths and transfer all the packets of the same flow

through a single path, and on the other hand it can split packets of each flow among

the available paths. Making this decision, in fact specifies the granularity of the

strategy. In this thesis, we adopted the latter approach: per-packet granularity. In the

following, we discuss the pros. and cons. of each approach.

2.1.2.1 Per-flow granularity

The advantage of per-flow granularity is that the packets of the same flow do not

experience diverse delays and thus the problems of different path delays and

reordering are avoided automatically. Thus far, most of the multipath schemes have

tried to bypass the reordering problem by taking the per-flow granularity (Lee, et al.,

2001)(Wei, et al., 2004)(Marina, et al., 2001)(Ye, et al., 2003). Nevertheless, this

approach is not resilient against path failures as it would take some time to switch to

another path after a failure. This delay is not acceptable in real-time applications such

as video conferencing.

2.1.2.2 Per-packet granularity

In per-packet granularity, the packets of the same flow can be split among multiple

paths‎and‎hence‎experience‎different‎delays.‎TCP‟s‎ timeout‎mechanism is designed

only for one path and will be confused when the received ACKs report variant

delays.

Also discrepancy between path delays implies the out-of-order delivery of the

packets‎at‎ the‎ receiver.‎TCP‟s‎ fast-retransmit/recovery mechanism tolerates up to 3

reordered packets as the reordering is a rare event under the normal single path

routing. Beyond that, TCP assumes the packet as lost. However, in the multipath

scheme the packets can be subject to much more reordering. It is worth noting that

naively increasing the threshold would make the algorithm vulnerable to the actual

12

packet lost events. Also in UDP, the more reordering demands more buffer space at

the receiver side which is sometimes a scarce resource, such as in hand-held devices.

Nevertheless, as reported in (Krishnan, et al., 1993), a per-packet granularity results

in much better performance than the explained per-flow streaming approach. This is

because the packets can be evenly split among paths. This is not possible in per-flow

granularity when there is a major flow (such as online streaming of a high-quality

movie) that dedicates the most part of the outgoing traffic to itself.

In this thesis, we propose some approaches to alleviate the problems of per-packet

granularity and allow the applications to take advantage of its benefits.

2.2 Deployment environment

Multipath routing has wide-spread usage both in wired and wireless networks.

Considering the different requirements and conditions of these two environments, the

proposed algorithms for these two environments, although established upon common

notions, apply different strategies. In this thesis, we do not make assumptions

regarding the environment and the proposed algorithms can be applied to both wired

and wireless environments. In the following, we discuss the applied strategies which

are dedicated to each of these two environments.

2.2.1 Wired networks

Historically in wired networks, multipath routing was initially applied to intermediate

routers to dynamically split the incoming traffic among the available routes. It mainly

aimed the following objectives: i) load balancing and ii) insuring quality of service

by increasing the reliability.

Nowadays, having several network interfaces available for end users, the Internet

users can take advantage of this opportunity and split the outgoing traffic among

these interfaces. Some organizations provide their users with multiple choice for the

gateway and the user can also split the outgoing traffic among the multiple gateways.

2.2.2 Wireless networks

13

By emergence of wireless ad hoc networks, new potentials for applying multipath

routing were created. This is because most of the routing protocols in wireless ad hoc

networks (such as DSR(Johnson, et al., 1999), AODV(Perkins, et al., 2000),

ZRP(Haas, et al., 1999)) have the inherent capability to return multiple path upon a

routing request. By emphasis on this potential, the new designed routing protocols

extended the on-demand routing protocols to support multiple paths. For example

SMR(Lee, et al., 2001), RMPSR(Wei, et al., 2004), AOMDV(Marina, et al., 2001),

and AODVM(Ye, et al., 2003), are the multipath extended versions of DSR and

AODV. Therefore, multipath routing was one of the candidates that can be deployed

in wireless networks and alleviate its inherent problems, i.e., limited bandwidth and

high error rate.

In summary, the proposed protocol based on multipath routing tried to address the

following issues:

1. Achieve more aggregate bandwidth which is a scarce resource in wireless

networks(Maxemchuc, 1975).

2. Balance the load over the nodes which can both increase the battery lifetime as

well as avoid congestion in bottleneck nodes(Wu, et al., 1992).

3. Enhance the error-resilience which is the inherent problem in wireless

networks due to noise and interference (Stewart, et al., 2001).

These issues become doubly important when it comes to real-time streaming of

multimedia content which needs high bandwidth as well as higher level of error-

resilience.

2.3 Split point

In multipath routing, the split of the packets can be done at any node along the path

from the source to the destination. In the special case, the split point can be even the

source of the flow. When the split point is an intermediate router, the applied strategy

is mostly known as multipath routing and when the source is in charge of splitting the

14

packets among multiple paths, it is usually called multipath transferring. We adopt

the same terminology for the rest of the thesis.

The advantage of the multipath transferring scheme is that paths are selected by the

source. In other words, the paths are selected in an end-to-end way. This strategy

benefits from all the advantages of end-to-end approaches which fall into so-called

end-to-end argument (Saltzer, et al., 1984). As a consequence, the complexity of the

underlying network decreases and the proposed approaches will be more extendable.

Concurrent multipath transferring, which is the domain of this thesis, is the special

case of multipath transferring which uses per-packet granularity.

2.4 Implementation layer

The multipath transferring technique can be implemented at any given layer of the

networking stack: application, transport, IP, and physical layer. The implementation

in the physical layer is for very particular applications and hence is not covered in

this section. In the following, we categorize the related works based on the

implementation layer and discuss the pros and cons of each category. The proposed

algorithms in this thesis will be implemented at the IP layer.

2.4.1 Application layer

Some of the related works (Hacker, et al., 2002)(Sivakumar, et al., 2000) propose to

use several independent TCP connection to increase the overall throughput in high

speed networks. These applications in fact are using the same physical path for all the

created TCP connections. This is different from concurrent multipath transferring

where the data is split over multiple physical paths
2
.

Content networks (Day, et al., 2003) provide an infrastructure for load balancing of

TCP connection by using a per-flow granularity perspective. This is different from

the focus of this thesis which is the per-packet granularity. Even though per-flow

granularity is still useful for quick http requests/responses, still for the applications

2
 Note that in general there is still no guaranty that physical paths do not share some links or nodes.

15

which transfer a large bulk of data this schema is not optimal, because of using only

one physical path for the flows.

To the best of our knowledge, there is no algorithm at the application layer which

uses per-packet granularity. Even in such a case, because of many interactions

between the application and the transport layer, it would be more reasonable to push

such an algorithm to the transport layer. This is because concurrent multipath

transferring algorithms require information regarding packet delay and loss to select

the optimal path and this information are not available at the application layer. In

general, implementing the concurrent multipath transferring at the application layer

would increase the redundant code (one separate piece of code for each application)

and consequently increase the chance of introducing programming bugs because of

separate implementations.

2.4.2 Transport layer

The advantage of the protocols which work on the transport layer is that they have

access to the information which is necessary to select the optimal path, such as delay

and loss of packets. On the down side, the proposed solution would be specific to a

particular transport protocol and others have to develop their own version of the

multipath transferring, perhaps redundantly. Furthermore, some transport layer

protocols such as TCP are very complicated as well as widely used in a variety of

environments. Hence, every small change in the protocol needs thorough analysis and

evaluation to prove that the performance of the protocol is not hurt in other usage

scenarios. For example, a solution might improve the TCP performance in multipath

applications but damage its performance in single path scenarios. Due to widespread

usage of these protocols, the process of standardization and global deployment would

be very difficult and often unlikely to happen.

In the following we name some of the proposed solutions in transport layer.

2.4.2.1 SCTP

16

Similar to TCP, SCTP (Stream Control Transmission Protocol) guaranties in-order

delivery of packets(Stewart, et al., 2000). However, in contrast to TCP which is

stream-oriented, SCTP is record-oriented in the sense that unit of transport is a

message rather than a stream of bytes. Because of this fundamental difference, SCTP

can operate on multiple streams (possibly with different IP addresses or network

interfaces) at the same time and in-order delivery will be hold for each stream

separately. Therefore, the reordering between messages of multiple streams does not

make sense anymore and thus is not an issue.

However, the application must be aware of the availability of several streams and

treat them differently. For example, web page images can be sent separately from

web page texts. If the application has a single big coherent chuck of data to transfer,

SCTP will not be able to split it over multiple streams.

So far, SCTP has used the secondary path either for retransmission traffic or

redundant transmission of the primary traffic. By the latter usage, the stream of data

will be continued uninterruptedly even in the case of primary path failure and

consequently it provides more reliability. Later several works proposed solutions on

top of SCTP for bandwidth aggregation (Abd El Al, et al., 2004)(Abd El Al, et al.,

2004)(Argyriou, et al., 2003). In below, we explain one of them in more detail.

2.4.2.2 Bandwidth aggregation with SCTP

In (Argyriou, et al., 2003), it is proposed to transfer data concurrently over SCTP to

achieve more aggregate bandwidth. It suggests changing the fast-retransmit/recovery

technique in SCTP. However these changes assume presence of data which is not

available at receiver side. For example, the assumption that the receiver can

distinguish between a lost packet and a reordered packet is not realistic.

2.4.2.3 mTCP

mTCP (Zhang, et al., 2004) is an extension to TCP to achieve more aggregate

bandwidth by concurrently transferring data through multipath paths. It uses

mechanisms to detect a shared bottleneck (congestion point) among the paths and

17

suppress all the paths with the same congestion. It is dependent on an overlay

network named by RON (Andersen, et al., 2001) to create the multiple end-to-end

paths and hence is not as general as TCP. It uses a single path for the ACK traffic and

hence it is vulnerable to failure of the response path unless additional mechanisms are

applied.

2.4.2.4 pTCP

Parallel TCP stripes the traffic of wireless ad hoc networks over multiple virtual TCP

paths, TCP-v, where each TCP-v is a separate TCP connection. Each TCP-v is in

charge of congestion control and retransmission over its path. A separate manager

unit decides which data must be transferred with which TCP-v. Separating the

functionalities enables the pTCP to intelligently schedule the transmission and

retransmission of data.

pTCP is limited to only wireless ad hoc networks and its operation over wired

networks is not investigated. On the other hand, it suffers from complicated design

and implementation.

2.4.3 IP layer

The advantage of implementing multipath transferring at the IP layer is that it has

access to all information regarding the existence and number of multiple paths.

Multiple paths might be available through multiple network interface card or multiple

gateways that in both cases the IP layer has full information about them. Moreover,

all the devices which implement the IP layer, including intermediate routers, can take

advantage of the proposed solutions in this layer. This in oppose of transport layer

solutions which is only deployable at the end hosts.

The disadvantage is that sometimes choosing the optimal path requires some

information regarding the quality of paths such as the end-to-end latency and packet

drop rate. This information are available only at the transport layer and any solution

at the IP layer has to either interact with the transport layer to obtain this information

18

or redundantly implement some of transport layer features which are necessary to

measure these values.

To the best of our knowledge, the only solution at the IP layer is proposed at (Phatak,

et al., 2002). It uses IP-in-IP encapsulation to concurrently transfer data through

multiple paths, transparent from the upper layers. The authors then derive the

conditions which are necessary to avoid unnecessary retransmit timeouts in TCP. The

proposed solution assumes that the end-to-end delays are dominated by the

transmission delay of the network interface cards and hence cannot be used for the

paths whose delay is dominated by propagation delay or the paths with dynamic

latency and bandwidth.

Multipath routing protocols can also be placed in this category since the intermediate

routers which determine a path for the outgoing packets operate at the IP layer. The

proposed approaches to tackle the reordering issue caused by multipath routing

mostly manipulate the congestion control mechanism of TCP (Blanton, et al.,

2002)(Bohacek, et al., 2003)(Gerla, et al., 2002).

19

3 Approaches for TCP and UDP

In this section, we present two novel end-to-end streaming mechanisms to transfer

packets of a flow through multiple paths; one for TCP connections and another for

UDP flows. The proposed approach for TCP significantly reduces the number of

unwanted fast-retransmit/recovery and timeout events by properly splitting of data

over multiple paths at IP layer. Our approach for UDP schedules transmission of

packets over multiple paths in such a way that they are received at the destination in-

order,‎while‎imposing‎the‎minimum‎overall‎delay‎on‎the‎receiver‟s‎application.‎

It is worth noting that we concentrate here only on the end-to-end multipath scheme.

This is different from those approaches that split a flow through multiple paths at

intermediate routers, such as the one proposed in (Zhang, et al., 2003). In other

words, in our scheme the sender is entirely responsible for managing multiple paths

and transferring its packets through them.

We first present the assumed system model. In our network model the path latency is

not assumed to be dominated by neither bandwidth nor propagation delay. Then, we

propose two new approaches for multipath transferring via TCP and UDP. The

proposed approaches require solely slight modification at the IP layer. We also

propose analytical models to measure the effectiveness of the proposed approaches.

3.1 Network Model

In the rest of section, the model similar to the one used by (Phatak, et al., 2002) will

be considered. Assume two network nodes A and B, where node A has some amount

of data towards node B. Moreover, assume that there exist n distinct paths from A to

B. We use di notation to indicate the average one-way delay of path i (i.e. propagation

plus queuing and transmission delays). Without loss of generality, suppose that all

paths are sorted with respect to their delays, i.e. di < dj (,, ji i < j).

In our model, we separate the notions of interface bandwidth and effective

bandwidth. The interface bandwidth of path i (represented by int

iB) is accounted as the

20

Figure ‎3-1: Timeline of sequential transmission steps in the presented model. The transmission

time of bulk j lasts tj seconds and the delay of path k is dk.

bandwidth of the interface connected to the sender on path i. On the other hand, the

effective bandwidth (referred to by Bi) represents the bandwidth that could be

achieved through path i considering the limitation of the intermediary network

between A and B. This implies that ii BB int . For simplicity, hereafter we use

bandwidth term to refer to the effective bandwidth.

We also assume that the approximate values of paths‟‎ bandwidth and delay are

known to the network (IP) layer. This information could be acquired by a simple

extension to some link-state routing protocol such as OSPF (such as the ones

proposed in (Apostolopoulos, et al., 1999) and (Liao, et al., 2001)). Another method

to realize this assumption is to keep track of on-going/receiving data/ACK packets at

the sender to estimate the bandwidth and delay values of paths. Note that in UDP

based connections, the control packets of RTCP can play the role of ACK packets.

However, this method needs some minor changes in network layer of the sender to

capture the characteristics of data/ACK packets. In both TCP and UDP methods, the

IP layer of the sender is responsible for splitting traffic between the available paths.

This approach is of interests, because it omits the need for changing transport layer

protocols like TCP and UDP.

21

As Figure ‎3-1 illustrates, the transmission process of a connection in our model is

divided into some fixed-size steps. Formally, we define a transmission step as a part

of transmission process in which all of the paths are participated exactly once

(namely, every path carries a continuous set of data in each step). We use bulk j to

indicate the amount of data which is transmitted over path j in each step. Generally,

in each step we stream data bulks of slower paths (i.e. the paths with larger delays)

sooner than those of faster ones. As we will show in the next section, operating in this

manner allows us to schedule packets among multiple paths in a way that they arrive

at the destination in-order. Consider Figure ‎3-1 again. Suppose that there exist only

two available paths 1 and 2 while path 2 is the slower one. Step i starts with

transmitting through path 2. This transmission lasts t2 seconds. After that, the packets

are carried over path 1 for t1 seconds. With completion of transmission over path 1,

the i+1
th

 step starts with transmission through path 2 again.

It is worth noting that in this model all sending (receiving) times are measured based

on the exit (entrance) of packets from (to) IP layer. This justifies the serial

transmission scheme which is depicted in Figure ‎3-1, despite the existence of

multiple network interfaces at the end hosts. The IP layer of the sender is responsible

for splitting traffic between the available paths. In other words, during each step

which lasts tstep seconds, the IP layer sends the incoming packets over path i for ti

seconds which comprise the i
th
 bulk in that step. We define the effective bandwidth of

path i (referred to by Bi) as the amount of used bandwidth by the sender through path

i, considering the limitation of the intermediary network between S and D. In our

model, we utilize paths according to their effective bandwidths, namely:

B

B

t

t
f i

step

i

i  , (1)

in which fi is the ratio of bandwidth utilization over path i and B is total effective

bandwidth over all paths.

22

Logically, the time needed to receive a packet from an arbitrary path is a function of

packet size, interface bandwidth, and latency of that path. More specifically, the one-

way delay of the i
th
 packet with size pi sent from A to B along path k at time t is:

   tpl
B

p
tpd i

AB

k

k

i

i

AB

k ,,
int
 , (2)

in which AB

kl is the latency of k
th

 path between A and B (i.e. propagation plus queuing

delays). Specifically, in the case of TCP connections, the RTT of the i
th
 packet can be

computed by:

      
ii

AB

ki

BA

kii

AB

kii tpdtqdtpdtqpr    ,,,,, , (3)

where δi is the delay between when i
th

 packet was received and when the

corresponding ACK was sent, and qi is the size of the ACK packet.

For the sake of simplifying our analysis, the following assumptions are made:

 All data packets have the same size p. This allows the packet dependency of

delay to be removed from (2) and (3).

 We consider average latency of each path (instead of its instantaneous latency)

to compute delay of packets sent over it. This allows the time dependency of

delay to be removed from (2) and (3). Based on these two assumptions, we use

dk to denote the one-way delay of a packet (with size p) over path k during a

given step. Nevertheless, we provide an analytical probabilistic model in

section 6 to analyze our TCP-based method in networks with dynamic delay

conditions.

 There is no delay between the time that a data packet is received and the time

that its corresponding‎ACK‎is‎sent,‎namely‎δi = 0 in (3).

 All ACKs are sent back over the same and single path to the source (e.g. the

path on which the TCP SYN packet has been initially sent). We also assume

that ACK packets are much smaller than data packets. Hence, the latency of

23

transmission‎for‎all‎ACKs‎can‎be‎assumed‎to‎be‎the‎same‎value‎Δack. Note that

Δack = 0 for UDP connections.

Based on these assumptions, for the purpose of computing the RTT of a packet sent

along path k, we can rewrite (3) as:

ackkk dr  . (4)

3.2 The proposed method for TCP connections

As mentioned in Section ‎1, in the case of TCP, concurrent transferring of data over

multiple paths can sometimes worsens the performance than using a single path

(Phatak, et al., 2002). This may happen because of the following reasons:

(i) The bandwidth/delay mismatch between the selected paths causes that the sender-

side TCP times out for packets sent on the slower paths and retransmits them. In

addition, after each timeout, TCP drastically scales down its congestion window to

zero and invokes the slow-start mechanism, thereby underutilizing the paths and

further degrading the performance of multipath scheme.

(ii)‎ Most‎ TCP‎ implementations‎ include‎ the‎ “fast-retransmit/recovery”‎ mechanism‎

(Jacobson, April 1990). Even if the TCP timeout values are set high to prevent the

scenario described above, fast-retransmit may still incur another serious problem.

Here, we bring a simple example to elucidate this issue. Suppose the ratio of the

RTTs of two employed paths is 4 and further assume that the first packet is

transmitted on the slower path and the next four packets are transmitted over the

faster path. The receipt of packets 2, 3, and 4 at the destination will cause the

receiver-side TCP to signal a fast-retransmit of the first packet, thereby wasting the

prior transmission on the slower path. Worse yet, the recovery phase following a fast-

retransmit scales down the congestion window to the half of its current size, resulting

in a high degradation in the throughput of the connections.

In subsequent sections, we first derive the general circumstances that could be

tolerated to prevent timeouts during the lifetime of a TCP connection. Then, we

24

discuss the conditions that should be held to avoid invocation of fast-retransmit

mechanism.

3.2.1 Preventing TCP Retransmission Timeouts

In popular TCP Reno, the retransmission timeout (RTO) for the i
th

 packet is set as:

iii VKRRTO  , (5)

where Ri is the current smoothed estimate of RTT, Vi is the current smoothed estimate

of the deviation in RTT, and K is a constant factor (typically K = 4) which adjusts the

measured retransmission timeout with respect to its variance (Phatak, et al., 2002).

Moreover, Ri and Vi are calculated by the following recursive equations:

  iii RTTRR    11 , (6)

  iiii RRTTVV    11 , (7)

where RTTi is the sampled RTT for the i
th
 packet. Indeed, Equations (6) and (7) act as

a low-pass filter on the sampled RTT, smoothing out the variations (Mankin, et al.,

1991).

According to the above discussion, the exact value of RTO will closely depend on the

sequence of RTT samples. In multipath transferring schemes, this dependency is

based on the sequence of paths which are chosen to send packets on. As an

approximation, the average RTT and the average deviation in RTT (both weighted

according to the portion of traffic which is conveyed through each path) will be used

to compute RTO (Phatak, et al., 2002). The average RTT is hence calculated by:





n

i

ii frr
1

, (8)

in which ri is the smoothed estimate of RTT for packets sent along path i and fi is the

portion of traffic sent over path i. Similarly, the average deviation in RTT will be:





n

i

ii rrfv
1

. (9)

25

From (5), no timeout will occur if:

njjvKrr j  1,, . (10)

According to (4) and (8), the average RTT over n paths is calculated by:

ddfdfr ack

n

i

iiack

n

i

ackii  
 11

)(, (11)

in which d is the weighted average of one-way delays, i.e.:





n

i

ii dfd
1

. (12)

Also, based on (4), (9), and (11), the average deviation in RTT for n paths will be:





n

i

ii

n

i

ackackii ddfddfv
11

. (13)

Considering (11) and (13), the inequality of (10) can be restated as:

njjddfKdd
n

i

iiackackj  


1,.
1

. (14)

After simplification, (14) turns into the following relation:

njjK

ddf

dd

n

i

ii

j









1,

1

. (15)

Below, we try to rewrite (15) with respect to the difference between delays of paths.

Since 1
1




n

i

if , we clearly have:

  njjdfddfdfdfdd ij

n

i

iij

n

i

ii

n

i

ij

n

i

ij 







 



1,,

1111

, (16)

where ijd , stands for dj – di. Using (16), we can rephrase (15) as:

26

njjK

dff

df

n

i

yi

n

y

yi

ij

n

i

i







 



 

 1,

1

,

1

,

1 . (17)

Inducing from the above equation, the condition for preventing timeout depends

solely on the‎difference‎of‎paths‟‎delays,‎i.e.‎ ijd , , and not on their absolute values.

3.2.1.1 Two path case

Let‟s‎ consider‎ more‎ simple‎ and‎ also‎ common‎ case‎ of‎ multipath‎ scheme‎ in‎ which‎

merely two paths are exploited to carry the traffic between A and B, meaning that n =

2. Remind that according to our model, we have assumed r1 ≤‎r2. Then, by setting j =

1 in (17), we will have:

K
dffdff

df






1,2122,121

2,12
. (18)

By taking into account 1,22,1 dd  and 02,1 d , (18) will be shortened to:

K
f





12

1
, (19)

which is always satisfied, because both K and f1 are positive numbers.

For j = 2, Equation (17) will be equivalent to:

K
dffdff

df






1,2122,121

1,21
. (20)

Similar to the simplification we made in (18), we can reduce (20) to:

K
f




2

1
11 . (21)

Hence, if the employed TCP implementation is configurable, we could appropriately

set the value of K to satisfy the above inequality. Otherwise, the sender should

27

carefully adapt the value of f1 (i.e. the ratio of data sent over path 1). As Equations

(19) and (21) show, the minimum value of K in two-path case (unlike the multipath

case) is interestingly independent of the delay difference of paths and relates only to

the bandwidth ratio of paths. Based on this condition, Figure ‎3-2 depicts the

maximum value of f1 that can be chosen under different values of K to incur no

timeout. In common implementation of TCP Reno, the value of K is typically set to 4

(Phatak, et al., 2002). It forces us to set the value of f1 no greater than 0.875. In other

words, the sending rate over the faster path must be less than 7 times of the slower

path. Although this result is the same as the one achieved by (Phatak, et al., 2002),

but our model is not confined by the assumption of bandwidth domination for RTT.

3.2.2 Conditions for preventing TCP fast-retransmit

In most implementations of TCP, the fast-retransmit/recovery mechanism will be

triggered if the sender receives 3 consecutive duplicate acknowledgements (ACKs).

These duplicate ACKs have a very high potential to occur when using multiple paths

with different delays. This is due to the fact that packets moved on the faster paths

will receive sooner at the destination. Hence, they report the absence of packets

which has been sent on the slower paths. The sender wrongly infers these duplicate

ACKs as packet loss and falls into the fast-retransmit/recovery phase.

Figure ‎3-2: Maximum tolerable value of f1 under different values of K (the constant factor in

TCP’s timeout formula).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9

K

M
a
x
 f

1

28

Consider the situation in which two bulks of data come concurrently from two paths

at the receiver. The basic idea is to guarantee (with a good approximation) that after

reception of one packet from the faster path, the receiver will get at least one packet

through the slower path. This prevents the third duplicate ACK and as a consequence,

the fast-retransmit/recovery at the sender will not be triggered. This idea leads us to

the concept of concurrent reception through multiple paths in which the packets from

different paths would be interleaved among each other. In the case that multiple

different interfaces are attached to the receiver, to realize the concurrent reception,

we should slightly modify the network layer such that the packets from different

interfaces are fairly scheduled and delivered to the transport layer. In other words,

when multiple packets from different interfaces arrive simultaneously at the receiver,

only one packet from each interface is processed at each round.

This concept is schematically illustrated in Figure ‎3-3. Consider a stream of data

from node A to B sent over two paths i and i+1 where di < di+1. As the time proceeds,

packets of both paths are received at the destination interleavingly. The number

above each packet is the sequence number of the packet and the number below it

stands for the ACK sequence number which is triggered by the reception of that

packet. For the sake of simplicity, it is assumed that each packet contains just one

byte of data. As shown in the figure, no more than two duplicate ACK is triggered

per each sequence number. Despite this improvement, when delays of paths change

unexpectedly, we may encounter a specific sequence of receptions which could

Path i Path i+1

15 16

10

17 1811 12 13 14

11 11 12 12 13 13 14

19

19

Time

Figure ‎3-3: Interleaving reception of packets through two paths. With the assumption that each

packet contains just one byte of data, the number above each packet represents the sequence

number of that packet and the one below it stands for the last successful received sequence

number.

29

trigger the third duplicate ACK. However, as our experimental results confirm, this

situation happens rarely.

Considering start and end of reception of bulk i and i+1 in an arbitrary step, four

general cases can be assumed for possible interleaving. Figure ‎3-4 depicts these

cases. As explained earlier in this section, the dangerous duplicate ACKs are

triggered only by the packets of the faster path i. Three possible situations could take

place when a packet from bulk i is received: i) no packet from bulk i+1 has been

received yet; ii) packets of bulk i+1 are being received concurrently with this packet;

and iii) all packets of bulk i+1 are received before this packet. In situation ii, packets

from bulk i and i+1 are received interleavingly and remind that due to concurrent

reception at the receiver, it can hardly incur fast-retransmit. Hence, among these

situations only the first one is dangerous (i.e. receiving some packets of bulk i before

the reception of bulk i+1) which happens only in the third and forth cases of Figure

‎3-4. To avoid the occurrences of this situation, the length of bulk i+1 should be long

enough to make sure that its start of reception will be before the start of reception of

bulk i. Operating in this manner, the third and forth cases in Figure ‎3-4 will be

converted into the first and second one, respectively.

Figure ‎3-5 helps to understand the analytical calculations for acquiring the minimum

transmission time of bulk i+1 (i.e. ti+1). As the figure shows, we always have:

nixdtd iii   1,11 . (22)

The value of x is the duration of the aforementioned dangerous situation. Our destiny

is that the variable x has a value less than or equal to zero. This fact leads us to the

following important equation which determines the minimum value of ti+1 to avoid

fast-retransmit:

nidttdd iiiiii   1,0 ,1111 . (23)

Since all paths are sorted with respect to their one-way delays, we can easily

conclude that (23) has a transitive property for all i, 0 < i < n. In other words, if there

30

Figure ‎3-4: All possible overlapping cases for the reception of bulk i and i+1.

31

is no interleaving between the i
th
 and i+1

th
 paths and also between i+1

th
 and i+2

th

paths, there will be no interleaving between the i
th
 and i+2

th
 ones too. Therefore, if

(23) is held for all i, 0 < i < n, it avoids interleaving between any pair of paths i and j

(njiji  ,1,,).

Note that by holding the condition of (23), the 3
rd

 duplicate ACK is avoided with a

high probability. This uncertainty is due to the fact that packets sent along the same

path may actually experience various delays which is different from the assumed

average delay of the path. This makes the reception behavior at the destination more

complex and so inspires the potential of 3
rd

 duplicate ACK in the method. Here, we

present an analytical model to obtain this probability. Consider two consecutive bulks

y and y+1 (from path y and y+1, respectively) in any arbitrary step of the

transmission. Since 3
rd

 duplicate ACK happens only when two data bulks arrives at

the receiver simultaneously, we take into consideration the durations in which the

reception time of two bulks y and y+1 overlaps with each other. According to our

previous discussion, to obtain the probability of no 3
rd

 duplicate ACK, we only need

to sum the probability of all arrival scenarios in which there is at least one packet

from the slower path among every two successive packets of the faster path in

Figure ‎3-5: Schematic view for computing the minimum tolerable transmission time for bulk

i+1.

32

overlapping durations. Before that, we should explain some issues related to the

receiving times of packets.

Based on (Demichelis, et al., 2002), the delay experienced by each packet over a path

y is determined by two parameters: i) the minimum constant delay of path y

(represented by yDmin), which can be thought as the propagation delay of that path; and

ii) the additional variable delay of path y (denoted by yDvar), which can be seen as the

queuing and processing delay of the intermediate routers. Inspired by (Demichelis, et

al., 2002) and (Corlett, et al., 2002), we assume that the additional delay of path y

follows an exponential distribution with the average of
y .‎ Now,‎ let‎ Δs‎ be‎ the‎

constant interval between transmissions of two consecutive packets at the sender

(Figure ‎3-6).‎ The‎ value‎ of‎ Δs‎ is‎ determined‎ by‎ the‎ actual‎ throughput‎ of‎ the‎ TCP‎

connection which remains constant despite switching between paths. Also, suppose

that y

iS represents the start time of transmission for the i
th

 packet sent through path y

and y

iR denotes the reception time of this packet at the receiver. Then, according to

above discussion, the following relations are obtained for every path y, ny 1 :

1

1

var

1

min

11 1, 

  y

yyy

i

y

i miDDSR , (24)

1

1

1

1 1,)1(

  y

yy

i miSsiS , (25)

where my+1 denotes the number of packets in bulk y+1. In addition, regarding the fact

that in each step all packets of the faster path i are streamed exactly after those of the

slower path i+1, we can conclude that:

Figure ‎3-6: Relative order between sending times of packets belonging to two consecutive bulk

k and k+1.

33

y

y

y

y

y

y

i miSsmiSsmsiS  





 1,)1()1(1

11

1

11
. (26)

Since all packets enter and leave the IP layer serially (not simultaneously), then the

probability of equality in reception times, i.e.)(1 y

i

y

j RR   , becomes practically zero.

Thus, the probability that j
th

 packet from path y+1 is received between i
th
 and i+1

th

packets of path y with the assumption that the i+1
th
 packet arrives after the i

th
 one

(denoted by y

ji ,) will be:

)()(1

11

,

y

i

y

j

y

i

y

j

y

ji RRRR 

  . (27)

On the other hand, according to (24), we have:

)(

)()(

1

min

1

min

1

varvar

varmin

1

var

1

min

11

y

i

y

j

yyyy

yyy

i

yyy

j

y

i

y

j

SSDDDD

DDSDDSRR









. (28)

Together with (25), (26), and (28), the following relation is drawn:

))(()(1min

1

min

1

varvar

1 smijDDDDRR y

yyyyy

i

y

j  

 . (29)

In order to simplify the calculations, we define threshold variable α as follows:

smijDD y

yy  

)(1min

1

min . (30)

Then, (29) converts into:

)()(1

varvar

1   yyy

i

y

j DDRR . (31)

Figure ‎3-7 depicts the area of  1

varvar

kk DD in the),(1

varvar

kk DD plane. Clearly, to

calculate the probability stated in (31), we must sum the probability of 1

varvar

 yy DD for

all points in this area. As figure shows, depending on the value of α, we may

encounter two different cases:

Case A) if‎ α‎ >‎ 0‎ then‎we‎ should‎ take‎ into‎ account‎ the‎ striped‎ area‎ in‎ Case‎A‎ of

Figure ‎3-7. This leads us to the following formula:

34

y

y

y

y

y

y

y

y

y

y

y

e

ddddee

ddddDDDD

yy

y

yy

d

d

d

d

y

d

y

yy

d

d

d

yyyy

























































 

 












1

1

varvar
0 0 1

1

varvar
0 0

1

varvar

1

varvar

1

11

)(

1
var

1
var

var

1

1
varvar

1
var

1
var

var

 , (32)

Case B) if‎α‎<‎0‎then‎we‎should‎consider‎ the‎striped‎area in Case B of Figure ‎3-7.

Thus, similar to the former case, we will have:

kD
var

1

var

kD

 1

varvar

kk DD

 1

varvar

kk DD

0,

,0

Case A) α > 0

kD
var

1

var

kD

 1

varvar

kk DD
 1

varvar

kk DD

0,
,0

Case B) α < 0

Figure ‎3-7: The area in the),(1

varvar

kk DD plane that satisfies  1

varvar

yy DD . The Case A

depicts this area when α > 0 and Case B shows the mentioned area when α < 0.

35

1

1
var

1
var

var

1

1
varvar

1
var

1
var

var

1

1

1

varvar
0 1

1

varvar
0

1

varvar

1

varvar

11

)(





















































 

 

y

y

y

y

y

y

y

y

y

y

y

e

ddddee

ddddDDDD

yy

y

yy

d

d

d

d

y

d

y

yy

d

d

d

yyyy






















, (33)

Using (32) and (33), we are now able to compute the value of y

ji , for every i and j.

Bear in mind that to compute the probability of having no 3
rd

 duplicate ACK, we

must sum the probability of all arrival scenarios of two bulks in which there is at least

one packet from the slower path y+1 between two consecutive packets of the faster

path y during the simultaneous reception of two bulks. To simplify our calculations,

we concentrate on the most probable one, namely an arrival scenario in which the

i+1
th

 packet of path y+1 arrives at the destination between the i
th
 and i+1

th
 packets of

path y for all 1 < i <‎βy, in which:

1),min(1  yyy mm . (34)

The probability of this desired scenario (represented by ok

y) would be equal to:





y

i

y

ii

ok

y



1

1, . (35)

According to (27) and (29), the probability of
y

ii 1,  would be:

)()(

)(

)(

)()(

2

1

varvar1

1

varvar

1min

1

min

1

varvar

1min

1

min

1

varvar

1

1

1

1

11,

 



























yyyy

y

yyyy

y

yyyy

y

i

y

i

y

i

y

i

y

ii

DDDD

smDDDD

ssmDDDD

RRRR

, (36)

where‎ α1 and‎ α2 are threshold variables in two probabilities of (36) which can be

obtained by setting j=i+1 and j=i, respectively in (30).‎ Since‎ in‎ most‎ cases‎ α1 is

positive‎and‎α2 is negative, we can use (32) and (33) to compute the first and second

36

probability of (36),‎respectively.‎To‎get‎sure‎about‎the‎accurate‎sign‎of‎α1 and‎α2 (i.e.

α1 >‎0‎and‎α2 < 0) in all of the scenarios, the following constraint should be taken into

consideration, when choosing the value of my+1:

1
min

,1

min

,1

1 












s
m

s

d

yy

d

yy

y
, (37)

where yy DDd

yy min

1

min
min

,1





. In this fashion, we reach to the following value for y

ii 1,  :

1

min
,1

min
,1

1

1

11, 1


 








 






y

d
yy

y

d
yy sm

yy

y
ssm

yy

y
y

ii ee 








. (38)

It can be easily understood from (38) that, y

ii 1,  is not dependent to the value of i.

Hence, based on (35) and (38), we can compute P
ok

 by:

y

y

y
d

yy

y

y
d

yy sm

y

ssm

y

yy

ok

y ee



 
 




































 








1

1
min

,1
min

,1

1

1

1
1 . (39)

Note that ok

y provides a lower bound on the probability of having no 3
rd

 duplicate

ACK,‎because‎we‎haven‟t‎considered‎some‎other‎desired‎scenarios‎in‎computing‎the‎

above probability. In the following, we bring an example to show how the probability

of 3
rd

 duplicate ACK can be computed according to this analytical model.

Suppose the situation where n = 2, 1d = 0.05 s, 2d = 0.225 s, k

k dD  95.0min ,

k

k d 05.0 , 1B = 128 kbps, 2B = 60 kbps. Referring to our model, we

straightforwardly find the following values: min

1,2

d
 = 0.166, 1 = 0.0025, 2 = 0.01125.

To‎ obtain‎ the‎ value‎ of‎Δs, the packet size should be divided by throughput of the

connection (i.e 188 kbps).‎Hence,‎Δs = 0.064. To satisfy the constraint of (53), m2

should‎be‎3‎and‎consequently‎β‎becomes‎2.‎These‎values‎reach‎us‎to‎the‎value of 0.83

for ok

1 . In other words, the probability of triggering 3
rd

 duplicate ACK in any step for

37

two consecutive bulks is less than 0.17. In the next section, we compare the results of

this probabilistic model with those achieved by simulations.

3.3 The proposed method for UDP connections

In this section, we first analyze the reordering problem of multipath transferring

through a sociological perspective. Under the light of the presented model, we

propose a novel end-to-end streaming mechanism to forward packets of a single flow

through multiple paths. Our approach schedules the transmission of packets over

multiple paths in such a way that they are received at the destination in-order while

imposing the minimum overall delay on the receiver‟s‎application.

3.3.1 Sociological Perspective

In this section, we first analyze the reordering problem of multipath transferring

through a sociological perspective. We show that the reordering problem in UDP is

not inherently related to multipath routing; rather caused by the dominant capitalist

perspective on the problem. Then, the problem is reconsidered through a Marxist

perspective.

3.3.1.1 Current Sociological Perspective

Socialization is a process of learning. For the most part, socialization attempts to

assure that people behave as they are expected to behave (The Encyclopedia of

Wikipedia,‎ s.v.‎ “Socialization.”).‎ In‎ fact,‎ this‎ is‎ exactly‎ the‎ thing‎ that‎ is‎ expected‎

from packets of the routing system. This motivates us to apply the methodologies of

sociology to handle the difficulties of multipath transferring. By this way of thinking,

routing host represents the whole society and the individual packets play the role of

the individuals of the society.

The most important notion of sociology which its correspondent in our model should

be identified is the status. A status is a position that a person occupies within a social

group (Mooney, et al., 2008). The statuses which we occupy largely define our social

identity. Statuses may be either ascribed or achieved. An ascribed status is one that

society assigns to an individual on the basis of factors over which the individual has

no control. For example, we have no control over the sex, race, ethnic background,

http://en.wikipedia.org/wiki/Socialization

38

and socioeconomic status into which we are born. For the sake of presenting the

model, the correspondents of statuses should be well defined. Moreover, we should

clearly determine if they are ascribed or achieved. Considering the packets as

individuals, the order of them is a good candidate to represent a status of packets

because according to this order, each single packet has the priority for choosing its

desired path. Plainly, this status is ascribed because the packets did not make an

attempt to acquire it. A packet receives its order according to its position within the

transmitting file; the fact which the packet has no control on it.

Functionalism, Conflict Theory, and Symbolic Interactionism are three common

perspectives in sociology. Among them, Conflict Theory seems to be more applicable

to our model. It considers societies as the competitive arenas where different groups

compete for control of scarce resources (wealth, power, and prestige). In the

presenting model, the scarce resources are the existing paths which have limited

bandwidth. Every individual would like to use the path with minimum delay. But due

to limited bandwidth of paths some packets are forced to move over the slower paths.

The dominant opinion which is ruling over some designers thoughts is that evidently

the packets in front of queue for transmission should use the shortest available paths.

This reminds us the way of thinking of capitalists who believe that people with

higher degree of property could use better‎resources.‎To‎illustrate‎the‎similarity,‎let‟s‎

look‎ at‎ the‎Wilkinson‎ definition‎ of‎ Capitalism:‎ “However,‎ space‎ at‎ the‎ top‎ of‎ the‎

hierarchy is scarce and a source of conflict and competition. Those who command

higher status in social hierarchies have better access to material resources and mating

opportunities.”‎(Wilkinson, 2006)

39

Figure ‎3-8: Schematic view of the presented sociological model of multipath transferring.

Figure ‎3-7 schematically depicts proposed sociological model of multipath

transferring. Also, Table ‎3-1 summarizes the correspondent elements of multipath

transferring and the proposed sociological model.

Multipath Routing Element Sociological Correspondent

Routing Node Society

Packets Individuals (People)

Order of Packet Status

Available Paths Resources

Delays of Paths Values of Resources

Limited Bandwidth Limitation on Resources

Table ‎3-1: Correspondent elements of multipath routing and the proposed sociological model.

3.3.1.2 A Marxist Perspective

As illustrated in Figure ‎3-7, the existing reordering problem is a consequence of the

dominant capitalist perspective on multipath routing, in which packets with higher

40

orders use the shortest available paths. Consequently, later packets have to move over

the slower paths. Despite the fact that the former set reaches sooner to destination,

this‎doesn‟t‎help‎ the‎overall‎performance‎of‎ routing,‎ since‎ the‎ receiver‎ should‎wait‎

for packets of the slower paths anyway. This means that the overall delay is still

dominated by the slower paths delays. On the other hand, operating this like delivers

packets to receiver reordered and hence causes more necessity for buffer space at the

receiver.

To‎address‎this‎problem,‎let‟s‎apply‎the‎counterpart‎of‎the‎Capitalism‎in‎sociological‎

perspectives (i.e. Marxism) into multipath transferring. Utilitarians and Marxists

emphasized‎the‎“greatest‎happiness‎of‎the‎greatest‎number"‎and‎despised‎the‎desires‎

of the individual. Mapping this notion to our model, we reach to the fact that in

selecting the path, the packets with the higher orders should consider the overall

benefits of transmission rather than their individual benefits. The new emerged

question is how calculate the benefits of the system as whole. This question is

analytically addressed in the following section.

Unfortunately, our new system inherits the drawbacks of a Marxist society; the

complexity of the system is high. Perhaps the main problem of Marxist societies is

how we should satisfy the individuals to ignore their own benefits in support of the

society benefits. Fortunately, this does not matter here; because, packets have not the

willing required to make such decisions.

3.3.2 The proposed algorithm

Consider a scenario in which we are going to split packets belonging to a single UDP

connection between multiple paths. Clearly, packets which are moved over slower

paths will receive later at the destination in comparison with those carried over faster

paths. In general, our idea is to schedule the packets among these paths such that the

destination receives them in-order. The idea is schematically depicted in Figure ‎3-9.

The first row in the figure is sequential raw data which is ready for transmission in

step i. The second row shows the reordered data which is actually transmitted.

Finally, the last row depicts the received data at the destination. As we described

41

Figure ‎3-9: Schematic view of the proposed solution for UDP connections. The method schedules

packets at the source to arrive in-order at the destination.

before, in each step the sender transmits a continuous bulk of data over every path. In

the figure, each data bulk is tagged by the path number which conveys it. The

intuition behind our idea is that in each step the data bulks of the slower paths are

streamed sooner than those of the faster ones. Because of more delays of path j in

comparison with path i (,i 0 < i < j), the traffic could be properly scheduled so that

the data bulk carried over path j is delivered at the destination after the data bulk of

path i.‎In‎fact,‎the‎main‎issue‎is‎“how‎to‎schedule‎the‎traffic‎over‎path‎1‎to‎n in a way

that the packets sent on path i (,i i > 1) are received exactly after those carried over

path i-1”.‎ Since‎ the‎ sender‎ breaks‎ the‎ original‎ order‎ of‎ data,‎ the‎ data‎ should‎ be‎

completely available before the start of transmission. Consequently, this approach is

not suitable for applications like VoIP and video conferencing which produces raw

data instantly. However, it is very useful for some other applications like video/voice

on-demand applications which usually have strong senders (e.g. powerful servers),

while their receivers are from a broader range, like PDA and PC. Since the limited

memory space at the hand-held devices is one of the major factors influencing design

options, reducing buffer space at the receiver is much of interest.

To measure the performance of our method, we now define a practical performance

metric.

42

Definition 1. Beginning Pause Time (BPT): the amount of time from the start of

transmission (by the sender) that the receiver should pause to get sure that delivering

data to the upper layer will not be interrupted.

In other word, BPT is the sum of buffer underrun durations for the case that the

receiver starts its playing just as the sender begins its transmission. As it can be seen

from Figure ‎3-9, the BPT of our solution is calculated by:





n

i

itdBPT
2

1 . (40)

To establish the scheduling illustrated in Figure ‎3-9, the delay of path i should equal

the sum of the following parameters: i) the delay of path 1; ii) the elapsed time for

sending traffic through path j for all j, j < i (i.e. after transmitting over path i); and iii)

the time required to get sure that the data which will be sent after path i in the same

step will arrive at the destination. These issues are summarized in the following

equation:

1

1

1

2

1

1

1

2 tttdtdtd i

i

j

j

i

j

j

i

j

ji  






. (41)

This set of independent equations along with those obtained by (1) allow us to

deterministically compute the exact values of variables t1,‎ …,‎ tn. For example,

consider the most practical case where n = 2, namely we use only two paths between

source and destination nodes. As a consequence, (1) and (41) are rewritten as:

21

1
1

tt

t
f


 , (42)

2112 ttdd  . (43)

Suppose‎that‎Δd = d2 – d1. Based on above equations, the perfect values of t1 and t2

are straightforwardly computed by:

dft  22 , (44)

43

Figure ‎3-10: Axis of receiving times from path 1 and 2. The zero point of the axis represents the

start of transmission by the sender.

dft  11 . (45)

Together with (40), (44), and (45), we can conclude the following BPT for our

solution:

2211 fdfdBPT  . (46)

From (46), it is evident that by decreasing the amount of data which will be conveyed

through the slower path, the BPT value will be reduced accordingly. However, we

should be careful not to decrease f2 so much that the overhead of packet header

becomes intolerable.

Below, we prove that our solution delivers an optimal value for BPT. Assume a

general streaming algorithm where the packets are received arbitrarily (i.e. in-order or

out-of-order). We consider the best case in which all the received packets are in-

order. Suppose an arbitrary point in the axis of time at the receiver. The zero point of

the axis represents the start of transmission by the sender. Figure ‎3-10 illustrates this.

According to (1), the expected sending rate over path i would be proportional to fi.

Let t be a given time where idt  . Thus, during [di,t], the receiver is supplied through

path i with ui units of time for playing, where ui is calculated by:

 ii

t

d

ii dtfdtfu

i

  . (47)

From definition 1, the BPT is equal to the sum of the idle times at the receiver in

which it has no data for delivering to the upper layer, namely:

44

 







 



n

i

ii

n

opt dtftBPT
1

. (48)

When n = 2 (i.e. we are using only two paths), the optimal value of BPT would be:

    
22112211

2 dfdfdtfdtftBPTopt  . (49)

This value equals the value of BPT achieved by our solution, as shown in (46).

Clearly, the BPT obtained by all other algorithms would be greater than or equal to

this value. Consequently, the BPT which the receiver experiences by our algorithm is

optimal.

Using‎Δd‎instead‎of‎d2-d1, we can rewrite (46) as:

21 fddBPT  . (50)

Recall that d1 is the inevitable delay of transmission between node A and B, because

it is the smallest possible delay between two nodes. Hence, the above equation

implies that the additional delay (i.e. BPT-d1) will rise by the increase in the

difference‎between‎paths‟‎delay‎and‎also‎by‎ the‎ raise‎ in‎ the‎ fraction‎of‎data‎which‎

will be conveyed across the slower path. The analytical results of the BPT with

respect‎ to‎ Δd and f2 are depicted in Figure ‎3-11. As the figure shows, the overall

delay will increase multiplicatively with the raise in the fraction of data which is

conveyed through the slower path.

3.3.3 Analyzing the Required Buffer Space

Now, we analyze our method with respect to the amount of buffer space required at

the receiver. Based on (Demichelis, et al., 2002), the delay experienced by each

packet over a path y is determined by two parameters: i) the minimum constant delay

of path y (represented by yDmin), which can be thought as the propagation delay of that

path; and ii) the additional variable delay of path y (denoted by yDvar), which can be

seen as the queuing and processing delay of the intermediate routers. Inspired by

(Demichelis, et al., 2002) and (Corlett, et al., 2002), we assume that the additional

45

Figure ‎3-11: The additional delay imposed by the proposed method on the receiver’s application

(i.e. BPT – d1) with respect to the delay difference (i.e. Δd) and bandwidth ratio of the slower path

(i.e. B2/B).

delay of path y (i.e. yDvar) follows an exponential distribution with the average of y .

Now,‎ let‎ Δs be the constant interval between transmissions of two consecutive

packets‎at‎the‎sender.‎The‎value‎of‎Δs is determined by the actual throughput of the

connection which roughly remains constant despite switching between paths. Also,

suppose that y

iS represents the start time of transmission for the i
th
 packet sent

through path y and y

iR denotes the reception time of this packet at the receiver. Then,

according to the above discussion, the following relations are obtained for every path

y, ny 1 :

 iDDSR yyy

i

y

i 1,varmin . (51)

In addition, regarding the fact that in each step all packets of the faster path i are

streamed exactly after those of the slower path i+1, we can conclude that:

  
y

n

yj j

y

j j

yy

i mismmiSS   






1,1

1

1

11 , (52)

where my denotes the number of packets in bulk y. On the other hand, according to

(51), we have:

46

)(

)()(

minminvarvar

varminvarmin

y

i

y

j

yyyy

yyy

i

yyy

j

y

i

y

j

SSDDDD

DDSDDSRR








. (53)

In order to simplify the calculations, we define the threshold variable α as follows:

y

i

y

j

yy SSDD


 minmin . (54)

Then, (53) converts into:

)()(varvar 
 yyy

i

y

j DDRR . (55)

Depending on the value of α, we may encounter two different cases:

Case A) if‎α‎>‎0:

y

y

y

y

y

y

y

y

y

y

y

eddddee

ddddDDDD

yy

y
yy

d

d

d

d

y

d

y

yy

d

d

d

yyyy
















































 

 


















1
11

)(

varvar
0 0

varvar
0 0

varvarvarvar

var

var

var

1
varvar

var

var

var

. (56)

Case B) if‎α‎<‎0:

y

y

y

y

y

y

y

y

y

y

y

eddddee

ddddDDDD

yy

y
yy

d

d

d

d

y

d

y

yy

d

d

d

yyyy























































 

 







varvar
0

varvar
0

varvarvarvar

var

var

var

varvar

var

var

var

11

)(

. (57)

Consider i
th

 and j
th
 packet where j=i+k and 0k . We define k

good as the probability

of receipt of j
th
 packet after the i

th
 one. Accordingly, the following probabilities are

defined:






k

RR

k

good

k

bad

k

relative

k

good

k

bad

y

i

y

j

k

good

1/

,1),(
 (58)

For a given packet i, the next packets will not cause reordering, if all of them will

receive after the packet i. The probability of this event is:

47

 



i

k

k

good

i

allgood 1
1

, (59)

This yields that the maximum buffer size equals 1 for successful (in-order) delivering

of the i
th
 packet to the upper layer. Generally, the probability that the maximum

buffer size for successful delivery of the i
th

 packet reaches l, is the probability of

reordering of l-1 individual of the packets sent after the i
th
 packet. This probability

(referred to by
il

maxbuffer

,) can be calculates as follows:

   






 


0 1 1

,

1 1i ii

l

k

i

relative

i

allgood

il

maxbuffer
ll

k , (60)

Clearly, the probability that the required buffer space never exceed l throughout the

whole communication, i.e. l

maxbuffer , is the maximum of il

maxbuffer

, over all given values

of i, namely:

 iil

maxbuffer

l

maxbuffer 1max , , (61)

In our network model, the lifetime of a connection is comprised from several fixed-

size steps. So, we just evaluate the corresponding probabilities of packets inside a

given step. Note that in the special case of one-path scenario, the probability in

Equation (60) remains the same for all given values of i. For practical applications,

the maximum length of buffer which will be realized in 95% of situations is of

interest. Hence, the required buffer space at receivers, l, will be minimum value of k

 B2/B1

d2/d1

0.48 0.86 1.25 1.64

2 2 3 3 3

2.5 3 4 4 4

3 4 4 4 5

3.5 5 5 5 5

4 5 6 6 6

Table ‎3-2: Buffer length at receiver, achieved analytically for transferring a file of size 100 KB

; The rows and columns represent the ratio of bandwidth and delay of path 2 to path 1,

respectively.

48

for which 05.0,

max  kl

buffer
. Table ‎3-2 presents the obtained analytical results for our

multipath method.

49

4 Experimental Results

This section first presents the simulation model used to evaluate the performance of

the proposed methods and then provides the experimental results.

4.1 Simulation Model

For the purpose of simulation, we implemented the TCP Reno protocol in Java. To

provide UDP-based connections, we also implemented the RTP/RTCP protocol. In

our simulations, two threads act as a client and a server. A file will be transferred

from the server to the client through a TCP (or UDP) connection. The implemented

code simulates the common characteristics and limitations of real networks like

dynamically changing latency of links and drop behavior when the load exceeds the

link capacity. The dynamic delay follows an exponential distribution which has been

described thoroughly in Section ‎3.2.2. Moreover, it enables the IP layer to split the

outgoing traffic among multiple distinct paths.

For the sake of simplicity, we just consider two available paths between the client

and the server (i.e. path 1 and 2), while path 1 is the faster one. The interface

bandwidth of two paths is the same (i.e. 2 Mbps) and the size of all data packets is

fixed to 1.5 KB. Also, the bandwidths of path 1 and 2 are limited to B1 and B2,

respectively. The configurable parameters of our experiments are i) the size of the

transferred file; ii) the relative latency of the paths; and iii) the relative bandwidth of

the paths.

Overall, three different UDP-based methods are simulated in our experiments: i) the

usual one-path UDP with aggregated bandwidth of B1 + B2; ii) the simple multipath

UDP which simply divides the traffic between two paths according to their

bandwidth ratio; and iii) our enhanced multipath whose transmission parameters are

set based on (44) and (45). Similarly, three methods are simulated for TCP: i) the

usual one-path TCP with aggregated bandwidth of B1 + B2; ii) the simple multipath

TCP; and iii) the multipath TCP enhanced by the techniques we proposed in this

paper. Clearly, the results of the one-path scenario with aggregated bandwidth give

50

the optimal values which could be obtained by a perfect multipath method. In the

simple multipath scenario, the outgoing packets are divided at the IP layer between

two available paths according to the ratio of their bandwidths (i.e. in each point of the

time, path 1 has carried B1 / (B1 + B2) portion of the outgoing data.) We measure the

BPT parameter to compare performance of UDP methods. Also, the effective

throughput, number of fast-retransmit events, number of timeouts and number of

dropped packets are our performance metrics for evaluating TCP methods.

In all of the following experiments, we assume that the average latency and the

bandwidth of path 1 are fixed to 0.05 s and 128 Kbps, respectively. Also, all

diagrams are plotted based on the relative latency and bandwidth of path 2 with

respect to those of path 1.

4.2 Simulation Results for TCP

This section presents the results of various simulations we have carried out to assess

our TCP-based method. As the first simulation result, Figure ‎4-1 shows the results of

throughput obtained by different methods for transferring a file of size 100 KB.

According to the figure, the throughput will improve significantly by applying our

method on the multipath transferring scheme. In general, with the raise in the

bandwidth of the auxiliary path 2, the throughput of all methods increases too.

However, by the raise in latency of path 2, the throughput considerably decreases in

the simple multipath scenario. Although this reduction exists in our approach too, but

it‟s‎ slope‎ is‎ considerably smoothed. As a numerical example, in the case that the

bandwidth of path 1 and 2 are 128 kbps and 110kbps (i.e. B2 / B1 = 0.86) and their

delays are 0.05 ms and 0.25 ms (i.e. d2 / d1 = 5) respectively, the achieved throughput

for transferring a file of size 100KB by our method is 197.8 kbps which is very close

to the one obtained by the optimal one-path transmission (i.e. 189.8 kbps). However,

this value is 128.3 kbps in simple multipath approach which is very fewer than what

achieved by the former methods.

51

Notice that at the beginning of a TCP connection, it takes a while for TCP to learn the

(a) Simple multipath method

(b) Our enhanced multipath method

(c) One-path method

Figure ‎4-1: Throughput achieved by TCP methods for transferring a file of size 100 KB.

0

50

100

150

200

250

300

350

1.5 2 2.5 3 3.5 4 4.5 5

d2d1

T
h

ro
u

g
h

p
u

t

B2/B1=0.07

B2/B1=0.86

B2/B1=1.64

0

50

100

150

200

250

300

350

1.5 2 2.5 3 3.5 4 4.5 5

d2/d1

B2/B1=0.07

B2/B1=0.86

B2/B1=1.64

0

50

100

150

200

250

300

350

1.5 2 2.5 3 3.5 4 4.5 5

d2/d1

B2/B1=0.07

B2/B1=0.86

B2/B1=1.64

52

RTT and also the throughput of the path. During this time, all methods are in their

transient state in which their behaviors become somehow complicated.

Surprisingly, in some situations in Figure ‎4-1, our method outperforms the one-path

method in terms of throughput. To analyze this observation, we should note that the

results depicted in Figure ‎4-1 are obtained by transferring a file of small size (i.e. 100

KB) while the methods are often in their transient state. It means that the TCP

parameters (e.g. timeout) have not been stabilized yet. In this situation, the timeout

value in our method is more influenced by the delay of path 2 at the beginning steps

of transmission, because transmission starts with bulk 2. In consequence, the timeout

value is greater than that of the one-path method in transient states. On the other

hand, according to Figure ‎4-3, the number of dropped packets in the one-path method

is considerably more than our method. It means that the drop probability is higher in

the one-path‎method.‎Keeping‎ these‎ two‎parameters‎ in‎mind,‎ let‟s‎ look‎at‎ the‎TCP‎

performance formula (Padhye, et al., 2000):

RTTpackets
pp ll

bp

R

Tbp ll

/
)321()3,1min(

1ˆ
2

8

3

3

2 0 
 , (62)

where‎λ‎is‎the‎throughput,‎pl is the packet loss rate of a TCP streaming flow, R is the

round-trip time, T0 is the retransmission timeout, b = 2 if delayed ACK is

implemented at the receiver, and otherwise b = 1. Based on this relation, the

throughput of TCP generally improves by decreasing each of the drop probability pl

and timeout duration. However, the exact throughput of TCP in different situations

depends on the compromise between these two parameters. During the initial

transient state, our enhanced multipath approach has a smaller drop probability while

the one-path method has a less timeout duration. As indicated before, these complex

behaviors are observed only in transient states. When the file size is large enough,

these behaviors disappear completely.

Figure ‎4-2 depicts the resulted throughput for transferring a file of size 1000 KB by

different methods. Still, the enhanced multipath approach shows very good results, as

53

compared with other methods. As a numerical example, in the case that the

(a) Simple multipath method

(b) Our enhanced multipath method

(c) One-path method

Figure ‎4-2: Throughput achieved by TCP methods for transferring a file of size 1000 KB.

0

50

100

150

200

250

300

350

1.5 2 2.5 3 3.5 4 4.5 5

d2/d1

T
h

ro
u

g
h

p
u

t

B2/B1=0.07

B2/B1=0.86

B2/B1=1.64

0

50

100

150

200

250

300

350

1.5 2 2.5 3 3.5 4 4.5 5

d2/d1

B2/B1=0.07

B2/B1=0.86

B2/B1=1.64

0

50

100

150

200

250

300

350

1.5 2 2.5 3 3.5 4 4.5 5

d2/d1

B2/B1=0.07

B2/B1=0.86

B2/B1=1.64

54

bandwidth of path 1 and 2 are 128kbps and 110kbps (i.e. B2 / B1 = 0.86) and their

(a) Simple multipath method

(b) Our enhanced multipath method

(c) One-path method

Figure ‎4-3: Number of drops in TCP methods for transferring a file of size 1000 KB.

0

20

40

60

80

100

120

1.5 2 2.5 3 3.5 4 4.5 5

d2/d1

D
ro

p
 C

o
u

n
t

B2/B1=0.07

B2/B1=0.86

B2/B1=1.64

0

20

40

60

80

100

120

1.5 2 2.5 3 3.5 4 4.5 5

d2/d1

B2/B1=0.07

B2/B1=0.86

B2/B1=1.64

0

20

40

60

80

100

120

1.5 2 2.5 3 3.5 4 4.5 5

d2/d1

B2/B1=0.07

B2/B1=0.86

B2/B1=1.64

55

delays are 0.05ms and 0.20ms (i.e. d2 / d1 = 4) respectively, the achieved throughput

for transferring a file of size 1000 KB by our method is 229.8kbps which is very

close to the one obtained by the optimal one-path transmission (i.e. 230.7 kbps).

However, this value is 155.9kbps in simple multipath approach which is very fewer

than what achieved by other two methods.

The number of dropped packets is illustrated in Figure ‎4-3. This parameter is

different from fast-retransmit in a sense that here fewer number of drops does not

necessarily imply a better performance. It may have another implicit meaning that

TCP has fought less to achieve the maximum bandwidth.

Figure ‎4-4 depicts the results of dropped throughput in our approach with respect to

the one-path transferring method. Moreover, the analytical probability of triggering

3
rd

 duplicate ACK calculated by Equation (39) is demonstrated in Figure ‎4-5.

Comparing these two diagrams with each other, we can easily justify the behavior of

our method in terms of dropped throughput. Ignoring the local changes, both dropped

throughput and probability of 3
rd

 duplicate ACK increase by the raise in bandwidth

and delay of path 2. In other words, the main reason for the increase in dropped

throughput of our method (when D2 and B2 increase) is the occurrence of large

number of 3
rd

 duplicate ACKs in such conditions.

56

Table ‎4-1 compares the number of fast-retransmit events in all methods. The rows

and columns represent the ratio of bandwidth and delay of path 2 to path 1,

respectively. In this table, the file size is fixed to 1000 KB. As the table shows, the

rate of fast-retransmit events decreases considerably in our approach and

approximately reaches to the results of the one-path method. As an example, consider

the case where the bandwidth and the delay of path 2 are equal to 110kbps (i.e. B2 /

B1 = 0.86) and 0.25 s (i.e. d2 / d1 = 5), respectively. By our method, the number of

fast-retransmit/recovery events which is 9 units by the one-path method increases just

by 5 units. This increase in simple multipath approach reaches 30 units which

unfortunately could not be tolerated.

Figure ‎4-4: Dropped throughput in our approach with respect to the one-path method. These

results are measured by transferring a file of size 1000 KB.

Figure ‎4-5: Analytical results for the probability of triggering 3
rd

 duplicate ACK computed through

Equation (39).

0

10

20

30

40

50

60

D
ro

p
p

e
d

 T
h

ro
u

g
h

p
u

t

0.07

1.25

54.543.532.521.5

B2/B1

d2/d1

0

0.2

0.4

0.6

0.8

1

P
ro

b
.

o
f

3
rd

 d
u

p
.

A
C

K

0.07

1.25

54.543.532.521.5

B2/B1

d2/d1

57

 B2/B1

 d2/d1

0.07 0.86 1.64

SM EM OP SM EM OP SM EM OP

2 23 11 5 21 14 9 14 12 7

2.5 26 11 6 26 18 9 17 15 6

3 34 11 7 30 17 9 19 15 8

3.5 47 8 6 36 13 10 25 14 7

4 61 10 7 38 13 9 30 13 8

4.5 62 9 6 39 15 10 27 13 8

5 65 10 5 39 14 9 30 15 7

Table ‎4-1: Number of fast-retransmit/recovery events for transferring a file of size 900 KB;

The numbers in each cell belong to the number of fast retransmissions obtained respectively by

simple multipath (SM) approach, enhanced multipath (EM) approach, and one-path (OP)

method. The rows and columns represent the ratio of bandwidth and delay of path 2 to path 1,

respectively.

Finally, the number of timeout events in our method is schematically drawn in Figure

‎4-6. In this experiment, the file size is 1000 KB. As we expected beforehand from

(37), the number of timeout events is nearly independent of the delay ratio of two

paths. Moreover, the rate of timeout events increases hugely when bandwidths of the

paths do not satisfy the condition of (21) (i.e. when B2 / B1 is less than 0.14).

58

Figure ‎4-6: Number of timeout events in our method for transferring a file of size 1000 KB.

0

5

10

15

20

25

1.5 2 2.5 3 3.5 4 4.5 5

D2/D1

N
u

m
b

e
r

o
f

T
im

e
o

u
ts

B2/B1=0.07

B2/B1=0.86

B2/B1=1.64

4.3 Simulation Results for UDP

Here, we compare all three UDP methods with respect to the BPT parameter. Figure

‎4-7 shows the experimental results of BPT obtained by different methods for

transferring a file of size 100 KB. To give the reader better insight, the figure also

presents the analytical result of BPT in our approach, calculated based on (16). As we

proved in Section ‎3.3, this result shows the minimum value of BPT that can be

obtained by any multipath method. According to the figure, the one-path method

completely outperforms two other multipath approaches, especially when d2 / d1 is

Figure ‎4-7: BPT achieved by UDP methods for transferring a file of size 100 KB.

0

50000

100000

150000

200000

250000

300000

1.5 2 2.5 3 3.5 4 4.5 5

d2/d1

B
P

T

Simple Multipath (Simulation)

Enhanced Multipath (Simulation)

Any Multipath (Analytical)

One-path (Simulation)

59

(a) Simple Multipath method

b) Proposed Multipath method

c) One-path method

Figure ‎4-8: The measured buffer level of three methods.

0

2

4

6

8

10

12

B
u

ff
e
r

S
p

a
c
e

0.07

0.86

1.64

43.532.52

B2/B1

d2/d1

0

2

4

6

8

10

12

14

B
u

ff
e
r

S
p

a
c
e

0.07

0.86

1.64

43.532.52

B2/B1

d2/d1

0

2

4

6

8

10

12

14

B
u

ff
e
r

S
p

a
c
e

0.07

0.86

1.64

43.532.52

B2/B1

d2/d1

60

high. However, our enhanced multipath method significantly improves the BPT,

compared with simple multipath approach. As much as the delay ratio of two paths

becomes higher, this improvement becomes more apparent. Also, the simulation

results of our approach are on average 20% above the analytical ones, which is

mainly due to the existence of packet delay variance and drop behavior in our

experiments.

With‎the‎assumption‎that‎the‎receiver‟s‎application‎starts‎its‎playing‎with‎the‎optimal‎

measured BPT, the consumed buffer space at the receiver is depicted in Figure ‎4-8.

As illustrated in the figure, the consumed buffer space generally increases with the

raise in the effective bandwidth ratio. In the case of simple multipath scenario, the

buffer level grows drastically with the increase in the delay of the slower path.

Although we can observe this growth in our approach too, but its variation has been

well controlled now. One can easily comprehend the similarity between the analytical

results, presented in the previous section, and these experimental ones. For instance,

both results increase as the ratio of B2 / B1 becomes higher.

To better demonstrate the effect of our proposed method with respect to buffer space,

a 2-D snapshot of Figure ‎4-8 is rendered in Figure ‎4-9, comparing the results of all

three methods. As the figure shows, the consumed buffer level of our method is close

to the inevitable level implied by the one-path method. Also, the level of buffer space

Figure ‎4-9: The measured buffer level of the three methods for B2 / B1 equals to 0.86 through

different delay ratios.

0

1

2

3

4

5

6

7

8

9

10

2 2.5 3 3.5 4

d2/d1

B
u

ff
e

r
S

p
a

c
e

Simple Multipath (Simulation)

Enhanced Multipath (Simulation)

Enhanced Multipath (Analytical)

One-path (Simulation)

61

remains steady throughout the increase in the delay ratio of path 2 to path 1. This is in

spite of the simple multipath method that the buffer level raises drastically with the

increase in the delay ratio.

62

5 Conclusion and future works

The main problem of multipath transferring schemes is the difference between the

delays of selected paths which causes reordering between packets of the same flow.

Multipath methods in both wired and wireless networks prefer more diverse paths

and this unfortunately intensifies the problem of reordering. In this paper, two novel

streaming approaches have been introduced for handling the reordering problem in

end-to-end multipath schemes.

5.1 Reordering problem in UDP

In the case of UDP connections, we proposed a streaming method for scheduling

packets at the sender among multiple paths in a way that they arrive at the receiver

in-order. It has been proven that our proposal imposes the minimum possible delay

on‎ the‎ receiver‟s‎ application‎ to‎ start‎ after‎ the‎ sender‎ begins‎ its‎ transmission.‎ In‎

addition, our method reduces the need for large buffer spaces at the receiver.

Simulation results also confirm the efficiency of applying the proposed method in

multipath transmission.

5.2 Reordering problem in TCP

Unfortunately, in the case of TCP, the reordering brings more serious problems, i.e.

producing more timeouts and unnecessary fast-retransmit/recovery events which

degrade the throughput of TCP connections considerably. We first presented the

analytical conditions that should be preserved to avoid timeouts. Interestingly, we

proved that these conditions depend on the differences of one-way delays of paths not

on their absolute values. Then, we introduced a novel approach to avoid unnecessary

fast-retransmits/recovery events. The key observation is that the interleaved reception

of the packets at the destination does not trigger the fast-retransmit/recovery timer,

even though the packets are received reordered. Based on this observation, it has

been suggested to continue transmission over the slower path for duration longer than

the delay differences of selected paths. The performance of our method has been

compared with both simple multipath approach and the usual one-path method (with

the aggregated bandwidth) through simulation. The performance has been studied in

63

terms of throughput, number of fast-retransmit events, and number of dropped

packets. Simulation results show that the performance of our approach is comparable

with the optimal one-path transmission in almost all scenarios.

5.3 Future works

For applications which deliver the prerecorded multimedia content via TCP,

minimizing‎the‎delay‎sensed‎by‎the‎receiver‟s‎application‎can‎be‎a‎potential‎subject‎

for future researches. Also, the effect of the proposed probability model for 3
rd

duplicate ACK on the receiver buffer size is a good candidate for future work.

64

6 Bibliography

Abd El Al A., Saadawi T. and Lee M. Improving Throughput and Reliability in

Mobile Wireless Networks via Transport Layer Bandwidth Aggregation [Journal]. -

[s.l.] : Computer Networks, Special issue on Military Communications Systems and

Technologies, 2004.

Abd El Al A., Saadawi T. and Lee M. LS-SCTP: A Bandwidth Aggregation

Technique for Stream Control Transmission Protocol [Journal]. - [s.l.] : Computer

Communications, Special issue on Protocol Engineering for Wired and Wireless

Networks, 2004.

Andersen D. [et al.] Resilient Overlay Networks [Conference] // ACM Symposium

on Operating Systems Principles (SOSP 2001). - Banff, Canada : [s.n.], 2001.

Apostolopoulos G. and al. et QoS routing mechanisms and OSPF extensions. -

[s.l.] : IETF RFC 2676, 1999.

Argyriou A. and Madisetti V. Bandwidth Aggregation with SCTP [Conference] //

IEEE Globecom. - San Fransisco, CA : [s.n.], 2003.

Blanton E. and Allman M. On Making TCP More Robust to Packet Reordering

[Journal]. - [s.l.] : ACM Computer Communication Review, 2002.

Bohacek S. [et al.] TCP-PR: TCP for Persistent Packet Reordering [Conference] //

IEEE ICDCS. - Rhode Island : [s.n.], 2003.

Corlett A., Pullin D. and Sargood S. Statistics of one-way internet packet delay. -

[s.l.] : IETF Internet-Draft, draft-corlett-statistics-of-packet-delays-00.txt, 2002.

Day M. [et al.] A Model for Content Internetworking (CDI) [Journal]. - [s.l.] :

RFC3466, IETF, 2003.

Demichelis C. and Chimento P. IP packet delay variation metric for IP performance

metrics (IPPM). - [s.l.] : IETF RFC 3393, 2002.

65

Ganjali Y. and Keshavarzian A. Load balancing in ad hoc networks: single-path

routing vs. multi-path routing [Conference] // 23nd Annual Joint Conference of the

IEEE Computer and Communications Societies (INFOCOM '04). - Hong Kong :

[s.n.], 2004. - Vol. 2. - pp. 1120-1125.

Gerla M., Lee S. S. and Pau G. TCP Westwood Simulation Studies in Multiple-Path

Cases [Conference] // SPECTS. - San Diego, California : [s.n.], 2002.

Haas Z. J. and Pearlman M. R. The zone routing protocol (ZRP) for ad hoc

networks. - [s.l.] : IETF Internet Draft (draft-ietf-manet-zone-zrp02.txt), 1999.

Hacker T. and Athey B. The End-to-End Performance Effects of Parallel TCP

Sockets on a Lossy Wide-Area Network [Conference] // IEEE IPDPS. - Ft.

Lauderdale, FL : [s.n.], 2002.

Jacobson V. Modified TCP congestion avoidance algorithm [Report]. - [s.l.] :

end2end interest group mailing list, April 1990.

Johnson D. B. [et al.] The dynamic source routing protocol for mobile Ad Hoc

networks. - [s.l.] : IETF Internet Draft (draft-ietf-manet-dsr-03.txt), 1999.

Krishnan R. and Silvester J. A. Choice of allocation granularity in multipath source

routing schemes [Conference] // 12nd Annual Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM '93). - San Francisco, CA :

[s.n.], 1993. - Vol. 1. - pp. 322-329.

Lee S. J. and Gerla M. Split multipath routing with maximally disjoint paths in ad

hoc networks [Conference] // IEEE International Conference on Communications

(ICC). - Helsinki, Finland : [s.n.], 2001. - pp. 3201-3205.

Lee S. J. and Gerla M. Split multipath routing with maximally disjoint paths in ad

hoc networks [Conference] // ICC. - 2001. - pp. 3201-3205.

66

Liao W. H. [et al.] A multi-path QoS routing protocol in a wireless mobile ad hoc

network [Conference] // IEEE International Conference On Networking. - France :

[s.n.], 2001. - pp. 158-167.

Ma C. and Leung K. C. Improving TCP performance robustness in multipath

networks [Conference] // IEEE LCN. - 2004.

Mankin A. and Ramakrishnan K. Gateway congestion control survey. - [s.l.] :

IETF RFC 1254, 1991.

Mao S. [et al.] MRTP: a multi-flow realtime transport protocol for ad hoc networks

[Conference] // IEEE Vehicular Technology. - 2003.

Marina M. K. and Das S. R. On-demand multipath distance vector routing in ad hoc

networks [Conference] // International Conference for Network Protocols (ICNP). -

2001.

Marina M. K. and Das S. R. On-demand Multipath Distance Vector Routing in Ad

Hoc Networks [Conference] // Proceedings of the International Conference for

Network Protocols. - 2001.

Maxemchuc N. F. Diversity routing [Conference] // IEEE ICC. - San Francisco,

CA : [s.n.], 1975. - Vol. 1. - pp. 10-41.

Mooney L. A., Knox D. and Schacht C. Understanding social problems [Book]. -

[s.l.] : Wadsworth Pub Co, 2008. - 2 : pp. 5-9.

Padhye J. [et al.] Modeling TCP Reno performance: a simple model and its

empirical validation [Journal]. - [s.l.] : IEEE/ACM Transaction on Networking,

2000. - 2 : Vol. 8. - pp. 133-145.

Perkins C. E., Royer E. M. and Das S. R. Ad hoc on-Demand Distance Vector

(AODV) Routing. - [s.l.] : IETF Internet Draft (draft-ietf-manetaodv-06.txt), 2000.

Phatak D. S. and Goff T. A novel mechanism for data streaming across multiple IP

links for improving throughput and reliability in mobile environments [Conference] //

67

21nd Annual Joint Conference of the IEEE Computer and Communications Societies,

(INFOCOM'02). - New York, NY : [s.n.], 2002. - Vol. 2. - pp. 773-781.

Saltzer J., Reed D. and Clark D. End-to-end arguments in system design

[Journal]. - [s.l.] : ACM Transactions on Computer Systems (TOCS), 1984. - 4 : Vol.

2.

Sivakumar H., Bailey S. and Grossman R. PSockets: The Case For Application-

Level Network Striping For Data Inttensive Applications Using High Speed Wide

Area Networks [Conference] // EEE Supercomputing (SC). - Dallas, TX : [s.n.],

2000.

Stewart R. and al et Stream Control Transmission Protocol [Journal]. - [s.l.] :

RFC2960, IETF, 2000.

Stewart R. R. and Xie Q. Stream Control Transmission Protocol: A Reference

Guide [Conference]. - 2001.

The Encyclopedia of Wikipedia,‎s.v.‎“Socialization.”.

Wei W. and Zakhor A. Robust multipath source routing protocol (RMPSR) for

video communication over wireless ad hoc networks [Conference] //‎ IEEE‎ Int‟l‎

Conference on Multimedia and Expo (ICME 2004). - Taipei : [s.n.], 2004.

Wei W. and Zakhor A. Robust Multipath Source Routing Protocol (RMPSR) for

Video Communication over Wireless Ad Hoc Networks [Conference] // ICME. -

2004.

Wilkinson . - 2006.

Wu T. and Lau R. A class of self-healing ring architectures for SONET network

applications [Conference] // IEEE Trans. Commun.. - 1992. - Vol. 40. - pp. 1746–

1756.

http://en.wikipedia.org/wiki/Socialization

68

Yabandeh Maysam [et al.] A Sociological Perspective on the Reordering Problem

in Multipath Routing [Journal] // International Journal of Cybernetics and Systems. -

March 2007. - 3 : Vol. 38. - pp. 275-288.

Yabandeh Maysam [et al.] Reducing Buffer Space in Multipath Schemes

[Conference] // 5th IEEE Consumer Communications and Networking Conference

(CCNC '08). - 2008.

Yabandeh Maysam, Mohammadi Hossein and Yazdani Nasser Multipath Routing

in Mobile Ad hoc Networks: Design Issues [Conference] // 12th International CSI

Computer Conference. - Tehran : [s.n.], 2007.

Yabandeh Maysam, Zarifzadeh Sajjad and Yazdani Nasser Improving

performance of transport protocols in multipath transferring schemes [Journal] //

Computer Communications. - [s.l.] : Elsevier, 2007. - 17 : Vol. 30. - pp. 3270-3284.

Ye Z., Krishnamurthy S. V. and Tripathi S. K. A framework for reliable routing in

mobile ad hoc networks [Conference] // 22nd Annual Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM '03). - San Francisco, CA,

USA : [s.n.], 2003.

Ye Z., Krishnamurthy V. and Tripathi S. K. A Framework for Reliable Routing in

Mobile Ad Hoc Networks [Conference] // IEEE INFOCOM. - 2003.

Zhang M. [et al.] A transport layer approach for improving end-to-end performance

and robustness using redundant paths [Conference] // USENIX Annual Technical

Conference. - Boston, MA : [s.n.], 2004. - pp. 99–112.

Zhang M. [et al.] RR-TCP: A reordering-robust TCP with DSACK [Conference] //

IEEE ICNP. - 2003.

