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ABSTRACT

We consider the problem of classification of multiple observations of
the same object, possibly under different transformations. We view
this problem as a special case of semi-supervised learning where all
unlabelled examples belong to the same unknown class. We propose
a low complexity solution that is able to exploit the properties of the
data manifold with a graph-based algorithm. It results into a discrete
optimization problem, which can be solved by an efficient algorithm.
We demonstrate its performance in video-based face recognition ap-
plications, where it outperforms state-of-the-art solutions that fall
short of exploiting the manifold structure of the face image data sets.

Index Terms— Semi-supervised learning, label propagation,
video-based face recognition.

1. INTRODUCTION

In this work, we focus on the pattern classification problem with
multiple observations that could typically represent successive
frames of a video sequence. We assume that observations are pro-
duced from the same object under different transformations. In par-
ticular, the problem is to assign multiple observations of the test
object s to a single class of objects. We assume that we have m

transformed observations of s of the following form

xi = U(ηi)s, i = 1, . . . , m,

where U(η) denotes a (geometric) transformation with parameters
η, which is applied on s. For instance, in the case of visual objects,
U(η) may correspond to a rotation, scaling, translation, or perspec-
tive projection of the object. We assume that each observation xi

is obtained by applying a transformation ηi on s, which is different
from its peers (i.e., ηi �= ηj , for i �= j). The problem is to clas-
sify s in one of the c classes under consideration, using the multiple
observations xi, i = 1, . . . , m.
Assume further that the data set is organized in two parts X =

{X(l), X(u)}, where X(l) = {x1, x2, . . . , xl} ⊂ R
d and X(u) =

{xl+1, . . . , xn} ⊂ R
d, where n = l + m. Let also L =

{1, . . . , c} denote the label set. The l examples in X(l) are labelled
{y1, y2, . . . , yl}, yi ∈ L, and the m examples in X(u) are unla-
belled. The classification problem can be formally defined as fol-
lows.

Problem 1 Given a set of labelled dataX(l), and a set of unlabelled
data X(u) � {xj = U(ηj)s, j = 1, . . . , m} that correspond to
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multiple transformed observations of s, the problem is to predict the
correct class c∗ of the original pattern s.

This problem is a particular case of semi-supervised learning [1],
which generally consists in predicting the labels of X(u), based on
the knowledge of the data points (both X(l) and X(u)) and the la-
bels of the labelled points. Note that in the generic scenario of
semi-supervised learning, the test examples may belong to differ-
ent classes. The above problem however presents an important addi-
tional constraint, where all the observations belong to the same class.
Thus, one may view Problem 1 as a special case of semi-supervised
learning, where the unlabelled data X(u) represent the multiple ob-
servations and they have the extra constraint that all unlabelled data
examples belong to the same (unknown) class. The problem then
resides in estimating the unknown class.

2. GRAPH-BASED CLASSIFICATION

We propose a novel graph-based algorithm built on label propaga-
tion. Label propagation methods typically assume that the data lie
on a low dimensional manifold living in a high dimensional space.
They rely upon the smoothness assumption, which states that if two
data samples x1 and x2 are close, then their labels y1 and y2 should
be close as well. The main idea of these methods is to build a graph
that captures the geometry of this manifold as well as the proxim-
ity of the data samples. The labels of the test examples are derived
by “propagating” the labels of the labelled data along the manifold,
while making use of the smoothness property.
Denote byM the set of matrices with nonnegative entries, of size

n × c. Notice that any matrix M ∈ M provides a labelling of
the data set by applying the following rule: yi = maxj=1,...,c Mij .
We denote the initial label matrix as Y ∈ M where Yij = 1 if xi

belongs to class j and 0 otherwise. The label propagation algorithm
first forms the k nearest neighbor (k-NN) graph defined as

G = (V, E),

where the vertices V correspond to the data samples X. An edge
eij ∈ E is drawn if and only if xj is among the k nearest neighbors
of xi.
It is common practice to assign weights on the edge set of G. One

typical choice is the Gaussian weights

Wij =

(
exp(− ‖xi−xj‖

2

2σ2 ) when (i, j) ∈ E ,

0 otherwise.
(1)

The similarity matrix S ∈ Rn×n is further defined as

S = D
−1/2

WD
−1/2

, (2)
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whereD is a diagonal matrix with entriesDii =
Pn

j=1 Wij .
We exploit the specificities of our particular classification prob-

lem and constrain the unknown labels to correspond to one single
class. Therefore, we propose in the sequel a novel graph-based al-
gorithm, which (i) uses the smoothness criterion on the manifold in
order to predict the unknown class labels and (ii) at the same time, it
is able to exploit the specificities of Problem 1.
We represent the data labels with a 1-of-c encoding, which allows

to form a binary label matrix of size n×c, whose ith row encodes the
class label of the ith example. The class label is basically encoded
in the position of the nonzero element.
Suppose now that the correct class for the unlabelled data is the

pth one. In this case, we denote byZp ∈ Rn×c the corresponding la-
bel matrix and we call it the pth class-conditional label matrix. Note
that there are c such label matrices; one for each class hypothesis.
Each matrix Zp has the following form

Zp =

2
4 Yl ∈ Rl×c

1e�p ∈ Rm×c

3
5 ∈ R

n×c
, (3)

where ep ∈ Rc is the pth canonical basis vector and 1 ∈ Rm is the
vector of ones. Zp holds the labels of all data samples, assuming
that all unlabelled examples belong to the pth class. Observe that the
Zp’s share the first part Yl and differ only in the second part. Since
all unlabelled examples share the same label, the class labels have a
special structure that reflects the special structure of Problem 1. We
could then express the unknown label matrixM as,

M =
cX

p=1

λpZp, Zp ∈ R
n×c

, (4)

where Zp is given in (3), λp ∈ {0, 1} and Pc
p=1 λp = 1. In the

above, λ = [λ1, . . . , λc] is the vector of linear combination weights,
which are discrete and sum to one. Ideally, λ should be sparse with
only one nonzero entry pointing to the correct class.
The classification problem now resides in estimating the proper

value of λ. We propose the following objective function

Q̃(λ) =
1

2

“ nX
i,j=1

Wij‖ 1√
Dii

Mi − 1p
Djj

Mj‖2
”
, (5)

where the optimization variable now becomes the λ vector. In the
above, Mi (resp. Mj ) denotes the ith (resp. jth) row of M . In the
case of normalized Laplacian, we have

Q(λ) =
1

2

nX
i,j=1

Sij‖Mi − Mj‖2
, (6)

where S is defined as in (2). It can be seen that the objective function
directly relies on the smoothness assumption. When two examples
xi, xj are nearby (i.e., Wij or Sij is large), minimizing Q̃(λ) and
Q(λ) results in class labels that are close too.
Thus, one may solve the optimization problem by enumerating all

above possible solutions and pick the one λ∗ that minimizes Q(λ).
Then, the position of the nonzero entry in λ∗ yields the estimated
unknown class. We call this algorithm MAnifold-based Smoothing
under Constraints (MASC).

Recognition rate (%) MASC MSM KLD
r = 4 100 84.62 84.62
r = 6 100 84.62 79.49
r = 8 97.44 84.62 61.54
r = 10 97.44 87.18 66.67
r = 12 97.44 76.92 61.54

Table 1. Video face recognition results on the Honda/UCSD
database.

3. EXPERIMENTAL RESULTS

We apply the proposed algorithm to the classification of sets of
multiple images in video-based face recognition. We use the
Honda/UCSD1 database. For preprocessing we used first P. Viola’s
face detector [2] in order to automatically extract the facial region
from each frame. Next, we downsampled the facial images to size
32×32 for computational ease. The proposed MASC method imple-
ments Gaussian weights (1) and sets k = 5 in the construction of the
k-NN graph. We compare MASC to two well-known methods from
the literature, namely the Mutual Subspace Method (MSM) [3] and
the KL-divergence algorithm (KLD) by Shakhnarovich et al [4].
The Honda/UCSD database comes with a default splitting into

training and test sets, which contains 20 training and 39 test video
sequences. We use this default setup and we report the classification
performance of all methods, under different data re-sampling rates.
In particular, both training and test image sets are re-sampled now
with step r i.e., X(i) = Xi(:, 1 : r : n), i = 1, . . . , c. Table 1
shows the recognition rates, when r varies from 4 to 12 with step 2.
Observe that KLD is mostly affected by r, by suffering loss in per-
formance. This is not surprising since it is a density-based method
and densities cannot be accurately estimated (in general) with a few
samples. MSM seems to be more robust, yielding better results than
KLD. Finally, MASC is again the best performer and it exhibits very
high robustness against data re-sampling.
This shows the high potential in graph-based methods for effi-

cient classification of images that belong to the same data man-
ifold. The graph-based solution outperforms state-of-the-art sub-
space or statistical classification methods in video-based face recog-
nition. Hence, this work establishes new connections between semi-
supervised learning and video-based face recognition, where graph-
based solutions are certainly very promising.
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