The low frequency mechanical and dielectric behavior of three different elastomers has been investigated by dynamic mechanical analysis and dielectric spectroscopy, with the aim of accounting for the frequency dependence of the characteristics of the corresponding dielectric elastomer actuators. Satisfactory agreement was obtained between the dynamic response of the actuators and a simple model based on the experimental data for the elastomers, assuming that the relatively large prestrains employed in the actuators to have little influence on the frequency dependence of their effective moduli. It was thus demonstrated that the frequency dependence of the actuator strain is dominated by that of the mechanical response of the elastomer, and that the frequency dependence of the dielectric properties has a relatively minor influence on the actuator performance.