
AVC Entropy Coding for MPEG Reconfigurable Video Coding

Hussein Aman-Allah and Ihab Amer
Laboratory of Microelectronic Systems (GR-LSM), EPFL

CH-1015 Lausanne, Switzerland
{hussein.aman-allah, ihab.amer}@epfl.ch

Abstract

The emergence of the Reconfigurable Video Coding
(RVC) Standard has led to the development of its
accompanying decoding Video Tool Library (VTL).
This library is comprised of a set of video coding tool
also referred to as Functional Units (FUs) that are
combined to form the different video decoders. This
paper introduces a set of FUs that represent potential
contributors to the RVC Encoding Toolbox
corresponding to the AVC baseline profile entropy
coding modules. The modules are implemented using
RVC-CAL, and has been synthesized into hardware
targeting the Virtex 5 FPGA. A novel memory model
for the Look Up Tables (LUTs) is also introduced and
introduces up to 31.5% of savings in the space
required to store them. The results being compared to
other implementations from the literature show
substantial improvement to traditional implementation
approaches using C/C++ or VHDL conclude the
paper.

1. Introduction

The RVC VTL is a normative library of video
coding tools, also called FUs covering at the moment
MPEG-2 simple profile and main profile, MPEG-4 SP,
MPEG-4 AVC baseline profile, SVC baseline profile
(the so called “MPEG Toolbox”). This library is
specified with a textual normative specification and a
corresponding reference SW. Such reference SW
specification is provided using RVC-CAL as
specification language for each library component.

The objective of developing an encoder toolbox is to
demonstrate that the existence of RVC encoding tools
supports the evolvement of the RVC standard [2].
Many benefits can be achieved by supporting the RVC
framework with such encoding tools. Instead of
modifying the available C/C++ software reference
model of a specific MPEG standard to make it able to
generate the Bitstream Syntax Description (BSD) and
the Functional Unit Network Description (FND) in

order to test the conformance of a corresponding RVC
decoder, building an RVC encoder using RVC-CAL
would be more convenient. Building the encoder using
RVC-CAL enables the exploitation of the
commonalities between many components within
various MPEG standards. Hence, the existence of an
informative VTL would be advisable. In this case, a
typical MPEG RVC Encoding/Decoding scenario
would be as shown in Figure 1 [3].

Figure 1 - RVC Encoding/Decoding Scenario

This would allow for the construction of
“reconfigurable encoders” using the encoder's
informative VTL, which specifies the set of FUs that
may be interchangeably combined and connected to
form different video encoders, with various
compression performances and implementation
complexities. Some of the FUs of the normative VTL
of the RVC decoder can be used to construct the
encoder, either directly (such as the IDCT module), or
indirectly, by inferring the IO structure of a module in
the encoder from the corresponding module in the
decoder.

In this paper, efficient RVC-CAL modules for Exp-
Golomb and CAVLC based Entropy Coding are
presented. Both modules are part of a complete AVC
baseline profile compliant RVC Encoder. The encoder
is one of the very first attempts to raise the need for an
RVC Abstract Encoder Model (AEM) and MPEG
RVC Encoding Toolbox. The modules were
implemented targeting the Virtex 5 XC5VLX50T
FPGA. The hardware synthesis, software productivity,
and memory optimization results are presented in
section 3. A discussion that explains the reasons

behind such results and potential future work
concludes the paper.

2. Entropy Coding

Entropy encoding in AVC/H.264 relies on several
architectures. The baseline profile employs Exp-
Golomb Coder and Context-Adaptive Variable Length
(CAVLC) Coder which both employ Variable Length
Coding (VLC). Within the AVC/H.264 standard, the
syntax elements above the slice layer are encoded
using fixed- or variable-length binary codes. Starting
from the slice layer and all the lower layers, elements
are encoded using either Exp-Golomb VLCs or
CAVLC depending on the type of the parameter [4].

2.1 Exp-Golomb

Exp-Golomb encodes all syntax elements except for
the quantized transform coefficients, which are
encoded using the CAVLC scheme. Thus, the same
VLC tables are used for almost all the syntax elements;
which contribute to reducing the memory requirements
needed to store such tables.

Exp-Golomb codes are variable length binary codes
that are constructed systematically with the following
pattern:

[][1][]Code Mzeros INFO=
The code words constructed in this fashion are
guaranteed to have symmetric width; where the INFO
field is represented in M bits, making the width of the
code word equal to 2 1M + [4].

Given a parameter k, the corresponding code_num
is then calculated according to one of four modes and
the mode selection decision is based on the parameter
type. Each of such modes is designed to produce
shorter codewords for frequently-occurring values and
longer codewords for less common parameter values.
After the code_num has been calculated, codewords
can be constructed on the basis of the following
equations.

2
log (_ 1)M Code Num= +⎢ ⎥⎣ ⎦

 _ 1 2MINFO Code Num= + −
Figure [3] shows the Exp-Golomb module

implemented in RVC-CAL as a simple network with
one input port, which receives the parameter token to
be encoded and one output port which outputs the
codeword serially. The Exp-Golomb network provides
interconnections among nine different actors, out of
which four (plus one, on which more later) actors
perform the tasks of the four different mapping modes.
The rest of the actors include a controller responsible
for the mapping mode decision based on the parameter

type, a code generator to construct the Exp-Golomb
codeword as described above, an assembler
responsible for the reordering, concatenation and
outputting of the codeword bits, and finally a utility
actor that provides decimal to binary conversion to
represent the INFO bits.

Figure 2 - Exponential Golomb RVC-CAL Network

For each of the four different mapping modes an

actor specifies how the mapping from the parameter to
the code_num is to be performed. The unsigned
mapping actor is a simple one, which outputs the
code_num token with a value equal to that of the input
token. The signed mapping actor defines two different
actions depending on the value of the input token; one
in which the code_num = 2|k| for non-negative values
and the other in which the code_num = 2|k|-1 for
negative values. The truncated mapping actor also
defines two different actions following the unsigned
mapping scheme for values greater than one and
inverting the binary value of the input token otherwise.
The mapped exponent relies on a lookup table (LUT)
specified in the ITU-recommendation [5] based on
different prediction modes and chroma array types.
Thus, the mapped exponent actor is a bit more involved
than the other three. It acts as a controller
communicating with a dedicated actor storing the LUT
(targeting a ROM implementation upon synthesis). The
communication channel is interfaced with the
corresponding address (input) and data (output) ports.
The LUT is organized in a reordered manner, so that
the coded_block_pattern is used as an address for the
table to read back the corresponding code_num.

Implementing the Exp-Golomb module in RVC-
CAL provides a high degree of abstraction that allows
for seamless integration within other modules with
minimal effort. As opposed to other implementations
provided in C for example, no pre-knowledge of the
user defined data types or any other implementation-
specific details are needed. Integrating the Exp-
Golomb module within the larger entropy coding
module is as easy as defining the interconnections for
its input and output ports; that adds only two lines of

code. Thus, the Exp-Golomb module and the CAVLC
module can be implemented by two completely
different developers and then the integration overhead
almost sums up to zero.
2.2 CAVLC

The H.264/AVC recommendation [5] provides two
alternative entropy coding methods (both of which are
context-adaptive variable-length based), Context
Adaptive Variable Length Coding (CAVLC) and
Context Adaptive Binary Arithmetic Coding
(CABAC). Context based adaptivity improves the
performance considerably relative to prior standards.
Since CABAC is not a part of the baseline profile only
CAVLC is considered hereby.

CAVLC exploits the statistical properties of the
quantized 4x4 block with the coefficients to be
encoded to provide a compact and efficient lossless
representation of the data. It is also context adaptive in
the sense that different VLC tables are used for the
different syntax elements and are switched according
to the values of previously coded elements [4]. Entropy
coding performance is improved in comparison to
other single-table based schemes because the different
VLC tables are designed to accommodate the specific
statistics of each syntax element.

Figure 3 - CAVLC RVC-CAL Network

Figure 3 [3] describes the proposed RVC-CAL
implementation of the CAVLC algorithm (thoroughly
described in [4]). It starts with the Zigzag Scanner
actor performing the pre-processing on the block of
coefficients and making the reordered block available
for both the Counter and the Reverser. The Counter
prepares the meta-data needed throughout the
algorithm execution; namely the TotalCoeffs,
TrailingOnes and the total_zeors. The N Calculator
calculates the number of non-zero coefficients based
on the corresponding values of the neighboring blocks.
The CoeffTokenEncoder uses the TotalCoeffs and

TrailingOnes to access one of the LUT to retrieve the
corresponding codeword. The choice of the LUT to be
accessed is made by the conjunction of the N-
Calculator and the Table Selector actors. The
algorithm execution proceeds in a distributed fashion
among the other actors and follows naturally as
illustrated in Figure 3.

The algorithm doesn’t execute according to its
intuitive order but rather depending on the tokens
available at each point in time during execution and
that adds yet another advantage to the RVC-CAL
implementation. The different actors in Figure execute
in independently and it is then the responsibility of the
assembler to compile the output tokens from the
different actors, reorder them and output the encoded
stream serially.

H.264/AVC CAVLC encoding relies heavily on the
usage of LUTs (Figure 3 shows the sub-modules in
which lookup is involved having a thicker border),
something which provides significant improvement of
efficiency but with the price of complication of the
fabrication process and additional consumption of area.
The proposed CAVLC module introduces a memory
model which preserves the complete LUTs
nevertheless still sparing up to 31.5% of the area
required to store them.

Figure 4 – CAVLC LUT Memory Model

Figure 4 shows the proposed memory model which

is represented in RVC-CAL as an actor representing
the memory controller, another representing the
memory itself and a third with the valid bit widths
(VBW) of the corresponding entries of the second
actor. This approach exploits an efficient storage
technique for the run of zeros to the left of the
codeword. For example the codeword 00000000001 is
stored as only 001 in the memory with an 11 in the
corresponding location in the VBW memory. In this
example, only 7 bits are to be stored instead of 11.
With almost 475 different variable length code words
to be stored [5], such reduction multiplies and offers
approximately 21% reduction in the ROM usage. It is

then the responsibility of the controller to align the
codeword before outputting it, a task which requires
minimal computational interference.

3. Results & Analysis

The Exp-Golomb and CAVLC modules have been
integrated with other major components comprising the
AVC-Compliant RVC Encoder. The entropy coding
module has been synthesized into hardware targeting
the Virtex 5 XC5VLX50T FPGA.

3.1. Software Productivity

One of the major RVC advantages is that it
accompanies its normative description language (RVC-
CAL) with many supporting tools that enable
automatic code generation into software (CAL2C) and
hardware (CAL2HDL) [6]. Table 1 presents a
comparison between the proposed RVC-CAL
implementation, the AVC/H.264 JM reference
software written in C [7], and a reference VHDL
implementation.

Table 1 - Comparison Between RVC-CAL, C, and
VHDL Implementations

 RVC-CAL C/C++ VHDL
Lines of Code
(LOC)

922 1762 3784

Development Time
(MH)

72 N/A 116

Number of
Developers

1 3 1

The table shows the lines of code, development

time and number of developers required for the RVC-
CAL, C and VHDL implementations correspondingly.
The numbers show that the RVC-CAL implementation
needs less time to be developed and hence requires
fewer developers. This gives the RVC-CAL
implementation an advantage of reducing the
development costs, while at the same time minimizing
the Time To Market (TTM).

3.2. Hardware Synthesis

The results are echoed on the hardware
implementation level. The HDL model is generated
from the presented CAL model using the CAL2HDL
tool. The HDL code is synthesized using Xilinx ISE
targeting the Xilinx Virtex 5 XC5VLX50T FPGA. The
synthesis results of the CAVLC module are provided

as an example for the quality of the hardware
implementation. Table 2 [8] summarizes the
performance of the CAVLC module and compares it
against an array of studies and implementations from
the literature.

 Table 2 - Performance of the CAVLC
module compared to other implementations

Critical

Path
(ns)

CLK
Frequen

cy
(MHz)

Numb
er of
LUT

Throughpu
t

(MSample
s/s)

Proposed
Impleme
ntation

3.729 268.1 112 268

[9] 9.6 103.8 2,467 103.8

[10] 31.326 31.9 84,90
2 510.4

[11] 3.1 210 100
[12] 8 125

N/A*

74.04
[13] 13.15 76 3,946 6.75

* No precise data available at the time of comparison.

The synthesis results show that the proposed
implementation exceeds the throughput of the others
with a factor of 2.58 in the worst case, with the
exception of [10] because that implementation employs
hardware redundancy to exploit parallelism and
consumes 758 times more hardware resources. Besides
the advancements in FPGA manufacturing technology,
the results can be attributed to several factors. The
abstract and encapsulated implementation facilitated by
RVC-CAL allows for optimization of every submodule
(actor) on its own, which collaborates to deliver overall
optimization of the whole CAVLC module. In
addition, the optimizations performed by the
CAL2HDL tool during the HDL code generation
(explicitly specified in [14]) also contribute greatly to
the quality of the synthesis results.

3.3. Memory Optimization

The implemented ROM Model that was applied to
the CAVLC LUTs and discussed in section 2.2
resulted in savings in memory space reaching around
30%. Table 3 examines the savings per each LUT. The
table summarizes the memory space consumed by the
implementation for each LUT and the corresponding
LUT dedicated for storing the VBW versus the space
consumed by the LUTs stored using the traditional
method.

Table 3 - Savings Resulting from the Proposed
Memory Model

 Memory
Size

VBW
Size

LUT
Size

Savings

coeff_token 816 1224 2976 31.5%
total_zeros
(Part 1)

336 560 1008 11.2%

total_zeros
(Part 2)

144 288 432 0%

run_before 315 525 1155 27.3%

4. Conclusion

In this paper, MPEG-RVC has been introduced
with elaboration on the road blocks that relate to the
Encoding Toolbox. The RVC-CAL implementation of
AVC baseline profile compliant Entropy Coding has
been discussed to illustrate the benefit of using RVC-
CAL dataflow actor language as a specification
language for RVC. The results illustrate the advantages
of using RVC-CAL as a specification language for the
RVC standard. The results for the different aspects
have been presented and compared to other traditional
development methodologies and to other
implementations from the literature.

6. References

[1] S. Bhattacharyya, G. Brebner, J. Eker, J. W. Janneck, M.
Mattavelli, C. Platen, and M. Raulet: "OpenDF - A Dataflow
Toolset for Reconfigurable Hardware and Multicore Systems",
Computer Architecture News, Special Issue: MCC08 - Multicore
Computing 2008, Volume 36, Number 5, December 2008.
[2] I. Amer Development of RVC Encoding Tools, 2009, MPEG
Core Experiment M16409.
[3] H. Aman-Allah, E. Hanna, K. Maarouf, and I. Amer.
Towards a comprehensive RVC VTL: A CAL description of an
efficient AVC baseline encoder. Submitted to, IEEE
International Conference on Image Processing (ICIP) 2009.
[4] I. E. G. Richardson. H.264 and MPEG-4 Video Compression.
Wiley, The Robert Gordon University, Aberdeen, UK, 2003.
[5] International Telecommunication Union. ITU-T
Recommendation and Final Draft International Standard of Joint
Video Specification (ITU-T Recommendation H.264, Advanced
Video Coding for Generic Audiovisual Services, March 2005.
[6] C. Lucarz, M. Mattavelli, M. Wipliez, G. Roquier, M. Raulet,
and J. Janneck et al. Dataflow/actor-oriented language for the
design of complex signal processing systems. In Conference on
Design and Architectures for Signal and Image Processing
(DASIP), 2008.
[7] Joint Video Team (JVT) reference softwarem, version 14.2
http://iphome.hhi.de/suehring/tml/download/old jm/jm14.2.zip,
2008.
[8] H. Aman-Allah, K. Maarouf, E. Hanna, I. Amer, and M.
Mattavelli. CAL Dataflow Components for an MPEG RVC
AVC Baseline Encoder. Springer Journal of Signal Processing
Systems, Reconfigurable Video Coding Special Issue., 2009.

[9] T. Silva, J. Vortmann, L. Agostini, S. Bampi, and A. Susin.
FPGA based design of CAVLC and exp-golomb coders for
H.264/AVC baseline entropy coding. In 3rd Southern
Conference on Programmable Logic (SPL07), 2007.
[10] I. Amer, W. Badawy, and G. Jullien. Towards MPEG-4 part
10 system on chip: A VLSI prototype for context based adaptive
variable length coding (CAVLC). In IEEE Workshop on Signal
Processing Systems, pages 275-279, 2004.
[11] Y. Yi and B. Cheol Song. A novel CAVLC architecture for
H.264 video encoding at high bit-rate. In IEEE International
Symposium on Circuits and Systems (ISCAS), 2008.
[12] C. Chien, K. Lu, Y. Shih, and J. Guo. A high performance
CAVLC encoder design for MPEG-4 AVC/H.264 video coding
applications. In IEEE International Symposium on Circuits and
Systems (ISCAS), pages 3838-3841, 2006.
[13] E. Sahin and I. Hamzaoglu. A high performance and low
power hardware architecture for H.264 CAVLC algorithm. In
13th European Signal Processing Conference.(EUSIPCO), 2005.
[14] J. Janneck, I. Miller, D. Parlour, G. Roquier, M. Wipliez,
and M. Raulet. Synthesizing hardware from dataflow programs:
An MPEG-4 simple profile decoder case study. In IEEE
Workshop on Signal Processing Systems (SiPS), 2008.

