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Abstract 
 

The emergence of the Reconfigurable Video Coding 
(RVC) Standard has led to the development of its 
accompanying decoding Video Tool Library (VTL). 
This library is comprised of a set of video coding tool 
also referred to as Functional Units (FUs) that are 
combined to form the different video decoders. This 
paper introduces a set of FUs that represent potential 
contributors to the RVC Encoding Toolbox 
corresponding to the AVC baseline profile entropy 
coding modules. The modules are implemented using 
RVC-CAL, and has been synthesized into hardware 
targeting the Virtex 5 FPGA. A novel memory model 
for the Look Up Tables (LUTs) is also introduced and 
introduces up to 31.5% of savings in the space 
required to store them. The results being compared to 
other implementations from the literature show 
substantial improvement to traditional implementation 
approaches using C/C++ or VHDL conclude the 
paper. 
 
1. Introduction 
 

The RVC VTL is a normative library of video 
coding tools, also called FUs covering at the moment 
MPEG-2 simple profile and main profile, MPEG-4 SP, 
MPEG-4 AVC baseline profile, SVC baseline profile 
(the so called “MPEG Toolbox”). This library is 
specified with a textual normative specification and a 
corresponding reference SW. Such reference SW 
specification is provided using RVC-CAL as 
specification language for each library component.  

The objective of developing an encoder toolbox is to 
demonstrate that the existence of RVC encoding tools 
supports the evolvement of the RVC standard [2]. 
Many benefits can be achieved by supporting the RVC 
framework with such encoding tools. Instead of 
modifying the available C/C++ software reference 
model of a specific MPEG standard to make it able to 
generate the Bitstream Syntax Description (BSD) and 
the Functional Unit Network Description (FND) in 

order to test the conformance of a corresponding RVC 
decoder, building an RVC encoder using RVC-CAL 
would be more convenient. Building the encoder using 
RVC-CAL enables the exploitation of the 
commonalities between many components within 
various MPEG standards. Hence, the existence of an 
informative VTL would be advisable. In this case, a 
typical MPEG RVC Encoding/Decoding scenario 
would be as shown in Figure 1 [3]. 

 

 
Figure 1 - RVC Encoding/Decoding Scenario 

This would allow for the construction of 
“reconfigurable encoders” using the encoder's 
informative VTL, which specifies the set of FUs that 
may be interchangeably combined and connected to 
form different video encoders, with various 
compression performances and implementation 
complexities. Some of the FUs of the normative VTL 
of the RVC decoder can be used to construct the 
encoder, either directly (such as the IDCT module), or 
indirectly, by inferring the IO structure of a module in 
the encoder from the corresponding module in the 
decoder. 

In this paper, efficient RVC-CAL modules for Exp-
Golomb and CAVLC based Entropy Coding are 
presented. Both modules are part of a complete AVC 
baseline profile compliant RVC Encoder. The encoder 
is one of the very first attempts to raise the need for an 
RVC Abstract Encoder Model (AEM) and MPEG 
RVC Encoding Toolbox. The modules were 
implemented targeting the Virtex 5 XC5VLX50T 
FPGA. The hardware synthesis, software productivity, 
and memory optimization results are presented in 
section 3. A discussion that explains the reasons 



behind such results and potential future work 
concludes the paper. 
 
2. Entropy Coding 
 

Entropy encoding in AVC/H.264 relies on several 
architectures. The baseline profile employs Exp-
Golomb Coder and Context-Adaptive Variable Length 
(CAVLC) Coder which both employ Variable Length 
Coding (VLC). Within the AVC/H.264 standard, the 
syntax elements above the slice layer are encoded 
using fixed- or variable-length binary codes. Starting 
from the slice layer and all the lower layers, elements 
are encoded using either Exp-Golomb VLCs or 
CAVLC depending on the type of the parameter [4]. 

 
2.1 Exp-Golomb 

Exp-Golomb encodes all syntax elements except for 
the quantized transform coefficients, which are 
encoded using the CAVLC scheme. Thus, the same 
VLC tables are used for almost all the syntax elements; 
which contribute to reducing the memory requirements 
needed to store such tables. 

Exp-Golomb codes are variable length binary codes 
that are constructed systematically with the following 
pattern:  

[ ][1][ ]Code Mzeros INFO=  
The code words constructed in this fashion are 
guaranteed to have symmetric width; where the INFO 
field is represented in M bits, making the width of the 
code word equal to 2 1M +  [4]. 

Given a parameter k, the corresponding code_num 
is then calculated according to one of four modes and 
the mode selection decision is based on the parameter 
type. Each of such modes is designed to produce 
shorter codewords for frequently-occurring values and 
longer codewords for less common parameter values. 
After the code_num has been calculated, codewords 
can be constructed on the basis of the following 
equations. 

2
log ( _ 1)M Code Num= +⎢ ⎥⎣ ⎦  

 _ 1 2MINFO Code Num= + −  
Figure  [3] shows the Exp-Golomb module 

implemented in RVC-CAL as a simple network with 
one input port, which receives the parameter token to 
be encoded and one output port which outputs the 
codeword serially. The Exp-Golomb network provides 
interconnections among nine different actors, out of 
which four (plus one, on which more later) actors 
perform the tasks of the four different mapping modes. 
The rest of the actors include a controller responsible 
for the mapping mode decision based on the parameter 

type, a code generator to construct the Exp-Golomb 
codeword as described above, an assembler 
responsible for the reordering, concatenation and 
outputting of the codeword bits, and finally a utility 
actor that provides decimal to binary conversion to 
represent the INFO bits. 

 
Figure 2 - Exponential Golomb RVC-CAL Network 

 
For each of the four different mapping modes an 

actor specifies how the mapping from the parameter to 
the code_num is to be performed. The unsigned 
mapping actor is a simple one, which outputs the 
code_num token with a value equal to that of the input 
token. The signed mapping actor defines two different 
actions depending on the value of the input token; one 
in which the code_num = 2|k| for non-negative values 
and the other in which the code_num = 2|k|-1 for 
negative values. The truncated mapping actor also 
defines two different actions following the unsigned 
mapping scheme for values greater than one and 
inverting the binary value of the input token otherwise. 
The mapped exponent relies on a lookup table (LUT) 
specified in the ITU-recommendation [5] based on 
different prediction modes and chroma array types. 
Thus, the mapped exponent actor is a bit more involved 
than the other three. It acts as a controller 
communicating with a dedicated actor storing the LUT 
(targeting a ROM implementation upon synthesis). The 
communication channel is interfaced with the 
corresponding address (input) and data (output) ports. 
The LUT is organized in a reordered manner, so that 
the coded_block_pattern is used as an address for the 
table to read back the corresponding code_num. 

Implementing the Exp-Golomb module in RVC-
CAL provides a high degree of abstraction that allows 
for seamless integration within other modules with 
minimal effort. As opposed to other implementations 
provided in C for example, no pre-knowledge of the 
user defined data types or any other implementation-
specific details are needed. Integrating the Exp-
Golomb module within the larger entropy coding 
module is as easy as defining the interconnections for 
its input and output ports; that adds only two lines of 



code. Thus, the Exp-Golomb module and the CAVLC 
module can be implemented by two completely 
different developers and then the integration overhead 
almost sums up to zero.  
2.2 CAVLC 

The H.264/AVC recommendation [5] provides two 
alternative entropy coding methods (both of which are 
context-adaptive variable-length based), Context 
Adaptive Variable Length Coding (CAVLC) and 
Context Adaptive Binary Arithmetic Coding 
(CABAC). Context based adaptivity improves the 
performance considerably relative to prior standards. 
Since CABAC is not a part of the baseline profile only 
CAVLC is considered hereby. 

CAVLC exploits the statistical properties of the 
quantized 4x4 block with the coefficients to be 
encoded to provide a compact and efficient lossless 
representation of the data. It is also context adaptive in 
the sense that different VLC tables are used for the 
different syntax elements and are switched according 
to the values of previously coded elements [4]. Entropy 
coding performance is improved in comparison to 
other single-table based schemes because the different 
VLC tables are designed to accommodate the specific 
statistics of each syntax element. 

 

 
Figure 3 - CAVLC RVC-CAL Network 

Figure 3 [3] describes the proposed RVC-CAL 
implementation of the CAVLC algorithm (thoroughly 
described in [4]). It starts with the Zigzag Scanner 
actor performing the pre-processing on the block of 
coefficients and making the reordered block available 
for both the Counter and the Reverser. The Counter 
prepares the meta-data needed throughout the 
algorithm execution; namely the TotalCoeffs, 
TrailingOnes and the total_zeors. The N Calculator 
calculates the number of non-zero coefficients based 
on the corresponding values of the neighboring blocks. 
The CoeffTokenEncoder uses the TotalCoeffs and 

TrailingOnes to access one of the LUT to retrieve the 
corresponding codeword. The choice of the LUT to be 
accessed is made by the conjunction of the N-
Calculator and the Table Selector actors. The 
algorithm execution proceeds in a distributed fashion 
among the other actors and follows naturally as 
illustrated in Figure 3. 

The algorithm doesn’t execute according to its 
intuitive order but rather depending on the tokens 
available at each point in time during execution and 
that adds yet another advantage to the RVC-CAL 
implementation. The different actors in Figure  execute 
in independently and it is then the responsibility of the 
assembler to compile the output tokens from the 
different actors, reorder them and output the encoded 
stream serially.  

H.264/AVC CAVLC encoding relies heavily on the 
usage of LUTs (Figure 3 shows the sub-modules in 
which lookup is involved having a thicker border), 
something which provides significant improvement of 
efficiency but with the price of complication of the 
fabrication process and additional consumption of area. 
The proposed CAVLC module introduces a memory 
model which preserves the complete LUTs 
nevertheless still sparing up to 31.5% of the area 
required to store them. 

 

 
Figure 4 – CAVLC LUT Memory Model 

 
Figure 4 shows the proposed memory model which 

is represented in RVC-CAL as an actor representing 
the memory controller, another representing the 
memory itself and a third with the valid bit widths 
(VBW) of the corresponding entries of the second 
actor. This approach exploits an efficient storage 
technique for the run of zeros to the left of the 
codeword. For example the codeword 00000000001 is 
stored as only 001 in the memory with an 11 in the 
corresponding location in the VBW memory. In this 
example, only 7 bits are to be stored instead of 11. 
With almost 475 different variable length code words 
to be stored [5], such reduction multiplies and offers 
approximately 21% reduction in the ROM usage. It is 



then the responsibility of the controller to align the 
codeword before outputting it, a task which requires 
minimal computational interference. 
 
3. Results & Analysis 
 

The Exp-Golomb and CAVLC modules have been 
integrated with other major components comprising the 
AVC-Compliant RVC Encoder. The entropy coding 
module has been synthesized into hardware targeting 
the Virtex 5 XC5VLX50T FPGA.  

 
3.1. Software Productivity 
 

One of the major RVC advantages is that it 
accompanies its normative description language (RVC-
CAL) with many supporting tools that enable 
automatic code generation into software (CAL2C) and 
hardware (CAL2HDL) [6]. Table 1 presents a 
comparison between the proposed RVC-CAL 
implementation, the AVC/H.264 JM reference 
software written in C [7], and a reference VHDL 
implementation. 

 

Table 1 - Comparison Between RVC-CAL, C, and 
VHDL Implementations 

 RVC-CAL C/C++ VHDL
Lines of Code 
(LOC) 

922 1762 3784 

Development Time 
(MH) 

72 N/A 116 

Number of  
Developers 

1 3 1 

 
The table shows the lines of code, development 

time and number of developers required for the RVC-
CAL, C and VHDL implementations correspondingly. 
The numbers show that the RVC-CAL implementation 
needs less time to be developed and hence requires 
fewer developers. This gives the RVC-CAL 
implementation an advantage of reducing the 
development costs, while at the same time minimizing 
the Time To Market (TTM). 

 
3.2. Hardware Synthesis 
 

The results are echoed on the hardware 
implementation level. The HDL model is generated 
from the presented CAL model using the CAL2HDL 
tool. The HDL code is synthesized using Xilinx ISE 
targeting the Xilinx Virtex 5 XC5VLX50T FPGA. The 
synthesis results of the CAVLC module are provided 

as an example for the quality of the hardware 
implementation. Table 2 [8] summarizes the 
performance of the CAVLC module and compares it 
against an array of studies and implementations from 
the literature. 

 Table 2 - Performance of the CAVLC 
module compared to other implementations 

 
Critical 

Path 
(ns) 

CLK 
Frequen

cy 
(MHz) 

Numb
er of 
LUT 

 

Throughpu
t 

(MSample
s/s) 

Proposed 
Impleme
ntation 

3.729 268.1 112 268 

[9] 9.6 103.8 2,467 103.8 

[10] 31.326 31.9 84,90
2 510.4 

[11] 3.1 210 100 
[12] 8 125 

N/A* 

74.04 
[13] 13.15 76 3,946 6.75 

 
* No precise data available at the time of comparison. 

The synthesis results show that the proposed 
implementation exceeds the throughput of the others 
with a factor of 2.58 in the worst case, with the 
exception of [10] because that implementation employs 
hardware redundancy to exploit parallelism and 
consumes 758 times more hardware resources. Besides 
the advancements in FPGA manufacturing technology, 
the results can be attributed to several factors. The 
abstract and encapsulated implementation facilitated by 
RVC-CAL allows for optimization of every submodule 
(actor) on its own, which collaborates to deliver overall 
optimization of the whole CAVLC module. In 
addition, the optimizations performed by the 
CAL2HDL tool during the HDL code generation 
(explicitly specified in [14]) also contribute greatly to 
the quality of the synthesis results.  

 
3.3. Memory Optimization 
 

The implemented ROM Model that was applied to 
the CAVLC LUTs and discussed in section 2.2 
resulted in savings in memory space reaching around 
30%. Table 3 examines the savings per each LUT. The 
table summarizes the memory space consumed by the 
implementation for each LUT and the corresponding 
LUT dedicated for storing the VBW versus the space 
consumed by the LUTs stored using the traditional 
method. 

 



Table 3 - Savings Resulting from the Proposed 
Memory Model 

 Memory 
Size 

VBW 
Size 

LUT 
Size 

Savings 

coeff_token 816 1224 2976 31.5% 
total_zeros 
(Part 1) 

336 560 1008 11.2% 

total_zeros 
(Part 2) 

144 288 432 0% 

run_before 315 525 1155 27.3% 
 
4. Conclusion 
 

In this paper, MPEG-RVC has been introduced 
with elaboration on the road blocks that relate to the 
Encoding Toolbox. The RVC-CAL implementation of 
AVC baseline profile compliant Entropy Coding has 
been discussed to illustrate the benefit of using RVC-
CAL dataflow actor language as a specification 
language for RVC. The results illustrate the advantages 
of using RVC-CAL as a specification language for the 
RVC standard. The results for the different aspects 
have been presented and compared to other traditional 
development methodologies and to other 
implementations from the literature. 
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