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Music Onset Detection Based on Resonator
Time Frequency Image
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Abstract—This paper describes a new method for music onset
detection. The novelty of the approach consists mainly of two ele-
ments: the time–frequency processing and the detection stages. The
resonator time frequency image (RTFI) is the basic time–frequency
analysis tool. The time–frequency processing part is in charge of
transforming the RTFI energy spectrum into more natural energy-
change and pitch-change cues that are then used as input elements
for the detection of music onsets by detection tools. Two detection
algorithms have been developed: an energy-based algorithm and
a pitch-based one. The energy-based detection algorithm exploits
energy-change cues and performs particularly well for the detec-
tion of hard onsets. The pitch-based algorithm successfully exploits
stable pitch cues for the onset detection in polyphonic music, and
achieves much better performances than the energy-based algo-
rithm when applied to the detection of soft onsets. Results for both
the energy-based and pitch-based detection algorithms have been
obtained on a large music dataset.

Index Terms—Audio, music, onset detection.

I. INTRODUCTION

A MUSIC signal can be considered as a succession of mu-
sical events (notes). Music onset detection aims at finding

the starting time of each note. Music onset detection plays an
essential role in music signal processing and has a wide range
of applications such as music transcription, beat-tracking, and
tempo identification. Different sound sources (instruments)
have different types of onsets that are often classified as “soft”
or “hard.” Hard onsets are characterized by sudden increases in
energy, whereas soft onsets show more gradual changes.1

Hard onsets can be well detected by energy-based ap-
proaches, but the detection of soft onsets remains a challenging
problem. Let us suppose that a note consists of a transient,
followed by a steady-state part, and the onset of the note is at
the beginning of the transient. For hard onsets, usually, energy
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1As the human ear is normally sensible to events in the range of milliseconds,
the terms sudden and gradual must be understood in the same scale.

changes are significantly larger in the transients than in the
steady-state parts. Conversely, when considering the case of
soft onsets, energy changes in the transients and the steady-state
parts are comparable, and they do not constitute reliable cues
for onset detection anymore. Consequently, energy-based ap-
proaches fail to correctly detect soft onsets. Stable pitch cues
enable to segment a note into a transient and a steady-state
part, because the pitch of the steady-state part often remains
stable. This fact can be used to develop appropriate pitch-based
methods that yield better performances, for the detection of
soft onsets, than energy-based methods. However, only a few
pitch-based methods have been proposed in the literature, al-
though many approaches have already used energy information.

The aim of this article is to describe a new method for music
onset detection. The method consists of two stages. The first
stage involves a new time–frequency analysis tool called “res-
onator time–frequency image” (RTFI), which transforms the an-
alyzed signal to a time–frequency energy spectrum. Then, the
specific combination of standard DSP components (e.g., low-
pass filtering, use of equal loudness curves, half-wave rectifi-
cation) converts the energy spectrum into more expressive rep-
resentations that show pitch and energy changes more clearly.
The second stage of the method employs the representations to
find onsets by using two detection algorithms: an energy-based
algorithm and a pitch-based one.

State-of-the-art pitch-based detection approaches often use
an independent pitch estimator to track pitch changes. However,
polyphonic pitch estimation remains an unsolved problem for
these approaches. Differently from them, the pitch-based de-
tection described here does not need an independent pitch es-
timator, but is able to use the stable pitch cues by the new ap-
proach described in Section IV. In addition, the RTFI is imple-
mented by the lowest order filter bank so as to be computation-
ally efficient and be able to decompose a signal into more fre-
quency bands than the one provided by existing multiband pro-
cessing approaches.

The paper is organized as follows: Section II reports a review
of related work on music onset detection, Section III briefly in-
troduces the RTFI, Section IV describes the new onset detec-
tion method, and Section V presents and discusses the exper-
imental results. Finally, conclusions and future work are pro-
vided in Section VI.

II. RELATED WORK

Many different onset detection systems have been de-
scribed in the literature. Typically they consist of three stages:
time–frequency processing, detection function generation, and
peak-picking [1]. At first, a music signal is transformed into
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different frequency bands by using a filter-bank or a spectro-
gram. Then, the output of the first stage is further processed to
generate a detection function at a lower sampling rate. Finally,
a peak-picking operation is used to find onset times within the
detection function, which is often derived by inspecting the
changes in energy, phase, or pitch.

A. Energy-Based Detection

In the past, differences in a signal’s envelop were used to de-
tect note onsets. However, such an approach has been proved
to be inefficient. Some researchers have found it useful to sep-
arate the analyzed signal into several frequency bands and then
detect onsets across the different frequency bands. This consti-
tutes the key element of the so-called multiband processing. For
example, Goto utilizes the sudden energy changes to detect on-
sets in seven different frequency ranges and uses these onsets
to track the music beats by a multiagent architecture [2]. Kla-
puri divides the signal into 21 frequency bands by the nearly
critical-band filter bank [3]. Then, he uses amplitude envelopes
to find onsets across these frequency bands. Duxbury et al. in-
troduce a hybrid multiband processing approach for onset de-
tection [4]. In the approach, an energy-based detector is used to
detect hard onsets in the upper bands, whereas a frequency based
distance measure is utilized in the lower bands to improve the
detection of soft onsets.

The first-order difference of energy or amplitude has been
utilized to derive a detection function. However, the first-order
difference is usually not able to precisely mark onset times. Ac-
cording to psychoacoustic principles, a perceived increase in the
signal amplitude is relative to its level. The same amount of in-
crease can be perceived more clearly in a quiet signal. Conse-
quently, as a refinement, the relative difference can be used to
better locate onset times [3].

B. Phase-Based Detection

Phase-based approaches detect onsets by using phase infor-
mation [5]. The short-time Fourier transform (STFT) of the
signal can be considered to be a group of sinusoid oscillators.
In the steady-state parts of the signal, the frequency of each
oscillator tends to remain constant. This is not the case in the
transients. Therefore, the change in frequency is an indicator
of a possible onset. The second difference of the phase of
the oscillator is able to identify the change in its frequency.
Accordingly, statistics (e.g., mean, variance, kurtosis) on the
second difference of the phase can be calculated across the
range of frequencies and used to derive the detection function.
To detect soft onsets, phase-based approaches perform better
than standard energy-based approaches. However, they are
susceptible to phase distortion and to noise introduced by the
phases of low-energy components. The combination of phase
and energy on the complex domain can provide more robust
detection [6].

C. Pitch-Based Detection

The approaches that only use the information of energy and/or
phase are not satisfactory for the detection of soft onsets. Pitch-

based detection appears as a promising solution for the problem.
Pitch-based approaches can use stable pitch cues to segment the
analyzed signal into transients and steady-state parts, and then
locates onsets only in the transients. Such approaches are ex-
pected to greatly reduce false positives. A pitch-based onset de-
tection system is described in [7]. In the system, an independent
constant-Q pitch detector provides pitch tracks that are used to
find likely transitions between notes. For the detection of soft
onsets, such system performs better than other state-of-the-art
approaches. However, it is designed only for the onset detection
of monophonic music. This article describes a new pitch-based
approach that detects soft onsets of real polyphonic music.

Some approaches to onset detection are not compatible with
the typical procedure described earlier. For example, a few
methods use machine learning techniques to classify whether
spectral frames are onsets or not [8], [9].

III. INTRODUCTION TO RTFI

RTFI is a computationally efficient time–frequency repre-
sentation for music signal analysis. Using the RTFI, different
time–frequency resolutions can be selected by simply setting a
few parameters.

A. Frequency-Dependent Time–Frequency Analysis

First a frequency-dependent time–frequency (FDTF) analysis
is defined as follows:

FDTF (1)

Unlike STFT, the window function of FDTF may depend
on the analytical frequency . This means that time and fre-
quency resolutions can be changed according to the analytical
frequency. At the same time, (1) can also be expressed as

FDTF (2)

where

(3)

Equation (1) is more suitable for expressing a transform-based
implementation, whereas (2) leads to a straightforward imple-
mentation of a filter bank with impulse response functions ex-
pressed in (3).

Computational efficiency and simplicity are the two essen-
tial criteria used to select an appropriate filter bank for imple-
menting FDTF. The order of the filter bank needs to be as small
as possible to reduce computational cost. The basic idea behind
the filter-bank-based implementation of FDTF is to realize fre-
quency-dependent frequency resolution by possibly varying the
filters’ bandwidths with their center frequencies. Therefore, the
implementing filters must be simple so that their bandwidths
can be easily controlled according to their center frequencies.
A novel time–frequency representation is developed: the RTFI,
which selects a first-order complex resonator filter bank to im-
plement a frequency-dependent time–frequency analysis.
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B. Resonator Time–Frequency Image

The RTFI can be expressed as follows:

RTFI

(4)

where

(5)

In these equations, denotes the impulse response of the
first-order complex resonator filter with oscillation frequency .
The factor before the integral in (4) is used to normalize
the gain of the frequency response when the resonator filter’s
input frequency is the oscillation frequency. The decay factor
is dependent on the frequency and determines the exponent
window length and the time resolution. At the same time, it also
determines the bandwidth (i.e., the frequency resolution). The
frequency resolution of time–frequency analysis implemented
by the filter bank is defined as the equivalent rectangular band-
width (ERB) of the implementing filter, according to the fol-
lowing equation:

(6)

where is the frequency response of a bandpass filter and
the maximum value of is normalized at 1 [10]. The ERB
value of the digital filter can be expressed according to angle
frequency as follows:

(7)

In most practical cases, the resonator filter exponent factor is
nearly zero, so can be approximated to ,
and (7) is approximated as follows:

(8)

The resolution can be set through a map function be-
tween the frequency and the exponential decay factor . For ex-
ample, a frequency-dependent frequency resolution and corre-
sponding value can be parameterized as follows:

(9)

(10)

The commonly used frequency resolutions for music analysis
are special cases of the parameterized resolutions in (9). When

, the resolution is constant-Q; when , the resolution
is uniform; when , , the resolution
corresponds to the widely accepted resolution of an auditory
filter bank [11].

As the RTFI has a complex spectrum, it can be expressed as
follows:

RTFI (11)

Fig. 1. Block diagram of the proposed onset detection method.

where and are real functions

RTFI (12)

It is proposed to use a complex resonator digital filter bank for
implementing a discrete RTFI. To reduce the memory usage of
storing the RTFI values, the RTFI is separated into different time
frames, and the average RTFI value is calculated in each time
frame. The average RTFI energy spectrum can be expressed as
follows:

RTFI (13)

where is the index of a frame, converts the value to
decibels, is an integer, and the ratio of to sampling
rate is the duration time of each frame in the average process.
RTFI represents the value of the discrete RTFI at
sampling point and frequency .

This subsection has introduced the basic idea behind the
RTFI. A detailed description of the discrete RTFI can be found
in [12]. The approach to music onset detection described in this
paper uses the RTFI as tool for time–frequency analysis.

IV. NEW ONSET DETECTION METHOD

A. System Overview

The new onset detection method, reported in Fig. 1, consists
of two main stages: time–frequency processing and detection
algorithms.

B. Time–Frequency Processing

The selection of time–frequency resolution has an important
effect on the performance of a music analysis system. The fol-
lowing explains how it may be reasonable to select a nearly con-
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stant-Q resolution for general-purpose music signal analysis. In
case of the common western music (CWM), the fundamental
frequency and corresponding partials of a music note can be de-
scribed as

and (14)

using the music instrument digital interface (MIDI) note
number for note . Supposing that the energy of every
music note mainly distributes over the first 10 partials, and
Energy for , the frequency ratio between the
partials of one note and the fundamental frequency of other
notes is as follows:

This means that the first ten partials always either completely
or in part overlap with another fundamental frequency. Since the
fundamental frequencies follow an exponential law (14), most
of the energy is concentrated in frequency bins, which are ex-
ponentially spaced and then equally spaced according to a log-
arithmic axis. This is the reason why the required resolution is
constant-Q.

The monaural music signal is used as the input signal at a
sampling rate of 44.1 kHz. The system applies the RTFI as the
time–frequency analysis. The center frequencies of the discrete
RTFI are set according to a logarithmic scale. The resolution
parameters in (9) are set as and . The fre-
quency resolution is constant-Q and equal to 0.1 semitones. Ten
filters are used to cover the frequency band of one semitone.
A total of 960 filters are necessary to cover the analyzed fre-
quency range that extends from 26 Hz to 6.6 kHz. The RTFI
energy spectrum is averaged to produce the RTFI average en-
ergy spectrum in units of 10 ms.

It is well known that the human auditory system reacts with
different sensitivities in the different frequency bands. This fact
is often described by tracing equal-loudness contours. Jensen
suggests a detection function called the perceptual spectral flux
[13], in which he weighs the difference frequency bands by the
equal-loudness contours. Collins uses the equal-loudness con-
tours to weight the different ERB scale bands and derive an-
other detection function [14]. Considering these works, in the
method described here, the average RTFI energy spectrum is
transformed following the Robinson and Dadson equal-loud-
ness contours, which have been standardized in the interna-
tional standard ISO-226. To simplify the transformation, only
an equal-loudness contour corresponding to 70 dB is used to ad-
just the average RTFI energy spectrum. The standard provides
equal-loudness contours limited to 29 frequency bins. Then,
this contour is used to get the equal-loudness contours of 960
frequency bins by cubic spline interpolation in the logarithmic
frequency scale. Let us identify this equal-loudness contour as

TABLE I
DEVIATION BETWEEN APPROXIMATION AND IDEAL VALUES

in dB. Then, the spectrum can be calculated as fol-
lows:

(15)

where represents the angle frequency of the th frequency
bin.

The music signal is structured according to notes. It is more
interesting to observe that an energy spectrum is organized ac-
cording to note pitches than to a single frequency component.
Then, the spectrum is further recombined to yield the spec-
trum according to a simple harmonic grouping principle:

(16)

In practical cases, instead of using (16), the spectrum can
be easily calculated in the logarithm scale by the following ap-
proximation:

(17)

As shown in Table I, the deviation between the approximate
and ideal values is negligible for the purposes of the spectral
analysis.

In (16) and (17), , is from 1 to 680
and the corresponding pitch range is 26 Hz to 1.32 kHz.

To reduce noise, a 5 5 mean filter is used for the low-pass
filtering of the spectrum according to the expression

(18)

To show energy changes more clearly, the spectrum is cal-
culated by the -order difference of spectrum

(19)

where the difference order is set as 3 in a heuristic way

(20)

where is the total number of frequency bins.
Finally, the spectra and together are considered as the

input for the second stage of the onset detection algorithms.

C. Energy-Based Detection Algorithm

The energy-based detection algorithm can be described by the
following expression:

(21)

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on January 28, 2009 at 03:49 from IEEE Xplore.  Restrictions apply.



ZHOU et al.: MUSIC ONSET DETECTION BASED ON RESONATOR TIME FREQUENCY IMAGE 1689

where is the half-wave rectifier function,
followed by the detection function

(22)

where is the total number of frequency bins in the spectrum
(19).
As shown in (21), is subtracted by a threshold and then

half-wave rectified to produce , which is considered to be a
possible transient cue. Then, is averaged across all frequency
bins to generate the detection function . The detection func-
tion is further smoothed by a moving average filter and a simple
peak-picking operation is used to find the note onsets. In the
peak-picking operation, only those peaks having values greater
than threshold are considered as the onset candidates.

Fig. 2 reports the results of the energy-based detection algo-
rithms for a popular music example with duration time of 4 s.
The vertical line in the image denotes the time labels of the true
onsets. The first image is the spectrum according to (15). And
the second image is the limited spectrum with a threshold

dB according to (21). In this example, it is obvious that
most of the main energy variations only exist in the onset times.

is averaged across all the frequency channels to generate the
detection function as expressed in (22); this detection function is
further smoothed. The smoothed detection function is shown in
the third subimage, and the blue lines in this image represent the
positions of the true note onsets. Finally, a simple peak-picking
operation is used with the second threshold dB. In
addition, if there exist two successive onset candidates and the
position difference between them is smaller or equal to 50 ms,
only the onset candidate with the larger value is kept.

D. Pitch-Based Detection Algorithm

The energy-based detection algorithm does not perform well
for detecting soft onsets. Consequently, a pitch-based algorithm
has been developed to improve detection accuracy of soft on-
sets. A music signal can be separated into transients and steady-
state parts. The basic idea behind the algorithm is to find the
steady-state parts by using stable pitch cues and then look back-
ward to locate onset times in the transients by inspecting energy
changes.

In most cases, a note has a spectral structure where dominant
frequency components are approximately equally spaced.
The energy of a note is mainly distributed on the first
several harmonic components. Let us suppose that all en-
ergies of a note are distributed in the first ten harmonic
components; for a monophonic note with fundamental fre-
quency , usually its spectrum [(15)] can have peaks

at the harmonic
frequencies. denotes the spectral peak that has
value at frequency . In most cases, the corresponding
spectrum [(16)] can present the strongest spectral peak

rightly at the fundamental
frequency of the note. Accordingly, the fundamental frequency
of a monophonic note can be estimated by searching the max-
imum peak at the note’s spectrum . For a polyphonic note, the
predominant pitches can be estimated by searching the spectral

Fig. 2. Energy-based detection of a popular music example. The first image is
the energy spectrum adjusted according to (15). And the second image is the
limited energy spectrum with a threshold � = 3 dB according to (21).

peaks that have values approaching or equal to the maximum
in spectrum . These peaks are nearly around the fundamental
frequencies of the note’s predominant pitches; hence, the peaks
are named “predominant peaks.” The spectrum [(20)] is
the relative measure of the maximum of . Consequently, in
spectrum , the predominant peaks have values approximate or
equal to 0 dB. To know how a pitch changes in a music signal,
the spectrum can be calculated in each short time frame
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in units of 10 ms to get a two-dimensional time–frequency
spectrum. Given the time–frequency spectrum of a signal,
if there is always a predominant peak around a frequency
in every time frame of a time span, this means that there is a
stable pitch in the time span, and it can be assumed that the
time span corresponds to a steady-state part. The time span can
be called “steady time span.” The images of time–frequency
spectrum are very useful to validate algorithm development
by visual inspection. Several different music signals and their
spectrum have been analyzed during the experimental work.
It can be commonly observed that, during the steady-state part
of a note, there are always one or more steady time spans,
which are located just behind the note’s onset. Consequently,
the steady-state parts of a signal can be found by searching
steady time spans in the signal’s spectrum .

The pitch-based algorithm described here consists of two
steps:

1) searching possible note onsets in every frequency channel;
2) combining the detected onset candidates across all the fre-

quency channels.
In the first step, the algorithm searches for possible pitch

onsets in every frequency channel. When searching in a cer-
tain frequency channel with frequency , the detection al-
gorithm tries to find only the onset where the newly occurred
pitch rightly has an approximate fundamental frequency .
In each frequency channel with frequency , the algorithm
searches the steady time spans, each of which corresponds to
the steady-state part of a note having a predominant pitch with
fundamental frequency . Given a time–frequency spectrum

, a time span (in units of 10 ms) is consid-
ered to be steady if it meets the following three conditions:

(23)

(24)

has a spectral peak at the frequency

(25)

The boundary ( and ) of a time span can be easily de-
termined as follows. is the time–frequency spectrum F in
the frequency channel with frequency

(26)

Then, a two-value function is defined as

(27)

(28)

where is the first-order difference of P(k). The beginning
of a time span corresponds to the time at which assumes
the value 1 and the end of the time span is the first instant, when

assumes the value 1.

After all the steady time spans have been determined, the
algorithm looks backward to locate onsets from the begin-
ning of each steady time span using the spectrum (19).
For a steady time span , the detection algorithm
locates the onset time by searching for most noticeable en-
ergy-change peak larger than the threshold in spectrum

. The search is done backward
from the beginning of a steady time span, and the searching
range is limited inside the 0.3-s window before the steady
time span. The time position of this energy-change peak of the
spectrum is considered as a candidate pitch onset.

After all frequency channels have been searched, the pitch
onset candidates are found and can be expressed as follows:

Onset (29)

where is the index of time frame and is the total number of
the frequency channels.

If Onset , no onset exists in the th time frame
of the th frequency channel. If Onset , there is
an onset candidate in the th time frame of the th frequency
channel, and the value of Onset is set to the value of

.
In the second step, the detection algorithm combines the pitch

onset candidates across all the frequency channels to generate
the detection function as follows:

Onset (30)

The detection function is low-pass filtered by a moving av-
erage filter. Then, a peak-picking operation is used to find the
onset times. If two onset candidates are neighbors in a 0.05-s
time window, then only the onset candidate with the larger value
is kept.

A bow violin excerpt is provided to exemplify the specific
usage and advantage of the pitch-based algorithm. The example
is a slow-attacking violin sound. Very strong vibrations can be
observed from its spectrum reported in Fig. 3. Because of the
vibrations, noticeable energy changes also exist in the steady-
state parts of the signal. Therefore, the energy changes are not
reliable for onset detection in this case. In the energy-based de-
tection function [Fig. 4], it is seen that there are many spurious
peaks that are, in fact, not related to the true note onsets (the
dotted lines represent the positions of the true onsets). Conse-
quently, the energy-based detection algorithm shows very poor
performance in this example.

Fig. 5 illustrates the spectrum of the example, and the ver-
tical lines in the image denote the positions of the true onsets. It
can be clearly observed that there is always at least one steady
time span (white spectral line) just behind an onset position. The
algorithm searches every frequency channel to find steady time
spans, each of which is assumed to correspond to a steady-state
part.

For example, steady time spans are searched in frequency
channel 294 Hz. As shown in Fig. 6, in the spectrum of this
frequency channel, there is a time span (in units of
10 ms). has values larger than the threshold dB,
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Fig. 3. Bow violin example: adjusted energy spectrum (spectrum Y).

Fig. 4. Bow violin example: energy-based detection function. The dotted lines
represent the positions of the true onsets.

Fig. 5. Bow violin example: normal pitch energy spectrum (spectrum F ). The
vertical lines in the image denote the positions of the true onsets.

and presents its maximum up to 0 dB. There is also a peak rightly
at a frequency of 294 Hz in the , which is obtained
by the following expression:

(31)

is the time–frequency spectrum of the bow vi-
olin example. is considered to be a steady time span because
it meets the three conditions, which were introduced earlier and

Fig. 6. Bow violin example: search of steady time spans in one frequency
channel.

Fig. 7. Bow violin example: location of the onset position backward from
steady time span.

Fig. 8. Bow violin example: onset candidates in all the frequency channels.
The dots denote the detected onset candidates, the vertical lines are true onsets.

used to judge if the time span is steady. Then, the detection al-
gorithm locates the onset position by searching for a noticeable
energy change peak larger than the threshold (in this ex-
ample, ) in the spectrum of the frequency channel.
The searching window is limited inside the 0.3-s window be-
fore the steady time span . As shown in Fig. 7, in the spectrum

of the frequency channel 294 Hz, a peak with a value larger
than the threshold is positioned nearly at the 2.42 s instant.
The time position is considered as a candidate onset time.

Here, the pitch-based algorithm uses stable pitch cues to sep-
arate the signal into the transients and the steady-state parts,
and searches the onset candidates by energy changes only in
the transients. So, the energy changes caused by the vibrations
in steady-steady parts are not considered as detection cues. The
dots in Fig. 8 denote the detected onset candidates in the dif-
ferent frequency channels by the pitch-based detection algo-
rithm. It can be observed that the onset candidates are nearly
around the true onset positions. Finally, the detection algorithm
combines the pitch onset candidates across all the frequency
channels to get the final result.
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TABLE II
TRAINING DATABASE

V. EXPERIMENTS AND RESULTS

A. Performance Measures

To evaluate the detection method, the detected onset times
must be compared with the reference ones. For a given refer-
ence onset at time , if there is a detection within a tolerance
time-window ms ms , it is considered to be a cor-
rect detection (CD). If not, there is a false negative (FN). The
detections outside all the tolerance windows are counted as false
positives (FP). The F-measure, Recall, and Precision measures
are used to summarize the results. The Precision and Recall can
be expressed as

(32)

(33)

where is the number of correct detections, is the
number of false positives, and is the number of false nega-
tives. These two measures can be summarized by the F-measure
defined as

(34)

B. Datasets

Input data used for experiments are separated into two data
sets: one training data set and one test data set. The training data
set is used to set the optimal parameter values for the detection
method.

The training data set contains ten different music files be-
longing to different genres. The detailed information of the data
set is reported in Table II. Among them, seven files were taken
from the RWC music database [15]. The positions of these files
in the RWC database are reported in the Reference column of
Table II. The other three files were selected from commercial
CDs.

One test data set was used for the evaluation. The test data-
base contains 30 music sequences of different genres and in-
struments. In total there are 2543 onsets and more than 15-min.
of time duration. The reference [11] contains the detailed in-
formation about each file of the dataset, such as duration time,
instruments or genres, and the number of labeled onsets. In the
test data set, some files were selected from two public databases:
the RWC music database and Leveau database [16]. The other

files were collected from commercial music CDs. Similar to the
MIREX 2005 [17], the music files are classified into the fol-
lowing classes: plucked string, sustained string, brass, winds,
complex mixes. There are some differences between this data set
and the MIREX data set. In MIREX, only monophonic music is
contained in the classes: plucked string, sustained string, brass,
and winds. Conversely, this test data set also contains poly-
phonic music for these classes. In addition, here the piano is
considered as a single class because most of the piano music
contains many hard onsets.

The onsets of the training and test data sets were labeled by
an annotation tool: Sound Onset Labellizer [16]. Using the tool,
onset labels were first annotated in the spectrogram by visual
inspection, and then they were more precisely adjusted by aural
feedbacks.

C. Setting Parameters

Given a test data set, better results could be achieved by set-
ting ad-hoc parameters. Consequently, performances may be
overestimated because parameters have been optimally selected
to fit the testing data set. To avoid overestimation, optimal pa-
rameter values have been selected by using the training data set.
The parameter values that yielded the best average F-measure
on the training data set were assumed optimal.

Consequently, the energy-based algorithm selected the
parameter thresholds: ; with the best
average F-measure at 77.8% on the training data set, while
the pitch-based algorithm selected the parameter thresholds:

; ; with a best average F-measure
at 92.0%. With these fixed parameter values, the detection
algorithms were evaluated on the test data sets.

D. Results Comparison Between the Energy-Based and
Pitch-Based Detection Algorithms

The total test results on the test data set are summarized in
Table III. More detailed test results on each file can be found in
[12].

In this evaluation, average F-Measure is used to evaluate
detection performance. The energy-based algorithm performs
better than does the pitch-based algorithm on the piano and
complex music, which contains several hard onsets. The en-
ergy-based detection gains 5.0% for piano music and 8.4%
for the complex music. Conversely, the pitch-based detection
algorithm performs better in the brass, winds and sustained
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TABLE III
RESULTS OF THE TWO PROPOSED ONSET DETECTION ALGORITHMS

TABLE IV
RESULTS OF THE TWO DETECTION ALGORITHMS FOR PUBLICLY AVAILABLE DATABASE

Fig. 9. Precision comparison of energy-based and pitch-based onset detections.

string, in which note onsets are considered to be softer. For the
sustained string, the pitch-based algorithm gains 42.9% and
greatly improves the performance from 44.1% to 87.0%. In
addition, the pitch-based algorithm gains 5.4%, 7.6% for brass
and winds, respectively.

A comparison between the precisions of the pitch-based and
energy-based algorithms is shown in Fig. 9. The comparison

clearly suggests that the pitch-based algorithm has a much better
precision than the energy-based algorithm.

The pitch-based algorithm over-performs the energy-based
algorithm for the detection of soft onsets. The reason of such
better performance can be explained as follows. Energy-based
approaches are based on the assumption that there are relatively
more salient energy changes at the onset times than in the
steady-state parts. In case of soft onsets, the assumption cannot
stand. The significant energy changes in the steady-state parts
can mislead energy-based approaches and cause many false
positives. Conversely, the proposed pitch-based algorithm can
first utilize stable pitch cues to separate the music signal into the
transients and the steady-state parts, and then find note onsets
only in the transients. The pitch-based algorithm reduces the
false positives that are caused by the salient energy changes in
the steady-state parts, and greatly improves the onset detection
performance of the music signal with many soft onsets. Because
of the reduction of false positives, it also gets a better precision.

The detailed test results of the public distributed database [16]
are reported in Table IV. This makes it possible for other re-
searchers to compare their methods with ours if they will use
the same public database.
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TABLE V
RESULTS OF THE TWO PROPOSED ONSET DETECTION ALGORITHMS FOR DIFFERENT TOLERANCE WINDOW

The localization performances of the two algorithms have
also been compared. To evaluate the localization capabilities,
the size of tolerance window has been changed. Several music
files were collected for this comparison. Both the algorithms
perform well on these files when a 50-ms tolerance window
is considered. Average F-measures with the different tolerance
window sizes are reported in Table V. It can be observed that,
when reducing the size of the tolerance window, the pitch-based
algorithm has more decrease in performance than the energy-
based algorithm. This suggests that the energy-based algorithm
yields better localization performance than the pitch-based al-
gorithm.

E. MIREX 2007 Results

With the combination of the energy-based and pitch-based al-
gorithms, the method described in this paper has been evaluated
in the MIREX 2007 audio onset detection task [18].

According to the overall performance, the method outper-
forms all other techniques which were evaluated in this task.
In particular, the method performed best on the overall average
F-measure, which was the primary criterion for evaluation.
Different methods can perform significantly better for different
classes. The method also yields the best performances for the
classes: solo drum, solo brass, and solo wind. For the solo brass
and solo wind, the method outperforms the second best methods
by about 8% and 9%, respectively. Such performances can be
contributed to the combination of the pitch-based detection.

VI. CONCLUSION AND FUTURE WORK

In this paper, a new method for onset detection in polyphonic
music is described. The proposed method includes two detec-
tion algorithms classified as “energy-based” and “pitch-based.”
The energy-based detection algorithm yields better performance
than the pitch-based algorithm for music signals with hard on-
sets. In addition, the energy-based algorithm also has better lo-
calization performance. However, for music signals presenting
several soft onsets, energy changes are not reliable for onset de-
tection. In such case, the energy changes in the steady-state parts
can mislead an energy-based detection and produce many false
positives. The pitch-based algorithm utilizes stable pitch cues
and greatly reduces false positives so that higher precisions and
better performances are achieved for the detection of soft on-
sets.

As discussed in [19] and [20], different detection methods
could be used for different types of sound events to achieve
better performances. Further improvements from the approach
could be achieved by developing more efficient classification al-
gorithms capable of assisting music onset detections. The clas-
sification algorithms could automatically estimate the dominant

onset type for the music signal being analyzed. In such an ap-
proach, an energy-based detection algorithm should be selected
when the dominant onset type has been estimated as hard; con-
versely, the pitch-based detection should be selected. Therefore,
the adaptive combination of energy-based and pitch-based de-
tection is expected to improve the overall performance.

As the pitch-based detection algorithm requires high-fre-
quency resolutions so that the number of frequency channels is
quite large (up to 960), the main computational cost is due to the
RTFI processing. In the current implementation it requires 1.6
times of music real-time when running on a common desktop
computer. The faster RTFI filter implementations could be
realized by means of specific software optimizations.
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