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Asseenin (11), the irregular contribution appears since there is a dis-
continuity in the arc length. In other words H; p(r, #) appears whether
d = 0 ord # 0 since arc length has a discontinuity. Butif d # 0, there
is a retardation in time, taking place in the Dirac delta function. This re-
tardation appears in the argument of the temporal basis as T;(t — d/c).

Another case appears when the testing and basis patches are different
but have a common edge, i.e., neighbor-testing. The discontinuity in
the arc length is seen only if the observation point is on this common
edge. When the observation point is on the edge of the source patch,
as mentioned above, d = 0 and one of the area coordinates is zero.
Unfortunately normal vectors of the test and basis patches are not the
same in this case. Hence, i - (p — p,)) # O and fi - A’ # 1. As in the
self-term evaluation, there is a contribution from Hi;(r, ), because
of the discontinuity in arc length. Also it can be shown that H; z(r, )
in (10), yields zero because d = 0. However, Ho(r, t) is not always
zero because 11 - ©i' # 1. In this case, a contribution from Hs(r, t)
must be evaluated. The frequency domain counterpart of this case is
investigated in [5].

III. CONCLUSIONS

In this work, singularity of the time domain magnetic field is investi-
gated for the MOT solution of the MFIE and a general form for the sin-
gular contribution is derived with no approximations or limiting proce-
dures. It is shown that the singular contribution depends on the location
of the observer on the support of the basis function. Also while the ob-
servation point is within the basis patch, it is shown that the well-known
one half factor is obtained.
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Fast Computation of Sommerfeld Integral Tails via
Direct Integration Based on Double Exponential-Type
Quadrature Formulas

Ruzica Golubovi¢ Niciforovi¢, Athanasios G. Polimeridis, and
Juan R. Mosig

Abstract—A direct integration algorithm, based on double exponen-
tial-type quadrature rules, is presented for the efficient computation of the
Sommerfeld integral tails, arising in the evaluation of multilayered Green’s
functions. The proposed scheme maintains the error controllable nature
of the so-called partition-extrapolation methods, often used to tackle
this problem, whereas it requires substantially reduced computational
time. Moreover, the proposed method is very easy to implement, since
the associated weights and abscissas can be precomputed. The overall
behavior of the proposed method both in terms of accuracy and efficiency
is demonstrated through a series of representative numerical experiments,
where compared with one of the most proven methods available in the
literature.

Index Terms—Mixed potential integral equations, multilayered Green’s
functions, Sommerfeld integrals.

I. INTRODUCTION

Planar technologies, in which thin metallizations are embedded
within stratified dielectric media, are one of the most popular and
successful approaches to build circuits and antennas in microwaves
and millimeter waves with a good performance-to-price ratio. One of
the most proven mathematical models to analyze these structures is
based on the integral equation formulations, combined with a Galerkin
method of moments (MoM) approach for the numerical solution
[1]-[3]. Among several possible variants, the mixed potential integral
equation (MPIE) formulation is generally considered to be more
efficient for numerical modeling of arbitrary shaped printed circuits,
because it requires only the potential forms of Green’s functions,
which are less singular than their derivatives, usually involved in
electric and magnetic field integral equations.

The solution of MPIE via MoM calls for the fast and accurate compu-
tation of the associated Green’s functions in spatial domain, which are
Fourier-Bessel integral transforms, commonly known as Sommerfeld
integrals (SIs), i.e., semi-infinite range integrals with Bessel function
kernels. Due to the highly oscillating and slowly decaying nature of the
integrands, the numerical evaluation of the SIs is very time consuming.
Generally, several methods have been proposed in order to tackle this
problem, which can be roughly categorized into two main families:
First, we could mention the closed-form Green’s functions methods
(see [4]-[8] among others), where no numerical integration is needed.
Instead, the integrand (spectral-domain Green’s function) is approxi-
mated via a finite sum of special functions, such that their SIs admit
analytical evaluation. Although Green’s functions need to be evaluated
only once for all transverse distances via the aforementioned methods,
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their complete lack of a priori error control still remains a critical chal-
lenge for the future. As an alternative, the second family consists of all
methods that are based on the numerical integration of the SIs. More
specifically, it is the tail of SIs that requires a special treatment, like the
so-called integration-then-summation procedure combined with one of
the numerous extrapolation techniques for the convergence accelera-
tion, among which the weighted averages (WA) method is proven to be
one of the most efficient [9], [10]. Alternatively, one could also choose
the direct integration of the SIs as suggested in [11]-[14]. Finally, a
somewhat hybrid approach was introduced in [15], where the integrand
of the SI tail is fitted by a sum of finite complex exponentials, similar
to the philosophy of closed-form Green’s functions methods, leaving a
remainder to be numerically evaluated.

In this communication, we present a novel technique for the fast and
accurate computation of SI tails via direct integration, based on Double
Exponential (DE)-type quadrature formulas [16]. The key feature of the
proposed scheme is its error controllable behavior, while comprising a
superior performance, in terms of efficiency, against the traditional in-
tegration-then-summation procedure, which is considered as the most
robust method for treating the SI tails. The DE quadrature formula was
introduced in the mid-seventies [17] and, since then, it has gradually
come to be used widely in various fields of science and engineering.
The originally proposed formula was intended for the evaluation of the
integrals with endpoint singularities and lacked efficiency when evalu-
ating an integral of a slowly decaying oscillatory function over semi-in-
finite intervals. In order to overcome this weakness, the idea of using
the Bessel function zeros as integration points of quadrature formulas
was employed in [18], in the case of exponential-type entire functions,
with a further elaboration in [19], [20]. The final outcome of this re-
search was a very efficient tool for the evaluation of integral tails with
Bessel function kernels [16]. This general algorithm is adapted in this
communication to tackle a persistent problem in computational elec-
tromagnetics: the Sommerfeld integral tail.

In Section I, a brief introduction about the SI tails and the extrap-
olation methods often used as convergence accelerators within inte-
gration-then-summation procedure, is presented. The DE quadrature
formula tailored for the Sommerfeld-type integrals is developed in de-
tail in Section II. Finally, in Section III, a comparison of the proposed
method with the best candidate of the extrapolation methods is pre-
sented in terms of accuracy and efficiency. The results obtained therein
fully justify the use of such sophisticated quadrature rules for treating
the SI tails.

II. SOMMERFELD INTEGRAL TAILS

With reference to the generic layered media of Fig. 1, the Sommer-
feld-type integrals can be written as follows [10]:
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where G is the spectral domain Green’s function of the layered media,
Jn is the Bessel function of the first kind of order 7, p is the horizontal
distance between the field and source points, and z, 2" are the vertical
coordinates of those points, respectively. Since SIs possess singulari-
ties on and/or near the real axis, it is well known [21] that the semi-in-
finite integral path must be deformed into the imaginary positive part
of the complex spectral (k,) plane to avoid them (Fig. 2). Therefore,
we split our generic Sommerfeld integral as

1

The integration path for I, joins the origin to a point &y on the real axis,
conveniently distant from the singularities. Typically, part of it or its
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Fig. 1. Generic stratified media showing a point source (level z’) and a field
observation point (level z) separated by a radial distance p. The medium can be
terminated or not by PEC, PMC and impedance planes.
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Fig. 2. Deformed integration path for the computation of Sommerfeld
integrals.

entirety goes into the complex plane (Fig. 2). Techniques for adaptively
selecting the integration path and for numerically evaluating I,, have
been discussed elsewhere [21].

The remaining integral

T, = /G(k,,;z|z/)Jn(k,7p)kp(lk,7 A3)
)

is the Sommerfeld tail where the integration path is a semi-infinite inte-
gral [€o, o] on the real axis. This tail is traditionally evaluated as a sum
of partial integrals over the finite subintervals (integration-then-sum-
mation procedure) [10]

oo oo Ei+1
To=) tn, =), / Gkp: 2|2 ) (kpp)kodk,.  (4)
=0 =0
19

Possible choices for the breakpoints ¢; include the asymptotic half-
periods, exact zero crossings and extrema of Bessel functions [10]. The
sum in (4) converges extremely slowly, thus, calling for suitable accel-
eration techniques, often referred as extrapolation methods. Among the
numerous techniques that are traditionally used as convergence accel-
erators for the evaluation of SI tails, WA method with the asymptotic
calculation of remainder estimates is shown to be one of the most ver-
satile and efficient. WA method was originally developed by Mosig
[22]-[24], with a further elaboration by Michalski [10], and is also
referred in the literature as the Mosig-Michalski transformation [25].
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Fig. 3. Behavior of the DE transformation for different values of step size pa-
rameter h.

Next, we introduce a new strategy for the evaluation of the Sommer-
feld tails and we will compare it with a WA approach using the Mosig-
Michalski algorithm.

III. DOUBLE EXPONENTIAL-TYPE QUADRATURE FORMULAS

The DE formula is the generic name of a family of optimal quadra-
ture formulas based on the DE transformation and it was originally in-
troduced by Takahasi and Mori in 1974 [17]. The first DE quadrature
rule was tailored for integrals with integrable singularities at the end of
the integration interval. Recently, Ooura and Mori proposed a novel
DE-type quadrature formula for tackling Fourier-type integrals, i.e.
semi-infinite range integrals with sinusoidal function kernels [26]. Fol-
lowing the same philosophy, Ogata and Sugihara introduced a DE-type
quadrature formula with Bessel function zeros as nodes, for the Hankel
transform integrals [16].

Here we use the aforementioned original study by Ogata and Sug-
ihara [16] in order to introduce the following transformation (specifi-
cally tailored for the SI tails of our interest)

ko p = (1) )
with

®(t) = t tanh ( smh(t)) + b - sech (— smh(z‘))
—(I)l()+(]:)2() (6)

where b = &y - p and h is the so-called step size that has to be chosen
carefully since it directly influences the algorithm performance.

In Fig. 3 the transformation ®(¢) is shown for different values of the
step size h. The role of the second part of the transformation (6), $» (¢),
is actually to map the starting point of the integration interval from
k, = &o into ¢ = 0, and its influence vanishes quickly as t — oc.
The first part of the transformation, ® (), has the dominant effect for
the higher values of ¢, approaching rapidly the transformation’s asymp-
totic behavior, ®(t) ~ (7 /h)|t|, that will be shown later to be the key
attribute of the method.

Applying the aforementioned transformation to the SI tail (3), we

obtain
T, = /f,l (1)) - <%(f)) at %)

0

where
1.~ /(1 , ‘
Fult)y= —t-G <;t;z|z > T (0). ®)

Since the integrand in (7) is an odd function with respect to ¢, the inte-
gral can be written as

1= [z @0 (e o

and approximated with the help of an appropriate quadrature formula
based on the zeros of Bessel functions, according to [16],

T, ~ th,Lk}"n (<1> <h E")) ' (h@)
™ T

k=1
n—1 22+1 ’
ROTEINEN {Fn (2(2) (1)}
+- Z h 81&2“'1 . (10)
where £, is the k-th zero of the Bessel function J,,. Also
—2A+1 n—A—1 o _1 1
C(}\n) ™ (n m ) 217—7171{)5;1))\ o (11)
A+ D! &~ m!
and bgn ), m = 0,1,2,... , are the coefficients of the Laurent series
expansion of 1/ Jn around the point x = 0:
Z b(anz) 2m—n (12)
m=0
Moreover, the weights w,, are given as follows:
Yo (k) 2
Wk = = - . (13)
T T Can)  mEnd 2 (k)

Finally, after some algebraic manipulations, we derive the DE-type
quadrature formulas for the SI tails (3). In particular, for the two most
used indexes n = (), 1 of the Bessel functions, we get

N
~ EOI\: / £Ok
T[) ~ h E lL)(]},»fo <<I) <]‘IT)) (I) <h7)
k=1
and
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+ (211, - %b/ﬁ) Fi(b). (15)

(14)

Actually, the key feature of the aforementioned transformation is
that since ®(¢) ~ (7 /h)|t| double exponentially as ¢ — Foc (shown
in Fig. 3), the quadrature nodes of the final formulas approach double
exponentially to the zeros of the associated Bessel functions, i.e.,
D(h(Enr/m™)) ~ Euk as k — oo. More specifically, for large values
of k we have

Jn<<1><h.5”’“)) ]< -h.ﬂ>:o
T h T

allowing us to truncate the infinite sum (10) at moderate /N, as shown
in (14), (15), without loss of accuracy.

(16)

IV. NUMERICAL RESULTS

In this section, we perform several numerical experiments in order
to demonstrate the accuracy and efficiency of the formulas presented
in (14) and (15). For the sake of comparison, we choose one of the
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most proven methods for the evaluation of the SI tails: the integra-
tion-then-summation procedure combined with the WA method and
utilizing equidistant break points separated by the asymptotic half-pe-
riod of the associated Bessel functions [10]. While, thanks to the Som-
merfeld identity, analytical solutions exist for a family of Sommerfeld
integrals (for instance the free-space case), nothing comparable can be
said for Sommerfeld tails, especially if their starting point §, = b is
taken at an arbitrary point of the real axis. This amounts to say that for
very simple layered problems we can rearrange formula (2) as

T, = Sn — I, = analytical value — I,,.

17)

Therefore, if we try in these cases to assess the absolute error or pre-
cision of an algorithm for evaluating the tail 7;,, we need to be sure
that we are numerically evaluating the finite integral ,, with the best
precision, close to machine precision if possible. Two basic tails can be
obtained by applying the scheme in (17) to the Sommerfeld integrals:

b
ik o=ikslz]
- / Jo(k,p)k,pdk,

T omikzlzl
/ ——Jo(k,p)k,dk, =

gk 7 gk
b
(18)
and to the p-derivative of the above
T o—ikzlzl ‘ , —jkr
/ ET'L (kﬁp)k;dkﬁ = (14 jkr) per3
/ 2

e Ikzlz
- /T-]l(kpp)kidkp 19)

0

where k. = /k? — k2. The integrals I,, in the right-hand sides of
(18), (19) are computed to machine precision by an adaptive quadrature
based on the Patterson’s formulas [27]. Then the tails 75, (integrals in
the left-hand sides of (18), (19)) are evaluated with the WA algorithm
and with our DE technique. In the WA algorithm, the partial integrals
un, in (4) must be computed using a Gauss-Legendre quadrature of
order 16, as suggested in [21], because in the case of negligibly small
integrands, numerical experiments have shown that adaptive Patterson
quadrature rule can fail trying to integrate what is essentially numerical
noise.

The key parameter in the DE quadrature is the step size  in (14),
(15). It directly influences the performance of the formulas and, there-
fore, it has to be chosen carefully. We have found experimentally that
the value 1, = 1/32 stands as the best trade-off between accuracy and
computational cost for the SI tails. We also set, following again the sug-
gestions in [10], a maximum of 160 integration points (ten integration
intervals for WA method) for both algorithms, if the predefined accu-
racy (10 eps) is not reached.

In Figs. 4(a) and 4(b), the number of significant digits of the rela-
tive error in the evaluation of the Sommerfeld identity tail (18) and its
p-derivative (19) versus ko p for the most challenging case, i.e., z = 0,
is presented. While both methods provide very accurate results, the
DE-type algorithm needs in average up to 25% less integration points
than WA method. In this point, we need to mention that a comparison
in terms of integration points reflects also the relative computational
time, since the overhead of the WA method has the same effect as the
computation of more complicated kernels in the DE-type method.

Next, we proceed to a more elaborate numerical experi-
ment including a wide range of distances from the source
(=3 < logyq(kop).logo(koz) < 1). To be more specific, the
relative number of integration points Npi/Nwa (%) is presented in
Figs. 5(a) and 5(b) for the tails of (18) and (19), respectively. Again,
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Fig. 4. Performance of DE formulas (14), (15) and WA method for z = 0.
(a) Sommerfeld identity tail (18). (b) Derivative of the Sommerfeld identity
tail (19).

upon discarding the lower part of the Figures, where basically the
contribution of the tail is zero, it is clear that the proposed integration
scheme is much more efficient than the WA method in a plethora of
observation points.

In the end, we will demonstrate the worthiness of the proposed
scheme in two real life applications, i.e., a three-layer geometry
(f = 8 GHz):

* layer-0: PEC;

e layer-1: e,1 = 4, d1 = 1)

* layer-2: free-space.
and a four-layer geometry (f = 1, 30 GHz):

* layer-0: PEC;

o layer-1: ¢,y = 4,d; = 0.1 cm;

e layer-2: €9 = 12.6,d> = 0.1 cm;

* layer-3: free-space.

In both cases, the source (HED) is placed at the interface between the
dielectric stack and the free-space. Also, we consider only the most
challenging case when the observation plane coincides with the source
plane, = = 2’ = 0. The average relative numbers of the associated in-
tegration points for the evaluation of the tails of the Green’s functions
G2, (p; z, 2") and GL(p; z, 2') are shown in Table I. Based on the pre-
sented results, we can conclude that the DE formulas require less in-
tegration points and, as explained above, less CPU time to achieve the
predefined accuracy.
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Fig. 5. Relative number of integration points Npg / Nwa (%) for a wide range
of distances from the source. (a) Sommerfeld identity tail (18). (b) Derivative
of the Sommerfeld identity tail (19).

TABLE I
AVERAGE RELATIVE NUMBER OF INTEGRATION POINTS
NEEDED FOR THE EVALUATION OF SI TAILS

\ Npe/Nwa (%)

three-layer geometry

Gilf=s qHz 7725
Giulf=s cha 77.19
four-layer geometry

Gilf—1 aHz 77.37
Ga =1 cHy 77.31
Gilf=30 GHs 78.13
Gielf=30 GHz 78.38

V. CONCLUSION

In this manuscript, a novel technique for the fast and accurate com-
putation of SI tails via direct integration, based on DE-type quadrature
formulas is introduced. We have demonstrated the superior behavior
of the proposed scheme, in terms of efficiency, over the traditional in-
tegration-then-summation procedure combined with the WA method,
which is considered as the most proven method for the evaluation of

the SI tails. More specifically, DE-type quadrature rules converge to
the predefined accuracy, while reducing the overall computational cost
roughly close to 25% compared to the WA method.
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Diversity On-Glass Antennas for Maximized Channel
Capacity for FM Radio Reception in Vehicles

Seungbeom Ahn, Yong Soo Cho, and Hosung Choo

Abstract—This communication proposes a systematic design method
to increase the diversity gain for vehicle on-glass antennas using the
Pareto genetic algorithm. The initial antenna structure consists of two FM
antennas printed on a rear window with horizontal conducting striplines.
The position and the number of the vertical lines in the rear window
were then determined using the Pareto genetic algorithm to maximize
the channel capacity and average bore-sight gain of each antenna. The
optimized antennas were built and mounted in a commercial sedan, and
the antennas’ performances, such as the reflection coefficient, radiation
pattern, and channel capacity were measured. The measurements showed
a matching bandwidth of around 15% and an average bore-sight gain
of more than —12 dBi. The measured correlation coefficient of the two
antennas was less than 0.6.

Index Terms—Channel capacity, correlation coefficient, diversity
on-glass antennas.

1. INTRODUCTION

FM radio is one of the most popular communication systems utilized
in current vehicle design [1]. Customers expect a high quality reception
from their FM radios, although they drive their vehicles in various en-
vironments. Thus, most of the vehicle manufacturers put considerable
effort into improving their radio systems and compete to offer their own
performance standard in FM reception. An FM radio consists of a tuner,
an amplifier, a connection cable, and a receiving antenna. Of these, the
receiving antenna is probably the most important unit because of its
critical effect on the reception performance.
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Fig. 1. Block diagram of the PGA design procedure.

Monopole type antennas, such as tuned-monopoles, micro-antennas,
and shark fin antennas, have been widely used in numerous vehicle de-
signs [2], [3]. These antennas, however, suffer from a lack of dura-
bility, high aerodynamic resistance, and an undesirable appearance,
as they protrude from the vehicle’s exterior. To mitigate these prob-
lems, on-glass antennas have been developed and are now commonly
applied in modern vehicle designs. On-glass antennas also have the ad-
vantage of having a low manufacturing cost, due to the antennas being
printed directly onto the vehicle window [4], [5]. However, they usually
suffer from narrow matching bandwidth, low antenna gain, and radia-
tion nulls, because the stripline of an on-glass antenna is printed onto
the glass with a high dielectric loss. Also, the on-glass antennas show
performance deterioration in urban environments where the channel
characteristics are predominated by multi-path fading [6]. Recently,
to improve the receiving performance, some luxury vehicles have em-
ployed diversity on-glass antennas systems that incorporate two sepa-
rate antennas in a single window.

In this communication, we propose a systematic design method for
diversity on-glass antennas that make them suitable for FM radio recep-
tion in a commercial sedan. The basic structure of the diversity on-glass
antenna incorporates two FM antennas placed on the upper and lower
areas of the rear window [7]—-[9]. The horizontal lines of the antennas
are commonly used as defroster lines, so the position and the number
of the vertical lines were determined using the Pareto genetic algo-
rithm (PGA) to maximize the channel capacity and average bore-sight
gain of each antenna. The optimized on-glass antennas were built and
mounted on a commercial sedan, and the antenna performance, such as
the reflection coefficient and the bore-sight gain, were measured in a
semi-anechoic chamber. The measurement showed a half-power band-
width of around 15% and a bore-sight gain of over —20 dBi in the FM
radio band. To confirm the diversity performance in a real situation,
we measured the received FM signal power in an urban environment,
where multi-path fading exists, which revealed low correlation coeffi-
cients of 0.52 between the diversity on-glass antennas.

II. ANTENNA STRUCTURE AND OPTIMIZATION

Fig. 1 shows a block diagram of the proposed design method for di-
versity on-glass antennas. The detailed designs of the antennas were
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