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ABSTRACT 
 

A general analytic solution for Brillouin distributed fibre sensors with sub-meter spatial resolution has been obtained by 
solving the coupled wave equation by a perturbation method. The effect of the interaction of a square pump pulse with a 
continuous signal is described in full generality for all possible pumping schemes and for any detuning with the resonance 
condition of the Brillouin interaction. The model predicts how the acoustic wave, the signal amplitude and the gain spectral 
profile depend upon the pumping scheme. The analytical solution is an unprecedented tool to optimize the sensor 
configuration by determining the optimum pumping scheme. 
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1. INTRODUCTION 

During the past decade interesting observations and innovative configurations have been proposed to realize distributed 
measurements with sub-meter spatial resolution using stimulated Brillouin scattering in a pump-probe configuration. It was 
observed that, for pulses substantially shorter than the acoustic lifetime in silica, the measured gain profiles abandons their 
expected spectral broadening and the linewidth is gradually returning to the natural value given by the acoustic lifetime. This 
astonishing feature was first observed using pulses superimposed on a continuous pump level [1], then later using dark pulses 
[2] and eventually using π-phase pulses [3]. It was soon explained that this behaviour results from the sharp modified 
reflection of the pump wave on the pre-existing acoustic wave that is formerly built up by the presence of a continuous 
component in the pump wave [4]. The passage of very short pulses turns out to have a negligible effect on the acoustic wave 
amplitude and the changes in the signal amplitude are entirely dominated by the modified reflection of the pump wave on the 
steady acoustic wave during the pulse duration. Since the acoustic wave is essentially created by continuous waves, it will 
respond to frequency detuning according to the natural gain spectral profile. 
These observations were theoretically all supported and justified by numerically solving the set of 3 coupled equations 
governing the interaction. The main problem arising from numerical justification is the absence of physical insight in the 
involved processes and their subsequent effect on the sensor response, and also the difficulty to optimize the different 
parameters of the sensor using an approach more efficient than a pure random choice that is gradually refined. 
By a simple perturbation method and under realistic assumptions we could analytically solve the coupled equations 
governing the interactions for a totally general square pump pulse showing arbitrary complex amplitudes before, during and 
after the pulse. The general analytical solution expressed in the time domain matches the observed sensor response for all 
configurations proposed to date and for any pump-signal frequency detuning. Using this tool we can easily determine the 
sensor configuration providing the best response, and also anticipate and describe all unwanted contributions to the signal. 

2. ANALYTICAL MODEL 

The theoretical model is based on the set of 3 coupled equations governing the amplitudes of the 3 interacting waves: 
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where
S
A , 

p
A and Q are the normalized envelopes of the signal, pump and acoustic amplitude, respectively. The frequency 

detuning parameter is ( )Γ = Ω − Ω − ΩΓ Ω2 2
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i i , where ΩΒ/2π and Ω/2π  are the Stokes resonance frequency and the 

pump-signal frequency difference, respectively, for a resonant interaction at a given point. The acoustic damping constant 

(
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Γ ) is related to the FWHM of the spontaneous Brillouin gain spectrum 
B

νΔ  by  1 /
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τ π νΓ = = Δ  where 
A

τ is the 

acoustic decay time equal to 11.8 ns in standard silica fibres. 
1 , 2
g  are the electrostrictive and elasto-optic coupling 

coefficients, respectively. In equation (3) the acoustic velocity is assumed to be much smaller than the light velocity (Vg), so 
that the acoustic wave is considered as static and does not significantly propagate during the interaction. For a signal shorter 
than the acoustic lifetime, the transient analysis of the set of equation (1-3) is required. We used different approximations to 
determine a general analytical solution. First, the effect of the linear attenuation of light is neglected over the region where 
the waves interact. Second, the interaction is supposed weak enough that pump depletion can be neglected. Third, the only 
restriction imposed on the signal field is the small gain approximation during the interaction, which is well justified for an 
interaction of a few nanoseconds. Therefore, the signal amplitude As(z,t) can be expressed as the sum of a continuous 

constant wave o

s
A  and a small varying term as(z,t) resulting from the gain. The consequence is that 

s
A  can be considered as 

a constant in Eq. (1)-(3), except when As is differentiated, as in the left term of Eq. (2) where only as(z,t) is present. To 
calculate the solution let consider a very short segment of fibre extending from position z0  to z0 + Δz in which the interaction 
can take place, much shorter than the distance over which light propagates during the pump pulse length T and the acoustic 
time τA. The rest of the fibre is off resonance for stimulated Brillouin scattering (SBS) and no electrostriction is observed 
(g1=0). So, the interaction area is represented by a bounded distribution of the electrostriction 
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represents the unit step function. It must be pointed out that there is no 
loss of generality to consider an isolated interaction over one segment, 
since the system of equations subject to the approximations is linear in g1. 
If the fibre is made of appended, but different, segments, the solution can 
be calculated separately for each segment (impulse response) and the 
total solution is simply given by the sum of each separated solution for as. 
The fact that the interaction is weak and the pump undepleted makes the 
pump propagation unaffected by the interaction and Equ. 1 can be 
discarded. The pump waveform Ap(z,t) will thus be only function of the quantity t-z/ Vg and, as sketched in Fig. 1, the pump 

amplitude for a general square pulse can be represented by ( ) ( / ) ( ) ( / )[ ]
o
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where α is a real dimensionless coefficient and β , γ  are complex.  
Equ. (2-3) are solved in the Laplace domain and the following general solution for the signal amplitude in the time domain is 
obtained for a very short interaction segment Δz (impulse response): 
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where g is a gain factor equal to 
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This expression is clearly made of three different terms, each corresponding to instances in the pump pulse sequence. First a 

constant gain is observed prior to the presence of the pulse, represented by the factorα α
≥

−2 2

t to

. Then, the interaction 

starts with the onset of the second term that manifests as an abrupt signal amplitude change, identified as the first Brillouin 
echo, that slowly decays exponentially during the pump pulse duration T. When the pump pulse ends, the second term stops 
contributing and the third term takes over as another step amplitude change – the second Brillouin echo – that shows the 
same slow exponential decay. Note that for γ = 0, the third term vanishes.  
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Fig. 1: Pump coding waveform where α is purely real 

and β , γ  are complex. The pump pulse 
duration T defines the spatial resolution. 
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3. DISCUSSIONS 

The validity of the solution explicited in expression (4) has been tested by comparing the Stokes signal amplification in 
different pumping configuration. The first test was performed on a pure bright pulse configuration with a zero background, 
so that α = γ = 0 and β = 1. The time instance when the pulse enters the fiber was arbitrarily set to 10 ns and the Brillouin 
resonance frequency was fixed at 11 GHz. The red line in Fig. 2(a) represents the bright pulse spectrum for a pump pulse of 
1 ns. We observe in this case the classic response of a widely broadened spectral profile for short pump pulses. A solution to 
suppress this broadening is to pre-activate the acoustic wave before the pulse passage [4]. The next test was performed for 
the same pump pulse conditions, but with a non-zero background. The spectra plotted in Fig. 2 represent the step change of 
the signal amplitude as a function of detuning and for different fractional backgrounds. The presence of a continuous 
component activates the acoustic wave before the pulse passage. Then, the gain gradually increases during the pulse duration.  

 
Fig. 2 : (a) Calculated Brillouin gain spectrum in a bright pulse configuration (β=1)  for different CW background. (b) Impulse response in 

the time domain at different frequency detuning for a 1 ns bright pulse with optimal CW component (α = γ = 0.5, β=1).  

In the case of very low backgrounds (α = 0.1, see Fig. 2(a)) we observe a pedestal in the Brillouin spectrum. On the contrary, 
for very large CW components (α = 0.9) the pedestal vanishes but the gain contrast is very low. The contrast is function of 
the difference between the amplitude during the pump pulse (β) and the background amplitude before the interaction (α). 
The most efficient configuration can be calculated and corresponds to α = γ = 0.5 and β = 1. We represent in Fig.2 (b) the 
impulse response of the signal change in the time domain for the most efficient bright pulse configuration at different 
frequency detuning. Off resonance, we clearly observe an oscillation on 
the signal amplitude after the pulse passage. Considering the case of a 
non-zero detuning in the Brillouin gain process, we add to the damping 
coefficient (ΓA) an imaginary part whose magnitude corresponds to the 
detuning ΩB-Ω, where Ω is the frequency difference between pump and 
signal. This introduces an oscillatory term into the acoustic wave 
equation (eq. 3), and ultimately gives rise to an oscillating response on 
the signal. In figure 2 (b), it can be seen that the oscillation frequency 
corresponds to the frequency detuning.  
In the dark pulse configuration [2], the pump is turned off for a time 
interval T, so that no interaction is present and the constant background 
amplification is stopped. The acoustic wave keeps an inertial vibration 
during the dark pulse duration and the background amplification is 
restored when the pump light is turned on again. In Fig. 3, we observe 
that the contrast in this configuration is twice larger than for the bright 
pulse with an optimal background. However, a high contrast is necessary 
for ultimate spatial resolutions and it is primarily given by ( )α β α− , as 

deduced from Equ. 4. A π phase pulse modulating a CW pump wave 

 
Fig. 3: Calculated Brillouin gain spectrum in three 

different pump pulse configuration for T=1ns. 
Black line, π phase pulse (α=γ=1, β=-1); red 
line, dark pulse (α=γ=1, β=0) and blue line, 
bright pulse with background (α=γ=0.5, β=1). 
The maximum contrast at Brillouin resonance 
in the different configuration is clearly visible. 
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creates a maximum amplitude difference at the pulse edges. When a π phase pulse is applied at t = 10 ns, an abrupt amplitude 
change is observed that slowly decays exponentially during the pulse interval T, as shown in Fig. 4(a). This represents the 
sudden phase change of the pump that contributes destructively on the signal when reflected by the acoustic wave and the 
subsequent slow phase change of the acoustic wave to adapt to the new phase situation between pump and signal (first echo). 
As shown in Equ. 4, this term stops contributing when the pump pulse ends at t = 11 ns and the third term takes over. This 
manifests as another abrupt amplitude change when the pump phase suddenly jumps, and the same slow exponential decay is 
observed while the acoustic wave gradually adapts to the novel phase situation. This second echo is proportionally smaller 
for shorter pulses and turns negligible for vanishingly short pulses. In the classical case of a zero background bright pulse, 
the interaction between pump and signal starts at t=10ns and we observe a slow exponential gain. After the pulse passage at 
t = 11 ns, the pump is turned off and the interaction stops brutally. In the case of short interactions (T<τA), the low gain 
actually results from the inertial behaviour of the acoustic wave, with a time constant given by the acoustic lifetime τA ≅ 10ns. 

 
Fig. 3: (a) Calculated impulse response of the signal gain in the case of a zero background bright pulse (α=γ=0, β=1) and a π phase pulse 

(α=γ=0, β=-1) for T=1ns. In the case of a π phase pulse, the gain in 27 times larger than for a bright pulse. The 2nd echo is clearly 
observed at t=t0+T. (b) Calculated 3D signal amplitude diagram for a 1ns π phase pulse as a function of distance and frequency for 
a an interacting fibre segment of finite length L=1m. 

The study in the time domain clearly shows that the inertial response of the acoustic wave is a penalty in the classical zero 
background bright pulse configuration by preventing the acoustic wave from building up during a short pump pulse. On the 
contrary, in a configuration based on the Brillouin echoes, this inertial response is clearly an asset since we take an advantage 
of the slow decay of the acoustic wave. A longer acoustic lifetime will even lead to a better response, by reducing the 
importance of the 2nd echo. In Fig. 4(b), the analytical solution is used to calculate the 3D signal amplitude for a π phase 
pump pulse of 1ns on a 1m fiber length, to describe a realistic measurement. We clearly see the two sharp amplitude change 
at t = 10 ns and t = 20 ns corresponding to the interaction area, and the background off- resonance oscillations. This diagram 
is obtained instantaneously without numerical integration and the comparison with real measurements shows a perfect 
matching. The full knowledge of the time domain response of a given distributed sensor configuration based on the Brillouin 
echoes (BEDS) is decisively helpful to deconvolve the interfering effect of the second echo that may seriously screen the real 
Brillouin response of the system. 
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